Enumeration Comprehensive Examination MC 5479, 1:00 – 4:00 pm, Thursday June 13, 2019

Kevin Purbhoo and David Wagner, examiners

There are six questions, worth a total of 75 points. Answer as many questions as possible. Solutions will be evaluated based on correctness, completeness, and quality of explanation. In case of an incomplete answer, a precise description of any gaps is preferred.

1. [12 pts.] For a positive integer j and an integer partition $\lambda \vdash n$, let $m_j(\lambda)$ denote the multiplicity with which j occurs as a part of λ . Fix a positive integer p, and let

$$a_p(\lambda) = |\{j: m_j(\lambda) = p\}|$$

be the number of different sizes of parts which occur exactly p times in λ .

For $n \in \mathbb{N}$, let $M_p(n) = \sum_{\lambda \vdash n} m_p(\lambda)$ and $A_p(n) = \sum_{\lambda \vdash n} a_p(\lambda)$.

(a) Show that

$$\sum_{n=0}^{\infty} M_p(n) x^n = \frac{x^p}{1-x^p} \prod_{j=1}^{\infty} \frac{1}{1-x^j}.$$

- (b) Show that for all $n \ge p$, $M_p(n) = \sum_{i=0}^p A_p(n-i)$.
- 2. [12 pts.] Recall that a plane planted tree (PPT) has a root node, and every node has a (possibly empty) sequence of child nodes, ordered from left to right. A PPT is *even* if every node has an even number of children.
 - (a) Show that the number of even PPTs with 2n + 1 nodes is $\frac{1}{2n+1} \binom{3n}{n}$.
 - (b) Show that the average degree of the root node, among all even PPTs with 2n+1 nodes, is 4n/(n+1).
- 3. [11 pts.] Let S_{2n} be the set of permutations of $[2n] = \{1, 2, ..., 2n\}$. Let

$$\mathcal{J}_n = \{ \sigma \in \mathcal{S}_{2n} \mid \sigma(i) \not\equiv \sigma(i+n) \bmod n, \text{ for all } i \in [n] \}.$$

Prove that

$$|\mathcal{J}_n| = \sum_{k=0}^n \frac{(-2)^k (n!)^2 (2n-2k)!}{k! (n-k)!}$$

- 4. [10 pts.] A permutation σ of [n] is 231-avoiding if there do not exist three indices $1 \le h < i < j \le n$ with $\sigma(i) > \sigma(h) > \sigma(j)$. By any method you choose, determine the number of 231-avoiding permutations of [n] for each $n \in \mathbb{N}$.
- 5. [10 pts.] Let $g_{p,q,r}$ denote the number of simple graphs with vertex set [p] that have q edges and r components. Let $H(x,t) \in \mathbb{Q}[t][[x]]$ be the unique series such that H(0,t) = 1 and $\frac{\partial}{\partial x}H(x,t) = H(xt,t).$

Prove that

$$g_{p,q,r} = \left[\frac{x^p y^q z^r}{p!}\right] H(x,y+1)^z \,.$$

6. [20 pts.]

(a) On a finite set X, a Q-structure is a pair (γ, S) such that γ is a cyclic permutation of X and S is a (possibly empty) subset of X such that if $v \in S$, then $\gamma(v) \notin S$. Show that the bivariate generating series for Q-structures is

$$Q(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{(\gamma,S)\in \mathcal{Q}_n} y^{|S|} = \log\left(\frac{1}{1-x-x^2y}\right).$$

- (b) Let \mathcal{Z} be the class of rooted labelled trees (RLTs) in which
 - each vertex has at most two children, and
 - if vertex v has two children, then the children of v each have at most one child.

Show that the generating series $Z(x) = \sum_{n=0}^{\infty} |\mathcal{Z}_n| x^n/n!$ of \mathcal{Z} satisfies the equation

$$x^{3}Z^{2} + 2(x^{3} + x - 1)Z + x(x^{2} + 2) = 0.$$

- (c) Consider the class \mathcal{M} of endofunctions $\phi: X \to X$ such that
 - for all $v \in X$, $|\phi^{-1}(v)| \leq 2$, and
 - if $|\phi^{-1}(v)| = 2$ and $w = \phi(v)$, then $\phi^{-1}(w) = \{v\}$.

From parts (a) and (b), or otherwise, obtain a formula for the generating series $M(x) = \sum_{n=0}^{\infty} |\mathcal{M}_n| x^n/n!.$