GRAPH THEORY COMPREHENSIVE SPRING 2001

INSTRUCTIONS. Attempt all questions. All questions have equal weight. A complete solution to a single question is worth more than partial solutions to several questions.

QUESTION 1.

- (a) Let G be a simple graph such that, if $u \in V(G)$, then $deg_G(u) \ge |V(G)|/2$. Give a self-contained proof that G has a Hamiltonian cycle.
- (b) Let G be a graph in which every vertex has even degree. Prove that E(G) partitions into the edge-sets of edge-disjoint cycles of G.
- (c) Prove that every connected graph in which every vertex has even degree has an Euler tour.

QUESTION 2. The chromatic number of a graph G is denoted $\chi(G)$. A graph G is k-critical if $\chi(G) = k$ but if H is a proper subgraph of G, then $\chi(H) < k$.

- (a) Prove that if G is k-critical, then every vertex of G has degree at least k-1.
- (b) Prove that if $\chi(G) \geq k$, then G contains a k-critical subgraph.

The following parts lead to a proof of Brooks' Theorem. Either prove the parts below or give a self-contained proof of:

Brooks' Theorem. Let G be a connected graph with maximum degree Δ . Then at least one of the following holds: $G = K_{\Delta+1}$; or G is an odd cycle; or $\chi(G) \leq \Delta$.

- (c) Prove that if G is k-critical, then G is 2-connected.
- (d) Suppose G is k-critical and has subgraphs H and K, each containing a vertex not in the other, such that $G = H \cup K$ and $H \cap K$ consists just of the two vertices u and v. Prove that one, say X, of H and K is such that $\chi(X + uv) = k$ and the other, say Y, is such that $\chi((Y + uv)/uv) = k$. (Note that if e is an edge of a graph L, then L/e is L with e contracted.)
- (e) Suppose G is 3-connected and not complete. Prove there is an ordering of its vertices as v_1, v_2, \ldots, v_n such that $v_1v_2 \notin E(G), v_1v_n, v_2v_n \in E(G),$ and, for $j = 3, 4, \ldots, n-1, v_j$ is adjacent to at least one vertex among $v_{j+1}, v_{j+2}, \ldots, v_n$.
- (f) Prove Brooks' Theorem.

QUESTION 3.

- (a) Let M be a matching in a graph G, and let C be a cycle in G of length 2k+1 for some integer $k \geq 1$. Suppose C contains exactly k edges of M, and has one vertex x that is not incident with an edge of M. Prove that M is maximum in G if and only if M' is maximum in G', where $M' = M \setminus E(C)$ and G' is the graph obtained from G by contracting the edges of C.
- (b) Give an example to show that the existence of x is necessary for the previous statement.
- (c) Prove Tutte's Theorem for matchings in graphs.

QUESTION 4.

(a) This question is about Menger's Theorem: Let a and b be distinct non-adjacent vertices in a graph G, and let k denote the minimum size of a vertex-cut of G that

separates a and b. Then the size of the largest set of vertex-disjoint paths joining a and b in G is k.

Complete the following steps (i)–(vi) leading to a proof of the above theorem OR state and give a self-contained proof of some version of Menger's Theorem.

(i) Prove the theorem for k = 0 and k = 1.

Suppose the theorem is not true, and let $k \geq 2$ be smallest such that there exists a counterexample. Assume that G is the smallest counterexample for this value of k.

- (ii) Prove that if G contains a vertex x adjacent to both a and b, then G cannot be a counterexample.
- (iii) Suppose W is a vertex cut of G separating a and b of size k, such that neither a nor b is adjacent to all vertices of W. Define G_a to be the graph obtained by replacing the component of G-W containing a by a single vertex a_0 , and joining a_0 to all of W. Prove that there are k vertex-disjoint paths from a_0 to b in G_a .
- (iv) Prove that if W exists as in (iii), then G cannot be a counterexample.
- (v) We may therefore assume that any vertex cut W of size k that separates a and b is such that either a or b is adjacent to all of W. Let $ax_1x_2...b$ be a shortest path joining a and b in G. Prove that the graph $G \{x_1x_2\}$ obtained from G by removing the edge x_1x_2 has a vertex cut of size k-1 that separates a and b.
- (vi) Prove Menger's Theorem as stated.
- (b) Use Menger's Theorem to prove König's Theorem on matchings and covers in bipartite graphs.
- (c) Use König's Theorem to prove Hall's Theorem on matchings in bipartite graphs.

QUESTION 5. Prove Turán's Theorem: For each pair (n,r) of integers $n \geq r \geq 2$, there is a graph T(n,r) on n vertices such that if G is a graph on n vertices not containing K_{r+1} as a subgraph, then $|E(G)| \leq |E(T(n,r))|$, with equality if and only if G = T(n,r).

QUESTION 6.

- (a) Let G be a connected graph with maximum degree Δ . Prove that Δ is an eigenvalue of the adjacency matrix A of G if and only if G is Δ -regular.
- (b) Prove that if Δ is an eigenvalue of A, then its multiplicity is 1.
- (c) Prove that if $-\Delta$ is an eigenvalue of A, then G is bipartite.
- (d) Suppose G is Δ -regular and has the property that, for some $a \geq 0$ and $b \geq 1$, every pair of adjacent vertices have exactly a common neighbours, and every pair of nonadjacent vertices have exactly b common neighbours. Prove that $A^2 + (b-a)A + (b-\Delta)I = cJ$, where I denotes the identity matrix and J the all-1's matrix. Use this to obtain a formula satisfied by all other eigenvalues of A (other than Δ).