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Abstract

The generalized Petersen graphs GP(n, k) where introduced by Watkins in
search for additional examples of non-Hamiltonian vertex-transitive graphs.
Alspach and Qin showed that Cayley graphs for certain groups are Hamilto-
nian using the fact that GP(4m, 2m — 1) is Hamilton laceable (it is bipartite,
and any two vertices on different sides of the bipartition are joined by a
Hamilton path).

For kK = 1, 2, and 3, we completely determine which pairs of vertices in
GP(n, k) are joined by Hamilton paths. We also provide a general approach
for proving that GP(n, k) is Hamilton connected or Hamilton laceable.
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Chapter 1

Introduction

The principle motivation for studying Hamiltonicity in the generalized Pe-
tersen graph are the following conjectures.

Conjecture 1.1. Vertex transitive graphs are Hamiltonian.
Conjecture 1.2 (Lovasz’ Conjecture). Cayley graphs are Hamiltonian.

Since the Petersen graph is a counterexample to the first conjecture, it is
natural to wonder if the generalized Petersen graphs share this property. It
was found that the Petersen graph remains the only vertex-transitive gener-
alized Petersen graph that is not Hamiltonian.

Generalized Petersen graphs have been used to prove Lovasz’ conjecture
on Cayley graphs, for certain groups. In particular, Hamilton connectedness
of certain generalized Petersen graphs was needed.

1.1 Background

For integers n, k with 1 < k < n, Watkins [12] defines the generalized
Petersen graph GP(n,k) to be the graph with vertex set {u;,v; | 0 < i <
n — 1} and edge set {u;u;y1, V;vik, uv; | 0 < @ < n— 1}, where the subscript
arithmetic is done modulo n. We will only consider the generalized Petersen
graphs that are cubic; hence we assume that n # 2k.

Since these graphs mimic a structural property of the Petersen graphs,
it was of interest to see if any of the vertex-transitive generalized Petersen
graphs would be non-Hamiltonian. This problem was studied in two parts.
Robertson [11] and Bondy [5] both proved that GP(n,2) is Hamiltonian if
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and only if n Z 5 (mod 6). They conjectured that these were the only non-
Hamiltonian generalized Petersen graphs. Bondy also proved that GP(n, 3) is
Hamiltonian for all n # 5. In solving the conjecture of Bondy and Robertson,
Bannai [6] showed that GP(n, k) is Hamiltonian when n and k& are relatively
prime, and GP(n, k) is not isomorphic to GP(n,2), with n =5 (mod 6) and
Alspach [1] completed the proof of this conjecture. For the other part of the
problem, Frucht, Graver, and Watkins [8] showed that GP(n, k) is vertex-
transitive if and only if k2 = +1 (mod n) or (n,k) = (10,2). Together
this implied that the Petersen graph is the only non-Hamiltonian, vertex-
transitive generalized Petersen graph.

Although no new vertex-transitive, non-Hamiltonian graphs were found in
this family of graphs, the hamiltonicity of the generalized Petersen graphs was
used in solving the conjecture on vertex transitive graphs for other families
of graphs, as shown in [2].

Progress on the Lovéasz conjecture has used a property stronger than the
graph being Hamiltonian. A Hamilton uv-path is a path with ends v and v
that contains all the vertices of the graph. A graph G is Hamilton connected
if, for every pair u, v of vertices, G has a Hamilton uv-path. Some generalized
Petersen graphs are bipartite and, therefore, cannot be Hamilton connected.
A bipartite graph G is Hamilton laceable if, for any two vertices u and v on
different sides of the bipartition, G' has a Hamilton uv-path.

Alspach and Qin [4] proved that GP(4m,2m — 1) is Hamilton laceable
and used this to show that Cayley graphs on certain groups are Hamiltonian,
settling Lovész’ conjecture for these groups.

Chen and Quimpo [7] consider which Cayley graphs are Hamilton con-
nected or Hamilton laceable. They showed that a connected Cayley graph
of valency at least three on an Abelian group is Hamilton connected, un-
less it is bipartite in which case it is Hamilton laceable. It is possible that
the generalized Petersen graph will play a similar role in determining graphs
which are Hamilton connected or Hamilton laceable as it did in the search
for Hamilton cycles. For this reason we see the following developments in
solving this problem.

First we will determine when the generalized Petersen graph is bipartite,
as presented in [3].

Theorem 1.3. GP(n, k) is bipartite if and only if n is even and k is odd.

Alspach and Lui [3] prove the following:



e if n is odd, then GP(n, 1) is Hamilton connected;

e if n is even, then GP(n, 1) is Hamilton laceable;

e if nis odd and n # 5 (mod 6), then GP(n,2) is Hamilton connected;
e if n is odd and n # 5, then GP(n,3) is Hamilton connected; and

e if n is even, and n # 2,6, then GP(n, 3) is Hamilton laceable.
Mavraganis [9] proves that:

e if n is odd, then GP(n, 1) is Hamilton connected; and

e if n is even, then GP(n, 1) is Hamilton laceable,

using general path structures. She determines almost all of the pairs of
vertices in GP(2m,2) that are joined by Hamilton paths.
Alspach and Qin [4] prove that GP(4m,2m — 1) is Hamilton laceable.
Pensaert [10] takes a different approach, proving that, for k£ > 3, GP(3k+
1,k) is Hamilton connected if k is even, and Hamilton laceable if k is odd.
He also makes the conjecture

Conjecture 1.4. Forn > 3k:
e if n is even and k is odd, then GP(n,k) is Hamilton laceable; and

e for all other combinations of parities of n and k, GP(n, k) is Hamilton
connected.

This conjecture and the examples given by Pensaert allude to a potentially
very interesting property in the generalized Petersen graph, namely:

Conjecture 1.5. If k is even, then for j even, no Hamilton uyu;-path exists
in GP(3k, k).

Although unproven, the following examples demonstrate that this prop-
erty likely holds.

e Hamilton ugus and uguys-paths do not exist in GP(6, 2).

e GP(9,3) is Hamilton connected.



e For j even, Hamilton ugu;-paths do not exist in GP(12,4), GP(18,6),
GP(24,8), or GP(30,10).

e For j even, Hamilton uou;-paths do exist in GP(15,5), GP(21,7).
Hence, we make the following conjecture.
Conjecture 1.6. For k > 2 and n > 2k:

e ifn is even and k is odd, then GP(n,k) is Hamilton laceable;

o ifn =3k and k is even, then, for j even, no Hamilton ugu;-path exists;
and,

e for all other combinations of n and k, GP(n, k) is Hamilton connected.

1.2 Properties of GP(n,k)

In this section, we present two automorphisms of GP(n, k), initially described
by Watkins [12], that will simplify our work. In general we are interested,
for z,y € {u,v} and ¢,j € Z,, whether there is a Hamilton z;y;-path in
GP(n, k).

The first automorphism is the rotational symmetry 7' : Z,, — Z,, defined
by T'(i) =i + 1. This symmetry shows that there is a Hamilton z;y;-path if
and only if there is a Hamilton zgy;_;-path.

The second automorphism is the reflective symmetry R : Z,, — Z,, defined
by R(i) = n — . This symmetry shows that there is a Hamilton zyy;-path if
and only if there is a Hamilton xgy,—;-path.

Thus, to show GP(n, k) is Hamilton connected we only need to determine
for which j € Z, and j < [ ] there is a:

e Hamilton ugu;-path;
e Hamilton ugv;-path; and
e Hamilton vyv;-path.

To show GP(n, k) is Hamilton laceable, we only need to determine for
which j € Z,, j < |5] and j odd there is a:

e Hamilton ugu,-path;



e Hamilton vyv;-path; and
e for j even, a Hamilton ugv;-path.

R also describes an isomorphism between GP(n, k) and GP(n,n — k). Hence
we may assume that & < |5].

1.3 Organization of Essay

This essay is divided into three chapters. In Chapter 2 we will be considering
the k = 1 and k = 2 cases. For k = 1, we will present the different proofs
provided by Alspach and Lui [3] and Mavraganis [9]. For k = 2, we will
prove that GP(n,2) is Hamilton connected if and only if n = 1,3 (mod 6),
and will completely determine the existence and nonexistence of Hamilton
paths for all other values of n. In Chapter 3, we will show that GP(n, 3) is
Hamilton connected if and only if n > 5 is odd and it is Hamilton laceable
if and only if n > 4 is even and n # 6. In Chapter 4, we will generalized
the ideas we present. Initially we will take a brief look at GP(n,4) and then
we will provide a general approach for proving that GP(n, k) is Hamilton
connected or laceable, completing ideas of Yehua Wei.



Chapter 2
GP(n,k), k=1,2

2.1 Introduction

In this chapter, for k = 1,2, we completely determine which pairs of vertices
in GP(n, k) are joined by Hamilton paths.

2.2 GP(n,1)
In this section, we treat the case k = 1 by proving the following theorem.

Theorem 2.1. The graph GP(n,1), n > 3, is Hamilton connected, unless it
1s bipartite in which case it is Hamalton laceable.

This theorem is proven by both Alspach and Lui and Mavraganis. We
will state both proofs.

Proof by Alspach and Lui [3]. GP(n,1) is a connected Cayley graph on an
Abelian group. By the Chen-Quimpo theorem [7] it is Hamilton connected,
unless it is bipartite in which case it is Hamilton laceable. O

Proof by Mavraganis [9]. For n even and j odd, j € Z,, there exists the
Hamilton ugu;-path

UoUp—1 ** * Ujr1Vj41Vj42 - - VoU1U1UV2V3 - - - U1V U5,
For j even, there exists the Hamilton ugv;-path

UoUp—1 * * * Uj41Vj41Vj42 - - - UVpU1U1U2V2VZ * * - Uj—1U; V5.
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Since there exists an automorphism interchanging u; and v;, GP(n,1) is
Hamilton laceable for n even.
For n odd and j even, j € Z,, there exists the Hamilton ugu;-path

UoUp—1 * * * Uj+1Vj41Vj42 - - UVgU1UIU2V2V3 * * * Vj—1V;U;j
and the Hamilton ugv;-path
UoUq * * * Uj41Vj41Vj42Uj42U543 * * - Up—1VoVT1 * * - Uj.

By reflective symmetry there exist Hamilton ugu; and ugv;-paths for j even.
Therefore, for n odd, GP(n, 1) is Hamilton connected. m

2.3 GP(n,2)

In the following sections, we determine all the pairs of vertices in GP(n, 2)
that are joined by Hamilton paths. In particular, we prove the following.

Theorem 2.2. Let n > 5 be an integer. Let x,y € {u,v} and i,j € Zy,.

1. The graph GP(n,2) is Hamilton connected if and only if n = 1,3
(mod 6).

2. Suppose n =0 (mod 6). There is a Hamilton x;y;-path in GP(n,2) if
and only if one of the following holds:

(a) {z,y} =A{u,v};
(b) =wu, y=wu, and j —i Z £2 (mod n); and
(¢c) z=v,y=wv, and j Zi (mod 6).

3. Suppose n = 2 (mod 6). There is a Hamilton x;y;-path in GP(n,2) if
and only if one of the following holds:

(a) ©=u, y € {u,v}; and
(b) =v,y=v, and j —i # 4 (mod 6).

4. Suppose n =4 (mod 6). There is a Hamilton x;y;-path in GP(n,2) if
and only if one of the following holds:

(a) r=wu,y=mu, and j —i % £2 (mod n);
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(b) x=u,y=wv,j—1% £l (mod n), and j —i # 2 (mod 6); and
(c) x=v,y=v, and j—i# 0,4 (mod 6).

5. Suppose n =5 (mod 6). There is a Hamilton x;y;-path in GP(n,2) if
and only if one of the following holds:

(a) x =u, y=u, and j — i # £1 (mod 6);
(b) ©=wu, y=wv, and j #i; and
(c) z=v,y=wv, and j —i % 2,3 (mod 6).

The existence of Hamilton paths will be proved by induction on n, us-
ing an operation that we will call an (i, j)-expansion. We also prove the
nonexistence of Hamilton paths in GP(n,2) by induction on n, using an
(i, 7)-reduction operation.

2.4 Expanding in GP(n,2)

The existence of the Hamilton paths will be shown inductively. In order to
do so we introduce the following general terms. For ¢ € Z,, the cut, C; in
GP(n, k), is the set of edges {w;_1u;, Vi kUi, Vi gr1Vit1, - - -, Vi—1Vizk—1}- (The
indices are read modulo n.) We will show in this section how any cut may
be used to convert a Hamilton path in GP(n,2) into a Hamilton path in
GP(n+6,2). This is a modification of the methods used by Alspach and Lui
[3] and Mavraganis [9].

Ui—1 Ug

*—o

Figure 2.1: A cut C; in GP(n,2).

For i € Z, and j € 7Z, where j is a positive multiple of k, the (,j)-
expansion of GP(n,k) defines a new graph, denoted Gk ;9 obtained from
GP(n k) by deleting the edges in C; and addlng the 2j vertices {ug, vy, . . .,
ui 1,05} at C as well as the edges: u;_jug; uj_ju;; for 0 < € < j— 1, the
edges uyvy; for 0 < £ < j — 2, the edges uyuy,,; for 0 < ¢ < k, the edges



/ / / / / /
Uj—2 Ui—1 U Uy Uy Us Uy Uy U; Uiy
- 9--0--0-0-0--0--
[ [ [ [ [ [

| |
N s N s N s N Ve N s N s N s

Figure 2.2: (i,6)-expansion in GP(n,2)

Viogpevy and vi o vige; and, for 0 < € < j —1 — k, the edges vjv;,,. Note:
G%. . is isomorphic to GP(n + j, k).

For convenience, we will use the following notation. Let n and k be
positive integers with n > 2k. For i, j € Z,, let V; ; denote the set of vertices
{wi, ... uipj,viy ..., vipj} in GP(n, k). Let S;; be the subgraph of GP(n, k)
consisting of the edges incident with any vertex of V; ; and all their incident
vertices. Extremally, Vi—ky Vi—k+15 - - -y Vi—=2, Vi4j+1, Vitj4+2, - - -, Vigj4k—1 QL€ all
in S; ;. An (7, 7)-strand of a path P in GP(n, k) is a component of PN .S, ;.
The following theorem is key to the induction.

Theorem 2.3. Let z,y € {u,v}. If there exists a Hamilton zoy;-path in
GP(n,2), then there exists a Hamilton xoy;-path in GP(n + 6,2).

Proof. Let P be a Hamilton zy;-path in GP(n, 2). We will show that, for j <
i <n, we can apply an (i, 6)-expansion so that P becomes a Hamilton path
in G2, 4. Since j < 1, j is the same index in both GP(n,2) and GP(n + 6, 2).
Of the eight cases, we consider four that are representative of the rest.

If no edge of P is in C}, then at least one of u; _jv; 1 and wv; is in P.
Assume the latter. Then replace u;v; in P with the path

AN A AN A A A BN AN A |
U US V5 USVL UL UG UG Uy U U U V) U;

to create the Hamilton zoy;-path in G2, .
If |C;NP| =1, then C; NP = w;_qu;, v;_10;11, O V;_ov;. Suppose
C; NP = wu;_qu;. Then we can replace u;_ju; with
V2SN AR AR A AR AR AU S AN A |

Uj— 1 Ug UG VYU U U U UL U] Vs USUS U

to create a Hamilton zy;-path in Gii .- A similar argument holds for C; N
P = v;1vi41, or v;_2v;.
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If |C;NP| =2, then C;N P = {w_1u;, vi_1vi1}, {wi1u;,v;_2v;}, or
{vi—1vi11, vi_2v; }. Suppose C; N P = {w;_1u;, v;_1v;+1 }. Then we can replace
Ui—1U; and Vi—1Vi+1 with

o ) [2N 2NN AN AN A |
respectively, to create a Hamilton zoy;-path in Giw A similar argument
holds if Cz NnP= {ui_lui, ’UZ'_Q’Ui}, or {Ui_lvz‘+1, ’UZ'_Q/Ui}.
If |C;nP| =3, then C; NP = C;. We can replace u;_u;, v;_v;, and
Vi—1Vi4+1 with

!/ / o0 o
respectively, to create a Hamilton z¢y;-path in Giﬁ O

In the rest of this section we will prove inductively that all the necessary
paths exist as defined in the main theorem. For the base cases, we need to
exhibit appropriate Hamilton paths. An effective tool is the Posa exchange: if
P = zyxy - - - x, is a Hamilton path and x,, is adjacent to x; with 0 <7 <n—1,
then (P — z;x,41) + z,x; is a Hamilton zgz;41-path. We will combine this
method with the reflective symmetry of the graph to find all the necessary
paths. Since the induction argument for each case is very similar we will
prove two of the cases, n =0 (mod 6) and n =1 (mod 6), in detail. For the
other values of n we will provide the details for the base cases.

Theorem 2.4. If n =0 (mod 6) and j € Z,, then in GP(n,2) a Hamilton
path exists for the pairs (ug,u;) for all j # 2,n — 2, (ug,v;) for all j, and
(vo,v;) for all j #0 (mod 6).

Proof. We proceed by induction of n. Let n = 6 and n = 12 be the base
cases. From the Hamilton path

P= UeVoV2V4U4U5V5V1V3U3U2UT

we can do (consecutively) the sequence of Posa exchanges using the edges
u1v1 (to get the Hamilton ugvs-path), vsvs (to get the Hamilton wugvi-path),
and v1v3 (to get the Hamilton ugus-path). Starting with P again, we do the
sequence of Posa exchanges using ugu; and vgvs to get the Hamilton ugvg
and ugve-paths. From the Hamilton path

P’ = 0guguovs05UsUs Vg UaUs U1 V1
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the Posa exchange using the edge v v5 gives a Hamilton vgvs-path and the
consecutive Posa exchanges using the edges vyv3 and usug gives the Hamilton
voug-path. By reflective symmetry, the theorem holds for n = 6.

The preceding paragraph and Theorem 2.3 imply that, in GP(12,2) there
are Hamilton paths for the pairs (uo, u;), for all j € {1, 3,5}, (u, v;), for all
j €{0,...,5}, and (vp,v;), for all j € {1,2,3,4,5}. Given the Hamilton
path

UpVpV10VgU8UTVTV9UYUTOU11V11V1 U U2V2V4VeUsU5V5V3 U3 U4,

we can obtain Hamilton ugvs- and ugug-paths by a sequence of Posa ex-
changes using the edges u4vy4, vgvs, Uglly, VoU11, U11Ug, VoV, and vavg. There-
fore, the theorem holds for n = 12.

Suppose the theorem holds for GP(n,2) wheren = 0 (mod 6) and n > 12.
Let z,y € {u,v} and j € Z, ¢ be such that the theorem asserts the existence
of a Hamilton x¢y;-path. If j € Z,,, then, except for (zo,y;) = (uo, un—2), the
inductive hypothesis and Theorem 2.3 imply the existence of the Hamilton
zoy;-path in GP(n + 6,2).

In the case (zo,y;) = (uo, Un—2), the vertex u,_» is symmetric to ug in
GP(n + 6,2). Thus the Hamilton ugu,_o-path exists by reflective symmetry
and the inductive hypothesis.

For j € {n,n+1,...,n+ 5}, we use reflective symmetry to get all the
asserted Hamilton zgy;-paths. (For example, a Hamilton ugv,-path exists,
since there exists a Hamilton ugvg-path, but no Hamilton vgv,-path exists,
since no Hamilton wvgvg-path exists.) Hence, all the paths defined in the
theorem exist in GP(n + 6,2), as required. O]

Theorem 2.5. Ifn =1 (mod 6), then GP(n,2) is Hamilton connected.

Proof. We proceed by induction on n. Let n = 7 be the base case. From the
Hamilton path
P = ugugususugUsv1 U3U3U4 V4V U U,

the Posa exchange using the edge ugu; gives the Hamilton ugvg-path. Starting
with P again, we consecutively do the Posa exchanges using the edges uqv;
(to get to v3), v3vs (to get to us), usus (to get to vy), vavg (to get to vy), vivs
(to get to uz), and usug (to get to vy). From the Hamilton path

VoUpUI U2V2V4U4U3V3V5UsUE V6V

a Hamilton vgus and vous-path can be obtained by the sequence of Posa
exchanges using the edges vv3, vovs, Ugug, V4Vg, Usts, and ugvg. By reflective
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and rotational symmetry, there exists a Hamilton path between any pair of
vertices in the graph. Therefore GP(7,2) is Hamilton connected.

Suppose the theorem holds for n = 1 (mod 6), where n > 7. Then in
GP(n + 6,2), there exists a Hamilton path for all pairs of vertices contained
in Vo -1, by Theorem 2.3 and the inductive hypothesis. In GP(n+6,2), each
vertex contained in V,, 5 is symmetric to a vertex contained in V5. There-
fore, by the inductive hypothesis and reflective and rotational symmetry, a
Hamilton path exists for all pairs of vertices in GP(n+6,2), as required. [

For the following theorems we will only provide the proof for the base
cases.

Theorem 2.6. If n =2 (mod 6) and j € Z,, then in GP(n,2) a Hamilton
path exists for the pairs (ug,u;) for all j, (uo,v;) for all j, and
(vo,v;) for all j # 4 (mod 6).

Proof of base case. From the Hamilton path
UeUoV2V4 Vs UsUTU7V1 V3 V5 U5 U4 U3 U2UL

in GP(8,2), we can do (consecutively) the Posa exchanges using the edges
uivy (to get to v3), vsug (to get to uy), usvy (to get to vg), vove, vaus (to get
to ug), usug, Usug, Uzt (to get to vy), veve (to get to vg), v4vg (to get to ug),
and ugu; (to get to vy). Reflective symmetry completes the task. Let P’ be
the Hamilton path

VoUpU7VU7V5V3U3ULU5UEVgV4V2U2UL VY -

The consecutive Posa exchanges from P’ using the edges vivy, vsus, and
uqvy give the Hamilton vgvs and voug-paths. By reflective symmetry all the
necessary paths exist. O

Theorem 2.7. Ifn =3 (mod 6), then GP(n,2) is Hamilton connected.

Proof of base case. From the Hamilton path
UpU1U2V2V V7 VU5 U5 U4 V4 Ve U UTULV V1 U3 U3
in GP(9,2), we can do the consecutive Posa exchanges using the edges uzuy

(to get to vy), vave (to get to vg), voug (to get to uy), ugvy (to get to vg),
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vgUg, Ugls (tO get to uy), ugvy (to get to vy), vavg, vV7U7, Ugvs, Vg1 (tO get to
v3), U3Us, Usty, and vyvy (to get to ug). From the Hamilton path

VoUoU1 U2V2V4 Ve U U5 U4U3V3V5 V7 UTUIVRY

we can do the consecutive Posa exchanges using the edges vyuy, usus and
ugvy (to get to vg), vevs, ustp, and ujuy (to get to ve), vovg, uguy, and usvy
(to get to vy). By reflective and rotational symmetry, GP(9,2) is Hamilton
connected. O

Theorem 2.8. If n =4 (mod 6) and j € Z,, then in GP(n,2) a Hamilton
path exists for the pairs (ug, u;) for all j # 2,n—2, (ug,v;) forall j #1,n—1
and j # 2 (mod 6), and (v, v;) for all 7 # 0,4 (mod 6).

Proof of base case. Let P be the Hamilton path
UnVoU2V4VeVgULUYV9V1 V3 VU5 V7 UTUE U5 U4 U3 ULUT

in GP(10,2). From P, we can do a sequence of Posa exchanges using the
edges ujug (to get to vg), vovg (to get to vg), veug (to get to ur), urus, uguo,
uivy (to get to vs), and vzuz (to get to uy). From the Hamilton path

VoUgUgU7UEVgV4V2U2U UgUYV9 V7 V5 U5U4U3V3VT

we can do the consecutive Posa exchanges using the edges vivg (to get to v7),
vruT, ugls, and ugvy (to get to ve). The existence of the paths

UpUgUgV1 U1 U2V2VoUgUUTVTV5V3U3ULV4 V6 UG U,
UpVoV2U2U1 V1 V3U3U4V4 Vg V8 USU9 V9 V7 UT UG U5 V5, and

VoUgVgU4V2U2UT UpU9UIUTUsU5U4U3V3V1 Vg U7 Uy

and reflective symmetry completes the task.
Also, in GP(16,2) a Hamilton ugug-path exists. ]

Theorem 2.9. If n =5 (mod 6) and j € Z,, then in GP(n,2) a Hamilton
path exists for the pairs (ug,u;) for all j # 1,n—1, (ug,v;) for all j # 0, and
(vo,vj) for all j # 2,3 (mod 6).
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Proof of base cases. For GP(5,2), the Petersen graph, the Hamilton path
U UoU1 U Vo Vg Ug U3 V3 Vo

exists. From the Hamilton path
UVUaU4Ug U3 V3V U Us

we can do a sequence of Posa exchanges using the edges usvy (to get to vy)
and v4v; (to get to v3). Reflective symmetry completes the task.

In GP(11,2), the preceding paragraph and Theorem 2.3 imply that there
exists a Hamilton path for the pairs (ug,u;) for j = 2,3, (uo,v;) for all
j €{1,2,3,4}, and (v, v;) for j = 1,4. The existence of the paths

UpU1V1V3U3V2V2VV9U9UI0V10V8USUT V7 VU5 U5 U V6 V4 UL,

UpULI0V10V8ULV9 V9V V2U2UTI V1 V3U3U4V4VeUcUTVTU5US,
UV V2V U4 U5 UG V6 Vg Us U7 U7 Vg UgU10V10V1 Ut U2U3V3V5, and
VoV2U2U3V3V1 U1 UeU10V10V8UU9V9V7UTVe Ve Vs U4 U5V,

and reflective symmetry imply that the necessary paths exist in GP(11,2).
]

Now that we have established which Hamilton paths exist, we look at the
paths that do not exist.

2.5 Reducing in GP(n,2)

In this section we will complete the proof of Theorem 2.2. We do this in two
steps. First we show that, for large n, an (4, j)-reduction of GP(n, k) can be
applied while maintaining the Hamilton path. For ¢ and j € Z,, an (i,j)-
reduction of GP(n,k), denoted G’;“, is the graph obtained from GP(n, k)
by deleting the edges ugv, for all £ € {i,...,i + j — 1} and contracting the
edges upupr1 and vy_qvpq—q for all £ € {i,...,i+ 7 — 1}. Thus the vertex
set of G’;M is Vi1 U Vigjn_it;. Note: G’;i’j is isomorphic to GP(n — j, k).
Since this is an inductive argument, in the second step we show that these
paths do not exist in the base cases.
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In order to accomplish the first step, we need to understand what the
necessary conditions are for applying an (i, j)-reduction of GP(n, k). The
following definitions will help us.

For some i, j € Z,, each pair of edges

{ui—lui7 Ui+j—lui+j} {Uz‘—kvi> Uz‘+j—kvz'+j} {Ui—k—i-lvi—‘rl; Ui+j—k+lvi+j+1}a cees

{Uz‘—1vz'+k—1, Ui+j—1Ui+j+k—1}
is defined to be (i, j)-congruent.

For a Hamilton path P, the cuts C; and Cj;; are P-congruent if, for
each (7, 7)-strand @ of P, QN C; is (i, j)-congruent to N Cyy;. (See figure
2.3) This is the main concept needed in our inductive argument, which the
following theorem develops.

Ui WUit2 Uitd Ui+6

Figure 2.3: C; and C;,4 are P-congurent in GP(n,2).

Theorem 2.10. Let x,y € {u,v}, j € Z,, and P be a Hamilton xoy;-path in
GP(n,2). Suppose there exists an i such that xo,y; ¢ Vis. If |C;NP| # 0 and
C; and Ciy are P-congruent, then there is a Hamilton xoy;-path in Gii .

Proof. Let @ be an (i,6)-strand of P. Then @ contains exactly one edge of
C; and one edge of C; ¢, and these edges are (i, 6)-congruent. In Ga , the
strand () becomes one of the edges u;_1u;1g, V;_1V;17 OF V;_2V; 16, as defined
by the ends of ). Since this holds for each strand, there is a Hamilton
Toy;-path in Gii’e. For example, see Figure 2.4 0

The following lemmas describe conditions that guarantee that two cuts
are P-congruent in GP(n,2).

Lemma 2.11. Let z,y € {u,v}, j € Z,, and P be a Hamilton xoy;-path in
GP(n,2). Suppose that there exists an i such that:

1. 33073/]' ¢ ‘/i,5:'
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Figure 2.4: Example of an (i, 6)-reduction in GP(n, 2).

2. C;N P ={uj_1u;}; and
3. |Cire NPl =1.
Then:
1. Cit6 NP = {ujrsuire}; and

2. if the ends of P are not contained in V;_y 7, then Ci_y and Ciys are
P-congruent, as are Ciyq and Ciir.

Proof. Since C; N P = wu;_qu;, P contains the edges w; 1u;, u;v;, v;v;12,
Uit oWit1, Uir1Vir1, and v, 1v;43. If the edge u; 0v;19 € P, then the edges
Uit 3Vig3, Uiy3livd, UitaVipd, VipdVits, UitsUite, UirsViys, and vy 50,17 are all
contained in P, so |Cji6 N P| = 3, a contradiction. Thus u;ou;13 and
VizoVivg € P. It u;i3v;03 € P, then P has a cycle. Thus wu;3u;14 and
Vir3Vivs € P. If ujiqu;ns € P, then wu; 5v;45 is not in P, as otherwise P
has a cycle, and we see that |Ciy6 N P| = 3, a contradiction. Therefore
UiraVirq € P and Cij16N P = u;y5u;16. Hence C; and C;,4 are P-congruent.

By hypOthGSiS, Ci_lﬂp = V;—3V;_1, CZ'+1QP = V;Vi+2, CZ'+5QP = Vi+3VUj+5,
and C; 7 N P = v;16v;18. Therefore C;_; and C;,5 are P-congruent, as are
Ciyq and Ciyr. O

Lemma 2.12. Let z,y € {u,v}, j € Z,, and P be a Hamilton xoy;-path in
GP(n,2). Suppose that there exists an i such that xo,y; ¢ Vis. If, for all
te{i,...,i+6}, |C,NP| =2, then C; and Ciy¢ are P-congruent.

Proof. 1t C; N P = {u;_1u;,v;_ov;}, then, as each C; has two edges in P, the
(i,6)-strands are

Ui 1 Ui Ui 11011V 43Vi45Ui45Ui16 AN U;_ U051 944 214 3Ui1 4V 44V 46

Thus Cii6 NP = {u;is5uiv6, Viravize}, and C; and Cj ¢ are P-congruent. A
similar argument holds if C;NP = {u;_1u;, v;—10;11} or {v;_ov;, v;_1v;11}. O
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Lemma 2.13. Let x,y € {u,v}, j € Z,, and P be a Hamilton xyy,-path in
GP(n,2). Suppose that there exists an i such that xo,y; ¢ Vis. If|CiNP| =3
for all ¢ € {i,...,i+ 6}, then C; and C;,¢ are P-congruent.

Proof. Since |Cy,N P| =3 for all ¢ € {i,...,i+ 6}, C;, Ciya, Ciyy and Cjig

are all P-congruent. O

Naturally it is possible that a path does not have any of the above prop-
erties. We wish to minimize the value of n needed to guarantee that one
of the above conditions applies. Thus, we look at ways of manipulating the
structure of the path. Suppose P and P’ are paths in GP(n,2) and let i
and j be such that neither P nor P’ has any ends in V; ;. Then P and P’
are (7, j)-equivalent if outside of S; ;, P and P’ are the same, and, for each
(,7)-strand @ of P, there exists an (i, j)-strand @' of P’ so that @) and
@' have equivalent ends. We can use this to adjust a path to allow for an
(i, 7)-reduction.

There is an additional property of paths that simplifies our argument.

Remark Let z,y € {u,v}, 0 < j < |5], and P be a Hamilton z¢y;-path in
GP(n, k). If P crosses a cut C;, where j < i < n, an even (odd) number of
times, then any cut in this range is crossed an even (odd) number of times by
P. This is because, for any ¢ and m, where j < ¢, m <n, |C,NP|+|C,, NP
must be even.

This means that we have two cases to consider. We will first consider the
properties needed to guarantee a repeat in the even case.

The following lemma describes how the position of a cut that is not
crossed by any edge of a Hamilton path can be shifted.

Lemma 2.14. Let z,y € {u,v}, j € Z,, and P be a Hamilton xoy;-path in
GP(n,2). Suppose there exists an i such that xo,y; ¢ Vic1a. If C;iNP =10,
then there exists a Hamilton xoy;-path P’ such that Cis N P' =0 and P’ is
(1 — 1,5)-equivalent to P.

Proof. Since C; N P = (), we have that [C, N P| =2 for all £ € {i — 1,i +
1,...,i+4}. Thus S;_; 5 contains exactly two strands of P, namely,

Ui—2Ui—1Vi—1V;—3 aNd Uiy 4U;13U;i 4201 2V5Ui U4 1Vi41Vi43Vi45.

Let P’ be the path in GP(n, 2) obtained from P by replacing the two (i—1, 5)-
strands of P with

Ui~ 1 UV V42U 4 2Ui 11 Vi 10;—105—3 and Uiy 44305430 45.
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Then P and P’ are (i — 1,5)-equivalent Hamilton paths. O

This lemma can be applied multiple times, leading to the following corol-
lary.

Corollary 2.15. Letx,y € {u,v}, j € Zy, and P be a Hamilton xy;-path in
GP(n,2), forj # 0. Suppose there is some i so that j < i < n and C;N\P = ).
Then there is a Hamilton xoy;-path P' that is (j,n — j)-equivalent to P, for
which there is an i’ € {n — 2,n — 1,n}, so that Cy N P' = ().

Proof. 1fi € {n—2,n—1,n}, then P = P’. Otherwise, we can apply Lemma
2.14 to obtain a Hamilton path P’ that is (j,n — j)-equivalent to P with
Cy NP =1, where ¢/ =i (mod 3) and ¢/ € {n —2,n —1,n}. O

This leads to the following claim, which describes the conditions needed
to guarantee that an (7, j)-reduction can be applied. In this claim we choose
Jj in such a way that the indices of the path remain the same in both GP(n, 2)
and GP(n —6,2).

Claim 2.16. Let z,y € {u,v}, 0 < j < [%], and P be a Hamilton xoy;-path
in GP(n,2). If |Cj11 N P| is even and n — j > 10, then there is a Hamilton
Toy;-path in G?

~ji+1,6°

Proof. Since |Cj41 N P|is even, [C;NPliseven forall ¢ € {j+1,...,n}. If
there exists an ¢, where j < ¢ < n, such that |C; N P| = 0, then ¢ is unique.
Corollary 2.15 implies that there exists an (j,n — j)-equivalent Hamilton
path, where ' € {n —2,n—1,n} and |C;y N P| =0.

Thus (i —1) —j > (n —3) —j > 7, and Lemma 2.12 applies for S;;; 5.
By Theorem 2.10, there is a Hamilton zoy;-path in G2

If no such 7 exists, then Lemma 2.12 applies for SJH 5 and by Theorem
2.10, there is a Hamilton zoy;-path in G2 [

~j+1,6°

The odd case is more complicated than the even case. The following
lemma, similar to the even case, shows that we can shift the position of a
cut crossed by one strand of P.

Lemma 2.17. Let z,y € {u,v}, j € Z,, and P be a Hamilton xoy;-path in
GP(n,2). Suppose there exists an i such that xo,y; ¢ Vis. If |C;N P| =3,
|Cix1 NPl =1, and |Ciy5 N P| = 3, then there exists an (i,6)-equivalent
Hamilton xoyj-path P, such that, for ¢ € {i+3,i+4,i+5}, |[CoNP'| =1,
and for ¢ € {i,i+ 1,1+ 2}, |C,N P'| = 3.
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Proof. Since |C; N P| =3, |Cix1 N P| =1, and |Ciy5 N P| = 3, we have that
S;¢ contains precisely three strands of P, namely,

Ui—1UVV5—2, Vi—1Vig 1Ui41Ui12Vi42Vi44Viq6, aNd U el 5Uiralip30i3Viq50i17.

Let P’ be the path in GP(n,2) obtained from P by replacing the three (7, 6)-
strands of P with

Uj— 1 U1 Ui 2V 420V -2, Vi 1Vip1Vi43Ui43Ui44Vi4 40546, AN Ui 6505450547
Then P and P’ are (i,6)-equivalent Hamilton paths in GP(n, 2). O

Lemma 2.18. Let x,y € {u,v}, j € Z,, and P be a Hamilton xyy,-path in
GP(n,2). Suppose there exists an i such that xo,y; ¢ Via. If |C;N P| =3,
|Cis1 NPl =1, and |Ciy5s N P| = 1, then there exists an (i,5)-equivalent
Hamilton xoyj-path P, such that |Ciys N P'| =1 and, for £ € {i,...,i+4},
|Ce N P'| = 3.

Proof. Since |C; N P| =3, |Ciy1 N P| =1, and |C;45 N P| = 1, we have that
S; 5 contains precisely two strands of P, namely,

Ui—1U; V02 AN V31V 41 Ui 1 Ui 2Vi 42014 Ui 4Ui4 3013V 45

Let P’ be the path in GP(n,2) obtained from P by replacing the two (i, 5)-
strands of P with

Uj— 1 Ui Ui Uiy 2 Ui 43U 4 4 Vi 4 V20V AN V101104304 5.
Then P and P’ are (i, 5)-equivalent Hamilton paths in GP(n, 2). O

As in the even case, we can iteratively apply these lemmas to obtain the
following corollaries.

Corollary 2.19. Let z,y € {u,v}, j € Z,, and P be a Hamilton xyy;-path
in GP(n,2), where |Cj11 N P| =3 and |C,, N P| = 3. Suppose there is some
it so that j <i <mn and C;N P =v;_ov;. Then there is a Hamilton zoy;-path
P’ that is (j,n — j)-equivalent to P for which there is an i’ € {n —4,n — 3},
so that Cy N P = vy_ovy.

Proof. 1f i € {n — 4,n — 3}, then P = P’. Otherwise, by Lemma 2.18
we can assume that ¢ is unique, which implies that C,, " P = C,, for all
me{j+1,...,n} where m #i,i+ 1 or i + 2. Thus we can apply Lemma
2.17 to obtain a Hamilton path P’ that is (j,n — j)-equivalent to P with
Cy NP =vy_gvy, where ¢/ =i (mod 2) and i’ € {n —4,n — 3}. O
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Corollary 2.20. Let z,y € {u,v}, j € Z,, and P be a Hamilton xyy;-path
in GP(n,2), where |Cj41NP| =1 and |C,NP| = 3. Then there is a Hamilton
xoy;-path P’ that is (j, n—j)-equivalent to P, where, for alli € {j+4,...,n},
|C; N P'| = 3.

Proof. Since |Cj11NP| =1, Cj11 NP = ujuji1, V_10j41, OF V;Uj42. SUppose
CjJrl NP = Vj-1Vj41- Then |Cj+2ﬂp| = \Cj+3ﬂP| =1and \Cj+4ﬂP| =3. If
|C;NP|=3foralli e {j+4,...,n}, then P = P'. Otherwise, we can apply
Lemma 2.18 to obtain a Hamilton z¢z;-path P’ that is (j,n — j)-equivalent
to P, where |C;NP/|=3forallie {j+4,...,n}. O

We can now describe the conditions needed to guarantee that an (i, j)-
reduction can be applied. As in the even case, we choose j in such a way that
the indices of the path remain the same in both GP(n,2) and GP(n — 6, 2).

Claim 2.21. Let z,y € {u,v}, j € Z,, and P be a Hamilton xoy;-path in
GP(n,2). Assume by reflective symmetry that 0 < j < [5]. If |Cj41 N P| is
odd and n — j > 12, then there is a Hamilton xoy;-path in Giiﬁ.

Proof. Since |Cj41 N P|is odd, |[CyNP|isodd forall £ € {j +1,...,n}.

If there exists an ¢ such that Lemma 2.13 applies, then, by Theorem 2.10,
there is a Hamilton zy;-path in Gim. If no such 7 exists, then between any
set of six consecutive cuts there exists a cut crossed by just one strand of P.
By symmetry, there are three distinct cases: |Cj41NP| =1 and |C,,NP| = 3;
|ICjs1NP|l=3and |C,NP|=3;and |Cjx1NP|=1and |C,NP|=1.

If |Cjs1 NPl =1and |C,NP| = 3, then, by Corollary 2.20, we can
obtain a (j,n — j)-equivalent Hamilton path where |C, N P| = 3 for all
¢ e {j+4,...,n}. Since n — (j +4) > 8, Lemma 2.13 applies and, by
Theorem 2.10, there is a Hamilton zoy;-path in G?

>j+4,6°

If |Cjsa NPl =3 and |C, N P| = 3, then by Corollary 2.19 we can
obtain a (j,n — j)-equivalent Hamilton path where |C, N P| = 3 for all
te{j+1,...,n—=>5} Since (n—5)—(j+1)=n—7—6 > 6, Lemma 2.13
applies and there is a Hamilton zqy;-path in G2 by Theorem 2.10.

>j+1,67
If |CjaNP|=1and |C,NP|=1, then Ciy; N P = wjlljs1, Vi—1Vi+1, OF
v;0;12. These three cases are interconnected so we will assume that C;11NP =
vj_1vj41 and make slight adjustments where necessary to account for the
other possibilites. Since Cj1; N P = v;_1vj41, we have that Cj,o NP =
Uj41Uj+2, Cj+3 NP = Vjr2Uj44 and Cj+4 NP = Cj+4. (Note that the other
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two possiblities are accounted for at Cj;2 and Cj;3.) The path may cross
Cj+5 with one or three strands.

If Cji5s NP = vj43v545, then Cj4 s NP = Cj.3 and we can apply the
reverse of Lemma 2.18 at j 4+ 8 so that the cuts Cy, { = j+4,5+5,...,5+8
are all crossed by three strands of the path. If Cj 9 N P = v; 80410, then
Cijt12 NP = Cji1o. Assuming n — j = 12, the first case applies. (For
the other two possibilities of C;1; N P, we can assume that j = j + 1 or
J + 2, respectively. Thus we have that Cj 13 N P could be vj;12v;414, since
|C,, N P| = 1. We can apply the reverse of Lemma 2.18 at j + 12 to obtain
nine consecutive cuts Cy, £ = j+ 4,7+ 5,...,7 + 13, that are all crossed
by three strands of the path. Thus Lemma 2.13 applies at Sj146, and by
Theorem 2.10, there is a Hamilton z(y,-path in G§j+4’6.) If CjpoNP = Clyo,
then Lemma 2.13 applies for S;;46 and by Theorem 2.10 there is a Hamilton
zoy;-path in GZ_, | .

If Cj+5 NP = Oj+5, then Oj+6 NP = Oj—|—6~ If Oj+7 NP = Vj+6Vj48, then
Lemma 2.11 applies at ;116 and by Theorem 2.10, there is a Hamilton zqy;-
path in G2>1'+1,6‘ (For the other possibilities, Lemma 2.11 applies at S;i26
and Sjt36, respectively.) If Cj 7 N P = Cj47, then Cj N P = Cj g and the
same cases occur at C 9 as above. O

Now that we have established the conditions for guaranteeing that an
(1, j)-reduction can be applied, we prove the nonexistence of the paths as
described in the Theorem 2.2. Since the ideas are the same for each case we
will only prove the n = 0 (mod 6) case in detail. Recall, for n =0 (mod 6)
there are two kinds of paths which do not exist. We prove them separately
in the following lemmas.

Lemma 2.22. [fn = 0 (mod 6), then no Hamilton ugus or ugt,_o-path
exists in GP(n,2).

Proof. We proceed by induction on n, with the base cases being n = 6 and
n=12.

For n = 6, suppose by way of contradiction that there exists a Hamilton
ugug-path P in GP(6,2). There are two possible initial edges at wug, by
Symmetry.

If the edge ugvg is in P, then the edges u vy, uiug, Vovg, Valy, Usly, Usly,
and uqus are all in P. Hence the degree of uy is three, a contradiction.

If the edge ugus is in P, then the subpaths ugusvs, usuiv, and vsuzusv4vg—
Vo are contained in P. Hence the degree of us in P is two, a contradiction.
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Therefore no Hamilton ugus-path exists in GP(6,2), and by reflective
symmetry no Hamilton ugus-path exists. Thus, the theorem holds for n = 6.

For n = 12, suppose P is a Hamilton ugus-path in GP(12,2).

If |CoN P| is even, then n—2 = 10 and by Lemma 2.16, P can be reduced
to a Hamilton ugus-path in GP(6,2). But no Hamilton ugus-path exists in
GP(6,2), and therefore |Cy N P| is odd.

If |Co N P| is odd, then there are two possible pairs of initial and final
edges for P, by symmetry.

If the edge ugvg is in P, then the subpaths ugugvg, vgv19U10U11V11, UgVV2V4,
v1uiUs, and vsuguy are contained in P. The edge vyvy; is in P, since |Cy N P)|
is odd. Thus the edges vsvs and v;vg are also in P. If uyvs is in P, then
the cycle urusugvgvrur exists. Thus ugus and vyvg are in P, and the cycle
U3y - - - UgVeU7Usv3u3z exists. Therefore P does not contain the edge ugvg.

If uguyq, € P, then the subpaths vigvgvovy, viuius, and vsusuy are con-
tained in P. By hypothesis the edge v,v1; € P and the edges vsvs, v11v9, and
U111 are also contained in P. If uqvy € P, then the cycle ujsusvsvsusugvg—
vg - - - vquy exists. Thus the edge ugus; € P, and the edges v4vg, vsv7 and
usug € P. If ugvg € P, then P is the path uguiiuigugvgv11v1u1Us, Which is
not Hamiltonian. Thus ugu; € P and the cycle vgvs - - - v19vg exists. There-
fore no Hamilton ugus-path exists in GP(12,2), and by reflective symmetry
no Hamilton uguig-path exists. Thus, the theorem holds for n = 12.

Suppose the theorem holds for n > 12, where n = 0 (mod 6). If there
exists a Hamilton ugug-path P in GP(n + 6,2), then (n +6) —2 > 16 and
P can be reduced to a Hamilton ugug-path in GP(n,2) by Claims 2.16 and
2.21. This contradicts the inductive hypothesis, and therefore no Hamilton
ugug-path exists in GP(n + 6,2). Also, by reflective symmetry no Hamilton
ugln14-path exists. Therefore, by induction, the theorem holds. O

Lemma 2.23. No Hamilton vov;-path exists in GP(n,2), where n,j = 0
(mod 6).

Proof. We proceed by induction on n, with base case n = 12.

For n = 12, suppose by way of contradiction that P is a Hamilton vgvg-
path in GP(12,2). By symmetry there are four possible pairs of initial and
final edges for P.

If the edges voug, vgug € P, then the subpaths ugvigvgus and usvovsty
are contained in P. Assume without loss of generality that uou; € P, then
for all odd j € Zy2 the edges u;v; and u;_ju; are in P. The edge vsvs ¢ P,
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as otherwise a cycle exists. Therefore the edges vivs, vsv7, and vgvi; € P
and the cycle uyguq1v11vV9UgUgUgV10U1y €XiStS.

If the edges voug and vgvy € P, then the subpaths ujgvigvsus, urugususus,
us204vg and vyvsv3 are contained in P. Since |C7; N P| is even, |Cy N P| is
even as well. If |Cy N P| = 0, then the cycle ujgui1v11v9ugugvsv1pU €Xists.
Otherwise, if |Cy N P| = 2, then the cycle us - - - uzv7vsv3U3 exists.

If the edges vyvo and vgvy € P, then the subpaths uiiuguy, vovats, U v4vg,
usugty, and ugvgvigug are contained in P. If |Cy N P| is odd, then |C7 N P|
is odd and the edges vi;v; and vsv; are not in P. Hence the edges v;v3 and
v3vs € P, as well as the edges usus and uzuy. Therefore P = vgvoustztigvavs.
If |Cp N P| is even, then the edges vyvy; and vsv; are in P. If the edge ujv;
is in P, then uj;v;; ¢ P and the cycle wuqg - - - u1v101109UgUgUgV10U1g €XISES.
Thus uqus is in P. If uyqv; € P, then P is not a Hamilton path. Therefore
the edges uji1uy9 and vi1vg are in P, which forces the cycle usugurv7vsus.

If the edges vyv, and vgvg € P then the subpaths uyuguiusus, vi1v1v3,
VoUU4ly, UsUgUglglly, VsV7Vg, and vgUgl1p1g are contained in P. This implies
that |Co N P| = 2 and |C7; N P| = 3, a contradiction.

Therefore no Hamilton vgvg-path exists in GP(12, 2).

Suppose the theorem holds for n > 12 where n = 0 (mod 6). By way
of contradiction, we assume that there exists a Hamilton vov;-path P in

GP(n+6,2), for j < @ and j =0 (mod 6). Note that (n+6)—j > @.
If n > 18, then (n +6) —j > 12. If n = 12, j < “% and j = 0 (mod 6),
then j < 6, and again (n 4+ 6) — j > 12. Thus P can be reduced by Claims
2.16 and 2.21 to a Hamilton vov;-path in GP(n,2). This contradicts the
inductive hypothesis, hence no Hamilton vov;-path exists in GP(n+6,2), as

required. ]

Lemma 2.24. For n = 2 (mod 6) and j = 4 (mod 6), no Hamilton vyv;-
path exists in GP(n,2).

This follows, since no Hamilton vgvs-path exists in GP(8, 2) or in GP (14, 2).

Lemma 2.25. Forn =4 (mod 6), j =2 (mod 6), and ¢ = 0,4 (mod 6), no
Hamilton ugug, uoln—2, UgV1, UgUn_1, UgV;, OT VoUs-path exists in GP(n,2).

This follows, since no Hamilton wugus, ugvi, ugve, or vgus-path exists in
GP(10,2) and no Hamilton ugvsg or vyvg-path exists in GP(16,2).

Lemma 2.26. Forn =5 (mod 6), no Hamilton path exists for pairs of adja-
cent vertices; for j = 2,3 (mod 6), no Hamilton vyv;-path ezists in GP(n,2).
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This follows since GP(n,2) is Hamiltonian if and only if n # 5 (mod 6).
Also, no Hamilton vgvs-path exists in GP(11,2) and no Hamilton vyvs-path
exists in GP(17,2).

This completes the proof of Theorem 2.2.
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Chapter 3
GP(n,3)

3.1 Introduction

In this chapter, we prove the following result.

Theorem 3.1. GP(n,3) is Hamilton connected if and only if n is odd and
n > 5. It 1s Hamilton laceable if and only if n > 4 is even and n # 6.

This was proved by Alspach and Lui [3]. Our proof is different: we use
an (i, 12)-expansion, whereas Alspach and Liu used a variant of an (7,6)-
expansion.

In the first section we develop the ground work for the (i, 12)-expansion
argument and in the second section we provide the proof of Theorem 3.1.

3.2 Expanding in GP(n,3)

As for GP(n,2), we will be using cuts and the (i, j)-expansion operation to
describe the inductive step. Recall that, for i € Z,, the cut C; in GP(n, 3)
is the set of edges {w;_1u;, V;i_3v;, Vi—2V; 41, Vi—1V42}. The (i, 12)-expansion of
GP(n, 3) is the graph obtained from GP(n, 3) by deleting the edges in C; and
adding the vertices {ug, v}, ..., u};, v}, } at C;, as well as the edges: w;_qug;
uh u; for 0 < € < 11, the edges uyvy; for 0 < £ < 10, the edges wjuy, ; for
0 < ¢ < 3, the edges v;_340v; and vy, ,v;4¢; and, for 0 < £ < 8, the edges
vy, 5. The following theorem establishes that an expansion can occur at
any cut while maintaining the Hamilton path.

26



Theorem 3.2. Let x,y € {u,v} and j € Z,. If there exists a Hamilton
zoy;j-path in GP(n,3), then there exists a Hamilton xoy;-path in G*

<i12°

Proof. Let P be a Hamilton x¢y;-path in GP(n,3). We will show that for
j <1 < mn, we can apply an (i, 12)-expansion so that there is a Hamilton
zoy;-path in GimQ. Of the 16 cases, we consider six that are representative
of the rest.

If no edge of P is in C}, then at least one of u;_jv;_; and wv; is in P.
Assume the latter. In this case, replace u;v; in P with the path

o) JAUN SN SN A |
Ui V] Vg UG+ - + Uy gV Ur Uy V) Uy Ug UG U5 UG UG Vi
to create the Hamilton zoy;-path in G2, .
If |CZQP| = ]_, then szp is either U;—1U; O V;—3V; O V;2Vj41 O V;_1Vi42.
Suppose C; N P = u;_qu;. Then u;_qu; can be replaced with the path

VA A A /2NN A A /A A /A
Us— 1UOUOU3u3U4U4vlulu2”2v5u5UG'U6UQU9UIOUIOU7U7U8USU11“1lul

to obtain the Hamilton zoy;-path in G2, A similar argument holds if C; N
P = v;_3v;, v;_9V;11, OF V;_1V;12.

If |C; N P| =2, then C; N P is one of six possible combinations of edges
in Cj.

Consider the case C; N P = {u;_ju;,v;_3v;}. Then the edges u; ju; and
v;_3v; can be replaced with the paths

<i,12

Ui —1 Ug Uy U] VYU UG US Vo VE UL Ug U UZ V] (U o Ug UgUR V] 1 U1 Uy and v;_30yv5UGUe Vs,
respectively, to obtain the Hamilton xqy;-path in G? iz A similar argument
holds if C; N P is either {u; 1u;, v; 1012} or {v;_3v;, v; 201} or {v;_ovi4q, —
"Ui—lvi+2}-

We also treat the case C; N P = {u;_qu;, v;_ov;11}. The edges u;_1u; and
vi_2v;11 can be replaced by the paths

AU AR ASA RSN RSN AN AN AN AN A | / P ] /
U1 Uy VU3 U Uy Uy U7 U UgUg V71 U1 Uy AN Vo] U Uy Uy U Us U U Vg Ug U1 Vg Vi1 5

respectively, to obtain the Hamilton xyy;-path in Gi e A similar argument
holds for CZ NP = {Ui_g’Ui, Uz'_ll}i_;,_g}.

If |C; N P| = 3, then C; N P is one of four possible combination of edges
in C;. Suppose C; N P = {u;_qu;, v;_30;,v;_2v;11}. Then the edges u;_ju;,
v;_3v;, and v;_ov; 11 can be replaced with the paths

o o
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o] /
and v;_9Uy Uy U7 UZUgUg Uy oV o Vit 15

3

s A similar argument

respectively, to obtain the Hamilton z¢y;-path in G
holds for the other cases.
If |C; N P| =4, then C; N P = C;. The edges u;_1u;, v;_3v;, v;_2v;11 and

Vi_1V;12 can be replaced with the paths
! !/ o o o

respectively, to obtain the Hamilton zoy;-path in G? O

<4,12°

3.3 Base Cases

In this section we show the existence of the Hamilton paths for the twelve
cases. We show the the first two cases in detail.

Theorem 3.3. Ifn =0 (mod 12), then GP(n,3) is Hamilton laceable.

Proof. We proceed by induction on n, with base cases n = 12 and n = 24.
From the Hamilton path

UeVoU3VeVgUgUgUgV11U11 U10V10V7UTUU5V5V2U2U3U4LV4V1 U

in GP(12,3) we can do a (consecutive) sequence of Posa exchanges using
the edges ujus (to get the Hamilton ugus-path), uzvs (to get the Hamilton
ugvg-path), veug (to get to ur), urug (to get to vs), vgvs, usug, v4v7 (to get
to v1g), v1pv1, and viuy (to get to vy). From the Hamilton path

P = vguot11U10V10V704Us U3 V3 V6V Ug Ug U7 U Us Vs Vg V11 V2 U Uy Uy

we can do a Posa exchange using the edge v,v19 to obtain the Hamilton vyv;-
path. Starting with P we can do a sequence of Posa exchanges using the
edges v1vy, ugus, and ugvg to obtain the Hamilton vgve-path. Reflective and
rotational symmetry complete the task.

In GP(24,3), the preceding paragraph and Theorem 3.2 imply that, for
0 < j < 11, there exist Hamilton paths for the pairs (ug,u;) and (v, v;),
when j is odd, and (ug, v;), when j is even. This leaves the case ugv;a, which
is achieved by the path

UpVoU3U3U4LV4V1 U U2V2VsUsUE Ve V9 U9U10V10 V7 UTUIVZV11 U1 U12U13V13 —
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V16V19V22U22U23V23V20V17V14UI4UT5 * * * U21V21V18V15V12.-

Therefore, by reflective and rotational symmetry, GP(24, 3) is Hamilton lace-
able.

Suppose the theorem holds for GP(n,3), where n = 0 (mod 12) and
n > 24. Theorem 3.2 and the inductive hypothesis impy that in GP(n+12, 3),
there exists a Hamilton path for all necessary pairs of vertices in V4 ,_1. Each
vertex in V,,1; is symmetric to a vertex contained in Vj ;. Therefore by
the inductive hypothesis and reflective and rotational symmetry, a Hamilton
path exists for all pairs of vertices on opposite sides of the bipartition in
GP(n + 12,3), as required. O

Theorem 3.4. Ifn =1 (mod 12), then GP(n,3) is Hamilton connected.

Proof. We proceed by induction on n, with base case n = 13. From the
Hamilton path

P = upvov10U10U11U12V12V9Ug UV V11 V1 Vg U7 U7 U VU3 U3 U4 Us Vs VU U]

in GP(13,3), we can do a consecutive sequence of Posa exchanges using the
edges u1v; (to get to vy), vauy (to get to ug), usus (to get to ve), vavie and vyug
(to get to v3). Starting with P we can also do a sequence of Posa exchanges
using the edges ujug (to get to vg), vovs (to get to vg), vevg (to get to ug),
ugtiyg (to get to uyy), and ugiv1y (to get to vy). From the Hamilton path

/
P’ = ugvpv10U10U11U1201202U2U1 V1 V11U US UGV Vg U3 U3 U4 Vg V7 U7 U U5 Vs

we can do a Posa exchange using the edge vsvg to get the Hamilton ugus-
path. Starting again with P’ we can do a sequence of Posa exchanges using
the edges vsvq, ugus, v3v9, and vigv; to obtain the Hamilton uguz-path. From
the Hamilton path

/!
P" = vov19U10U11011V8UU9 Vg V1211 2 U0 U U V2 Vs U5 U4 U3V3 V6 Us U7 U7 V4 V1

we can do a sequence of Posa exchanges using the edges vyuy, usus, and usvy
to obtain the Hamilton vgvs-path. From P” we can also do the sequence
of Posa exchanges using the edges viv1; (to get to vg), vsvs (to get to vy),
UgU1g, Ut2U11, V1108, U2, V1ali2, Ugly (tO get to v1g) and vigvr (to get to vy).
Reflective and rotational symmetry complete the task.

Suppose the theorem holds for n =1 (mod 12), where n > 13. Theorem
3.2 and the inductive hypothersis imply that in GP(n + 12, 3), there exists
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a Hamilton path for all pairs of vertices contained in V;,_;. Each vertex
contained in V,,;; is symmetric to a vertex contained in Vj ;. Therefore,
by the inductive hypothesis and reflective and rotational symmetry, GP(n +
12, 3) is Hamilton connected, as required. ]

Theorem 3.5. If n =2 (mod 12), GP(n,3) is Hamilton laceable.
Proof of base case. From the Hamilton path

P = ugvgv30609UgUgVg V11 U11 U10V10V7 U7 UeU5V5 V21311311 2V12V1 Vg Ug U U U

in GP (14, 3) we can do a sequence of Posa exchanges using the edges ujv; (to
get to vy) and v4v7 (to get to uy). Starting with P we can also do a sequence
of Posa exchanges using the edges ujug (to get to vg), vov1y (to get to wvg),
vgUs (to get to us), usug, v4v7, VpU13 (to get to vy) and vouy (to get to ug).
From the Hamilton path

VoU11U11U12V12V1 U1 UeU13V13V10U10UYV9Ve U U5 U4 V4 V7 UT UV U5 V2 U2U3 V3

we can do a sequence of Posa exchanges using the edges vsvg, v11vs, ugtg
(to get to vg), vov12 (to get to vy), and vyvy (to get to vr). Reflective and
rotational symmetry complete the task. O

Theorem 3.6. If n =3 (mod 12), the GP(n,3) is Hamilton connected.
Proof of base case. From the Hamilton path

UeVoU3VeV9V12U12U11V11 V8V U5 U UTUIU9U10V10V7 V4 U4 U3 U2V2V14UI4U13V13V1 UYL

in GP(15, 3) we can do the sequence of Posa exchanges using the edges ujus
(to get to vq), vaus (to get to us), usuy (to get to vy), vavy, uug (to get to
Vo), Vov12 (Yo get to vg), voug, Uiplil, V11V14, VaUa (tO get to usz), uzvs, vele
(to get to ur), uzvr (to get to vig), vipv1s (to get to vy), viuy (to get to us),
ugus (to get to vy), v3vg (to get to ug), ugur, ugvs, V11U11, Urply, VoU12, Volo,
UilUs, U3V3, Vglg, Urug (to get to vg), vsv11, V14V9, and ugus (to get to wuy).
Let P be the Hamilton path

VoU3U3U2V2V14V11 U1 U12V12V9Ve U UTV7VLU4LUS V5V UIU9U10V10V13U13UI14Uo UL VT -

From P we can do a sequence of Posa exchanges using the edges vivy, usus,
Ugly, V1013, U312, U1l (L0 get to vig), vipvr (o get to vy), viuy, usug (to
get to vg), vevs, uzus (to get to vy), and vy (to get to vg). Starting with
P we can do a sequence of Posa exchanges using the edges vyv13 and w39
to obtain the Hamilton vyvo-path. Reflective and rotational symmetry com-
plete the task. O

30



Theorem 3.7. If n =4 (mod 12), then GP(n,3) is Hamilton laceable.

Proof of base case. Let P be the Hamilton path
UoVoV3U3U4LU5V5V8V11 U1 U10UUUTUEVeV9V12U12U13V13V10V7V4 —

V1U14U14U15V15V2U2UY

in GP(16,3). From P be can do a sequence of Posa exchanges using the
edges ujug (to get to vg), vov1z (to get to wuys), uisuis (to get to viy), vi4v11
(to get to vg), vsus (to get to ug), and ugvy (to get to vg). Starting from P
again, we can do a sequence of Posa exchanges using the edges ugvy, v14v11
(to get to uy1), and uquis (to get to vi2). From the Hamilton path

VoV13U13U14V14V1UTUOUL5V15V12U12U11 V11 V8UUTUE Vg VoUIULI) —

V100704U4U5V5V2U2UZ V3,

we can do a sequence of Posa exchanges using the edges vsvg, v13v10, U10U11
(to get to vy1), v11v14 (to get to vy), and vivy (to get to vr). Reflective and
rotational symmetry complete the task. O

Theorem 3.8. If n =5 (mod 12), then GP(n,3) is Hamilton connected.

Proof of base case. From the Hamilton path
P = ugvo14U14U15U16V16V13U13U12V12015V1 V4 U4 U3 V3V Vg Ug U —

VgU11U11U10V10V7UTUEU5V5V2U2UL

in GP(17,3) we can do a sequence of Posa exchanges using the edges ujv;
(to get to vy), vav7 (to get to vig), vipv13 (to get to uy3), uisuis (to get to
us), U515 (to get to vy), v1vy, V7v10 (YO get to uig), uiouy (to get to ug),
uguy (to get to ug), ugvg (to get to v3), vy (to get to v14), v14v11 (to get to
vg), vgs (to get to us), usug, v4v7, and usug (to get to vg). Starting from P
we can do a sequence of Posa exchanges using the edges ujug (to get to vy),
vz, and uzuy (to get to vy). From the Hamilton path

VoUpU1V1V15UI5U16V16V2U2U3U4L V4 V7 UTUIUGV9V12U12U11 U10V10V13 —

U13U14V14V11V8V5U5UE VU3
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we can do a sequence of Posa exchanges using the edges vsus, uqus (to get
to vs), Usva, uguy (to get to vy), vivy (to get to vr), vrvig, Ulouy (to get
to Ug), VgUg, UgUT, U7U4, V1UL, U2V2, UsUs, U4U3, U3Vp, UoUle, Ul5U14, U13U12,
U11V11, VU, UTVU7 (tO get to ’U4)7 V4V, UTU2 (tO get to UQ), V2VUs, VgV11, U11U12,
U13U14, UI5UI6, UQVg, V3U3, U4US, and VU5V (tO get to UH). The existence of
the Hamilton ugvs-path

UpUI6UI5V15V12UI2U11V11V8UUTV7V10UI0 UV Ve UsUsU4V4 V1 U —

U2U3V3V)V14U14U13V13V16V2V5

and reflective an rotational symmetry imply that GP (17, 3) is Hamilton con-
nected. O]

Theorem 3.9. Ifn =6 (mod 12), the GP(n,3) is Hamilton laceable.

Proof of base case. In GP(18,3), from the Hamilton path
P = uyvgv30609UgU10U11V11V14U14U15V15V12U12U13V13V10V7V4 —

U4U3U2UIV1V16U16U17V17V2V5V8USUTUEUS

we can do a sequence of Posa exchanges using the edges usvs (to get to vsg),
vgvy (to get to vig), visvr7 (to get to uir), uirug (to get to wy), vovys (to
get to uys), uisuig (to get to vig), vi6U13, and viguig (to get to ug). Starting
again from P we can do a sequence of Posa exchanges using the edges usuy,
ugvs (to get to vg), veug, usvs, and vgvyy (to get to uyp). From the Hamilton
path

Vo V3U3U2V2V5U5U4V4V7V10UI0UYV9 Ve U U7TULV8V11U11 U12V12V15UI5 —

U16V16V13U13UI4V14V17UI17UOUL V1

we can do a sequence of Posa exchanges using the edges vv16 (to get to vi3),
V13010, UtoU11 (O get to vi1), V11v14, V17V, UsUs, V1111, UioV10, Url7, Usly (tO
get to vg), vgv1a, UiaUiz, and uigugs (to get to vys). O

Theorem 3.10. Ifn =7 (mod 12), then GP(n,3) is Hamilton connected.

Proof of base cases. In GP(7,3), from the Hamilton path

P = upu;v10502U2U3V301 V4 Us Us U6 Vg,
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we can do a sequence of Posa exchanges using the edges vgvy (to get to us),
uguy (to get to vy), to get to vivy (to get to uy), ugug (to get to vs), vavg (to
get to vy). Starting again with P we can do a sequence of Posa exchanges
using the edges vgvs (to get to vg) and voug (to get to ug). The Hamilton
paths

VoUpUeVeV3U3U2U1 V1 V4U4LU5VEV2,

VoUpU1V1V5V2UU3V3Vs U U5U4V 4, and
VoUpUeU5V5V2U2U1 V1 V4 U4U4LV3 Vs,

with reflective and rotational symmetry imply that GP(7,3) is Hamilton
connected.

In GP(19,3), the preceding paragraph and Theorem 3.2 imply that we
need the additional Hamilton xgy;-paths for z,y € {u,v} and j € {7,8,9}.
Given the Hamilton path

UoU18V18V2V5VgUsUTVTV10V13U13UI2V12V15U15U14V14V17ULITULIE —

V16V V3U3U2U1 V1 V4U4LUs UV V9 U9U10UTIT1 V11

we can do a sequence of Posa exchanges using the edges vi1v14, V1701, Ui,
U187, V17U14, V110s (t0 get to ug), usiy, Vgli2, V1sUis, Valla, UglUs, Uiy, Val7,
vipU1o (10 get to ug), ugvy, VeU3, Uszls, Vav1g, V15V12 (tO get to vg), vevg, V3U3,
uqvy (to get to v7), v7v1g, V13016, U1eV15, and ujsuyz (to get to ugs). From the
Hamilton path

P = 0o 0104U4Us UsU7V7V10V13V16U16U15U14UT13U12V12V15V18U18 —

U17V17V14V11 U1 U0 U9URVEV5V2U2U3V3 V6 Vg

we can do a sequence of Posa exchanges using the edges vgug and ugu; to
obtain a Hamilton vyv;-path. Starting with P we can do a sequence of Posa
exchanges using the edges vgvy2, v15u15, and u4v14 to obtain the Hamilton
voU11-path. O

Theorem 3.11. Ifn =8 (mod 12), then GP(n,3) is Hamilton laceable.

Proof of base cases. In GP(8,3), from the Hamilton path,

UV V3U3U2V2V5U5ULV4V7UT UV V1 U
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we can do a sequence of Posa exchanges using the edges ujug (to get to vy),
vovs (to get to vy), vevr (to get to vy), vgvy and vevs (to get to ug). From the
Hamilton path

VoUpU7UcU5V5V2V7V4ULU3U2UT V1 V6 V3,

we can obtain the Hamilton vgvz-path by a sequence of Posa exchanges using
the edges v3uz and uqvs.
In GP(20, 3), from the Hamilton path

P = ugvov17U17U16016013U13U12012015U15U14V14V11 U11 U10V10 —

V704U4U5UsUTUIVZV5V2V19U19U18V18V1 U1 U2U3V3VeV9UY

we can do a Posa exchanges using the edge uguyy to obtain the Hamilton
upuipo-path. Also starting with P we can do a sequence of Posa exchanges
using the edges ugus (to get to vg) and vgvy; (to get to uyy). Also the Hamilton
path

VoUpU19U18UTITV17V14UI4UI5U16V16V19V2V5V8V11 U1 UI2UTI3 —

V13V10U10U9ULUTV7V4 U4 U5 U VU3 U3U2UT V1 V18V15V12V9

exists. ]
Theorem 3.12. Ifn =9 (mod 12), then GP(n,3) is Hamilton connected.

Proof of base cases. In GP(9,3), from the Hamilton path
P = ugugvgtaUs 54Uz U300 U Ue U7 U704 U1 Ug Uz,

we can do a sequence of Posa exchanges using the edges vsvg, voug, ugur,
v7v1, and v4uy to get the Hamilton ugus-path. Starting again with P we can
do a sequence of Posa exchanges using the edges usve (to get to vs), vsvs (to
get to vg), vaus (to get to us), usug (to get to vg), veus (to get to vy), voug
(to get to ug),, uguy, v7v1, vauy and usvs (to get to vg). From the Hamilton
path

VoUpU8VVU5U5ULU3V3VeUeUTV7V4LV1 U U2V,

we can do a sequence of Posa exchanges using the edges vovs, usug (to get
to vg), Uglo, Uol1, Uglg, usvs, and v7v; (to get to vg). The existence of the
Hamilton path

VoUpUgUTUEVeV3U3U2U1 V1 V7V4U4LUSV5V2VS

34



implies that GP(9, 3) is Hamilton connected.
In GP(21, 3), given the Hamilton path

P = uoguiv1019016013010U10UI1 * * - U20V20V17V14V11 UgUgUgUgUpUe —

U7V7V4ULU5V5V2U2U3 V3V V18V15V12
we can do a sequence of Posa exchanges using the edges viou12 and uy3v13 to
obtain the Hamilton ugvip-path. Starting with P we can do a sequence of
Posa exchanges using the edges vi2vg, v6v3, Ugty, Usug, urug (to get to ug),
and uguig (to get to uyy). From the Hamilton path
VoUpU1V1V19U19U20V20V17UTITUI8V18V15UI5U16V16V13V10UI0UTIIUL12 —
U13U14V14V11V8V5V2U2U3 V3V U U5 U4 V4 V7 U7 ULUYV9U12

we can obtain the Hamilton vyvig-path from a sequence of Posa exchanges
USiIlg the edges V12U12 and U13V13- ]

Theorem 3.13. Ifn =10 (mod 12), the GP(n,3) is Hamilton laceable.
Proof of base cases. In GP(10, 3), from the Hamilton path
UpUgVgU2U2U3 U4 USV5 V8 UgUT UG VU3 Vo U7 V4 V1 UL

we can do a sequence of Posa exchanges using the edges ujuy (to get to ug),
uzvs (to get to vg), vevg (to get to vy), vavs (to get to us), usug, Urvr, V4Uy,
Ugla, Valy, VgUs, Uglly, and vyvr (to get to vg). From the Hamilton path

P = 0g0704u4u30306 Vg UgUo U1 U Vo V5 U5 UgUTUSVRV

we can do a sequence of Posa exchanges using the edges vyuy, and ugusz to

obtain the Hamilton vyvs-path. Starting with P we can do a sequence of

Posa exchanges using the edges v1v4 and ugus to get the Hamilton vous-path.
In GP(22,3), the Hamilton path

VoUoU1V1V20U20U21 V21 V2U2U3V3VeUcUT VT V4 U4 U5V5VgUsU9VV12U12UTI3 —

U14V14V17UI7UI6UI5V15V18UI8UI9V19V16V13V10UI0U11 V11

exists. Given the Hamilton path
UoUIV1V20 * + - VgUU9UoV10V13 * * * V3U3U2V2V5U5U4L V4 V7 UT UGV —

Vg * * - Ug1U21U20 * * * U11

we can obtain a Hamilton ugvig-path by a Posa exchange using the edge
U11U10- L]
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Theorem 3.14. Ifn =11 (mod 12), then GP(n,3) is Hamilton connected.

Proof of base cases. In GP(11,3), from the Hamilton path
P = ugvov3uzuaty U1 0407UrUg VU5 V210 U109 Vo Vs UG Us U ,

we can do a sequence of Posa exchanges using the edges uqus, usvse, vsus,
ugly, V7019, and vevs to the Hamilton ugvg-path. Starting from P we can
also do a sequence of Posa exchanges using the edges usvy (to get to v7),
v7v1p (to get to vg), vaus (to get to uy), uiug (to get to vy), vovs (to get to
vs), vsus (to get to ug), ugur, v7vy, usus (to get to ug), usuy (to get to vy),
V1Vg, Uglsg, Uzv7, and vyuy (to get to ug). From the Hamilton path

VoUoU10V10V2U2U V1 V9UQULVEV5U5U6UTV7V4U4LU3 V3 Vg,

we can do a sequence of Posa exchanges using the edges vgvg, uguig (to get
to v1p), v10v7 (to get to vg), vav; (to get to vy), veug, ugur, and ugvg (to get
to vs3).

In GP(23,2) from the Hamilton path

UpVoU20U20U19V19V16U16U15V15V18U18UTI7TV17V14UI4UI3V13V10VTV4 —

UgUs -+ + U11V11V8V5V2V22U22U21 V21 V1 U U2U3V3V6V9V12UT 2,

we can do a Posa exchange using the edge ujsuq; to obtain the Hamilton
ugvi1-path. The Hamilton path

VoUpU22V22V2U2U7 V1 V21 U21 U20V20V17UI7UI6V16V19UI9U18V18V15UI5UI4 —

V14V11U11U12U13V13V10UI0UQURVIV5 U5 U UTV7V4ULUZV3V6V9 V12,

exists. O
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Chapter 4
GP(n,k)

4.1 Introduction

In this final chapter, we develop an approach that can be used in general.
We had hoped to be able to extend the ideas presented in Chapters 2 and 3,
but were unable to. The first section of this chapter will look briefly at the
k = 4 case, describing the problem we faced in trying to extend our original
approach. In the next section we will present the necessary conditions for
applying an (i, j)-expansion and an (i, j)-reduction in GP(n, k). We will show
that for each k-value, there are a finite number of base cases needed to prove
inductively the existence and nonexistence of Hamilton paths in GP(n, k).

4.2 A brief look at GP(n,4)

For k = 2 and 3 we showed the existence of Hamilton paths by proving the
following: Given a Hamilton path in GP(n, k), an (i, j)-expansion could be
applied at any cut in the path while retaining the Hamilton path. The main
part of this argument was that for any cut in the original graph we can apply
an (i, 6)-expansion or an (i, 12)-expansion. Unfortunately, for k = 4, we were
unable to establish property.

Claim 4.1. Let 2,y € {u,v}, j < |§] € Zy, and P be a Hamilton xgy;-
Hamilton path in GP(n,4). If C;N\ P = v;_sv; 12, then no (i, {)-expansion can
occur in the graph.
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Proof. Since C; N P = v;_5v;19, the (i, {)-strands of P are
Vi—2Viq oWy 2Uit3Vi43Vi1 Uiy 7Ui48Vip8Vit12 - * -, and

© Uit 14Vi410Vid 6 Wit 6 Ui 5 Ui+ 4 Vi1 4V U Ui 11 Vi1 Vi 5V 9 Ui 9 Ui 410U +11 V411 *° - -
These strands will never combine into a single strand, so, for £ > 1, each
Cj.¢ contains three edges of P. O

However, if the Hamilton z¢y;-path P meets the cut C; with v;_sv; 9,
then there is still an (i + 1,20)-expansion or (i 4+ 1,20)-reduction as shown
in the following Lemma.

Lemma 4.2. Let z,y € {u,v}, j € Zy, and P be a Hamilton xoy;-path in
GP(n,k). Suppose k > 4 is even and suppose there exists an i such that:

1. jé¢{i,....i+k(k+1)};
2. forallle{i,....i+k(k+1)}, |ConP|=%+1; and

8. Ci N P = {Ui—1U;, Vi_pVi, Vi—g42Vig2, - - -, Vi—2Vigk—2} -

Then there is a Hamilton xyy;-path in G¥ and G*

i, k(k+1) =i k(k+1) "
Proof. Since C; N P = {u;_1u;, Ui_gVi, Vi_g12Vit2, - - ., Vi—2Vitk—2} and each
cut is crossed by the same number of edges of P, the (i, k(k + 1))-strands
of P corresponding to the edges u; ju; and v;_,v; remain distinct. These
(i, k(k + 1))-strands of P are of the form

Ui —1 Ui Ui 41 Vi1 Vi k41 Vi 2641 Wi 42841 -+ - - Uit k(k+1)—1 Wit k(k+1) and

Vi—kViVit ke Wit kWit k-1 Uit k+2Vit k42 - - - Vit k2 Vit k(k+1) -
The (i, k(k + 1))-strands of P corresponding to the other edges are of the
form

Vi—k+2Vi42Ui 4 2Ui4+3Vi+ 3Vit ke 3Wit k43 - - - Uit k242Vi+k242Vitk(k+1)+2

Therefore C; and Cjypk41) are P-congruent and there exists a Hamilton
Toy;-path in G¥ and G* O

=i,k(k+1) <i,k(k+1) "

For k = 4 and C;NP = v;_sv;45 we have that C; NP = {u;u;1, 00544,
v;—2v;+2} and for all £ > 1, each Cj; 4 contains three edges of P. Thus Lemma
4.2 applies at i + 1 and we can apply an (i + 1, 20)-expansion or (i + 1,20)-
reduction in GP(n,4), to obtain a Hamilton zgy; path in Gii+1,20 or G‘;M’m,
respectively. We have not undertaken a detailed analysis of the case k = 4.

We will develop this idea of expanding and reducing in more detail in the

following section.
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4.3 GP(n,k)

Given a Hamilton path P in GP(n, k), we found that requiring P-congruence
in order to apply an (i, j)-expansion or (i, j)-reduction is a stronger condition
than what we need. Instead it is sufficient to require that there exist two
matching cuts, which we define as follows.

Cuts C; and Cj;; match with respect to Cj, where h < 4, if there exists
a bijection between the pairs of end edges of the (h,i— h) and (h,i+j — h)-
strands of P such that the pairs of ends are either equal, (7, j)-congruent, or
one end in each pair is equal and the other ends are (i, j)-congruent. (See
Figure 4.1).

If the pairs of edges are equal, then by definition they are all contained
in Cy. This implies that no edge of the corresponding (h,i — h)-strand is in
C;. The same holds for C;y;. If the pairs of edges are (i, j)-congruent, then
by definition the ends of the (h,7 — h)-strand are both contained in C; and
the ends of the (h,i+ j — h)-strand are both contained in C;1;. This implies
that C), contains no edge of the corresponding strands. If one end in each
pair is equal and the other ends are (7, j)-congruent, then the equal edges are
in Cy, and the (i, j)-congruent ends are in C; and C;4;.

For convenience we will denote the end edges of each (i, j)-strand of P as

tr={ev1, €02}

Ch C; Citj
A 81,2 12
L R
S$11 =111 P Bk YT
P
o N\
S9,1 = ta21 832 131
(T IS T
I I T
EaLr N / S$31 T t372
N

Figure 4.1: C; and C;; match with respect to C,. The pairs of end edges: s;
and t; each have one end edge that is equal and the other is (7, j)-congruent;
so and ty are equal; and, s3 and t3 are (i, j)-congruent.
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Lemma 4.3. Let z,y € {u,v}, 0 < j < |5, and P be a Hamilton xoy;-path
in GP(n, k).

Suppose there exists two cuts Cy and Cqyy such that | 5]+1 < a, a+b < n,
and the cuts match with respect to C|z 1.

Then there exists a Hamilton xoy;-path P' in GP(n—b, k) and a Hamilton
xoy;-path P" in GP(n+b,k).

Proof. Let S = {s1,5,...,5¢} be the set of pairs of end edges of the ([ %] +
L,a — (|%]) + 1))-strands of P and let T' = {t1,1s,...,%,} be the set of pairs
of end edges of the ([ 5] +1,a+b— (|5] + 1))-strands of P.

Suppose we decompose the path into ([5] + 1,a — ([ 5] + 1))-strands of
P, Ry, Ry, ..., Ry, and (a,n — (a — (| 5] +1)))-strands of P, P, P, ..., Py
Then P = PltLlthLQPQtQJ ce R[tg’gpe_._l. See ﬁgure 4.3. Slmllarly, we can
define the path as P = P[sy 1 R|s19P;s01 - - Rysg 2Py, where R}, Ry, ... Ry
are the (| 5] +1,a+b— ([ 5]+ 1))-strands of P, and P}, P;,..., P, are the
(a+b,n—(a+b— (5] +1)))-strands of P. See figure 4.4.

Let f: T — S be the bijection between S and T" which shows that C, and
Catp match with respect to C|njyy. For 4,5 € {1,...,¢} and h € {1,2}, the
bijection acts on both indicies of t; 5, so that for f(t;) = s;, f(ti1) € {s;1,Sj2}
and f(t;2) € {si1,82}. Also, if f(t;) = s;, then f(R;) = R;, where the
orientation of the path depends on the ends f(¢;1) and f(¢;2).

We show that we can apply an (a,b)-reduction or an (a + b, b)-expansion
while maintaining the Hamilton path in the new graph.

In the (a,b)-reduction of GP(n, k), each edge in C, N P, and its (a,b)-
congruent edge in C,, N P, become the same edge. Therefore we obtain
the Hamilton path P' = P f(t11)f(R})f(t12)Paf(tan) - - f(Ry) fte2) Py in
G’;a’b. See figure 4.5.

Let Q1,Qs, ..., Qmn be the (a,b)-strands of P. Using the decomposition of
the path as defined above, we can describe P in terms of ¢;, s;, P;, Q; and R},
since each R; can be written in terms of s;, ); and R} in a unique manner.
See figure 4.6. In the (a + b, b)-expansion of the graph, we use a copy of the
(a,b)-strands of P, denoted @Q;, to extend the path. Let Q = {q1,q2,...,q}
be the pairs of end edges of the (§ +1,a + b — (5 + 1))-strands in G’iwb’b,
defined in the same order as the pairs of end edges in 7. Let R}, R}, ..., R}
denote the (§ + 1,a + b — (5 + 1))-strands, where each R] is written in
terms of f~1(s;), Q;, and R;, in the same manner in which R; is described
by s;,R; and ;. Since we are not changing the structure of the path outside
of S, and the ends of the (a,b)-stands of the path remain the same. Then
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P" = Plq 1R q12P5q2,1 - - Rjq2F;,, is a Hamilton path in Gia+b,b' See

figure 4.7. O]
Theorem 4.4. Given k > 0, there exists an Nj and rj such that if:
1. n > Ng; and

2. for x,y € {u,v}, there exists a Hamilton xoy;-path in GP(n,k) with
0<j<l[5)

then there exists a Hamilton xoy;-path in GP(n — rik, k) and a Hamilton
xoy;-path in GP(n+ rik, k).

Proof. For some fixed ¢ and variable j a multiple of k, let f, be equal to
the number of ways the end edges of (i, j)-strands of P can pair up. Let
If n > Ny, then | 5] > myk[fi 4 1]. Thus there are at least my, pairs of cuts
C; and Cj;; which match and where j is a value between &k and k[f; + 1].
There exists a number a that is repeated f’;’fl times. So if we choose % of
the repeated a’s to expand or reduce with, then n changes by (“ta)k = rik.
Thus by Lemma 4.3 we change the Hamilton path into a Hamilton path in

GP(n — rik, k) or into a Hamilton path in GP(n + rik, k). O

This theorem establishes that there are a finite number of base cases to
consider, in order to prove, by induction on n, the existence or nonexistence
of Hamilton paths in GP(n, k), for each value of k.
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Figure 4.3: Decompose the path in terms of (
of P, Ry, Ry, R3, and Ry, and (a,n — (a — (|
P3, P4, and P5.
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| +1)))-strands of P, Py, P,

:
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Figure  4.5: An  (a,b)-reduction in  GP(n,k), where

the Hamilton path Plti 1Rt 2Pytoq - - - Rjty1 Pl becomes
Pllt11/s11|R1[s12/t12) Palta1/s21|Rals21/t21] Palts1/sa1)Ra[sa2/ts1] Py —
[ta1/s31|R3[s32/ts2]P:
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Figure 4.7: An (a,b)-expansion in GP(n,k) with Hamilton path P” =
PlaaR{q2Poge i Ryqep - - Ryqua Py y where RY = Ry, Ry = RyQ1RjQo,
13/ = gQg, and RZ = Q4.
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Chapter 5

Conclusion

We have provided a general approach for showing that GP(n, k) is Hamilton
connected or Hamilton laceable. Since the cases k = 1, 2, and 3 have been
dealt with, the next case to look at is £ = 4. Working with some of the smaller
values of n in GP(n,4), we know that most of the necessary Hamilton paths
exist. GP(12,4) is a special case presented in Conjecture 1.5, where for j
even, no Hamilton wyu;-path exists. General progress in Conjecture 1.5 or
Conjecture 1.6 would be welcome.
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