Enumeration Comprehensive Examination
 MC 5479, 1:00-4:00 pm, Thursday June 13, 2019

Kevin Purbhoo and David Wagner, examiners

There are six questions, worth a total of 75 points. Answer as many questions as possible. Solutions will be evaluated based on correctness, completeness, and quality of explanation. In case of an incomplete answer, a precise description of any gaps is preferred.

1. [12 pts.] For a positive integer j and an integer partition $\lambda \vdash n$, let $m_{j}(\lambda)$ denote the multiplicity with which j occurs as a part of λ. Fix a positive integer p, and let

$$
a_{p}(\lambda)=\left|\left\{j: m_{j}(\lambda)=p\right\}\right|
$$

be the number of different sizes of parts which occur exactly p times in λ.
For $n \in \mathbb{N}$, let $M_{p}(n)=\sum_{\lambda \vdash n} m_{p}(\lambda)$ and $A_{p}(n)=\sum_{\lambda \vdash n} a_{p}(\lambda)$.
(a) Show that

$$
\sum_{n=0}^{\infty} M_{p}(n) x^{n}=\frac{x^{p}}{1-x^{p}} \prod_{j=1}^{\infty} \frac{1}{1-x^{j}}
$$

(b) Show that for all $n \geq p, M_{p}(n)=\sum_{i=0}^{p} A_{p}(n-i)$.
2. [12 pts.] Recall that a plane planted tree (PPT) has a root node, and every node has a (possibly empty) sequence of child nodes, ordered from left to right. A PPT is even if every node has an even number of children.
(a) Show that the number of even PPTs with $2 n+1$ nodes is $\frac{1}{2 n+1}\binom{3 n}{n}$.
(b) Show that the average degree of the root node, among all even PPTs with $2 n+1$ nodes, is $4 n /(n+1)$.
3. [11 pts.] Let $\mathcal{S}_{2 n}$ be the set of permutations of $[2 n]=\{1,2, \ldots, 2 n\}$. Let

$$
\mathcal{J}_{n}=\left\{\sigma \in \mathcal{S}_{2 n} \mid \sigma(i) \not \equiv \sigma(i+n) \bmod n, \text { for all } i \in[n]\right\} .
$$

Prove that

$$
\left|\mathcal{J}_{n}\right|=\sum_{k=0}^{n} \frac{(-2)^{k}(n!)^{2}(2 n-2 k)!}{k!(n-k)!} .
$$

4. [10 pts.] A permutation σ of [n] is 231-avoiding if there do not exist three indices $1 \leq h<$ $i<j \leq n$ with $\sigma(i)>\sigma(h)>\sigma(j)$. By any method you choose, determine the number of 231-avoiding permutations of $[n]$ for each $n \in \mathbb{N}$.
5. [10 pts.] Let $g_{p, q, r}$ denote the number of simple graphs with vertex set $[p]$ that have q edges and r components. Let $H(x, t) \in \mathbb{Q}[t][[x]]$ be the unique series such that $H(0, t)=1$ and $\frac{\partial}{\partial x} H(x, t)=H(x t, t)$.
Prove that

$$
g_{p, q, r}=\left[\frac{x^{p} y^{q} z^{r}}{p!}\right] H(x, y+1)^{z}
$$

6. [20 pts.]
(a) On a finite set X, a Q-structure is a pair (γ, S) such that γ is a cyclic permutation of X and S is a (possibly empty) subset of X such that if $v \in S$, then $\gamma(v) \notin S$. Show that the bivariate generating series for Q-structures is

$$
Q(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{(\gamma, S) \in \mathfrak{Q}_{n}} y^{|S|}=\log \left(\frac{1}{1-x-x^{2} y}\right)
$$

(b) Let Z be the class of rooted labelled trees (RLTs) in which

- each vertex has at most two children, and
- if vertex v has two children, then the children of v each have at most one child.

Show that the generating series $Z(x)=\sum_{n=0}^{\infty}\left|Z_{n}\right| x^{n} / n$! of z satisfies the equation

$$
x^{3} Z^{2}+2\left(x^{3}+x-1\right) Z+x\left(x^{2}+2\right)=0 .
$$

(c) Consider the class \mathcal{M} of endofunctions $\phi: X \rightarrow X$ such that

- for all $v \in X,\left|\phi^{-1}(v)\right| \leq 2$, and
- if $\left|\phi^{-1}(v)\right|=2$ and $w=\phi(v)$, then $\phi^{-1}(w)=\{v\}$.

From parts (a) and (b), or otherwise, obtain a formula for the generating series $M(x)=\sum_{n=0}^{\infty}\left|\mathcal{M}_{n}\right| x^{n} / n!$.

