
Hamilton Connected or

Hamilton Laceable

Generalized Petersen Graphs

by

Loretta W. A. Vanderspek

A paper

presented to the University of Waterloo

in fulfilment of the

research project requirement for the degree of

Master of Mathematics

in

Combinatorics and Optimization

August 11, 2010



Acknowledgements

Thanks to my supervisor, Bruce Richter, for his help and encouragment.
Thanks to my family for all their support. Thanks also to NSERC and the
University of Waterloo for the financial assistance they provided.

1



Abstract

The generalized Petersen graphs GP(n, k) where introduced by Watkins in
search for additional examples of non-Hamiltonian vertex-transitive graphs.
Alspach and Qin showed that Cayley graphs for certain groups are Hamilto-
nian using the fact that GP(4m, 2m−1) is Hamilton laceable (it is bipartite,
and any two vertices on different sides of the bipartition are joined by a
Hamilton path).

For k = 1, 2, and 3, we completely determine which pairs of vertices in
GP(n, k) are joined by Hamilton paths. We also provide a general approach
for proving that GP(n, k) is Hamilton connected or Hamilton laceable.
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Chapter 1

Introduction

The principle motivation for studying Hamiltonicity in the generalized Pe-
tersen graph are the following conjectures.

Conjecture 1.1. Vertex transitive graphs are Hamiltonian.

Conjecture 1.2 (Lovász’ Conjecture). Cayley graphs are Hamiltonian.

Since the Petersen graph is a counterexample to the first conjecture, it is
natural to wonder if the generalized Petersen graphs share this property. It
was found that the Petersen graph remains the only vertex-transitive gener-
alized Petersen graph that is not Hamiltonian.

Generalized Petersen graphs have been used to prove Lovász’ conjecture
on Cayley graphs, for certain groups. In particular, Hamilton connectedness
of certain generalized Petersen graphs was needed.

1.1 Background

For integers n, k with 1 ≤ k < n, Watkins [12] defines the generalized
Petersen graph GP(n, k) to be the graph with vertex set {ui, vi | 0 ≤ i ≤
n− 1} and edge set {uiui+1, vivi+k, uivi | 0 ≤ i ≤ n− 1}, where the subscript
arithmetic is done modulo n. We will only consider the generalized Petersen
graphs that are cubic; hence we assume that n 6= 2k.

Since these graphs mimic a structural property of the Petersen graphs,
it was of interest to see if any of the vertex-transitive generalized Petersen
graphs would be non-Hamiltonian. This problem was studied in two parts.
Robertson [11] and Bondy [5] both proved that GP(n, 2) is Hamiltonian if
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and only if n 6≡ 5 (mod 6). They conjectured that these were the only non-
Hamiltonian generalized Petersen graphs. Bondy also proved that GP(n, 3) is
Hamiltonian for all n 6= 5. In solving the conjecture of Bondy and Robertson,
Bannai [6] showed that GP(n, k) is Hamiltonian when n and k are relatively
prime, and GP(n, k) is not isomorphic to GP(n, 2), with n ≡ 5 (mod 6) and
Alspach [1] completed the proof of this conjecture. For the other part of the
problem, Frucht, Graver, and Watkins [8] showed that GP(n, k) is vertex-
transitive if and only if k2 ≡ ±1 (mod n) or (n, k) = (10, 2). Together
this implied that the Petersen graph is the only non-Hamiltonian, vertex-
transitive generalized Petersen graph.

Although no new vertex-transitive, non-Hamiltonian graphs were found in
this family of graphs, the hamiltonicity of the generalized Petersen graphs was
used in solving the conjecture on vertex transitive graphs for other families
of graphs, as shown in [2].

Progress on the Lovász conjecture has used a property stronger than the
graph being Hamiltonian. A Hamilton uv-path is a path with ends u and v
that contains all the vertices of the graph. A graph G is Hamilton connected
if, for every pair u, v of vertices, G has a Hamilton uv-path. Some generalized
Petersen graphs are bipartite and, therefore, cannot be Hamilton connected.
A bipartite graph G is Hamilton laceable if, for any two vertices u and v on
different sides of the bipartition, G has a Hamilton uv-path.

Alspach and Qin [4] proved that GP(4m, 2m − 1) is Hamilton laceable
and used this to show that Cayley graphs on certain groups are Hamiltonian,
settling Lovász’ conjecture for these groups.

Chen and Quimpo [7] consider which Cayley graphs are Hamilton con-
nected or Hamilton laceable. They showed that a connected Cayley graph
of valency at least three on an Abelian group is Hamilton connected, un-
less it is bipartite in which case it is Hamilton laceable. It is possible that
the generalized Petersen graph will play a similar role in determining graphs
which are Hamilton connected or Hamilton laceable as it did in the search
for Hamilton cycles. For this reason we see the following developments in
solving this problem.

First we will determine when the generalized Petersen graph is bipartite,
as presented in [3].

Theorem 1.3. GP(n, k) is bipartite if and only if n is even and k is odd.

Alspach and Lui [3] prove the following:
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• if n is odd, then GP(n, 1) is Hamilton connected;

• if n is even, then GP(n, 1) is Hamilton laceable;

• if n is odd and n 6≡ 5 (mod 6), then GP(n, 2) is Hamilton connected;

• if n is odd and n 6= 5, then GP(n, 3) is Hamilton connected; and

• if n is even, and n 6= 2, 6, then GP(n, 3) is Hamilton laceable.

Mavraganis [9] proves that:

• if n is odd, then GP(n, 1) is Hamilton connected; and

• if n is even, then GP(n, 1) is Hamilton laceable,

using general path structures. She determines almost all of the pairs of
vertices in GP(2m, 2) that are joined by Hamilton paths.

Alspach and Qin [4] prove that GP(4m, 2m− 1) is Hamilton laceable.
Pensaert [10] takes a different approach, proving that, for k ≥ 3, GP(3k+

1, k) is Hamilton connected if k is even, and Hamilton laceable if k is odd.
He also makes the conjecture

Conjecture 1.4. For n ≥ 3k:

• if n is even and k is odd, then GP(n, k) is Hamilton laceable; and

• for all other combinations of parities of n and k, GP(n, k) is Hamilton
connected.

This conjecture and the examples given by Pensaert allude to a potentially
very interesting property in the generalized Petersen graph, namely:

Conjecture 1.5. If k is even, then for j even, no Hamilton u0uj-path exists
in GP(3k, k).

Although unproven, the following examples demonstrate that this prop-
erty likely holds.

• Hamilton u0u2 and u0u4-paths do not exist in GP(6, 2).

• GP(9, 3) is Hamilton connected.
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• For j even, Hamilton u0uj-paths do not exist in GP(12, 4), GP(18, 6),
GP(24, 8), or GP(30, 10).

• For j even, Hamilton u0uj-paths do exist in GP(15, 5), GP(21, 7).

Hence, we make the following conjecture.

Conjecture 1.6. For k > 2 and n > 2k:

• if n is even and k is odd, then GP(n, k) is Hamilton laceable;

• if n = 3k and k is even, then, for j even, no Hamilton u0uj-path exists;
and,

• for all other combinations of n and k, GP(n, k) is Hamilton connected.

1.2 Properties of GP(n,k)

In this section, we present two automorphisms of GP(n, k), initially described
by Watkins [12], that will simplify our work. In general we are interested,
for x, y ∈ {u, v} and i, j ∈ Zn, whether there is a Hamilton xiyj-path in
GP(n, k).

The first automorphism is the rotational symmetry T : Zn → Zn defined
by T (i) = i + 1. This symmetry shows that there is a Hamilton xiyj-path if
and only if there is a Hamilton x0yj−i-path.

The second automorphism is the reflective symmetry R : Zn → Zn defined
by R(i) = n− i. This symmetry shows that there is a Hamilton x0yj-path if
and only if there is a Hamilton x0yn−j-path.

Thus, to show GP(n, k) is Hamilton connected we only need to determine
for which j ∈ Zn and j ≤ bn

2
c there is a:

• Hamilton u0uj-path;

• Hamilton u0vj-path; and

• Hamilton v0vj-path.

To show GP(n, k) is Hamilton laceable, we only need to determine for
which j ∈ Zn, j ≤ bn

2
c and j odd there is a:

• Hamilton u0uj-path;
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• Hamilton v0vj-path; and

• for j even, a Hamilton u0vj-path.

R also describes an isomorphism between GP(n, k) and GP(n, n−k). Hence
we may assume that k ≤ bn

2
c.

1.3 Organization of Essay

This essay is divided into three chapters. In Chapter 2 we will be considering
the k = 1 and k = 2 cases. For k = 1, we will present the different proofs
provided by Alspach and Lui [3] and Mavraganis [9]. For k = 2, we will
prove that GP(n, 2) is Hamilton connected if and only if n ≡ 1, 3 (mod 6),
and will completely determine the existence and nonexistence of Hamilton
paths for all other values of n. In Chapter 3, we will show that GP(n, 3) is
Hamilton connected if and only if n > 5 is odd and it is Hamilton laceable
if and only if n ≥ 4 is even and n 6= 6. In Chapter 4, we will generalized
the ideas we present. Initially we will take a brief look at GP(n, 4) and then
we will provide a general approach for proving that GP(n, k) is Hamilton
connected or laceable, completing ideas of Yehua Wei.
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Chapter 2

GP(n,k), k=1,2

2.1 Introduction

In this chapter, for k = 1, 2, we completely determine which pairs of vertices
in GP(n, k) are joined by Hamilton paths.

2.2 GP(n,1)

In this section, we treat the case k = 1 by proving the following theorem.

Theorem 2.1. The graph GP(n, 1), n ≥ 3, is Hamilton connected, unless it
is bipartite in which case it is Hamilton laceable.

This theorem is proven by both Alspach and Lui and Mavraganis. We
will state both proofs.

Proof by Alspach and Lui [3]. GP(n, 1) is a connected Cayley graph on an
Abelian group. By the Chen-Quimpo theorem [7] it is Hamilton connected,
unless it is bipartite in which case it is Hamilton laceable.

Proof by Mavraganis [9]. For n even and j odd, j ∈ Zn, there exists the
Hamilton u0uj-path

u0un−1 · · ·uj+1vj+1vj+2 · · · v0v1u1u2v2v3 · · · vj−1vjuj,

For j even, there exists the Hamilton u0vj-path

u0un−1 · · ·uj+1vj+1vj+2 · · · v0v1u1u2v2v3 · · ·uj−1ujvj.
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Since there exists an automorphism interchanging ui and vi, GP(n, 1) is
Hamilton laceable for n even.

For n odd and j even, j ∈ Zn, there exists the Hamilton u0uj-path

u0un−1 · · ·uj+1vj+1vj+2 · · · v0v1u1u2v2v3 · · · vj−1vjuj

and the Hamilton u0vj-path

u0u1 · · ·uj+1vj+1vj+2uj+2uj+3 · · · vn−1v0v1 · · · vj.

By reflective symmetry there exist Hamilton u0uj and u0vj-paths for j even.
Therefore, for n odd, GP(n, 1) is Hamilton connected.

2.3 GP(n,2)

In the following sections, we determine all the pairs of vertices in GP(n, 2)
that are joined by Hamilton paths. In particular, we prove the following.

Theorem 2.2. Let n ≥ 5 be an integer. Let x, y ∈ {u, v} and i, j ∈ Zn.

1. The graph GP(n, 2) is Hamilton connected if and only if n ≡ 1, 3
(mod 6).

2. Suppose n ≡ 0 (mod 6). There is a Hamilton xiyj-path in GP(n, 2) if
and only if one of the following holds:

(a) {x, y} = {u, v};
(b) x = u, y = u, and j − i 6≡ ±2 (mod n); and

(c) x = v, y = v, and j 6≡ i (mod 6).

3. Suppose n ≡ 2 (mod 6). There is a Hamilton xiyj-path in GP(n, 2) if
and only if one of the following holds:

(a) x = u, y ∈ {u, v}; and

(b) x = v, y = v, and j − i 6≡ 4 (mod 6).

4. Suppose n ≡ 4 (mod 6). There is a Hamilton xiyj-path in GP(n, 2) if
and only if one of the following holds:

(a) x = u, y = u, and j − i 6≡ ±2 (mod n);
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(b) x = u, y = v, j − i 6≡ ±1 (mod n), and j − i 6≡ 2 (mod 6); and

(c) x = v, y = v, and j − i 6≡ 0, 4 (mod 6).

5. Suppose n ≡ 5 (mod 6). There is a Hamilton xiyj-path in GP(n, 2) if
and only if one of the following holds:

(a) x = u, y = u, and j − i 6≡ ±1 (mod 6);

(b) x = u, y = v, and j 6= i; and

(c) x = v, y = v, and j − i 6≡ 2, 3 (mod 6).

The existence of Hamilton paths will be proved by induction on n, us-
ing an operation that we will call an (i, j)-expansion. We also prove the
nonexistence of Hamilton paths in GP(n, 2) by induction on n, using an
(i, j)-reduction operation.

2.4 Expanding in GP(n,2)

The existence of the Hamilton paths will be shown inductively. In order to
do so we introduce the following general terms. For i ∈ Zn, the cut, Ci in
GP(n, k), is the set of edges {ui−1ui, vi−kvi, vi−k+1vi+1, . . . , vi−1vi+k−1}. (The
indices are read modulo n.) We will show in this section how any cut may
be used to convert a Hamilton path in GP(n, 2) into a Hamilton path in
GP(n+6, 2). This is a modification of the methods used by Alspach and Lui
[3] and Mavraganis [9].

ui−1 ui

Figure 2.1: A cut Ci in GP(n, 2).

For i ∈ Zn and j ∈ Z, where j is a positive multiple of k, the (i, j)-
expansion of GP(n, k) defines a new graph, denoted Gk

≺i,j
, obtained from

GP(n, k) by deleting the edges in Ci and adding the 2j vertices {u′0, v′0, . . . ,
u′j−1, v

′
j−1} at Ci as well as the edges: ui−1u

′
0; u′j−1ui; for 0 ≤ ` ≤ j − 1, the

edges u′`v
′
`; for 0 ≤ ` ≤ j − 2, the edges u′`u

′
`+1; for 0 ≤ ` < k, the edges
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ui−1 u′
0 u′

1 u′
5 uiu′

2 u′
3 u′

4ui−2 ui+1

Figure 2.2: (i, 6)-expansion in GP(n, 2)

vi−k+`v
′
` and v′j−k+`vi+`; and, for 0 ≤ ` ≤ j − 1 − k, the edges v′`v

′
`+k. Note:

Gk
≺i,j

is isomorphic to GP(n + j, k).
For convenience, we will use the following notation. Let n and k be

positive integers with n > 2k. For i, j ∈ Zn, let Vi,j denote the set of vertices
{ui, . . . , ui+j, vi, . . . , vi+j} in GP(n, k). Let Si,j be the subgraph of GP(n, k)
consisting of the edges incident with any vertex of Vi,j and all their incident
vertices. Extremally, vi−k, vi−k+1, . . . , vi−2, vi+j+1, vi+j+2, . . . , vi+j+k−1 are all
in Si,j. An (i, j)-strand of a path P in GP(n, k) is a component of P ∩ Si,j.
The following theorem is key to the induction.

Theorem 2.3. Let x, y ∈ {u, v}. If there exists a Hamilton x0yj-path in
GP(n, 2), then there exists a Hamilton x0yj-path in GP(n + 6, 2).

Proof. Let P be a Hamilton x0yj-path in GP(n, 2). We will show that, for j <
i ≤ n, we can apply an (i, 6)-expansion so that P becomes a Hamilton path
in G2

≺i,6. Since j < i, j is the same index in both GP(n, 2) and GP(n + 6, 2).
Of the eight cases, we consider four that are representative of the rest.

If no edge of P is in Ci, then at least one of ui−1vi−1 and uivi is in P .
Assume the latter. Then replace uivi in P with the path

uiu
′
5v
′
5v
′
3v
′
1u
′
1u
′
0v
′
0v
′
2u
′
2u
′
3u
′
4v
′
4vi

to create the Hamilton x0yj-path in G2
≺i,6.

If |Ci ∩ P | = 1, then Ci ∩ P = ui−1ui, vi−1vi+1, or vi−2vi. Suppose
Ci ∩ P = ui−1ui. Then we can replace ui−1ui with

ui−1u
′
0v
′
0v
′
2v
′
4u
′
4u
′
3u
′
2u
′
1v
′
1v
′
3v
′
5u
′
5ui

to create a Hamilton x0yj-path in G2
≺i,6

. A similar argument holds for Ci ∩
P = vi−1vi+1, or vi−2vi.
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If |Ci ∩ P | = 2, then Ci ∩ P = {ui−1ui, vi−1vi+1}, {ui−1ui, vi−2vi}, or
{vi−1vi+1, vi−2vi}. Suppose Ci ∩P = {ui−1ui, vi−1vi+1}. Then we can replace
ui−1ui and vi−1vi+1 with

ui−1u
′
0v
′
0v
′
2v
′
4u
′
4u
′
5ui and vi−1v

′
1u
′
1u
′
2u
′
3v
′
3v
′
5vi+1,

respectively, to create a Hamilton x0yj-path in G2
≺i,6

. A similar argument
holds if Ci ∩ P = {ui−1ui, vi−2vi}, or {vi−1vi+1, vi−2vi}.

If |Ci ∩ P | = 3, then Ci ∩ P = Ci. We can replace ui−1ui, vi−2vi, and
vi−1vi+1 with

ui−1u
′
0u
′
1 . . . u′5ui, vi−2v

′
0v
′
2v
′
4vi, and vi−1v

′
1v
′
3v
′
5vi+1,

respectively, to create a Hamilton x0yj-path in G2
≺i,6

.

In the rest of this section we will prove inductively that all the necessary
paths exist as defined in the main theorem. For the base cases, we need to
exhibit appropriate Hamilton paths. An effective tool is the Posa exchange: if
P = x0x1 · · ·xn is a Hamilton path and xn is adjacent to xi with 0 ≤ i < n−1,
then (P − xixi+1) + xnxi is a Hamilton x0xi+1-path. We will combine this
method with the reflective symmetry of the graph to find all the necessary
paths. Since the induction argument for each case is very similar we will
prove two of the cases, n ≡ 0 (mod 6) and n ≡ 1 (mod 6), in detail. For the
other values of n we will provide the details for the base cases.

Theorem 2.4. If n ≡ 0 (mod 6) and j ∈ Zn, then in GP(n, 2) a Hamilton
path exists for the pairs (u0, uj) for all j 6= 2, n − 2, (u0, vj) for all j, and
(v0, vj) for all j 6≡ 0 (mod 6).

Proof. We proceed by induction of n. Let n = 6 and n = 12 be the base
cases. From the Hamilton path

P = u0v0v2v4u4u5v5v1v3u3u2u1

we can do (consecutively) the sequence of Posa exchanges using the edges
u1v1 (to get the Hamilton u0v3-path), v3v5 (to get the Hamilton u0v1-path),
and v1v3 (to get the Hamilton u0u3-path). Starting with P again, we do the
sequence of Posa exchanges using u0u1 and v0v4 to get the Hamilton u0v0

and u0v2-paths. From the Hamilton path

P ′ = v0u0u0v5v3u3u4v4v2u2u1v1
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the Posa exchange using the edge v1v5 gives a Hamilton v0v3-path and the
consecutive Posa exchanges using the edges v1v3 and u2u3 gives the Hamilton
v0v2-path. By reflective symmetry, the theorem holds for n = 6.

The preceding paragraph and Theorem 2.3 imply that, in GP(12, 2) there
are Hamilton paths for the pairs (u0, uj), for all j ∈ {1, 3, 5}, (u0, vj), for all
j ∈ {0, . . . , 5}, and (v0, vj), for all j ∈ {1, 2, 3, 4, 5}. Given the Hamilton
path

u0v0v10v8u8u7v7v9u9u10u11v11v1u1u2v2v4v6u6u5v5v3u3u4,

we can obtain Hamilton u0v6- and u0u6-paths by a sequence of Posa ex-
changes using the edges u4v4, v6v8, u8u9, v9v11, u11u0, v0v2, and v4v6. There-
fore, the theorem holds for n = 12.

Suppose the theorem holds for GP(n, 2) where n ≡ 0 (mod 6) and n ≥ 12.
Let x, y ∈ {u, v} and j ∈ Zn+6 be such that the theorem asserts the existence
of a Hamilton x0yj-path. If j ∈ Zn, then, except for (x0, yj) = (u0, un−2), the
inductive hypothesis and Theorem 2.3 imply the existence of the Hamilton
x0yj-path in GP(n + 6, 2).

In the case (x0, yj) = (u0, un−2), the vertex un−2 is symmetric to u8 in
GP(n + 6, 2). Thus the Hamilton u0un−2-path exists by reflective symmetry
and the inductive hypothesis.

For j ∈ {n, n + 1, . . . , n + 5}, we use reflective symmetry to get all the
asserted Hamilton x0yj-paths. (For example, a Hamilton u0vn-path exists,
since there exists a Hamilton u0v6-path, but no Hamilton v0vn-path exists,
since no Hamilton v0v6-path exists.) Hence, all the paths defined in the
theorem exist in GP(n + 6, 2), as required.

Theorem 2.5. If n ≡ 1 (mod 6), then GP(n, 2) is Hamilton connected.

Proof. We proceed by induction on n. Let n = 7 be the base case. From the
Hamilton path

P = u0v0v5u5u6v6v1v3u3u4v4v2u2u1,

the Posa exchange using the edge u0u1 gives the Hamilton u0v0-path. Starting
with P again, we consecutively do the Posa exchanges using the edges u1v1

(to get to v3), v3v5 (to get to u5), u4u5 (to get to v4), v4v6 (to get to v1), v1v3

(to get to u3), and u2u3 (to get to v2). From the Hamilton path

v0u0u1u2v2v4u4u3v3v5u5u6v6v1

a Hamilton v0v5 and v0v4-path can be obtained by the sequence of Posa
exchanges using the edges v1v3, v0v5, u0u6, v4v6, u4u5, and u6v6. By reflective
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and rotational symmetry, there exists a Hamilton path between any pair of
vertices in the graph. Therefore GP(7, 2) is Hamilton connected.

Suppose the theorem holds for n ≡ 1 (mod 6), where n ≥ 7. Then in
GP(n + 6, 2), there exists a Hamilton path for all pairs of vertices contained
in V0,n−1, by Theorem 2.3 and the inductive hypothesis. In GP(n+6, 2), each
vertex contained in Vn,5 is symmetric to a vertex contained in V0,5. There-
fore, by the inductive hypothesis and reflective and rotational symmetry, a
Hamilton path exists for all pairs of vertices in GP(n+ 6, 2), as required.

For the following theorems we will only provide the proof for the base
cases.

Theorem 2.6. If n ≡ 2 (mod 6) and j ∈ Zn, then in GP(n, 2) a Hamilton
path exists for the pairs (u0, uj) for all j, (u0, vj) for all j, and
(v0, vj) for all j 6≡ 4 (mod 6).

Proof of base case. From the Hamilton path

u0v0v2v4v6u6u7v7v1v3v5u5u4u3u2u1

in GP(8, 2), we can do (consecutively) the Posa exchanges using the edges
u1v1 (to get to v3), v3u3 (to get to u4), u4v4 (to get to v6), v0v6, v2u2 (to get
to u3), u3u4, u5u6, u7u0 (to get to v0), v0v2 (to get to v4), v4v6 (to get to u6),
and u6u7 (to get to v7). Reflective symmetry completes the task. Let P ′ be
the Hamilton path

v0u0u7v7v5v3u3u4u5u6v6v4v2u2u1v1.

The consecutive Posa exchanges from P ′ using the edges v1v7, v5u5, and
u4v4 give the Hamilton v0v5 and v0v6-paths. By reflective symmetry all the
necessary paths exist.

Theorem 2.7. If n ≡ 3 (mod 6), then GP(n, 2) is Hamilton connected.

Proof of base case. From the Hamilton path

u0u1u2v2v0v7v5u5u4v4v6u6u7u8v8v1v3u3

in GP(9, 2), we can do the consecutive Posa exchanges using the edges u3u4

(to get to v4), v4v2 (to get to v0), v0u0 (to get to u1), u1v1 (to get to v8),
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v8v6, u6u5 (to get to u4), u4v4 (to get to v2), v2v0, v7u7, u6v6, v8v1 (to get to
v3), v3v5, u5u4, and v4v2 (to get to u2). From the Hamilton path

v0u0u1u2v2v4v6u6u5u4u3v3v5v7u7u8v8v1,

we can do the consecutive Posa exchanges using the edges v1u1, u2u3 and
u4v4 (to get to v6), v6v8, u8u0, and u1u2 (to get to v2), v2v0, u0u1, and u2v2

(to get to v4). By reflective and rotational symmetry, GP(9, 2) is Hamilton
connected.

Theorem 2.8. If n ≡ 4 (mod 6) and j ∈ Zn, then in GP(n, 2) a Hamilton
path exists for the pairs (u0, uj) for all j 6= 2, n−2, (u0, vj) for all j 6= 1, n−1
and j 6≡ 2 (mod 6), and (v0, vj) for all j 6≡ 0, 4 (mod 6).

Proof of base case. Let P be the Hamilton path

u0v0v2v4v6v8u8u9v9v1v3v5v7u7u6u5u4u3u2u1

in GP(10, 2). From P , we can do a sequence of Posa exchanges using the
edges u1u0 (to get to v0), v0v8 (to get to v6), v6u6 (to get to u7), u7u8, u9u0,
u1v1 (to get to v3), and v3u3 (to get to u4). From the Hamilton path

v0v8u8u7u6v6v4v2u2u1u0u9v9v7v5u5u4u3v3v1,

we can do the consecutive Posa exchanges using the edges v1v9 (to get to v7),
v7u7, u6u5, and u4v4 (to get to v2). The existence of the paths

u0u9v9v1u1u2v2v0u8u8u7v7v5v3u3u4v4v6u6u5,

u0v0v2u2u1v1v3u3u4v4v6v8u8u9v9v7u7u6u5v5, and

v0v8v6v4v2u2u1u0u9u8u7u6u5u4u3v3v1v9v7v5

and reflective symmetry completes the task.
Also, in GP(16, 2) a Hamilton u0u8-path exists.

Theorem 2.9. If n ≡ 5 (mod 6) and j ∈ Zn, then in GP(n, 2) a Hamilton
path exists for the pairs (u0, uj) for all j 6= 1, n−1, (u0, vj) for all j 6= 0, and
(v0, vj) for all j 6≡ 2, 3 (mod 6).

14



Proof of base cases. For GP(5, 2), the Petersen graph, the Hamilton path

v0u0u1u2v2v4u4u3v3v2

exists. From the Hamilton path

u0v0v2v4u4u3v3v1u1u2

we can do a sequence of Posa exchanges using the edges u2v2 (to get to v4)
and v4v1 (to get to v3). Reflective symmetry completes the task.

In GP(11, 2), the preceding paragraph and Theorem 2.3 imply that there
exists a Hamilton path for the pairs (u0, uj) for j = 2, 3, (u0, vj) for all
j ∈ {1, 2, 3, 4}, and (v0, vj) for j = 1, 4. The existence of the paths

u0u1v1v3u3v2v2v0v9u9u10v10v8u8u7v7v5u5u6v6v4u4,

u0u10v10v8u8v9v9v0v2u2u1v1v3u3u4v4v6u6u7v7v5u5,

u0v0v2v4u4u5u6v6v8u8u7v7v9u9u10v10v1u1u2u3v3v5, and

v0v2u2u3v3v1u1u0u10v10v8u8u9v9v7u7v6v6v4u4u5v5,

and reflective symmetry imply that the necessary paths exist in GP(11, 2).

Now that we have established which Hamilton paths exist, we look at the
paths that do not exist.

2.5 Reducing in GP(n,2)

In this section we will complete the proof of Theorem 2.2. We do this in two
steps. First we show that, for large n, an (i, j)-reduction of GP(n, k) can be
applied while maintaining the Hamilton path. For i and j ∈ Zn, an (i, j)-
reduction of GP(n, k), denoted Gk

�i,j
, is the graph obtained from GP(n, k)

by deleting the edges u`v` for all ` ∈ {i, . . . , i + j − 1} and contracting the
edges u`u`+1 and v`−1v`+k−1 for all ` ∈ {i, . . . , i + j − 1}. Thus the vertex
set of Gk

�i,j
is V0,i−1 ∪ Vi+j,n−i+j. Note: Gk

�i,j
is isomorphic to GP(n − j, k).

Since this is an inductive argument, in the second step we show that these
paths do not exist in the base cases.
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In order to accomplish the first step, we need to understand what the
necessary conditions are for applying an (i, j)-reduction of GP(n, k). The
following definitions will help us.

For some i, j ∈ Zn, each pair of edges

{ui−1ui, ui+j−1ui+j} {vi−kvi, vi+j−kvi+j} {vi−k+1vi+1, vi+j−k+1vi+j+1}, . . . ,

{vi−1vi+k−1, vi+j−1vi+j+k−1}

is defined to be (i, j)-congruent.
For a Hamilton path P , the cuts Ci and Ci+j are P -congruent if, for

each (i, j)-strand Q of P , Q ∩ Ci is (i, j)-congruent to Q ∩ Ci+j. (See figure
2.3) This is the main concept needed in our inductive argument, which the
following theorem develops.

ui ui+6ui+4ui+2

Figure 2.3: Ci and Ci+6 are P -congurent in GP(n, 2).

Theorem 2.10. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose there exists an i such that x0, yj /∈ Vi,5. If |Ci∩P | 6= 0 and
Ci and Ci+6 are P -congruent, then there is a Hamilton x0yj-path in G2

�i,6
.

Proof. Let Q be an (i, 6)-strand of P . Then Q contains exactly one edge of
Ci and one edge of Ci+6, and these edges are (i, 6)-congruent. In G2

�i,6
the

strand Q becomes one of the edges ui−1ui+6, vi−1vi+7 or vi−2vi+6, as defined
by the ends of Q. Since this holds for each strand, there is a Hamilton
x0yj-path in G2

�i,6
. For example, see Figure 2.4

The following lemmas describe conditions that guarantee that two cuts
are P -congruent in GP(n, 2).

Lemma 2.11. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose that there exists an i such that:

1. x0, yj /∈ Vi,5;
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ui ui+6ui+4ui+2 ui+6

Figure 2.4: Example of an (i, 6)-reduction in GP(n, 2).

2. Ci ∩ P = {ui−1ui}; and

3. |Ci+6 ∩ P | = 1.

Then:

1. Ci+6 ∩ P = {ui+5ui+6}; and

2. if the ends of P are not contained in Vi−1,7, then Ci−1 and Ci+5 are
P -congruent, as are Ci+1 and Ci+7.

Proof. Since Ci ∩ P = ui−1ui, P contains the edges ui−1ui, uivi, vivi+2,
ui+2ui+1, ui+1vi+1, and vi+1vi+3. If the edge ui+2vi+2 ∈ P , then the edges
ui+3vi+3, ui+3ui+4, ui+4vi+4, vi+4vi+6, ui+5ui+6, ui+5vi+5, and vi+5vi+7 are all
contained in P , so |Ci+6 ∩ P | = 3, a contradiction. Thus ui+2ui+3 and
vi+2vi+4 ∈ P . If ui+3vi+3 ∈ P , then P has a cycle. Thus ui+3ui+4 and
vi+3vi+5 ∈ P . If ui+4ui+5 ∈ P , then ui+5vi+5 is not in P , as otherwise P
has a cycle, and we see that |Ci+6 ∩ P | = 3, a contradiction. Therefore
ui+4vi+4 ∈ P and Ci+6 ∩ P = ui+5ui+6. Hence Ci and Ci+6 are P -congruent.

By hypothesis, Ci−1∩P = vi−3vi−1, Ci+1∩P = vivi+2, Ci+5∩P = vi+3vi+5,
and Ci+7 ∩ P = vi+6vi+8. Therefore Ci−1 and Ci+5 are P -congruent, as are
Ci+1 and Ci+7.

Lemma 2.12. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose that there exists an i such that x0, yj /∈ Vi,5. If, for all
` ∈ {i, . . . , i + 6}, |C` ∩ P | = 2, then Ci and Ci+6 are P -congruent.

Proof. If Ci ∩ P = {ui−1ui, vi−2vi}, then, as each C` has two edges in P , the
(i, 6)-strands are

ui−1uiui+1vi+1vi+3vi+5ui+5ui+6 and vi−2vivi+2ui+2ui+3ui+4vi+4vi+6.

Thus Ci+6 ∩ P = {ui+5ui+6, vi+4vi+6}, and Ci and Ci+6 are P -congruent. A
similar argument holds if Ci∩P = {ui−1ui, vi−1vi+1} or {vi−2vi, vi−1vi+1}.
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Lemma 2.13. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose that there exists an i such that x0, yj /∈ Vi,5. If |C`∩P | = 3
for all ` ∈ {i, . . . , i + 6}, then Ci and Ci+6 are P -congruent.

Proof. Since |C` ∩ P | = 3 for all ` ∈ {i, . . . , i + 6}, Ci, Ci+2, Ci+4 and Ci+6

are all P -congruent.

Naturally it is possible that a path does not have any of the above prop-
erties. We wish to minimize the value of n needed to guarantee that one
of the above conditions applies. Thus, we look at ways of manipulating the
structure of the path. Suppose P and P ′ are paths in GP(n, 2) and let i
and j be such that neither P nor P ′ has any ends in Vi,j. Then P and P ′

are (i, j)-equivalent if outside of Si,j, P and P ′ are the same, and, for each
(i, j)-strand Q of P , there exists an (i, j)-strand Q′ of P ′ so that Q and
Q′ have equivalent ends. We can use this to adjust a path to allow for an
(i, j)-reduction.

There is an additional property of paths that simplifies our argument.

Remark Let x, y ∈ {u, v}, 0 ≤ j ≤ bn
2
c, and P be a Hamilton x0yj-path in

GP(n, k). If P crosses a cut Ci, where j < i ≤ n, an even (odd) number of
times, then any cut in this range is crossed an even (odd) number of times by
P . This is because, for any ` and m, where j < `, m ≤ n, |C`∩P |+ |Cm∩P |
must be even.

This means that we have two cases to consider. We will first consider the
properties needed to guarantee a repeat in the even case.

The following lemma describes how the position of a cut that is not
crossed by any edge of a Hamilton path can be shifted.

Lemma 2.14. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose there exists an i such that x0, yj /∈ Vi−1,4. If Ci ∩ P = ∅,
then there exists a Hamilton x0yj-path P ′ such that Ci+3 ∩ P ′ = ∅ and P ′ is
(i− 1, 5)-equivalent to P .

Proof. Since Ci ∩ P = ∅, we have that |C` ∩ P | = 2 for all ` ∈ {i − 1, i +
1, . . . , i + 4}. Thus Si−1,5 contains exactly two strands of P , namely,

ui−2ui−1vi−1vi−3 and ui+4ui+3ui+2vi+2viuiui+1vi+1vi+3vi+5.

Let P ′ be the path in GP(n, 2) obtained from P by replacing the two (i−1, 5)-
strands of P with

ui−1uivivi+2ui+2ui+1vi+1vi−1vi−3 and ui+4ui+3vi+3vi+5.
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Then P and P ′ are (i− 1, 5)-equivalent Hamilton paths.

This lemma can be applied multiple times, leading to the following corol-
lary.

Corollary 2.15. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2), for j 6= 0. Suppose there is some i so that j < i ≤ n and Ci∩P = ∅.
Then there is a Hamilton x0yj-path P ′ that is (j, n− j)-equivalent to P , for
which there is an i′ ∈ {n− 2, n− 1, n}, so that Ci′ ∩ P ′ = ∅.

Proof. If i ∈ {n−2, n−1, n}, then P = P ′. Otherwise, we can apply Lemma
2.14 to obtain a Hamilton path P ′ that is (j, n − j)-equivalent to P with
Ci′ ∩ P ′ = ∅, where i′ ≡ i (mod 3) and i′ ∈ {n− 2, n− 1, n}.

This leads to the following claim, which describes the conditions needed
to guarantee that an (i, j)-reduction can be applied. In this claim we choose
j in such a way that the indices of the path remain the same in both GP(n, 2)
and GP (n− 6, 2).

Claim 2.16. Let x, y ∈ {u, v}, 0 ≤ j ≤ bn
2
c, and P be a Hamilton x0yj-path

in GP(n, 2). If |Cj+1 ∩ P | is even and n− j ≥ 10, then there is a Hamilton
x0yj-path in G2

�j+1,6
.

Proof. Since |Cj+1 ∩ P | is even, |C` ∩ P | is even for all ` ∈ {j + 1, . . . , n}. If
there exists an i, where j < i ≤ n, such that |Ci ∩ P | = 0, then i is unique.
Corollary 2.15 implies that there exists an (j, n − j)-equivalent Hamilton
path, where i′ ∈ {n− 2, n− 1, n} and |Ci′ ∩ P | = 0.

Thus (i′ − 1) − j ≥ (n − 3) − j ≥ 7, and Lemma 2.12 applies for Sj+1,5.
By Theorem 2.10, there is a Hamilton x0yj-path in G2

�j+1,6
.

If no such i exists, then Lemma 2.12 applies for Sj+1,5 and, by Theorem
2.10, there is a Hamilton x0yj-path in G2

�j+1,6
.

The odd case is more complicated than the even case. The following
lemma, similar to the even case, shows that we can shift the position of a
cut crossed by one strand of P .

Lemma 2.17. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose there exists an i such that x0, yj /∈ Vi,5. If |Ci ∩ P | = 3,
|Ci+1 ∩ P | = 1, and |Ci+5 ∩ P | = 3, then there exists an (i, 6)-equivalent
Hamilton x0yj-path P ′, such that, for ` ∈ {i + 3, i + 4, i + 5}, |C` ∩ P ′| = 1,
and for ` ∈ {i, i + 1, i + 2}, |C` ∩ P ′| = 3.
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Proof. Since |Ci ∩ P | = 3, |Ci+1 ∩ P | = 1, and |Ci+5 ∩ P | = 3, we have that
Si,6 contains precisely three strands of P , namely,

ui−1uivivi−2, vi−1vi+1ui+1ui+2vi+2vi+4vi+6, and ui+6ui+5ui+4ui+3vi+3vi+5vi+7.

Let P ′ be the path in GP(n, 2) obtained from P by replacing the three (i, 6)-
strands of P with

ui−1uiui+1ui+2vi+2vivi−2, vi−1vi+1vi+3ui+3ui+4vi+4vi+6, and ui+6ui+5vi+5vi+7

Then P and P ′ are (i, 6)-equivalent Hamilton paths in GP(n, 2).

Lemma 2.18. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Suppose there exists an i such that x0, yj /∈ Vi,4. If |Ci ∩ P | = 3,
|Ci+1 ∩ P | = 1, and |Ci+5 ∩ P | = 1, then there exists an (i, 5)-equivalent
Hamilton x0yj-path P ′, such that |Ci+5 ∩ P ′| = 1 and, for ` ∈ {i, . . . , i + 4},
|C` ∩ P ′| = 3.

Proof. Since |Ci ∩ P | = 3, |Ci+1 ∩ P | = 1, and |Ci+5 ∩ P | = 1, we have that
Si,5 contains precisely two strands of P , namely,

ui−1uivivi−2 and vi−1vi+1ui+1ui+2vi+2vi+4ui+4ui+3vi+3vi+5.

Let P ′ be the path in GP(n, 2) obtained from P by replacing the two (i, 5)-
strands of P with

ui−1uiui+1ui+2ui+3ui+4vi+4vi+2vivi−2 and vi−1vi+1vi+3vi+5.

Then P and P ′ are (i, 5)-equivalent Hamilton paths in GP(n, 2).

As in the even case, we can iteratively apply these lemmas to obtain the
following corollaries.

Corollary 2.19. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path
in GP(n, 2), where |Cj+1 ∩ P | = 3 and |Cn ∩ P | = 3. Suppose there is some
i so that j < i ≤ n and Ci ∩ P = vi−2vi. Then there is a Hamilton x0yj-path
P ′ that is (j, n− j)-equivalent to P for which there is an i′ ∈ {n− 4, n− 3},
so that Ci′ ∩ P ′ = vi′−2vi′.

Proof. If i ∈ {n − 4, n − 3}, then P = P ′. Otherwise, by Lemma 2.18
we can assume that i is unique, which implies that Cm ∩ P = Cm for all
m ∈ {j + 1, . . . , n} where m 6= i, i + 1 or i + 2. Thus we can apply Lemma
2.17 to obtain a Hamilton path P ′ that is (j, n − j)-equivalent to P with
Ci′ ∩ P ′ = vi′−2vi′ , where i′ ≡ i (mod 2) and i′ ∈ {n− 4, n− 3}.
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Corollary 2.20. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path
in GP(n, 2), where |Cj+1∩P | = 1 and |Cn∩P | = 3. Then there is a Hamilton
x0yj-path P ′ that is (j, n−j)-equivalent to P , where, for all i ∈ {j+4, . . . , n},
|Ci ∩ P ′| = 3.

Proof. Since |Cj+1∩P | = 1, Cj+1∩P = ujuj+1, vj−1vj+1, or vjvj+2. Suppose
Cj+1∩P = vj−1vj+1. Then |Cj+2∩P | = |Cj+3∩P | = 1 and |Cj+4∩P | = 3. If
|Ci∩P | = 3 for all i ∈ {j + 4, . . . , n}, then P = P ′. Otherwise, we can apply
Lemma 2.18 to obtain a Hamilton x0xj-path P ′ that is (j, n− j)-equivalent
to P , where |Ci ∩ P ′| = 3 for all i ∈ {j + 4, . . . , n}.

We can now describe the conditions needed to guarantee that an (i, j)-
reduction can be applied. As in the even case, we choose j in such a way that
the indices of the path remain the same in both GP(n, 2) and GP (n− 6, 2).

Claim 2.21. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, 2). Assume by reflective symmetry that 0 ≤ j ≤ bn

2
c. If |Cj+1 ∩ P | is

odd and n− j ≥ 12, then there is a Hamilton x0yj-path in G2
�i,6

.

Proof. Since |Cj+1 ∩ P | is odd, |C` ∩ P | is odd for all ` ∈ {j + 1, . . . , n}.
If there exists an i such that Lemma 2.13 applies, then, by Theorem 2.10,

there is a Hamilton x0yj-path in G2
�i,6

. If no such i exists, then between any
set of six consecutive cuts there exists a cut crossed by just one strand of P.
By symmetry, there are three distinct cases: |Cj+1∩P | = 1 and |Cn∩P | = 3;
|Cj+1 ∩ P | = 3 and |Cn ∩ P | = 3; and |Cj+1 ∩ P | = 1 and |Cn ∩ P | = 1.

If |Cj+1 ∩ P | = 1 and |Cn ∩ P | = 3, then, by Corollary 2.20, we can
obtain a (j, n − j)-equivalent Hamilton path where |C` ∩ P | = 3 for all
` ∈ {j + 4, . . . , n}. Since n − (j + 4) ≥ 8, Lemma 2.13 applies and, by
Theorem 2.10, there is a Hamilton x0yj-path in G2

�j+4,6
.

If |Cj+1 ∩ P | = 3 and |Cn ∩ P | = 3, then by Corollary 2.19 we can
obtain a (j, n − j)-equivalent Hamilton path where |C` ∩ P | = 3 for all
` ∈ {j + 1, . . . , n− 5}. Since (n− 5)− (j + 1) = n− j − 6 ≥ 6, Lemma 2.13
applies and there is a Hamilton x0yj-path in G2

�j+1,6
, by Theorem 2.10.

If |Cj+1 ∩ P | = 1 and |Cn ∩ P | = 1, then Ci+j ∩ P = uiui+1, vi−1vi+1, or
vivi+2. These three cases are interconnected so we will assume that Cj+1∩P =
vj−1vj+1 and make slight adjustments where necessary to account for the
other possibilites. Since Cj+1 ∩ P = vj−1vj+1, we have that Cj+2 ∩ P =
uj+1uj+2, Cj+3 ∩ P = vj+2vj+4 and Cj+4 ∩ P = Cj+4. (Note that the other
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two possiblities are accounted for at Cj+2 and Cj+3.) The path may cross
Cj+5 with one or three strands.

If Cj+5 ∩ P = vj+3vj+5, then Cj+8 ∩ P = Cj+8 and we can apply the
reverse of Lemma 2.18 at j + 8 so that the cuts C`, ` = j + 4, j + 5, . . . , j + 8
are all crossed by three strands of the path. If Cj+9 ∩ P = vj+8vj+10, then
Cj+12 ∩ P = Cj+12. Assuming n − j = 12, the first case applies. (For
the other two possibilities of Cj+1 ∩ P , we can assume that j = j + 1 or
j + 2, respectively. Thus we have that Cj+13 ∩ P could be vj+12vj+14, since
|Cn ∩ P | = 1. We can apply the reverse of Lemma 2.18 at j + 12 to obtain
nine consecutive cuts C`, ` = j + 4, j + 5, . . . , j + 13, that are all crossed
by three strands of the path. Thus Lemma 2.13 applies at Sj+4,6, and by
Theorem 2.10, there is a Hamilton x0yj-path in G2

�j+4,6
.) If Cj+9∩P = Cj+9,

then Lemma 2.13 applies for Sj+4,6 and by Theorem 2.10 there is a Hamilton
x0yj-path in G2

�j+4,6
.

If Cj+5 ∩ P = Cj+5, then Cj+6 ∩ P = Cj+6. If Cj+7 ∩ P = vj+6vj+8, then
Lemma 2.11 applies at Sj+1,6 and by Theorem 2.10, there is a Hamilton x0yj-
path in G2

�j+1,6
. (For the other possibilities, Lemma 2.11 applies at Sj+2,6

and Sj+3,6, respectively.) If Cj+7 ∩ P = Cj+7, then Cj+8 ∩ P = Cj+8 and the
same cases occur at Cj+9 as above.

Now that we have established the conditions for guaranteeing that an
(i, j)-reduction can be applied, we prove the nonexistence of the paths as
described in the Theorem 2.2. Since the ideas are the same for each case we
will only prove the n ≡ 0 (mod 6) case in detail. Recall, for n ≡ 0 (mod 6)
there are two kinds of paths which do not exist. We prove them separately
in the following lemmas.

Lemma 2.22. If n ≡ 0 (mod 6), then no Hamilton u0u2 or u0un−2-path
exists in GP(n, 2).

Proof. We proceed by induction on n, with the base cases being n = 6 and
n = 12.

For n = 6, suppose by way of contradiction that there exists a Hamilton
u0u2-path P in GP(6, 2). There are two possible initial edges at u0, by
symmetry.

If the edge u0v0 is in P , then the edges u1v1, u1u2, v0v2, v2v4, u4v4, u3u4,
and u4u5 are all in P . Hence the degree of u4 is three, a contradiction.

If the edge u0u5 is in P , then the subpaths u0u5v5, u2u1v1, and v3u3u4v4v0−
v2u2 are contained in P . Hence the degree of u2 in P is two, a contradiction.
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Therefore no Hamilton u0u2-path exists in GP(6, 2), and by reflective
symmetry no Hamilton u0u4-path exists. Thus, the theorem holds for n = 6.

For n = 12, suppose P is a Hamilton u0u2-path in GP(12, 2).
If |C0∩P | is even, then n−2 = 10 and by Lemma 2.16, P can be reduced

to a Hamilton u0u2-path in GP(6, 2). But no Hamilton u0u2-path exists in
GP(6, 2), and therefore |C0 ∩ P | is odd.

If |C0 ∩ P | is odd, then there are two possible pairs of initial and final
edges for P , by symmetry.

If the edge u0v0 is in P , then the subpaths u8u9v9, v8v10u10u11v11, u0v0v2v4,
v1u1u2, and v3u3u4 are contained in P . The edge v1v11 is in P , since |C0∩P |
is odd. Thus the edges v3v5 and v7v9 are also in P . If u4v4 is in P , then
the cycle u7u8u9v9v7u7 exists. Thus u4u5 and v4v6 are in P , and the cycle
u3u4 · · ·u9v9v7v5v3u3 exists. Therefore P does not contain the edge u0v0.

If u0u11 ∈ P , then the subpaths v10v0v2v4, v1u1u2, and v3u3u4 are con-
tained in P . By hypothesis the edge v1v11 ∈ P and the edges v3v5, v11v9, and
u11u10 are also contained in P. If u4v4 ∈ P , then the cycle u4u3v3v5u5u6v6−
v8 · · · v4u4 exists. Thus the edge u4u5 ∈ P , and the edges v4v6, v5v7 and
u5u6 ∈ P . If u6v6 ∈ P , then P is the path u0u11u10u9v9v11v1u1u2, which is
not Hamiltonian. Thus u6u7 ∈ P and the cycle v0v2 · · · v10v0 exists. There-
fore no Hamilton u0u2-path exists in GP(12, 2), and by reflective symmetry
no Hamilton u0u10-path exists. Thus, the theorem holds for n = 12.

Suppose the theorem holds for n ≥ 12, where n ≡ 0 (mod 6). If there
exists a Hamilton u0u2-path P in GP(n + 6, 2), then (n + 6) − 2 ≥ 16 and
P can be reduced to a Hamilton u0u2-path in GP(n, 2) by Claims 2.16 and
2.21. This contradicts the inductive hypothesis, and therefore no Hamilton
u0u2-path exists in GP(n + 6, 2). Also, by reflective symmetry no Hamilton
u0un+4-path exists. Therefore, by induction, the theorem holds.

Lemma 2.23. No Hamilton v0vj-path exists in GP(n, 2), where n, j ≡ 0
(mod 6).

Proof. We proceed by induction on n, with base case n = 12.
For n = 12, suppose by way of contradiction that P is a Hamilton v0v6-

path in GP(12, 2). By symmetry there are four possible pairs of initial and
final edges for P .

If the edges v0u0, v6u6 ∈ P , then the subpaths u10v10v8u8 and u2v2v4u4

are contained in P. Assume without loss of generality that u0u1 ∈ P , then
for all odd j ∈ Z12 the edges ujvj and uj−1uj are in P . The edge v3v5 /∈ P ,
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as otherwise a cycle exists. Therefore the edges v1v3, v5v7, and v9v11 ∈ P
and the cycle u10u11v11v9u9u8v8v10u10 exists.

If the edges v0u0 and v6v4 ∈ P , then the subpaths u10v10v8u8, u7u6u5u4u3,
u2v2v4v6 and v7v5v3 are contained in P . Since |C7 ∩ P | is even, |C0 ∩ P | is
even as well. If |C0 ∩ P | = 0, then the cycle u10u11v11v9u9u8v8v10u10 exists.
Otherwise, if |C0 ∩ P | = 2, then the cycle u3 · · ·u7v7v5v3u3 exists.

If the edges v0v2 and v6v4 ∈ P , then the subpaths u11u0u1, v0v2u2, u4v4v6,
u5u6u7, and u8v8v10u10 are contained in P. If |C0 ∩ P | is odd, then |C7 ∩ P |
is odd and the edges v11v1 and v5v7 are not in P . Hence the edges v1v3 and
v3v5 ∈ P , as well as the edges u2u3 and u3u4. Therefore P = v0v2u2u3u4v4v6.
If |C0 ∩ P | is even, then the edges v1v11 and v5v7 are in P . If the edge u1v1

is in P , then u11v11 /∈ P and the cycle u10 · · ·u1v1v11v9u9u8v8v10u10 exists.
Thus u1u2 is in P . If u11v11 ∈ P , then P is not a Hamilton path. Therefore
the edges u11u10 and v11v9 are in P , which forces the cycle u5u6u7v7v5u5.

If the edges v0v2 and v6v8 ∈ P then the subpaths u11u0u1u2u3, v11v1v3,
v0v2v4u4, u5u6u6u8u9, v5v7v9, and v6v8v10u10 are contained in P. This implies
that |C0 ∩ P | = 2 and |C7 ∩ P | = 3, a contradiction.

Therefore no Hamilton v0v6-path exists in GP(12, 2).
Suppose the theorem holds for n ≥ 12 where n ≡ 0 (mod 6). By way

of contradiction, we assume that there exists a Hamilton v0vj-path P in

GP(n+6, 2), for j ≤ (n+6)
2

and j ≡ 0 (mod 6). Note that (n+6)−j ≥ (n+6)
2

.

If n ≥ 18, then (n + 6) − j ≥ 12. If n = 12, j ≤ (n+6)
2

, and j ≡ 0 (mod 6),
then j ≤ 6, and again (n + 6) − j ≥ 12. Thus P can be reduced by Claims
2.16 and 2.21 to a Hamilton v0vj-path in GP(n, 2). This contradicts the
inductive hypothesis, hence no Hamilton v0vj-path exists in GP(n + 6, 2), as
required.

Lemma 2.24. For n ≡ 2 (mod 6) and j ≡ 4 (mod 6), no Hamilton v0vj-
path exists in GP(n, 2).

This follows, since no Hamilton v0v4-path exists in GP(8, 2) or in GP(14, 2).

Lemma 2.25. For n ≡ 4 (mod 6), j ≡ 2 (mod 6), and ` ≡ 0, 4 (mod 6), no
Hamilton u0u2, u0un−2, u0v1, u0vn−1, u0vj, or v0v`-path exists in GP(n, 2).

This follows, since no Hamilton u0u2, u0v1, u0v2, or v0v4-path exists in
GP(10, 2) and no Hamilton u0v8 or v0v6-path exists in GP(16, 2).

Lemma 2.26. For n ≡ 5 (mod 6), no Hamilton path exists for pairs of adja-
cent vertices; for j ≡ 2, 3 (mod 6), no Hamilton v0vj-path exists in GP(n, 2).
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This follows since GP(n, 2) is Hamiltonian if and only if n 6≡ 5 (mod 6).
Also, no Hamilton v0v3-path exists in GP(11, 2) and no Hamilton v0v8-path
exists in GP(17, 2).

This completes the proof of Theorem 2.2.
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Chapter 3

GP(n,3)

3.1 Introduction

In this chapter, we prove the following result.

Theorem 3.1. GP(n, 3) is Hamilton connected if and only if n is odd and
n > 5. It is Hamilton laceable if and only if n ≥ 4 is even and n 6= 6.

This was proved by Alspach and Lui [3]. Our proof is different: we use
an (i, 12)-expansion, whereas Alspach and Liu used a variant of an (i, 6)-
expansion.

In the first section we develop the ground work for the (i, 12)-expansion
argument and in the second section we provide the proof of Theorem 3.1.

3.2 Expanding in GP(n,3)

As for GP(n, 2), we will be using cuts and the (i, j)-expansion operation to
describe the inductive step. Recall that, for i ∈ Zn, the cut Ci in GP(n, 3)
is the set of edges {ui−1ui, vi−3vi, vi−2vi+1, vi−1vi+2}. The (i, 12)-expansion of
GP(n, 3) is the graph obtained from GP(n, 3) by deleting the edges in Ci and
adding the vertices {u′0, v′0, . . . , u′11, v

′
11} at Ci, as well as the edges: ui−1u

′
0;

u′11ui; for 0 ≤ ` ≤ 11, the edges u′`v
′
`; for 0 ≤ ` ≤ 10, the edges u′`u

′
`+1; for

0 ≤ ` < 3, the edges vi−3+`v
′
` and v′9+`vi+`; and, for 0 ≤ ` ≤ 8, the edges

v′`v
′
`+3. The following theorem establishes that an expansion can occur at

any cut while maintaining the Hamilton path.

26



Theorem 3.2. Let x, y ∈ {u, v} and j ∈ Zn. If there exists a Hamilton
x0yj-path in GP(n, 3), then there exists a Hamilton x0yj-path in G3

≺i,12
.

Proof. Let P be a Hamilton x0yj-path in GP(n, 3). We will show that for
j < i ≤ n, we can apply an (i, 12)-expansion so that there is a Hamilton
x0yj-path in G3

≺i,12. Of the 16 cases, we consider six that are representative
of the rest.

If no edge of P is in Ci, then at least one of ui−1vi−1 and uivi is in P .
Assume the latter. In this case, replace uivi in P with the path

uiu
′
11v
′
11v
′
8v
′
5v
′
2u
′
2u
′
3 · · ·u′10v

′
10v
′
7v
′
4v
′
1u
′
1u
′
0v
′
0v
′
3v
′
6v
′
9vi

to create the Hamilton x0yj-path in G3
≺i,12.

If |Ci∩P | = 1, then Ci∩P is either ui−1ui or vi−3vi or vi−2vi+1 or vi−1vi+2.
Suppose Ci ∩ P = ui−1ui. Then ui−1ui can be replaced with the path

ui−1u
′
0v
′
0v
′
3u
′
3u
′
4v
′
4v
′
1u
′
1u
′
2v
′
2v
′
5u
′
5u
′
6v
′
6v
′
9u
′
9u
′
10v
′
10v
′
7u
′
7u
′
8v
′
8v
′
11u
′
11ui

to obtain the Hamilton x0yj-path in G3
≺i,12

A similar argument holds if Ci ∩
P = vi−3vi, vi−2vi+1, or vi−1vi+2.

If |Ci ∩ P | = 2, then Ci ∩ P is one of six possible combinations of edges
in Ci.

Consider the case Ci ∩ P = {ui−1ui, vi−3vi}. Then the edges ui−1ui and
vi−3vi can be replaced with the paths

ui−1u
′
0u
′
1v
′
1v
′
4u
′
4u
′
3u
′
2v
′
2v
′
5u
′
5u
′
6u
′
7v
′
7v
′
10u
′
10u
′
9u
′
8v
′
8v
′
11u
′
11ui and vi−3v

′
0v
′
3v
′
6v
′
9vi,

respectively, to obtain the Hamilton x0yj-path in G3
≺i,12

. A similar argument
holds if Ci∩P is either {ui−1ui, vi−1vi+2} or {vi−3vi, vi−2vi+1} or {vi−2vi+1,−
vi−1vi+2}.

We also treat the case Ci ∩ P = {ui−1ui, vi−2vi+1}. The edges ui−1ui and
vi−2vi+1 can be replaced by the paths

ui−1u
′
0v
′
0v
′
3u
′
3u
′
4v
′
4v
′
7u
′
7u
′
8v
′
8v
′
11u
′
11ui and vi−2v

′
1u
′
1u
′
2v
′
2v
′
5u
′
5u
′
6v
′
6v
′
9u
′
9u
′
10v
′
10vi+1,

respectively, to obtain the Hamilton x0yj-path in G3
≺i,12

. A similar argument
holds for Ci ∩ P = {vi−3vi, vi−1vi+2}.

If |Ci ∩ P | = 3, then Ci ∩ P is one of four possible combination of edges
in Ci. Suppose Ci ∩ P = {ui−1ui, vi−3vi, vi−2vi+1}. Then the edges ui−1ui,
vi−3vi, and vi−2vi+1 can be replaced with the paths

ui−1u
′
0u
′
1u
′
2v
′
2v
′
5v
′
8v
′
11u
′
11ui, vi−3v

′
0v
′
3u
′
3u
′
4u
′
5u
′
6v
′
6v
′
9vi,
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and vi−2v
′
1v
′
4v
′
7u
′
7u
′
8u
′
9u
′
10v
′
10vi+1,

respectively, to obtain the Hamilton x0yj-path in G3
≺i,12

. A similar argument
holds for the other cases.

If |Ci ∩ P | = 4, then Ci ∩ P = Ci. The edges ui−1ui, vi−3vi, vi−2vi+1 and
vi−1vi+2 can be replaced with the paths

ui−1u
′
0u
′
1 · · ·u′11ui, vi−3v

′
0v
′
3v
′
6v
′
9vi, vi−2v

′
1v
′
4v
′
7v
′
11vi+1, and vi−1v

′
2v
′
5v
′
8v
′
10vi+2,

respectively, to obtain the Hamilton x0yj-path in G3
≺i,12

.

3.3 Base Cases

In this section we show the existence of the Hamilton paths for the twelve
cases. We show the the first two cases in detail.

Theorem 3.3. If n ≡ 0 (mod 12), then GP(n, 3) is Hamilton laceable.

Proof. We proceed by induction on n, with base cases n = 12 and n = 24.
From the Hamilton path

u0v0v3v6v9u9u8v8v11u11u10v10v7u7u6u5v5v2u2u3u4v4v1u1

in GP(12, 3) we can do a (consecutive) sequence of Posa exchanges using
the edges u1u2 (to get the Hamilton u0u3-path), u3v3 (to get the Hamilton
u0v6-path), v6u6 (to get to u7), u7u8 (to get to v8), v8v5, u5u4, v4v7 (to get
to v10), v10v1, and v1u1 (to get to v0). From the Hamilton path

P = v0u0u11u10v10v7v4u4u3v3v6v9u9u8u7u6u5v5v8v11v2u2u1v1

we can do a Posa exchange using the edge v1v10 to obtain the Hamilton v0v7-
path. Starting with P we can do a sequence of Posa exchanges using the
edges v1v4, u4u5, and u6v6 to obtain the Hamilton v0v9-path. Reflective and
rotational symmetry complete the task.

In GP(24, 3), the preceding paragraph and Theorem 3.2 imply that, for
0 ≤ j ≤ 11, there exist Hamilton paths for the pairs (u0, uj) and (v0, vj),
when j is odd, and (u0, vj), when j is even. This leaves the case u0v12, which
is achieved by the path

u0v0v3u3u4v4v1u1u2v2v5u5u6v6v9u9u10v10v7u7u8v8v11u11u12u13v13−
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v16v19v22u22u23v23v20v17v14u14u15 · · ·u21v21v18v15v12.

Therefore, by reflective and rotational symmetry, GP(24, 3) is Hamilton lace-
able.

Suppose the theorem holds for GP(n, 3), where n ≡ 0 (mod 12) and
n ≥ 24. Theorem 3.2 and the inductive hypothesis impy that in GP(n+12, 3),
there exists a Hamilton path for all necessary pairs of vertices in V0,n−1. Each
vertex in Vn,11 is symmetric to a vertex contained in V0,11. Therefore by
the inductive hypothesis and reflective and rotational symmetry, a Hamilton
path exists for all pairs of vertices on opposite sides of the bipartition in
GP(n + 12, 3), as required.

Theorem 3.4. If n ≡ 1 (mod 12), then GP(n, 3) is Hamilton connected.

Proof. We proceed by induction on n, with base case n = 13. From the
Hamilton path

P = u0v0v10u10u11u12v12v9u9u8v8v11v1v4v7u7u6v6v3u3u4u5v5v2u2u1

in GP(13, 3), we can do a consecutive sequence of Posa exchanges using the
edges u1v1 (to get to v4), v4u4 (to get to u3), u3u2 (to get to v2), v2v12 and v9v6

(to get to v3). Starting with P we can also do a sequence of Posa exchanges
using the edges u1u0 (to get to v0), v0v3 (to get to v6), v6v9 (to get to u9),
u9u10 (to get to u11), and u11v11 (to get to v1). From the Hamilton path

P ′ = u0v0v10u10u11u12v12v2u2u1v1v11v8u8u9v9v6v3u3u4v4v7u7u6u5v5

we can do a Posa exchange using the edge v5v8 to get the Hamilton u0u8-
path. Starting again with P ′ we can do a sequence of Posa exchanges using
the edges v5v2, u2u3, v3v0, and v10v7 to obtain the Hamilton u0u7-path. From
the Hamilton path

P ′′ = v0v10u10u11v11v8u8u9v9v12u12u0u1u2v2v5u5u4u3v3v6u6u7v7v4v1

we can do a sequence of Posa exchanges using the edges v1u1, u2u3, and u4v4

to obtain the Hamilton v0v7-path. From P ′′ we can also do the sequence
of Posa exchanges using the edges v1v11 (to get to v8), v8v5 (to get to v2),
v2v12, u12u11, v11v8, v5v2, v12u12, u0v0 (to get to v10) and v10v7 (to get to v4).
Reflective and rotational symmetry complete the task.

Suppose the theorem holds for n ≡ 1 (mod 12), where n ≥ 13. Theorem
3.2 and the inductive hypothersis imply that in GP(n + 12, 3), there exists
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a Hamilton path for all pairs of vertices contained in V0,n−1. Each vertex
contained in Vn,11 is symmetric to a vertex contained in V0,11. Therefore,
by the inductive hypothesis and reflective and rotational symmetry, GP(n +
12, 3) is Hamilton connected, as required.

Theorem 3.5. If n ≡ 2 (mod 12), GP(n, 3) is Hamilton laceable.

Proof of base case. From the Hamilton path

P = u0v0v3v6v9u9u8v8v11u11u10v10v7u7u6u5v5v2v13u13u12v12v1v4u4u3u2u1

in GP(14, 3) we can do a sequence of Posa exchanges using the edges u1v1 (to
get to v4) and v4v7 (to get to u7). Starting with P we can also do a sequence
of Posa exchanges using the edges u1u0 (to get to v0), v0v11 (to get to v8),
v8v5 (to get to u5), u5u4, v4v7, v10v13 (to get to v2) and v2u2 (to get to u3).
From the Hamilton path

v0v11u11u12v12v1u1u0u13v13v10u10u9v9v6u6u5u4v4v7u7u8v8v5v2u2u3v3

we can do a sequence of Posa exchanges using the edges v3v0, v11v8, u8u9

(to get to v9), v9v12 (to get to v1), and v1v4 (to get to v7). Reflective and
rotational symmetry complete the task.

Theorem 3.6. If n ≡ 3 (mod 12), the GP(n, 3) is Hamilton connected.

Proof of base case. From the Hamilton path

u0v0v3v6v9v12u12u11v11v8v5u5u6u7u8u9u10v10v7v4u4u3u2v2v14u14u13v13v1u1

in GP(15, 3) we can do the sequence of Posa exchanges using the edges u1u2

(to get to v2), v2v5 (to get to u5), u5u4 (to get to v4), v4v1, u1u0 (to get to
v0), v0v12 (to get to v9), v9u9, u10u11, v11v14, v2u2 (to get to u3), u3v3, v6u6

(to get to u7), u7v7 (to get to v10), v10v13 (to get to v1), v1u1 (to get to u2),
u2u3 (to get to v2), v3v6 (to get to u6), u6u7, u8v8, v11u11, u10u9, v9v12, v0u0,
u1u2, u3v3, v6u6, u7u8 (to get to v8), v8v11, v14v2, and u2u3 (to get to u4).
Let P be the Hamilton path

v0v3u3u2v2v14v11u11u12v12v9v6u6u7v7v4u4u5v5v8u8u9u10v10v13u13u14u0u1v1.

From P we can do a sequence of Posa exchanges using the edges v1v4, u4u3,
u2u1, v1v13, u13u12, u11u10 (to get to v10), v10v7 (to get to v4), v4u4, u5u6 (to
get to v6), v6v3, u3u2 (to get to v2), and v2v5 (to get to v8). Starting with
P we can do a sequence of Posa exchanges using the edges v1v13 and u13u12

to obtain the Hamilton v0v12-path. Reflective and rotational symmetry com-
plete the task.
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Theorem 3.7. If n ≡ 4 (mod 12), then GP(n, 3) is Hamilton laceable.

Proof of base case. Let P be the Hamilton path

u0v0v3u3u4u5v5v8v11u11u10u9u8u7u6v6v9v12u12u13v13v10v7v4−

v1v14u14u15v15v2u2u1

in GP(16, 3). From P be can do a sequence of Posa exchanges using the
edges u1u0 (to get to v0), v0v13 (to get to u13), u13u14 (to get to v14), v14v11

(to get to v8), v8u8 (to get to u9), and u9v9 (to get to v6). Starting from P
again, we can do a sequence of Posa exchanges using the edges u0v1, v14v11

(to get to u11), and u11u12 (to get to v12). From the Hamilton path

v0v13u13u14v14v1u1u0u15v15v12u12u11v11v8u8u7u6v6v9u9u10−

v10v7v4u4u5v5v2u2u3v3,

we can do a sequence of Posa exchanges using the edges v3v0, v13v10, u10u11

(to get to v11), v11v14 (to get to v1), and v1v4 (to get to v7). Reflective and
rotational symmetry complete the task.

Theorem 3.8. If n ≡ 5 (mod 12), then GP(n, 3) is Hamilton connected.

Proof of base case. From the Hamilton path

P = u0v0v14u14u15u16v16v13u13u12v12v15v1v4u4u3v3v6v9u9u8−

v8v11u11u10v10v7u7u6u5v5v2u2u1

in GP(17, 3) we can do a sequence of Posa exchanges using the edges u1v1

(to get to v4), v4v7 (to get to v10), v10v13 (to get to u13), u13u14 (to get to
u15), u15v15 (to get to v1), v1v4, v7v10 (to get to u10), u10u9 (to get to u8),
u8u7 (to get to u6), u6v6 (to get to v3), v3v0 (to get to v14), v14v11 (to get to
v8), v8v5 (to get to u5), u5u4, v4v7, and u7u6 (to get to v6). Starting from P
we can do a sequence of Posa exchanges using the edges u1u0 (to get to v0),
v0v3, and u3u2 (to get to v2). From the Hamilton path

v0u0u1v1v15u15u16v16v2u2u3u4v4v7u7u8u9v9v12u12u11u10v10v13−

u13u14v14v11v8v5u5u6v6v3
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we can do a sequence of Posa exchanges using the edges v3u3, u4u5 (to get
to v5), v5v2, u2u1 (to get to v1), v1v4 (to get to v7), v7v10, u10u9 (to get
to v9), v9v6, u6u7, v7v4, v1u1, u2v2, v5u5, u4u3, v3v0, u0u16, u15u14, u13u12,
u11v11, v8u8, u7v7 (to get to v4), v4v1, u1u2 (to get to v2), v2v5, v8v11, u11u12,
u13u14, u15u16, u0v0, v3u3, u4u5, and v5v8 (to get to v11). The existence of
the Hamilton u0v5-path

u0u16u15v15v12u12u11v11v8u8u7v7v10u10u9v9v6u6u5u4v4v1u1−

u2u3v3v0v14u14u13v13v16v2v5

and reflective an rotational symmetry imply that GP(17, 3) is Hamilton con-
nected.

Theorem 3.9. If n ≡ 6 (mod 12), the GP(n, 3) is Hamilton laceable.

Proof of base case. In GP(18, 3), from the Hamilton path

P = u0v0v3v6v9u9u10u11v11v14u14u15v15v12u12u13v13v10v7v4−

u4u3u2u1v1v16u16u17v17v2v5v8u8u7u6u5

we can do a sequence of Posa exchanges using the edges u5v5 (to get to v8),
v8v11 (to get to v14), v14v17 (to get to u17), u17u0 (to get to v0), v0v15 (to
get to u15), u15u16 (to get to v16), v16v13, and v10u10 (to get to u9). Starting
again from P we can do a sequence of Posa exchanges using the edges u5u4,
u3v3 (to get to v6), v6u6, u5v5, and v8v11 (to get to u11). From the Hamilton
path

v0v3u3u2v2v5u5u4v4v7v10u10u9v9v6u6u7u8v8v11u11u12v12v15u15−

u16v16v13u13u14v14v17u17u0u1v1

we can do a sequence of Posa exchanges using the edges v1v16 (to get to v13),
v13v10, u10u11 (to get to v11), v11v14, v17v2, v5v8, v11u11, u10v10, v7u7, u8u9 (to
get to v9), v9v12, u12u13, and u14u15 (to get to v15).

Theorem 3.10. If n ≡ 7 (mod 12), then GP(n, 3) is Hamilton connected.

Proof of base cases. In GP(7, 3), from the Hamilton path

P = u0u1v1v5v2u2u3v3v1v4u4u5u6v6,
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we can do a sequence of Posa exchanges using the edges v6v2 (to get to u2),
u2u1 (to get to v1), to get to v1v4 (to get to u4), u4u3 (to get to v3), v3v6 (to
get to v2). Starting again with P we can do a sequence of Posa exchanges
using the edges v6v3 (to get to v0) and v0u0 (to get to u1). The Hamilton
paths

v0u0u6v6v3u3u2u1v1v4u4u5v5v2,

v0u0u1v1v5v2u2u3v3v6u6u5u4v4, and

v0u0u6u5v5v2u2u1v1v4u4u4v3v6,

with reflective and rotational symmetry imply that GP(7, 3) is Hamilton
connected.

In GP(19, 3), the preceding paragraph and Theorem 3.2 imply that we
need the additional Hamilton x0yj-paths for x, y ∈ {u, v} and j ∈ {7, 8, 9}.
Given the Hamilton path

u0u18v18v2v5v8u8u7v7v10v13u13u12v12v15u15u14v14v17u17u16−

v16v0v3u3u2u1v1v4u4u5u6v6v9u9u10u11v11

we can do a sequence of Posa exchanges using the edges v11v14, v17v1, u1u0,
u18u17, v17v14, v11v8 (to get to u8), u8u9, v9v12, v15v18, v2u2, u2u3, u3u4, v4v7,
v10u10 (to get to u9), u9v9, v6v3, u3u2, v2v18, v15v12 (to get to v9), v9v6, v3u3,
u4v4 (to get to v7), v7v10, v13v16, u16v15, and u14u13 (to get to u12). From the
Hamilton path

P = v0u0u1v1v4u4u5u6u7v7v10v13v16u16u15u14u13u12v12v15v18u18−

u17v17v14v11u11u10u9u8v8v5v2u2u3v3v6v9

we can do a sequence of Posa exchanges using the edges v9u9 and u8u7 to
obtain a Hamilton v0v7-path. Starting with P we can do a sequence of Posa
exchanges using the edges v9v12, v15u15, and u14v14 to obtain the Hamilton
v0v11-path.

Theorem 3.11. If n ≡ 8 (mod 12), then GP(n, 3) is Hamilton laceable.

Proof of base cases. In GP(8, 3), from the Hamilton path,

u0v0v3u3u2v2v5u5u4v4v7u7u6v6v1u1,
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we can do a sequence of Posa exchanges using the edges u1u0 (to get to v0),
v0v5 (to get to v2), v2v7 (to get to v4), v4v1 and v6v3 (to get to u3). From the
Hamilton path

v0u0u7u6u5v5v2v7v4u4u3u2u1v1v6v3,

we can obtain the Hamilton v0v7-path by a sequence of Posa exchanges using
the edges v3u3 and u2v2.

In GP(20, 3), from the Hamilton path

P = u0v0v17u17u16v16v13u13u12v12v15u15u14v14v11u11u10v10−

v7v4u4u5u6u7u8v8v5v2v19u19u18v18v1u1u2u3v3v6v9u9

we can do a Posa exchanges using the edge u9u10 to obtain the Hamilton
u0u10-path. Also starting with P we can do a sequence of Posa exchanges
using the edges u9u8 (to get to v8) and v8v11 (to get to u11). Also the Hamilton
path

v0u0u19u18u17v17v14u14u15u16v16v19v2v5v8v11u11u12u13−

v13v10u10u9u8u7v7v4u4u5u6v6v3u3u2u1v1v18v15v12v9

exists.

Theorem 3.12. If n ≡ 9 (mod 12), then GP(n, 3) is Hamilton connected.

Proof of base cases. In GP(9, 3), from the Hamilton path

P = u0u8v8v2v5u5u4u3v3v0v6u6u7v7v4v1u1u2,

we can do a sequence of Posa exchanges using the edges v3v6, v0u0, u8u7,
v7v1, and v4u4 to get the Hamilton u0u3-path. Starting again with P we can
do a sequence of Posa exchanges using the edges u2v2 (to get to v5), v5v8 (to
get to v2), v2v5 (to get to u5), u5u6 (to get to v6), v6v3 (to get to v0), v0u0

(to get to u8),, u8u7, v7v1, v4u4 and u5v5 (to get to v8). From the Hamilton
path

v0u0u8v8v5u5u4u3v3v6u6u7v7v4v1u1u2v2,

we can do a sequence of Posa exchanges using the edges v2v5, u5u6 (to get
to v6), v6v0, u0u1, u2u3, u4v4, and v7v1 (to get to v4). The existence of the
Hamilton path

v0u0u8u7u6v6v3u3u2u1v1v7v4u4u5v5v2v8
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implies that GP(9, 3) is Hamilton connected.
In GP(21, 3), given the Hamilton path

P = u0u1v1v19v16v13v10u10u11 · · ·u20v20v17v14v11v8u8u9v9v6u6−

u7v7v4u4u5v5v2u2u3v3v0v18v15v12

we can do a sequence of Posa exchanges using the edges v12u12 and u13v13 to
obtain the Hamilton u0v10-path. Starting with P we can do a sequence of
Posa exchanges using the edges v12v9, v6v3, u3u4, u5u6, u7u8 (to get to u9),
and u9u10 (to get to u11). From the Hamilton path

v0u0u1v1v19u19u20v20v17u17u18v18v15u15u16v16v13v10u10u11u12−

u13u14v14v11v8v5v2u2u3v3v6u6u5u4v4v7u7u8u9v9v12

we can obtain the Hamilton v0v10-path from a sequence of Posa exchanges
using the edges v12u12 and u13v13.

Theorem 3.13. If n ≡ 10 (mod 12), the GP(n, 3) is Hamilton laceable.

Proof of base cases. In GP(10, 3), from the Hamilton path

u0u9v9v2u2u3u4u5v5v8u8u7u6v6v3v0v7v4v1u1

we can do a sequence of Posa exchanges using the edges u1u2 (to get to u3),
u3v3 (to get to v6), v6v9 (to get to v2), v2v5 (to get to u5), u5u6, u7v7, v4u4,
u3u2, v2v9, v6v3, u3u4, and v4v7 (to get to v0). From the Hamilton path

P = v0v7v4u4u3v3v6v9u9u0u1u2v2v5u5u6u7u8v8v1,

we can do a sequence of Posa exchanges using the edges v1u1, and u2u3 to
obtain the Hamilton v0v3-path. Starting with P we can do a sequence of
Posa exchanges using the edges v1v4 and u4u5 to get the Hamilton v0v5-path.

In GP(22, 3), the Hamilton path

v0u0u1v1v20u20u21v21v2u2u3v3v6u6u7v7v4u4u5v5v8u8u9v9v12u12u13−

u14v14v17u17u16u15v15v18u18u19v19v16v13v10u10u11v11

exists. Given the Hamilton path

u0u1v1v20 · · · v8u8u9u10v10v13 · · · v3u3u2v2v5u5u4v4v7u7u6v6−

v9 · · · v21u21u20 · · ·u11

we can obtain a Hamilton u0v10-path by a Posa exchange using the edge
u11u10.
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Theorem 3.14. If n ≡ 11 (mod 12), then GP(n, 3) is Hamilton connected.

Proof of base cases. In GP(11, 3), from the Hamilton path

P = u0v0v3u3u2u1v1v4v7u7u8v8v5v2v10u10u9v9v6u6u5u4,

we can do a sequence of Posa exchanges using the edges u4u3, u2v2, v5u5,
u6u7, v7v10, and v2v5 to the Hamilton u0v8-path. Starting from P we can
also do a sequence of Posa exchanges using the edges u4v4 (to get to v7),
v7v10 (to get to v2), v2u2 (to get to u1), u1u0 (to get to v0), v0v8 (to get to
v5), v5u5 (to get to u6), u6u7, v7v4, u4u3 (to get to u2), u2u1 (to get to v1),
v1v9, u9u8, u7v7, and v4u4 (to get to u3). From the Hamilton path

v0u0u10v10v2u2u1v1v9u9u8v8v5u5u6u7v7v4u4u3v3v6,

we can do a sequence of Posa exchanges using the edges v6v9, u9u10 (to get
to v10), v10v7 (to get to v4), v4v1 (to get to v9), v9u9, u8u7, and u6v6 (to get
to v3).

In GP(23, 2) from the Hamilton path

u0v0v20u20u19v19v16u16u15v15v18u18u17v17v14u14u13v13v10v7v4−

u4u5 · · ·u11v11v8v5v2v22u22u21v21v1u1u2u3v3v6v9v12u12,

we can do a Posa exchange using the edge u12u11 to obtain the Hamilton
u0v11-path. The Hamilton path

v0u0u22v22v2u2u1v1v21u21u20v20v17u17u16v16v19u19u18v18v15u15u14−

v14v11u11u12u13v13v10u10u9u8v8v5u5u6u7v7v4u4u3v3v6v9v12,

exists.
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Chapter 4

GP(n,k)

4.1 Introduction

In this final chapter, we develop an approach that can be used in general.
We had hoped to be able to extend the ideas presented in Chapters 2 and 3,
but were unable to. The first section of this chapter will look briefly at the
k = 4 case, describing the problem we faced in trying to extend our original
approach. In the next section we will present the necessary conditions for
applying an (i, j)-expansion and an (i, j)-reduction in GP(n, k). We will show
that for each k-value, there are a finite number of base cases needed to prove
inductively the existence and nonexistence of Hamilton paths in GP(n, k).

4.2 A brief look at GP(n,4)

For k = 2 and 3 we showed the existence of Hamilton paths by proving the
following: Given a Hamilton path in GP(n, k), an (i, j)-expansion could be
applied at any cut in the path while retaining the Hamilton path. The main
part of this argument was that for any cut in the original graph we can apply
an (i, 6)-expansion or an (i, 12)-expansion. Unfortunately, for k = 4, we were
unable to establish property.

Claim 4.1. Let x, y ∈ {u, v}, j ≤ bn
2
c ∈ Zn, and P be a Hamilton x0yj-

Hamilton path in GP(n, 4). If Ci∩P = vi−2vi+2, then no (i, `)-expansion can
occur in the graph.
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Proof. Since Ci ∩ P = vi−2vi+2, the (i, `)-strands of P are

vi−2vi+2ui+2ui+3vi+3vi+7ui+7ui+8vi+8vi+12 · · · , and

· · · vi+14vi+10vi+6ui+6ui+5ui+4vi+4viuiui+1vi+1vi+5vi+9ui+9ui+10ui+11vi+11 · · · .
These strands will never combine into a single strand, so, for ` ≥ 1, each
Ci+` contains three edges of P .

However, if the Hamilton x0yj-path P meets the cut Ci with vi−2vi+2,
then there is still an (i + 1, 20)-expansion or (i + 1, 20)-reduction as shown
in the following Lemma.

Lemma 4.2. Let x, y ∈ {u, v}, j ∈ Zn, and P be a Hamilton x0yj-path in
GP(n, k). Suppose k ≥ 4 is even and suppose there exists an i such that:

1. j /∈ {i, . . . , i + k(k + 1)};

2. for all ` ∈ {i, . . . , i + k(k + 1)}, |C` ∩ P | = k
2

+ 1; and

3. Ci ∩ P = {ui−1ui, vi−kvi, vi−k+2vi+2, . . . , vi−2vi+k−2}.
Then there is a Hamilton x0yj-path in Gk

�i,k(k+1)
and Gk

≺i,k(k+1)
.

Proof. Since Ci ∩ P = {ui−1ui, vi−kvi, vi−k+2vi+2, . . . , vi−2vi+k−2} and each
cut is crossed by the same number of edges of P , the (i, k(k + 1))-strands
of P corresponding to the edges ui−1ui and vi−kvi remain distinct. These
(i, k(k + 1))-strands of P are of the form

ui−1uiui+1vi+1vi+k+1vi+2k+1ui+2k+1 . . . ui+k(k+1)−1ui+k(k+1) and

vi−kvivi+kui+kui+k+1ui+k+2vi+k+2 . . . vi+k2vi+k(k+1).

The (i, k(k + 1))-strands of P corresponding to the other edges are of the
form

vi−k+2vi+2ui+2ui+3vi+3vi+k+3ui+k+3 . . . ui+k2+2vi+k2+2vi+k(k+1)+2

Therefore Ci and Ci+k(k+1) are P -congruent and there exists a Hamilton
x0yj-path in Gk

�i,k(k+1)
and Gk

≺i,k(k+1)
.

For k = 4 and Ci∩P = vi−2vi+2 we have that Ci+1∩P = {uiui+1, vivi+4,
vi−2vi+2} and for all ` ≥ 1, each Ci+` contains three edges of P . Thus Lemma
4.2 applies at i + 1 and we can apply an (i + 1, 20)-expansion or (i + 1, 20)-
reduction in GP(n, 4), to obtain a Hamilton x0yj path in G4

≺i+1,20
or G4

�i+1,20
,

respectively. We have not undertaken a detailed analysis of the case k = 4.
We will develop this idea of expanding and reducing in more detail in the

following section.
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4.3 GP(n,k)

Given a Hamilton path P in GP(n, k), we found that requiring P -congruence
in order to apply an (i, j)-expansion or (i, j)-reduction is a stronger condition
than what we need. Instead it is sufficient to require that there exist two
matching cuts, which we define as follows.

Cuts Ci and Ci+j match with respect to Ch, where h ≤ i, if there exists
a bijection between the pairs of end edges of the (h, i− h) and (h, i + j− h)-
strands of P such that the pairs of ends are either equal, (i, j)-congruent, or
one end in each pair is equal and the other ends are (i, j)-congruent. (See
Figure 4.1).

If the pairs of edges are equal, then by definition they are all contained
in Ch. This implies that no edge of the corresponding (h, i− h)-strand is in
Ci. The same holds for Ci+j. If the pairs of edges are (i, j)-congruent, then
by definition the ends of the (h, i − h)-strand are both contained in Ci and
the ends of the (h, i + j− h)-strand are both contained in Ci+j. This implies
that Ch contains no edge of the corresponding strands. If one end in each
pair is equal and the other ends are (i, j)-congruent, then the equal edges are
in Ch, and the (i, j)-congruent ends are in Ci and Ci+j.

For convenience we will denote the end edges of each (i, j)-strand of P as
t` = {e`,1, e`,2}.

Ci Ci+jCh

s1,2

t3,1

t3,2

s3,2

s3,1

t1,2

s1,1 = t1,1

s2,2 = t2,2

s2,1 = t2,1

Figure 4.1: Ci and Ci+j match with respect to Ch. The pairs of end edges: s1

and t1 each have one end edge that is equal and the other is (i, j)-congruent;
s2 and t2 are equal; and, s3 and t3 are (i, j)-congruent.
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Lemma 4.3. Let x, y ∈ {u, v}, 0 ≤ j ≤ bn
2
c, and P be a Hamilton x0yj-path

in GP(n, k).
Suppose there exists two cuts Ca and Ca+b such that bn

2
c+1 ≤ a, a+b ≤ n,

and the cuts match with respect to Cbn
2
c+1.

Then there exists a Hamilton x0yj-path P ′ in GP(n−b, k) and a Hamilton
x0yj-path P ′′ in GP(n + b, k).

Proof. Let S = {s1, s2, . . . , s`} be the set of pairs of end edges of the (bn
2
c+

1, a − (bn
2
c + 1))-strands of P and let T = {t1, t2, . . . , t`} be the set of pairs

of end edges of the (bn
2
c+ 1, a + b− (bn

2
c+ 1))-strands of P .

Suppose we decompose the path into (bn
2
c + 1, a− (bn

2
c + 1))-strands of

P , R1, R2, . . . , R`, and (a, n− (a− (bn
2
c+ 1)))-strands of P , P1, P2, . . . , P`+1.

Then P = P1t1,1R1t1,2P2t2,1 · · ·R`t`,2P`+1. See figure 4.3. Similarly, we can
define the path as P = P ′1s1,1R

′
1s1,2P

′
2s2,1 · · ·R′`s`,2P

′
`+1, where R′1, R

′
2, . . . , R

′
`

are the (bn
2
c+ 1, a + b− (bn

2
c+ 1))-strands of P , and P ′1, P

′
2, . . . , P

′
`+1 are the

(a + b, n− (a + b− (bn
2
c+ 1)))-strands of P . See figure 4.4.

Let f : T → S be the bijection between S and T which shows that Ca and
Ca+b match with respect to Cbn

2
c+1. For i, j ∈ {1, . . . , `} and h ∈ {1, 2}, the

bijection acts on both indicies of ti,h so that for f(ti) = sj, f(ti,1) ∈ {sj,1, sj,2}
and f(ti,2) ∈ {si,1, si,2}. Also, if f(ti) = sj, then f(R′i) = Rj, where the
orientation of the path depends on the ends f(ti,1) and f(ti,2).

We show that we can apply an (a, b)-reduction or an (a + b, b)-expansion
while maintaining the Hamilton path in the new graph.

In the (a, b)-reduction of GP(n, k), each edge in Ca ∩ P , and its (a, b)-
congruent edge in Ca+b ∩ P , become the same edge. Therefore we obtain
the Hamilton path P ′ = P ′1f(t1,1)f(R′1)f(t1,2)P

′
2f(t2,1) · · · f(R′`)f(t`,2)P

′
`+1 in

Gk
�a,b

. See figure 4.5.

Let Q1, Q2, . . . , Qm be the (a, b)-strands of P . Using the decomposition of
the path as defined above, we can describe P in terms of ti, si, Pi, Qi and R′i,
since each Ri can be written in terms of si, Qi and R′i in a unique manner.
See figure 4.6. In the (a + b, b)-expansion of the graph, we use a copy of the
(a, b)-strands of P , denoted Qi, to extend the path. Let Q = {q1, q2, . . . , q`}
be the pairs of end edges of the (n

2
+ 1, a + b − (n

2
+ 1))-strands in Gk

≺a+b,b
,

defined in the same order as the pairs of end edges in T . Let R′′1, R
′′
2, . . . , R

′′
`

denote the (n
2

+ 1, a + b − (n
2

+ 1))-strands, where each R′′i is written in

terms of f−1(si), Qi, and Ri, in the same manner in which Ri is described
by si,R

′
i and Qi. Since we are not changing the structure of the path outside

of Sa,b and the ends of the (a, b)-stands of the path remain the same. Then
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P ′′ = P ′1q1,1R
′′
1q1,2P

′
2q2,1 · · ·R′′` q`,2P

′
`+1 is a Hamilton path in Gk

≺a+b,b
. See

figure 4.7.

Theorem 4.4. Given k > 0, there exists an Nk and rk such that if:

1. n ≥ Nk; and

2. for x, y ∈ {u, v}, there exists a Hamilton x0yj-path in GP(n, k) with
0 ≤ j ≤ bn

2
c;

then there exists a Hamilton x0yj-path in GP(n − rkk, k) and a Hamilton
x0yj-path in GP(n + rkk, k).

Proof. For some fixed i and variable j a multiple of k, let fk be equal to
the number of ways the end edges of (i, j)-strands of P can pair up. Let
rk = LCM{1, 2, . . . , fk +1}, mk ≥ [fk +1][rk−1]+1, and Nk = 2mkk[fk +1].
If n ≥ Nk, then bn

2
c ≥ mkk[fk + 1]. Thus there are at least mk pairs of cuts

Ci and Ci+j which match and where j is a value between k and k[fk + 1].
There exists a number a that is repeated mk

fk+1
times. So if we choose rk

a
of

the repeated a’s to expand or reduce with, then n changes by ( rk

a
a)k = rkk.

Thus by Lemma 4.3 we change the Hamilton path into a Hamilton path in
GP(n− rkk, k) or into a Hamilton path in GP(n + rkk, k).

This theorem establishes that there are a finite number of base cases to
consider, in order to prove, by induction on n, the existence or nonexistence
of Hamilton paths in GP(n, k), for each value of k.
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Ca+bCaC⌊n
2
⌋+1

s2,2

s3,1

s4,2

s4,1 = t3,1

s1,2 = t1,2

s2,1 = t2,1

s1,1 = t1,1

t2,2

t3,2

t4,2

t4,1

Figure 4.2: Ca and Ca+b match with respect to Cn
2
+1 in GP(n, k).

Ca+bCaC⌊n
2
⌋+1

s4,1

s1,2

P1

P2

R1

R4

P3

R2

s3,1

P5

s2,1

s1,1

s2,2

s4,2

P4

R3

s3,2

P4

Figure 4.3: Decompose the path in terms of (bn
2
c+ 1, a− (bn

2
c+ 1))-strands

of P , R1, R2, R3, and R4, and (a, n− (a− (bn
2
c+ 1)))-strands of P , P1, P2,

P3, P4, and P5.
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Ca+bCaC⌊n
2
⌋+1

t3,1

t2,1

t4,1

P ′
1

P ′
2

R′
2 P ′

3

R′
3

P ′
5

P ′
3

R′
4

P ′
4

t2,2

t1,1

t1,2

R′
1

t3,2

t4,2

s3,1

s2,2

s3,2

s4,2

P ′
4

Figure 4.4: Decompose the path in terms of (bn
2
c+1, a+b−(bn

2
c+1))-strands

of P , R′1, R′2, R′3, and R′4, and (a + b, n− (a + b− (bn
2
c+ 1)))-strands of P ,

P ′1, P ′2, P ′3, P ′4, and P ′5.

Ca+bC⌊n
2
⌋+1

R1

t4,1

t4,2

t3,2R4

P ′
2

P ′
4

P ′
3

P ′
3

R2

R3

s3,2

s4,2

s1,1 = t1,1

s4,1 = t3,1

s2,1 = t2,1 s2,2

t2,2

P ′
5

s3,1

P ′
4

P ′
1

s1,2 = t1,2

Figure 4.5: An (a, b)-reduction in GP(n, k), where
the Hamilton path P ′1t1,1R

′
1t1,2P

′
2t2,1 · · ·R′4t4,1P

′
5 becomes

P ′1[t1,1/s1,1]R1[s1,2/t1,2]P
′
2[t2,1/s2,1]R2[s2,1/t2,1]P

′
3[t3,1/s4,1]R4[s4,2/t3,1]P

′
4−

[t4,1/s3,1]R3[s3,2/t4,2]P
′
5
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Ca+bCaC⌊n
2
⌋+1

Q1

Q2

R2

R1

s2,1 = t2,1

s1,2 = t1,2

s4,1 = t3,1

s1,1 = t1,1

Q3
Q4

P ′
1

P ′
2

P ′
3

t3,2

R4

R3

s3,1

s2,2

t4,1

P ′
5

s4,2

s3,2

P ′
3

P ′
4

P ′
4

t2,2

t4,2

Figure 4.6: (a, b)-strands, Q1, Q2, Q3, and Q4 of P

C0′Ca Ca+b

q4,1

R′
1 R′

3

s1,2 = q1,2

s4,1 = q3,1

s1,1 = q1,1
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Chapter 5

Conclusion

We have provided a general approach for showing that GP(n, k) is Hamilton
connected or Hamilton laceable. Since the cases k = 1, 2, and 3 have been
dealt with, the next case to look at is k = 4. Working with some of the smaller
values of n in GP(n, 4), we know that most of the necessary Hamilton paths
exist. GP(12, 4) is a special case presented in Conjecture 1.5, where for j
even, no Hamilton u0uj-path exists. General progress in Conjecture 1.5 or
Conjecture 1.6 would be welcome.
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