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Abstract

The unit-distance graph in n dimensions over the field F ⊆ R, denoted by Un
F ,

is the graph G defined by V (G) = Fn, and two vertices are adjacent if and only
if they are at Euclidean distance 1. Generally F = Q or R. In this essay, we
show that between two vertices x, y of Un

Q for n ≥ 4 there is a path of length
at most ‖x − y‖ + c, where c is a constant that depends on n, decreases as n
increases, and is less than 20 for all n. We also explore some results about the
chromatic number of Un

Q and Un
R for some small values of n.
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Chapter 1

Introduction

This essay serves as an introduction to the unit-distance graph and some prob-
lems associated with it. The unit-distance graph in n dimensions over the field
F ⊆ {R, Q}, denoted by Un

F , is the graph G defined by V (G) = Fn, and two
vertices are adjacent if and only if they are at Euclidean distance 1.

Most of the interest in unit-distance graphs stems from colouring. The fa-
mous open problem in the area is to determine the chromatic number of U2

R.
Jensen and Toft [9] attribute the problem to Edward Nelson in 1950. In 1992
Chilakamarri [5] surveyed the known results in the area. The best known lower
bound for the chromatic number of U2

R is four, due to Moser and Moser [8].
The best know upper boud is seven, due to Hadwiger and Debrunner [12].

There has been more success in determining the chromatic number of Un
Q for

small values of n. The chromatic numbers of U2
Q, U2

Q, and U4
Q are known and

good bounds are known for U5
Q, U6

Q, U7
Q, and U8

Q. The proofs for the chromatic
numbers of U2

Q, U3
Q, and U4

Q are included.
Another important result about the rational graphs is about connectivity;

the rational unit-distance graphs are not necessarily connected. Chilakamarri
[3] showed that Un

Q is connected when n ≥ 5 and is not connected when n ≤ 4.
We expand on this result by giving an explicit description of the components of
the rational unit-distance graph in the cases when it is not connected.

We also look at the problem of determining the length of the shortest path
between two points of Un

Q that are in the same component when n ≥ 4. For
two points a, b, we are able to find a path with length ‖a− b‖+ c, where c is a
small constant. We not only prove existence of paths of these lengths, we show
how to construct them.
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Chapter 2

Connectedness

A natural question that arises when studying the rational unit distance graphs
is whether or not the graphs are connected. To understand the structure of
the entire graph, it suffices to understand the structure of the components.
Since Qn is isomorphic under a rational translation, the components must all
be translates of each other.

The proofs that Un
Q is connected when n ≥ 5 and non connected when n ≤ 4

are not original. They are included here because they are elegant and because
similar ideas are used later on. The characterization of connected components
is a new result.

If e is an edge from a to b in Un
Q or Un

R , it is convenient to think of it as
a vector in Rn. For example, in U4

Q, the edge from a = (0, 1, 1/3, 0) to b =
(5/6, 1/2, 1/6,−1/6) would be denoted by vector e = (5/6,−1/2,−1/6,−1/6),
and the edge from b to a would be −e. Similarly, we refer to a path as a sequence
of vectors.

When working with paths in Un
Q or Un

R , there are two different concepts of
length that we are concerned with. The first is the number of edges in a path,
which we will refer to as the length of a path. The second concept is the distance
between the two endpoints of the path in Rn. We define the Euclidean length
of a path P from c to d to be the vector d− c ∈ Rn

2.1 Un
Q is connected for n ≥ 5

We show that Un
Q is connected for n ≥ 5 using the following lemma. The result

and proof are originally due to Chilakamarri [3].

2.1.1 Lemma. If n ≥ 5 and m ∈ N, then there exists a path in Un
Q from

(0, 0, . . . , 0) to ( 1
m , 0, 0, . . . , 0).

Proof. It is a well-known result in number theory that any natural number
can be written as the sum of four squares (see [2] for a proof). So given m > 0,
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2. CONNECTEDNESS

we can find non-negative integers a1, a2, a3, a4 such that

a2
1 + a2

2 + a2
3 + a2

4 = 4m2 − 1.

The length of each of the segments

S1 =
(

1
2m

,
a1

2m
,

a2

2m
,

a3

2m
,

a4

2m
, 0 . . . , 0

)

S2 =
(

1
2m

,
−a1

2m
,
−a2

2m
,
−a3

2m
,
−a4

2m
, 0 . . . , 0

)
is 1 and thus they are edges of Un

Q for n ≥ 5. If we take the path S1S2, it travels
from the origin to ( 1

m , 0, 0, . . . , 0).

We are now equipped to prove our main theorem for this section.

2.1.2 Theorem. Un
Q is connected for n ≥ 5.

Proof. By Lemma 2.1.1, we can find a path P 1
m from

(0, 0, . . . , 0) to
(

1
m

, 0, . . . , 0
)

.

We can similarly find paths P k
m from

(0, 0, . . . , 0) to
(

0, . . . , 0,
1
m

, 0, . . . , 0
)

where 1
m is in the kth position. If we consider the path taken by combining ai

copies of P i
m, we obtain a path from

(0, 0, . . . , 0) to
(a1

m
,
a2

m
, . . . ,

an

m

)
.

For any point p in Qn, we can express p in the above form by choosing m as
the lowest common multiple of the denominators of each coordinate. Thus, we
can find a path between (0, 0, . . . , 0) and any other vertex of Un

Q , so the graph
is connected.

2.2 Un
Q is not connected for n ≤ 4

The result and proof of this section are again due to Chilakamarri [3].

2.2.1 Theorem. The graph U4
Q is not connected.

Proof. Consider the point ( 1
4 , 0, 0, 0). We will show that there is no path from

the origin to this point. Suppose that such a path did exist. Let it be composed
of edges {(

ai

ei
,
bi

ei
,
ci

ei
,
di

ei

)}n

i=1

4



2.3. CONNECTED COMPONENTS

with fractions in lowest terms. For each i ≤ n, we have

a2
i + b2

i + c2
i + d2

i = e2
i

If ei is a multiple of 4, considering this equation modulo 16 we get

a2
i + b2

i + c2
i + d2

i = 0

The only quadratic residues modulo 16 are 0, 1, 4 and 9. So the above equation
can only hold if all terms are 0 or all terms are 4. Thus, ei is not a multiple of
4. So for some odd β we must have

n∑
i=1

ai

ei
=

α

lcm(ei)
=

α

2β
.

We note that this can never be 1/4.

Our desired result follows as a corollary to this theorem and its proof.

2.2.2 Corollary. Un
Q is not connected for n ≤ 4.

Proof. U4
Q contains induced subgraphs isomorphic to U3

Q and U2
Q containg the

point ( 1
4 , 0, 0, 0) and the origin. By the proof of Theorem 2.2.1 these points are

not connected in U4
Q. They can not be connected in any induced subgraph of

U4
Q, so U3

Q and U2
Q are also not connected.

2.3 Connected Components

We mentioned earlier that Chilakamarri showed that U2
Q, U3

Q, and U4
Q are not

connected. Soon after this, Zaks [13] showed that these graphs all contain
infinitely many connected components. Zaks showed this by finding an infinite
set of points no two of which are in the same component.

We are interested in determining which points are in the same component.
We do this by determining which points are in the same component as (0, 0),
and noting that all other components are translates of this component. The
results and proofs are original.

2.3.1 Components of U2
Q

Our main goal in this section will be to determine a characterization for when
two points of U2

Q lie in the same component of the graph. We do this through
a series of lemmas.

2.3.1 Lemma. If a
m1

and b
m2

are in lowest terms, and m1m2 has a prime divisor

not congruent to 1 modulo 4, then there is no path from (0, 0) to ( a
m1

, b
m2

) in

U2
Q.

5



2. CONNECTEDNESS

Proof. Consider a point p = ( c
m1

, d
m2

) that consists of reduced fractions and
let n = lcm(m1,m2). We can write p = ( a

n , b
n ) where gcd(a, b, n) = 1. If there

is a path from (0, 0) to p then there is a set of edges {(ai

ci
, bi

ci
)} such that

a2
i + b2

i = c2
i ,

m∑
i=1

ai

ci
=

a

n
,

m∑
i=1

bi

ci
=

b

n
.

If we consider them in lowest terms, we see that (ai, bi, ci) form a primitive
Pythagorean triple.

We now require two well-known results from number theory. Firstly, any
primitive pythagorean triple is of the form

(2st, s2 − t2, s2 + t2), gcd(s, t) = 1, s 6≡ t(mod 2).

Secondly, −1 is not a quadratic residue modulo q if q is of the form 4k + 3.
Proofs of these results can be found in almost any text on elementary number
theory, such as [2]. So considering:

a2
i + b2

i = c2
i (mod q)

for q a prime of the form 4k + 3, we see that if q divides ci, then

a2
i ≡ −b2

i (mod q)

and thus b2
i and −b2

i are both quadratic residues modulo q. If bi is invertible
modulo q, then −1 would be a residue modulo q. Since −1 is not a residue
modulo q, we must have that ai and bi are multiples of q. Since we assumed
each triple is primitive, we have that q does not divide ci.

Thus, we have ci is a product of primes congruent to 1 modulo 4 for each
i. Notice that n divides the lowest common multiple of c1, c2, . . . , cm, so n is a
product of primes congruent to 1 modulo 4.

2.3.2 Lemma. If (a, b, c) is a primitive pythagorean triple, then so is (a2 −
b2, 2ab, c2).

Proof. One can easily verify that (a2 − b2, 2ab, c2) is a pythagorean triple.
If gcd(2ab, c2) > 1 then gcd(a, c) > 1 or gcd(b, c) > 1 since c is odd. Since

(a, b, c) is primitive, gcd(a, c) = gcd(b, c) = 1. So (a2 − b2, 2ab, c2) is also primi-
tive.

2.3.3 Lemma. If p is a prime congruent to 1 modulo 4 and k ∈ N then there
exists a primitive pythagorean triple with pk dividing the last term.

Proof. For a prime p congruent to 1 modulo 4, we always have that -1 is a
quadratic residue modulo p (see, for example, [2] for a proof) . So there exists
a < p such that a2 ≡ −1 mod p. We see also that (p − a)2 ≡ −1 mod p, and
that either a or p− a is even. Assume that a is even.

Construct the primitive pythagorean triple (a2 − 1, 2a, a2 + 1). We observe
that p|(a2 + 1). By a repeated application of Lemma 2.3.2, we can generate a
primitive pythagorean triple with any power of two dividing the last term.

6



2.3. CONNECTED COMPONENTS

2.3.4 Lemma. If p a prime congruent to 1 modulo 4, then there exists a path
in U2

Q from (0, 0) to (p−k, 0), ∀k ∈ N.

Proof. By Lemma 2.3.3, we can find a primitive pythagorean triple (a, b, c) for
which pk divides c and with c > a > b. We define edges E and F as:

E =
(

a

c
,
b

c

)
, F =

(
a

c
,
−b

c

)
.

We construct two paths P1 and P2 as:

P1 = {E,F, (−1, 0)}, P2 = {(1, 0)} ∪ −P1.

The Euclidean lengths of these paths are:

P1 =
(

2a− c

c
, 0
)

, P2 =
(

2c− 2a

c
, 0
)

.

We see that
gcd(2c− 2a, 2a− c) = gcd(a, c) = 1,

so there exist integers e, d such that

(2c− 2a)e + (2a− c)d = 1.

Thus, the path P3 = eP2 ∪ dP1 has Euclidean length ( 1
c , 0). Since pk divides c,

the path c
pk P3 exists and has Euclidean length ( 1

pk , 0).

2.3.5 Lemma. If gcd(a, b) = 1 and there exist paths from (0, 0) to ( 1
a , 0) and

( 1
b , 0), then there exists a path from(0, 0) to ( 1

ab ).

Proof. There are integers c, d such that

cb + ad = gcd(a, b) = 1,

Hence,
c

a
+

d

b
=

1
ab

.

So we take c copies of the first path and d copies of the second path to get the
desired path.

2.3.6 Theorem. If n is a product of primes congruent to 1 modulo 4, then
there exists a path in U2

Q from (0, 0) to ( a
n , b

n ).

Proof. From Lemma 2.3.4 and Lemma 2.3.5, there exists a path P1 from
(0, 0) to ( 1

n , 0). By symmetry, we can also find a path P2 from (0, 0) to (0, 1
n ).

The path formed by taking a copies of P1 and b copies of P2 has the desired
Euclidean length.

7



2. CONNECTEDNESS

We can now prove the main result of the section.

2.3.7 Theorem. Two points p = (a1
n , b1

n ) and q = (a2
n , b2

n ) in U2
Q are in the

same component if and only if when a2−b2
n and a1−b1

n are expressed in lowest
terms, the denominators are each a product of primes congruent to 1 modulo 4.

Proof. For any two points p = (a1
n , b1

n ) and q = (a2
n , b2

n ) in U2
Q, p and q are

connected if and only if (0, 0) is connected to (p− q). By Theorem 2.3.6, (0, 0)
is connected to p − q when a2−b2

n and a1−b1
n are expressed in lowest terms and

the denominators are each a product of primes congruent to 1 modulo 4.

2.3.2 Components of U3
Q

We now determine the components of U3
Q. Based on the work on U2

Q, we see
that there is a path from the origin to any point (a1

n , a2
n , a3

n ) with n a product
of primes congruent to 1 (mod 4). We show that this extends to n odd.

2.3.8 Lemma. In U3
Q, for f1, f2, f3 not all even, a vertex of the form ( f1

2n , f2
2n , f3

2n )
is not in the same component as the origin for any value of n.

Proof. Consider a point p = (p1
n , p2

n , p3
n ) ∈ U3

Q. If there is a path from (0, 0, 0)
to p, then there is a set of edges:{

ai

di
,
bi

di
,
ci

di

}m

i=1

such that
a2

i + b2
i + c2

i = d2
i

m∑
i=1

ai

di
=

p1

n
,

m∑
i=1

bi

di
=

p2

n
,

m∑
i=1

ci

di
=

p3

n
.

If we consider (ai, bi, ci, di) in lowest terms, and examine the first relation mod-
ulo 4, we see that the only possible solution is d2 congruent to 1 modulo 4, two
of a2, b2, c2 are congruent to 0 modulo 4, and the other is congruent to 1 modulo
4.

The remaining relations show us that when the pi

n is in lowest terms, n
divides the lowest common multiple of the dis. This implies that n is odd.
Since we have considered an arbitrary path, any point reachable from the origin
must be expressable as (p1

n , p2
n , p3

n ) with n an odd number. If we were to express
this point with denominator 2n, then all the numerators would be even. Thus
our result holds.

2.3.9 Lemma. If p is a prime congruent to 3 modulo 4, then there exists a
Pythagorean quadruble (a, b, c, d) such that p divides d and gcd(d, abc) = 1

8



2.3. CONNECTED COMPONENTS

Proof.
Suppose p ≡ 3 (mod 8). Then, by [2], p is the sum of three squares and not

the sum of two squares. So there exist m, n, r such that m2 + n2 + r2 = p.
It is easy to verify that the set (2rm, 2rn, r2 − m2 − n2, r2 + m2 + n2) is a
Pythagorean quadruple. Clearly p divides r2 + m2 + n2. Since p is odd and
since m, n, and r are all non-zero and less than p, 2rm and 2rn are not divisible
by p. If r2−m2−n2 were divisible by p then r2−m2−n2 + r2 +m2 +n2 = 2r2

is divisible by p. But r is strictly bewteen 0 and p, so 2r2 is not divisible by p.
Thus, r2 −m2 − n2 is not divisible by p.

Suppose p ≡ 7 (mod 8). Consider n = pq, where q = 7, or q = 23 and p 6= q.
Then by [2] n is the sum of three squares and not the sum of two squares. So
there exist l, m, r such that l2 + m2 + r2 = n. Suppose p divides l. Then p
divides m2 +r2. If p divides m, then p divides r, and p2 divides l2 +m2 +r2, but
p2 does not divide n. So p does not divide m or r. Then we have (m

r )2 ≡ −1
modulo p. But since p is of the form 4k + 3, −1 is not a quadratic residue
modulo q. This is a contradiction, so p does not divide l, m, or r. Similarly, q
does not divide l, m, or r.

The quadruple (2lr, 2mr, r2 − l2 − m2, r2 + l2 + m2) is Pythagorean and p
divides the last term. As in the first case, p does not divide 2lr and 2mr since
p does not divide l, m or r. Also, p does not divide r2 − l2 − m2 since p does
not divide r. The same result holds for q.

2.3.10 Lemma. If (a, b, c, d) is a Pythagorean quadruple with an odd prime
p dividing the last term and d has no common factors with a, b, or c, then
(a2 + b2 − c2, 2ac, 2bc, d2) has the same property.

Proof. Since p divides d, p divides d2. Consider a prime q dividing d. Since q
does not divide a, b, or c, q does not divide 2ac or 2bc. If q divides a2 + b2 − c2,
then q divides d2 − (a2 + b2 − c2) = 2c2. But q does not divide c, so it does not
divide 2c2. So the result holds.

2.3.11 Lemma. Given p a prime of the form 4k+3, there exists a Pythagorean
quadruple (a, b, c, d) with pk dividing d and p not dividing a, b and c

Proof. By Lemma 2.3.9, there exists a Pythagorean quadruple (e, f, g, h) with p
dividing h and p not dividing e, f , and g. By repeatedly applying Lemma 2.3.10,
we can use this quadruple to find one with the desired properties.

2.3.12 Lemma. If p is a prime of the form 4k + 3, then there exists a path in
U3

Q from the origin to (p−k, 0, 0).

Proof. By Lemma 2.3.11, we can find a Pythagorean quadruple (a, b, c, d)
such that pk divides d and d has no common factor with a. Since (a, b, c, d) is
Pythagorean,

E1 =
(

a

d
,
b

d
,
c

d

)
, E2 =

(
a

d
,− b

d
,− c

d

)
9



2. CONNECTEDNESS

are edges of U3
Q. We construct two paths P1 and P2 as:

P1 = E ∪ F, P2 = (1, 0) ∪ −P1.

The Euclidean lengths of these paths are:

P1 =
(

2a

d
, 0, 0

)
, P2 =

(
d− 2a

d
, 0, 0

)
.

We see that
gcd(2a, d− 2a) = gcd(d, 2a) = 1,

so there exist integers e,f such that

(2a)e + (d− 2a)f = 1.

Thus, the path P3 = eP1 ∪ fP2 has Euclidean length ( 1
d , 0, 0). Since pk divides

d, the path d
pk exists and has Euclidean Length ( 1

pk , 0, 0).

2.3.13 Theorem. A point ( a
n , b

n , c
n ) in U3

Q, expressed in lowest terms, is in the
same component as the origin if and only if n is odd.

Proof.
The only if direction follows directly from Lemma 2.3.8.
If a, b are relatively prime and there exists a path A from (0, 0, 0) to (a−1, 0, 0

and a path B from (0, 0, 0) to (b−1, 0, 0), then there exist integers c and d such
that ac + bd = 1. So the path cB ∪ aD has Euclidean length ((ab)−1, 0, 0).

By Lemma 2.3.12 and Lemma 2.3.3, for any distinct odd primes p and q and
integers j and k, there exists a path P from (0, 0, 0) to (p−j , 0, 0) and a path Q
from (0, 0, 0) to (q−k, 0, 0).

Thus, for any odd n, there is a path from (0, 0, 0) to (n−1, 0, 0), and the
result follows.

2.3.3 Components of U4
Q

As a simple extension of the results for U3
Q, the origin of U4

Q is path connected
to all points of the form (a1

n , a2
n , a3

n , a4
n ), where n is odd. In four dimensions, the

edge ( 1
2 , 1

2 , 1
2 , 1

2 ) has length 1 and so some points with even denominators will
also be in the same component.

2.3.14 Lemma. If the point ( b1
4n , b2

4n , b3
4n , b4

4n ) is in the same component as the
origin, then b1, b2, b3, and b4 are even..

Proof. Suppose we can reach a point P such that:

P =
(

b1

4n
,

b2

4n
,

b3

4n
,

b4

4n

)
.

10



2.3. CONNECTED COMPONENTS

The we can find a set of edges{(
ci

4m
,

di

4m
,

ei

4m
,

fi

4m

)}r

i=1

where each edge has length 1 and the sum of all the edges is P . In particular,
we have

c2
i + d2

i + e2
i + f2

i = 0 (mod 16).

The residues modulo 16 are 0, 1, 4 and 9. The equation can only hold if all four
terms are 0 or all four terms are 4. Thus, every number is even, so we can write
P as: (

b1/2
2n

,
b2/2
2n

,
b3/2
2n

,
b4/2
2n

)
where n is odd. Thus, we can not reach any points with denominator a multiple
of 4.

2.3.15 Theorem. A point is in the same component as the origin in U4
Q if and

only if it is of the form ( a1
2n , a1

2n , a1
2n , a1

2n ), where a1, a2, a3, a4 all have the same
parity and n is odd.

Proof. We again consider a point P of the form(
b1

2n
,

b2

2n
,

b3

2n
,

b4

2n

)
and a set of edges {(

ci

2m
,

di

2m
,

ei

2m
,

fi

2m

)}r

i=1

where each edge has length 1 and the sum of all the edges is P . In this case, we
have that:

c2
i + d2

i + e2
i + f2

i = 0 (mod 4).

This happens if and only if for each i we have {ci, di, ei, fi} are all odd or all
even. Thus {b1, b2, b3, b4} are all even or all odd.

The points where {b1, b2, b3, b4} are all even are just points with odd denom-
inators, so we can reach them. If we take any point Q = ( b1

2n , b2
2n , b3

2n , b4
2n ) where

b1, b2, b3, b4 are all odd, then there is a path from the origin to

H = Q +
(

1
2
,
1
2
,
1
2
,
1
2

)
=
(

b1 + n

2n
,
b2 + n

2n
,
b3 + n

2n
,
b4 + n

2n

)
since bi + n is even. We know there is a path from the origin to H, so there is
also one from the origin to Q since ( 1

2 , 1
2 , 1

2 , 1
2 ) is an edge.
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Chapter 3

Shortest Paths

Given two points p, q in the same component of the unit distance graph we
would like to find the length of the shortest path p and q. Since all edge lengths
have Euclidean length one, the triangle inequality tells us that we need at least
d‖p− q‖e edges to get between the two points.

Knowing this, the optimal solution would be to find a path with d‖p − q‖e
edges between p and q. This is not possible in all cases, for example if ‖p−q‖ < 1
then there is not a single edge between them. The next natural question to ask
is whether d‖p−q‖e+1 is possible. If not, what about +2 or +3? For dimension
d > 3, we find a constant εd such that there is a path of length d‖p− q‖e+ εd.

Our method for finding a shortest path between two points relies on two
important properties. The first property is that the set of rational points on
the unit hypersphere in Rn is dense. The second property is that the set of
rational points with Euclidean distance at most 2 from a point p has bounded
path distance from p in Un

Q .
We will show that the first property holds for any dimension and that the

second property holds for all dimensions larger than 3. The question of whether
ε2 and ε3 exist remains open and answering it will determine whether the points
with distance at most 2 from a point have bounded path distance in U2

Q and U3
Q

respectively.
Define the function C(x) for x ≥ 4, x ∈ Z by

C(x) =


18 if x = 4
10 if x = 5
6 if x = 6 or 7
4 if x ≥ 8

What we will show is that if n ≥ 4 and p, q are two points in the same
component of Un

Q , then there exists a path of length at most d‖p−q‖e+C(n)−1
from p to q.

13



3. SHORTEST PATHS

3.1 Rational Points on Hyperspheres

3.1.1 Theorem. The set of rational points on the unit sphere in dimension at
least 2 is dense.

Proof.

Let q be the point q = (1, 0, . . . , 0) and let L(a1, . . . , an) be the line through
q given by the equation

a1(x1 − 1) = a2x2 = a3x3 = · · · = anxn.

The unit sphere has equation
n∑

i=1

x2
i = 1.

Substituting in values for x2, x3, . . . , xn from the equation for L(a1, . . . , an), we
have

n∑
i=2

(
a1

an
(x1 − 1)

)2

+ x2
1 = 1.

When the ais are rational, this is just a quadratic equation with rational coeffi-
cients and we can see that one of the roots is 1. Thus, the other root must also
be a rational number. If x1 is rational and all ais are rational then all the xis
are rational. So the intersection of L(a1, . . . , an) with the unit sphere occurs at
two rational points when all of the ais are rational.

If we consider a point p = (p1, . . . , pn) on the unit sphere, we want to
find a rational point on the unit sphere close to it. Consider a rational point
a = (a1, . . . , an) where

1 ≥ (a1/pi) > 1− 1
ε
, ‖p− a‖ <

1
ε
.

If we consider the line L(q, a) through q and a, it has equation

x1 − 1
a1 − 1

=
x2

a2
=

x3

a3
= · · · = xn

an
.

Taking the intersection of L(q, a) with the unit sphere, we get the following
equation for the x1 coordinate:

x2
1 +

n∑
i=2

((
x1 − 1
a1 − 1

)2

a2
i

)
= 1

We know one solution is x1 = 1, and solving for the other value, we get

x1 =
∑n

i=1(a
2
i )− 2a2

1 + 2a1 − 1∑n
i=1(a

2
i )− 2a1 + 1

.

14



3.2. BOUNDED BALLS

We know that
∑n

i=1(a
2
i ) ≤ 1 by our choice of the ais, so let

∑n
i=1(a

2
i ) = 1− δ,

where δ ≤ ε. Then we have

x1 =
2a1 − 2a2

1 − δ

2− 2a1 + δ

As a tends to p, δ tends to 0, so x1 tends to a1 and thus tends to p1. For the
other coordinates, we have

xi = (x1 − 1)
ai

a1 − 1

Since x1 is tending to p1, xi is tending to pi, so the rational points are dense.

3.2 Bounded Balls

3.2.1 Lemma. Let p be a point in Un
Q for n ≥ 5 such that |p| ≤ 2 and p has

at most 4 non-zero coordinates. Then there exists a path from the orign to p of
length at most 2.

Proof. Assume without loss of generality that the last 4 coordinates are 0 and
so

p =
(a1

m
,
a2

m
, . . . ,

an−4

m
, 0, 0, 0, 0

)
is such a point. Then

a2
1 + a2

2 + . . . + a2
n−4 ≤ 4m2

and so 4m2 − a2
1 − . . . − a2

n−4 is a non-negative integer so it can be written as
the sum of four squares, say b1, b2, b3, b4. Then

a2
1 + a2

2 + . . . + a2
n−4 + b2

1 + b2
2 + b2

3 + b2
4 = 4m2

and so (
a1

2m
, . . . ,

an−4

2m
,

b1

2m
,

b2

2m
,

b3

2m
,

b4

2m

)
and (

a1

2m
, . . . ,

an−4

2n
,− b1

2m
,− b2

2m
,− b3

2m
,− b4

2m

)
are each edges of length 1. Their combined Euclidean length is p, so they form
the desired path.

3.2.2 Lemma. Let n ≥ 5 and p be a point in Un
Q that is contained in the ball

of radius 2 centered at the origin. Then there is a path from the origin to p
with length at most ten when n = 5, at most six when n = 6 or 7 and at most
four when n ≥ 8.

15



3. SHORTEST PATHS

Proof. Any point in n dimensions in the ball of radius two centered at the
origin can be expressed as the sum of n/(n−4) points that satisfy the criteria of
the lemma by projecting the vector into n−4 dimensions. Calculating n/(n−4)
for the various values of n gives the desired result.

We see immediately that this can not be extended to four dimensions, since
we only have four coordinates. In this case, we can make use of the charac-
terization from Burton [2] that any number not of the form 4m(8k + 7) can be
written as the sum of three squares.

3.2.3 Lemma. Let a1, a2, a3, a4, n be odd and a2
1 + a2

2 + a3
3 + a2

4 < 4n2. Then
there is path in U4

Q of length eight from the origin to p = (a1
n , a2

n , a3
n , a4

n ).

Proof. We see that di = 4n2 − a2
i is odd for any i, so as long as di is not of the

form 8k + 7, it can be expressed as the sum of three squares.

4n2 ≡ 4 (mod 8), a2
i ≡ 1 (mod 8)

So di is congruent to 3 modulo 8 and can be written as the sum of three squares.
So we can find b1, b2, b3 such that(

a1

2n
,

b1

2n
,

b2

2n
,

b3

2n

)
,

(
a1

2n
,− b1

2n
,− b2

2n
,− b3

2n

)
each have length 1 and their union is a two edge path from the origin to
(a1

n , 0, 0, 0). We repeat this process for each of the other coordinates and find a
path of length eight from the origin to p.

3.2.4 Lemma. Let m be odd and b2
1 + b2

2 + b2
3 + b2

4 ≤ 4m2 and m is odd. Then
there exists a path in U4

Q from q = ( b1
m , b2

m , b3
m , b4

m ) to a point p = (a1
n , a2

n , a3
n , a4

n )
with a1, a2, a3, a4, n all odd and a2

1 + a2
2 + a3

3 + a2
4 ≤ 4n2.

Proof. We construct two edges E and F . Define

E =
(

b1

2|b1|
,

b2

2|b2|
,

b3

2|b3|
,

b4

2|b4|

)
with the convention that 0

|0| = 1. We define F coordinatewise in terms of E.
The ith coordinate of F is the same as the ith coordinate of E when bi is even
and is the negative of it when bi is odd.

E + F is a {−1, 0, 1}-valued vector that is 0 when bi is odd, +1 when bi is
even and negative, and −1 when bi is even and non-negative. So r = q + E + F
is a point with all the numerators odd. However, r may not be in the ball of
radius 2 around the origin. The coordinates of r that differ from q have norm
at most 1 by construction.

Let Bj be the {0, 1}-vector with 1 in the jth position. For each coordinate
i of r that is larger than 1 and less than 2, we take r − 2Bi to get a point that
still has all numerators odd. We can similarly alter r for coordinates between
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3.3. BOUNDED PATH LENGTHS

−1 and −2. Since r differs from q on at least 1 coordinate, we need do this for
at most 3 coordinates.

This construction gives us a path of length 8. However, notice that if at
least 2 of the coordinates changed then the path has length at most 6, and if
only 1 coordinate changes, then E + F = Bj for some j, so it can be reduced
to length 7.

3.2.5 Lemma. Let b2
1+b2

2+b2
3+b2

4 ≤ 16m2 and m be odd. Then there is a path
in U4

Q of length three from q = ( b1
2m , b2

2m , b3
2m , b4

2m ) to a point p = (a1
n , a2

n , a3
n , a4

n )
with n odd and a2

1 + a2
2 + a3

3 + a2
4 ≤ 4n2.

Proof. Let E be any vector with each coordinate equal to 1
2 or − 1

2 . Then for
any of the 16 such vectors E, q + E is a point with odd denominator. However,
q + E may not be in the ball of radius 2 around the origin. We can find one
such point r = q + E such that each of the coordinates are between −2 and 2
inclusive.

We define two { 1
2 ,− 1

2} vectors H and F coordinatewise. F and H differ
in the ith coordinate if r is between −1 and 1 in the ith coordinate. F and H
are both 1

2 if the ith coordinate of r is between −1 and −2, and are both − 1
2

otherwise.
Then r + F + H has all coordinates at most 1 and each coordinate can be

expressed as a rational number with odd denominator. Thus we have found the
desired path.

We can combine all of these results to get a bound on the entire ball.

3.2.6 Lemma. Let p be a point in U4
Q that is containted in the ball of radius 2

centered at the origin. Then there is a path from the origin to p with length at
most 18.

Proof.
This follows directly from Lemmas 3.2.3, 3.2.4, and 3.2.5.

If we try to extend this idea to three dimensions, we are concerned with
n2 − a2 being the sum of two squares. This is dependent on the factors of
n2 − a2 and so is dependdnt on the choice of n.

3.3 Bounded Path Lengths

We are now equipped to prove our main theorem. The function C(n) was defined
in the introduction of the chapter.

3.3.1 Theorem. Let p, q be two points in the same component of Un
Q , where

n ≥ 4. Then there exists a path of length at most d‖p− q‖e+ C(n)− 1 from p
to q.

Proof. Let p and q be two distinct points in the same component of Un
Q . If

‖p − q‖ ≤ 2, then there is a path of length at most C(n) between them by
Lemma 3.2.2, or Lemma 3.2.6.
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3. SHORTEST PATHS

If r = ‖p− q‖ is an integer, then the points

ra =
a

r
p +

r − a

r
p

are rational combinations of p and q for a an integer between 0 and r and are
thus rational points. Also,

‖ra+1 − ra‖ = 1.

Thus, we have a path from p to q of length ‖p− q‖.
If r is rational but not an integer, ra are still rational points, and rdre−2 is

in the ball of radius 2 around p and the result follows.
When r is not a rational number, the point

s =
1
r
p +

r − 1
r

q

is not in Un
Q . However, by Theorem 3.1.1, we can find a rational point s′ on the

unit sphere that is arbitrarily close to s.
Let

r′ = dr − 2e and p′ = q + r′(s′ − q).

By construction, ‖s′ − q‖ = 1, so there exists a path from q to p′ of length r′.
For some e, we have

p′ = q + r′(s + e− q)

= q + r′
(

1
r
p +

r − 1
r

q + e− q

)
= q +

r′

r
p− r′

r
q + r′e

=
r′

r
p− r − r′

r
q + r′e

By construction, the distance from r′

r p − r−r′

r q to q is less than 2 and we can
make r′e as small as we need, so p′ is in the ball of radius 2 around p.

So by the results in section 3.2, there is a path from p′ to p of length at
most C(n). Thus for this case we have a path from p to q of length at most
d‖p− q‖e+ C(n)− 2.
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Chapter 4

Colouring

The interest in unit distance graphs stems from trying to determine the chro-
matic number of U2

R. The problem is simple to state but the answer is elusive.
In fact, for most unit distance graphs, the exact value of the chromatic number
is still unknown.

The first major result was in 1972 by Larman and Rogers [11]. They showed
that χ(Un

R ) ≤ (3 + o(1))n. The result seems quite large, being exponential in n.
However, in 1981, Frankl and Wilson [7] proved that Un

Q ≥ (1.2)n(1+o(1)). This
shows that χ(Un

R ) grows exponentially, and puts Larman and Rogers’ result into
perspective.

4.1 Rational Colouring

The results in this section are not new. The two-colourability of U3
Q and U2

Q
was originally shown by Johnson [10]. The idea behind the proof given here is
similar, but is done so as not to require group theory.

The result for U4
Q was first shown by Benda and Perles [1]. Their paper was

not published until 2000, though it was circulating during the 1970s.

4.1.1 Theorem. U3
Q and U2

Q are bipartite and thus 2-colourable.

Proof. It is sufficient to prove the result for U3
Q since U2

Q is an induced subgraph
of U3

Q.
Suppose we have a cycle in U3

Q, with edge set{(
ai

d
,
b

d
,
ci

d

)}n

i=1

.

Then we have that
a2

i + b2
i + c2

i = d2.

Examining this modulo 4, we see that if d is even, then ai, bi, ci are even for
all i. If we consider this in lowest terms, we may assume that d is odd. If we
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4. COLOURING

examine the equation modulo eight, we see that exactly one of ai, bi, ci must be
odd.

Since the edges form a cycle, we must have that

n∑
i=1

(ai, bi, ci) = (0, 0, 0).

This implies that
n∑

i=1

(ai + bi + ci) = 0.

Examining this modulo 2, we have that
∑n

i=1 1 = 0 or equivalently n ≡ 0. Thus
n is even and the cycle must have even length. Since there was nothing special
about the cycle we chose, all cycles must have even length and the graph must
be bipartite.

The graphs are clearly not 1-colourable as they contain edges.

4.1.2 Theorem. U4
Q has chromatic number 4.

Proof. Consider the set of points{
(0, 0, 0, 0), (1, 0, 0, 0),

(
1
2
,
1
2
,
1
2
,
1
2

)
,

(
1
2
,−1

2
,
1
2
,
1
2

)}
.

Each is a distance of 1 from all of the others, so the chromatic number must be
at least 4.

Given a component of U4
Q we can partition the vertex set into two classes A

and B. Consider the component C that contins (0, 0, 0, 0). Let

A =
{(

a

n
,
b

n
,
c

n
,
d

n

)
| n is odd

}
B = V (C) ∩ V (A)c

By the characterization from Theorem 2.3.15,

B =
{(

a

2n
,

b

2n
,

c

2n
,

d

2n

)
| n, a, b, c, d are odd

}
= A +

(
1
2
,
1
2
,
1
2
,
1
2

)

Consider a cycle in A, {(
ai

e
,
bi

e
,
ci

e
,
di

e

)}n

i=1

.

For these to all be edges, we have that
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4.2. REAL COLOURING

a2
i + b2

i + c2
i + d2

i = e2 for each i.

Examining this modulo 8, we have three possibilities.

e2 ≡ 1 and one of {ai, bi, ci, di} is odd for each i

e2 ≡ 0 and {ai, bi, ci, di} are all even for each i

e2 ≡ 4 and {ai, bi, ci, di} are all odd or all even for each i

If there is one i where they are all odd, this is an edge between A and B, so
there can be no such i. Thus, we see that if e is even, {ai, bi, ci, di} are even for
each i. So we can assume e is odd.

So we have exactly one of {ai, bi, ci, di} is odd for each i. Since the edges
form a cycle, we have that

n∑
i=1

(
ai + bi + ci + di

ei

)
= 0

n∑
i=1

(ai + bi + ci + di) = 0 (mod 2)

n∑
i=1

1 = 0 (mod 2)

Thus, we see that n is even. So A and B are each bipartite. We can colour A
with two colours and B with two colours and get a proper 4-colouring of the
component. We can do this for each component since they are all translates of
each other. Thus U4

Q has chromatic number 4.

Joseph Zaks [14] has provided lower bounds on the chromatic numbers for the
next few cases. He shows χ(U5

Q) ≥ 5, χ(U6
Q) ≥ 7, χ(U7

Q) ≥ 9, and χ(U8
Q) ≥ 10.

Chilakamarri [4] improved on this slightly by showing χ(U5
Q) ≥ 6.

4.2 Real Colouring

Determining the chromatic number of the real graph has proven to be a difficult
problem. Current bounds for the two dimensional case are a lower bound of
4 and an upper bound of 7, which are shown below. However, the answer to
the question might not be as simple as “it is either 4, 5, 6, or 7.” Falconer [6]
showed that if the colour classes form measurable sets of R2, then at least five
colours are needed. Since the construction of non-measurable sets requires the
axiom of choice, we might have the answer turn out to depend on whether or
not we accept the axiom of choice.

We can tile the plane with hexagons as below to obtain a proper 7-colouring
of the graph. The result is originally due to Hadwiger and Debrunner [8].
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4. COLOURING

1

2

3

4

5

6

7 1

2

3

4

5

6

7

4

5

1

2

3

7

1

2

3

4

57

For each point inside a hexagon, colour that point with the number inside the
hexagon. For each point on an edge or vertex, colour it with the lowest colour
of the hexagons incident to it. If the side length of the hexagon is slightly less
than one half, no two points in or on the boundary of a single hexagon are at a
distance one from each other. Also, the distance between any two hexagons of
the same colour is greater than one, so we have a proper colouring of the plane
with seven colours.

We could also tile the plane with squares instead of hexagons, and obtain
a proper 9-colouring of the plane. This can be extended to cubes in three
dimensions, for a proper 27 colouring of R3. We can not extend this directly to
arbitrary dimensions because in high dimension, the diagonal of the cube gets
large compared to the side length.

We can construct a small subgraph of the plane that is not three colourable.
This was shown by Moser and Moser [12]. Consider the diagram below:
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A

B

C

D

E

F

G

The two diamond shapes can be rotated about point A so that points F and
G are one unit apart. If we then try to 3-colour the graph starting with vertex
A, we see that veticies F and G must have the same colour as A.
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