Enumeration Comprehensive Examination

13:00-16:00, Thursday June 18, 2020
Kevin Purbhoo and David Wagner, examiners

There are 5 questions, worth a total of 100 points. Answer as many questions as possible. Solutions will be evaluated based on correctness, completeness, and quality of explanation. In case of an incomplete answer, a precise description of any gaps is preferred.

1. Prove the following identities.
(a) $\prod_{j=1}^{\infty}\left(1-x^{j} y\right)^{-1}=1+\sum_{k=1}^{\infty} \frac{x^{k^{2}} y^{k}}{\prod_{i=1}^{k}\left(1-x^{i}\right)\left(1-x^{i} y\right)}$.
(b) $\prod_{j=1}^{\infty}\left(1+x^{2 j-1} y\right)=1+\sum_{k=1}^{\infty} \frac{x^{k^{2}} y^{k}}{\prod_{i=1}^{k}\left(1-x^{2 i}\right)}$.
2. (a) Let α and x be indeterminates. Find a formal power series $f(y)$ such that $f\left(x e^{-x}\right)=e^{\alpha x}$. (Hint: $y=x e^{-x}$ implicitly determines x as a power series in y.)
(b) Let β be another indeterminate. From part (a) or otherwise, prove that

$$
(\alpha+\beta)(n+\alpha+\beta)^{n-1}=\alpha \beta \sum_{k=0}^{n}\binom{n}{k}(k+\alpha)^{k-1}(n-k+\beta)^{n-k-1}
$$

3. Let \mathcal{F}_{n} denote the set of all endofunctions $\phi:[n] \rightarrow[n]$ of the set $[n]=\{1,2, \ldots, n\}$.
(a) For $\phi \in \mathcal{F}_{n}$, let $B(\phi)=\{1, \phi(1), \phi(\phi(1)), \ldots\} \subseteq[n]$, and let $b(\phi)=|B(\phi)|$. Prove that for integers $1 \leq j \leq n$, the number of endofunctions $\phi \in \mathcal{F}_{n}$ with $b(\phi)=j$ is

$$
\binom{n-1}{j-1} \cdot j!\cdot n^{n-j}
$$

(b) For $\phi \in \mathcal{F}_{n}$, let fix $(\phi)=\{v \in[n]: \phi(v)=v\}$ and $p(\phi)=\mid$ fix $(\phi) \mid$. Consider the bivariate generating series

$$
F(x, y)=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \sum_{\phi \in \mathcal{F}_{n}} y^{p(\phi)}
$$

Let $f(x)=\sum_{n \geq 1} n^{n-1} \frac{x^{n}}{n!}$. Find an expression for $F(x, y)$ in terms $f(x)$.
(c) For $n \geq 1$, the average value of $p(\phi)$ among all endofunctions $\phi \in \mathcal{F}_{n}$ is 1 . (To see this, each endofunction ϕ is defined on n points, each of which is in fix (ϕ) with probability $1 / n$.) Compute the average value of $p(\phi)^{2}$ among all endofunctions $\phi \in \mathcal{F}_{n}$.
4. (a) Let $c_{n, k}$ denote the number of cycles of length k in the complete graph K_{n}. (Note that we have $c_{n, k}=0$ if $k \leq 2$.) Obtain a closed formula for the generating series

$$
C(x, y)=\sum_{n, k \geq 0} c_{n, k} \frac{x^{n} y^{k}}{n!}
$$

(b) Let \mathcal{G}_{n} be the set of all graphs with vertex set $[n]$. Suppose a graph G is chosen uniformly at random from \mathcal{G}_{n}. Prove that the expected number of cycles in G is $\left[\frac{x^{n}}{n!}\right] C\left(x, \frac{1}{2}\right)$.
5. As usual, for $n \geq \mathbb{N}$, let $(2 n-1)!!=\prod_{i=1}^{n}(2 i-1)$. For a series of the form $A(x)=\sum_{n \geq 0} a_{n} x^{n}$, we let $\delta_{x} A(x)=a_{0}+\sum_{n \geq 1} a_{2 n}(2 n-1)!!$, whenever this latter sum is formally defined.

Note that the coefficients a_{n} above may be either constants or power series in variables other than x. For example, $\delta_{x}\left(1+x y+x^{2} y^{2}\right)=1+3 y^{2}$.
(a) Let $\mathcal{M}_{2 n}$ be the set of all perfect matchings in the complete graph $K_{2 n}$. Prove that $\left|\mathcal{M}_{2 n}\right|=\delta_{x}\left(x^{2 n}\right)$.
(b) Fix a matching $M_{0} \in \mathcal{M}_{2 n}$. Using the Principle of Inclusion-Exclusion, or otherwise, prove that the number of matchings $M \in \mathcal{M}_{2 n}$ such that $M \cap M_{0}=$ \emptyset is $\delta_{x}\left(\left(x^{2}-1\right)^{n}\right)$.
(c) Prove that the number of ordered triples $\left(M_{1}, M_{2}, M_{3}\right) \in \mathcal{M}_{2 n}^{3}$ such that $M_{1} \cap M_{2}=M_{1} \cap M_{3}=M_{2} \cap M_{3}=\emptyset$ is

$$
\left[\frac{t^{2 n}}{2 n!}\right] \delta_{x} \delta_{y} \delta_{z} \exp \left(t x y z+\frac{1}{2} t^{2}\left(2-x^{2}-y^{2}-z^{2}\right)\right)
$$

