Enumeration Comprehensive Examination 13:00 – 16:00, Thursday June 18, 2020 Kevin Purbhoo and David Wagner, examiners

There are 5 questions, worth a total of 100 points. Answer as many questions as possible. Solutions will be evaluated based on correctness, completeness, and quality of explanation. In case of an incomplete answer, a precise description of any gaps is preferred.

1. Prove the following identities.

(a)
$$\prod_{j=1}^{\infty} (1 - x^j y)^{-1} = 1 + \sum_{k=1}^{\infty} \frac{x^{k^2} y^k}{\prod_{i=1}^k (1 - x^i)(1 - x^i y)}.$$
 [8]

(b)
$$\prod_{j=1}^{\infty} (1+x^{2j-1}y) = 1 + \sum_{k=1}^{\infty} \frac{x^{k^2}y^k}{\prod_{i=1}^k (1-x^{2i})}.$$
 [8]

- 2. (a) Let α and x be indeterminates. Find a formal power series f(y) such that [8] f(xe^{-x}) = e^{αx}.
 (Hint: y = xe^{-x} implicitly determines x as a power series in y.)
 - (b) Let β be another indeterminate. From part (a) or otherwise, prove that [9]

$$(\alpha+\beta)(n+\alpha+\beta)^{n-1} = \alpha\beta\sum_{k=0}^{n} \binom{n}{k}(k+\alpha)^{k-1}(n-k+\beta)^{n-k-1}$$

- 3. Let \mathcal{F}_n denote the set of all endofunctions $\phi : [n] \to [n]$ of the set $[n] = \{1, 2, ..., n\}$.
 - (a) For $\phi \in \mathcal{F}_n$, let $B(\phi) = \{1, \phi(1), \phi(\phi(1)), ...\} \subseteq [n]$, and let $b(\phi) = |B(\phi)|$. [7] Prove that for integers $1 \leq j \leq n$, the number of endofunctions $\phi \in \mathcal{F}_n$ with $b(\phi) = j$ is

$$\binom{n-1}{j-1} \cdot j! \cdot n^{n-j}$$

(b) For $\phi \in \mathcal{F}_n$, let fix $(\phi) = \{v \in [n] : \phi(v) = v\}$ and $p(\phi) = |\text{fix}(\phi)|$. Consider [8] the bivariate generating series

$$F(x,y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{\phi \in \mathcal{F}_n} y^{p(\phi)}$$

Let $f(x) = \sum_{n \ge 1} n^{n-1} \frac{x^n}{n!}$. Find an expression for F(x, y) in terms f(x).

- (c) For $n \ge 1$, the average value of $p(\phi)$ among all endofunctions $\phi \in \mathcal{F}_n$ is 1. [10] (To see this, each endofunction ϕ is defined on n points, each of which is in fix (ϕ) with probability 1/n.) Compute the average value of $p(\phi)^2$ among all endofunctions $\phi \in \mathcal{F}_n$.
- 4. (a) Let $c_{n,k}$ denote the number of cycles of length k in the complete graph K_n . [8] (Note that we have $c_{n,k} = 0$ if $k \leq 2$.) Obtain a closed formula for the generating series

$$C(x,y) = \sum_{n,k\geq 0} c_{n,k} \frac{x^n y^k}{n!} \,.$$

- (b) Let \mathcal{G}_n be the set of all graphs with vertex set [n]. Suppose a graph G is [8] chosen uniformly at random from \mathcal{G}_n . Prove that the expected number of cycles in G is $\left[\frac{x^n}{n!}\right]C(x,\frac{1}{2})$.
- 5. As usual, for $n \geq \mathbb{N}$, let $(2n-1)!! = \prod_{i=1}^{n} (2i-1)$. For a series of the form $A(x) = \sum_{n\geq 0} a_n x^n$, we let $\delta_x A(x) = a_0 + \sum_{n\geq 1} a_{2n}(2n-1)!!$, whenever this latter sum is formally defined.

Note that the coefficients a_n above may be either constants or power series in variables other than x. For example, $\delta_x(1 + xy + x^2y^2) = 1 + 3y^2$.

- (a) Let \mathcal{M}_{2n} be the set of all perfect matchings in the complete graph K_{2n} . Prove [4] that $|\mathcal{M}_{2n}| = \delta_x(x^{2n})$.
- (b) Fix a matching $M_0 \in \mathcal{M}_{2n}$. Using the Principle of Inclusion-Exclusion, or [10] otherwise, prove that the number of matchings $M \in \mathcal{M}_{2n}$ such that $M \cap M_0 = \emptyset$ is $\delta_x ((x^2 1)^n)$.
- (c) Prove that the number of ordered triples $(M_1, M_2, M_3) \in \mathcal{M}_{2n}^3$ such that [12] $M_1 \cap M_2 = M_1 \cap M_3 = M_2 \cap M_3 = \emptyset$ is

$$\left[\frac{t^{2n}}{2n!}\right]\delta_x\delta_y\delta_z\exp\left(txyz+\frac{1}{2}t^2(2-x^2-y^2-z^2)\right)\,.$$