Graph Theory Comprehensive Examination July 2003

C. Godsil and P. Haxell

- 1. We construct a circle graph on 2n vertices as follows. Draw the cycle C_{2n} in the plane in the usual way. Now divide the 2n vertices into n pairwise disjoint pairs, and join the vertices in each pair by an edge. We call this set of n edges the *chords* of the circle graph. The *intersection graph* of the circle graph is the graph with the n chords as vertices, and two chords are adjacent if they are overlapping bridges of the original cycle. (In other words, if we draw them as straight lines, then they cross.)
 - (a) Prove that if the intersection graph of a circle graph is bipartite, then the circle graph is planar.
 - (b) Prove that if the intersection graph of a circle graph is not bipartite, the circle graph is not planar.
- 2. Let G be a connected regular graph and let L(G) denote its line graph.
 - (a) Let B be the incidence matrix of G. Express the adjacency matrices of G and L(G) in terms of the matrices BB^T and B^TB and the identity matrix.
 - (b) If x is an eigenvector of BB^T with eigenvalue λ , prove that B^Tx is an eigenvector of B^TB with eigenvalue λ . If y is an eigenvector of B^TB with eigenvalue λ , prove that By is an eigenvector of BB^T with eigenvalue λ .
 - (c) Prove that λ is a non-zero eigenvalue of BB^T with multiplicity m if and only if it is a non-zero eigenvalue of B^TB with multiplicity m.
 - (d) Use the result of (c) (whether or not you prove it) to express the eigenvalues of L(G) in terms of the eigenvalues of G.
 - (e) Given that K_5 has -1 as an eigenvalue with multiplicity four, determine the eigenvalues of $L(K_5)$.
- 3. (a) Let D be a directed graph with n vertices, with no loops or multiple arcs. Suppose that for each vertex x, $d^-(x) \ge \frac{n}{2}$ and $d^+(x) \ge \frac{n}{2}$. Prove that D has a directed Hamilton cycle.
 - (b) Let D be a strongly connected (diconnected) directed graph whose underlying graph contains an odd cycle. Prove that D contains a directed odd cycle.

- 4. A graph G is vertex critical if $\chi(H) < \chi(G)$ for each proper subgraph of G.
 - (a) Prove that a vertex-critical graph is a block.
 - (b) Prove that if G is vertex critical and $\{u, v\}$ is a vertex cut in G, then u is not adjacent to v.
 - (c) Suppose G is vertex critical with chromatic number k and $\{u,v\}$ is a vertex cut. Show that G is the 2-sum of graphs G_1 and G_2 , where one of G_1 and G_2 is vertex critical with chromatic number k.

We say G is the 2-sum of graphs H_1 and H_2 if

- (i) $V(H_1) \cup V(H_2) = V(G)$.
- (ii) $V(H_1) \cap V(H_2) = \{u, v\}.$
- (iii) The vertices u and v are adjacent in H_1 and H_2 .
- (iv) $E(G) = (E(H_1) \cup E(H_2)) \setminus \{uv\}.$
- 5. (a) State the vertex version of Menger's theorem, and give a self-contained proof.
 - (b) Let $a, b, x_1 \cdots x_k$ be distinct vertices in a (k+1)-connected graph. Prove that there is a path from a to b that contains all the points $x_1 \cdots x_k$. (You may assume Menger's Theorem.)
- 6. (a) State and prove Hall's theorem for matchings in bipartite graphs.
 - (b) Let G be a connected graph such that for each $x \in V(G)$, $\nu(G-x) = \nu(G)$ (here $\nu(H)$ denotes the size of the largest matching in H). Prove that G is factor-critical, that is, G-x has a perfect matching for every vertex x of G. [Hint: first show that $\nu(G-x-y) < \nu(G)$ for every pair of vertices $x \neq y$]