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Abstract

The purpose of this paper is to present an overview of families of cutting planes for mixed integer

programming problems. We examine the families of disjunctive inequalities, split cuts, mixed integer

rounding inequalities, mixed integer Gomory cuts, intersection cuts, lift-and-project cuts, and reduce-

and-split cuts. In practice, mixed integer Gomory cuts are very useful in obtaining solutions to mixed

integer programming problems. Hence, we also examine how to use intersection cuts, lift-and-project

cuts, and reduce-and-split cuts to obtain cuts which are stronger than a mixed integer Gomory cut.
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1 Introduction

Mixed integer programming is a generalization of integer programming wherein only some variables are
constrained to take integer values; for example, a mixed integer programming minimization problem can
be denoted as min{cx : Ax ≤ b, x ≥ 0 , xj ∈ Z for j ∈ {1, . . . , p}} where A ∈ R

m×(p+n), b ∈ R
m. As

mixed integer programming is a generalization of pure integer programming, it remains NP-hard to find
optimal solutions to such problems; however, there are a significant number of real-world problems that
one can model as a mixed integer programming problem. As a result, there is a practical importance to
having the capability to solve mixed integer programming problems of a relatively large size.

A general solution technique in integer programming is to use the linear programming relaxation
along with various types of cutting planes to assist the solver in finding an optimal integer solution (a
cutting plane is a linear inequality that all integer solutions of the linear programming relaxation satisfy).
Mixed integer linear programming follows this same idea, using linear programming and cutting planes
to arrive at solutions which have integral components where specified. An additional intrigue, however,
of mixed integer programming is the fact that we cannot form Gomory cutting planes as in pure integer
programming problems (this is due to the fact that the argument used to derive Gomory cuts does not
apply in the mixed integer case). We thus need to develop families of cutting planes which will either
generalize in this context or apply solely to this situation.

This paper will present several families of cutting planes that could be used for mixed integer pro-
gramming problems. We assume that the reader has a good background in linear programming as well
as some knowledge of integer programming. The goal is to provide the reader with a short introduction
to many of the families of cutting planes used to solve mixed integer programming problems in current
codes.

We first introduce two families of cutting planes (disjunctive inequalities and split cuts) which gen-
eralize from integer programming to the mixed integer case as well as one family of cuts formed by a
technique called mixed integer rounding. Next, we introduce the family of cuts Gomory proposed for
mixed integer problems to be used in place of the pure integer cutting planes. A particular focus will be
made on mixed integer Gomory cuts since they have a high level of practical importance (they are among
the most generally useful cuts available for use in current mixed integer solver codes). This paper will
demonstrate links between the other families of cutting planes and the mixed integer Gomory cuts.

The remainder of this essay will introduce several additional families of cuts with the aim of finding a
family of cuts that are stronger than mixed integer Gomory cuts, as such a family will potentially be of
practical importance in improving the quality of mixed integer programming codes. The paper proceeds
as follows:

• The remainder of Section 1 introduces the notational conventions used throughout this paper.

• Section 2 introduces three types of mixed integer cutting planes and demonstrates the equivalence
between these families.

• Section 3 introduces the mixed integer Gomory cut (a cut with links to the pure integer Gomory
cuts) and intersection cuts. This section will also establish the mixed integer Gomory cut as a
member of several of the families of cutting planes.

• Section 4 introduces a family of cutting planes called lift-and-project cuts. The section also covers
the links between these cuts and mixed integer Gomory cuts.

• Section 5 presents techniques for improving mixed integer Gomory cuts.

1.1 Notational conventions

Consider a mixed integer problem with p integer-constrained and n non-integer constrained variables.
We denote the set of feasible points to this problem as {x ∈ R

p+n | Ax ≤ b, x ≥ 0, xj ∈ Z for j ∈ I}
where A ∈ R

m×(p+n), b ∈ R
m, and I is the set of indices of the integer-constrained variables (without

loss of generality, we consider this to be {1, . . . , p}). We denote this set of feasible points by PI and let
P = {x ∈ R

p+n : Ax ≤ b, x ≥ 0} be the feasible set of the LP relaxation obtained from relaxing the
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integral constraints on the variables xj for j ∈ I. We denote by J the set of indices of the remaining,
non-negative real variables.

Where necessary, we denote an optimal solution to the LP relaxation of this problem (namely min{cx :
x ∈ P} for some cost function cT ∈ R

p+n) by x̄. Without loss of generality, we will assume that x̄ is a basic
solution and denote by B and N the set of indices of variables that are basic and nonbasic, respectively,
in x̄. Let BI = B ∩ I, BJ = B ∩ J , NI = N ∩ I, and NJ = N ∩ J denote the integer-constrained and
continuous basic and nonbasic variables, respectively.

We denote a row k of the simplex tableau as follows:

xk +
∑

i∈NI

ākjxj +
∑

j∈NJ

ākjxj = b̄k .

In many cases, we will be interested in rows of the simplex tableau for the LP relaxation of (MIP) having
k ∈ I but b̄k /∈ Z (since then x̄ is not a feasible solution to the mixed integer problem and we will
then want to form cutting planes that will cut off this point). Under these circumstances, we define
f = b̄k − ⌊b̄k⌋, fj = ākj − ⌊ākj⌋, and I ′ = I\{k}.

1.2 Basic concepts of valid inequalities

Proposition 1.1. If x ≥ 0 and both
n∑

j=1

c1
jxj ≤ c1

0 and
n∑

j=1

c2
jxj ≤ c2

0 are valid inequalities for S1 and S2,

respectively, then
n∑

j=1

min{c1
j , c

2
j}xj ≤ max{c1

0, c
2
0} is a valid inequality for S1 ∪ S2.

Proof. Let x ∈ S1∪S2. Then,
n∑

j=1

min{c1
j , c

2
j}xj ≤ c1

0 and
n∑

j=1

min{c1
j , c

2
j}xj ≤ c2

0. Thus,
n∑

j=1

min{c1
j , c

2
j}xj ≤

max{c1
0, c

2
0}.

2 Disjunctive inequalities, split cuts, and mixed integer round-

ing

In the study of valid inequalities, we see that there are two ideas reused many times among the various
families of cutting planes. The first technique, rounding, is the basis of the Gomory cutting plane
algorithm for pure integer programming problems. The idea is that given an inequality of the form
cx ≤ c0 where c is an integral vector and all of the variables of x are integer-constrained, we must have
that cx ≤ ⌊c0⌋ is satisfied by every integral x.

The second technique, disjunction, relies on a disjunction of the form π1x ≤ π1
0 ∨ π2x ≥ π2

0 where
points must satisfy one of the two conditions π1x ≤ π1

0 or π2x ≥ π2
0 . A special type of disjunction called

a split disjunction is of particular interest. Consider P as above and let (π, π0) ∈ Z
p+n+1 with πj = 0

for j ∈ J . Then all points in PI , that is, all points x ∈ P such that xj ∈ Z, j ∈ {1, . . . , p}, satisfy either
πx ≤ π0 or πx ≥ π0 +1. A simple example of a split disjunction is as follows: Suppose that x̄ is a solution
for a linear programming relaxation with feasible region P , x̄k /∈ Z for some k ∈ I, and let π be such that
πj = 1 if j = k and 0 otherwise, and let π0 = ⌊x̄i⌋. For any solution to a mixed integer programming
problem PI , we must have either xk ≤ π0 or xk ≥ π0 + 1.

These two techniques, rounding and disjunction, play vital roles in the validity and construction of
many families of cuts. As we shall see, we often need both techniques to derive valid cutting planes for
mixed integer programming problems.

2.1 Disjunctive inequalities and split cuts

Definition 2.1.

• We denote by D(π, π1
0 , π2

0) a disjunction of the form πx ≤ π1
0 ∨ πx ≥ π2

0 . Furthermore, let FD be
the set of points x satisfying D(π, π1

0 , π2
0), where FD = {x | πx ≤ π1

0 or πx ≥ π2
0}.
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• We call a disjunction a split disjunction if (π, π0) ∈ Z
p+n+1, πj = 0 for j ∈ J , and π2

0 = π1
0 + 1.

We denote such a disjunction by D(π, π0). If the disjunction is not a split disjunction, we call it a
general disjunction.

• The inequality cx ≤ c0 is a disjunctive inequality (or disjunctive cut) if there exist α, β ∈ R
+ and

(π, π0) ∈ Π such that

cx − α(πx − π0) ≤ c0

cx + β(πx − (π0 + 1)) ≤ c0

are valid inequalities for P .

• An inequality cx ≤ c0 is a split cut with respect to I if there exists (π, π0) ∈ Z
p+n+1 such that

cx ≤ c0 is valid for both {x ∈ P | πx ≤ π0} and {x ∈ P | πx ≥ π0 + 1} (i.e. cx ≤ c0 is valid for
P ∩ FD(π,π0)).

Remark 2.2.

• We note that some general disjunctions are valid for PI whereas others are not. By contrast, every
split disjunction is valid for PI .

• If cx ≤ c0 is a disjunctive inequality then we see that it is valid for PI : let x ∈ PI .

– If πx ≤ π0, then −α(πx − π0) ≥ 0. So cx ≤ c0.

– If πx ≥ π0 + 1, then β(πx − (π0 + 1)) ≥ 0. Therefore cx ≤ c0.

• If cx ≤ c0 is a split cut, the we see that it is valid for PI since {x ∈ P | π0 < πx < π0 + 1} contains
no integral points.

We now show a result which indicates that using only a relatively small set of disjunctions allows us
to generate all valid disjunctive inequalities.

Proposition 2.3. Let P be bounded and suppose cx ≤ c0 is a valid inequality for (P ∩ {x | xk ≤
π0}) ∪ (P ∩ {x | xk ≥ π0 + 1}). Then there exist α ≥ 0 and β ≥ 0 such that

cx − α(xk − π0) ≤ c0 (1)

cx + β(xk − (π0 + 1)) ≤ c0 (2)

are valid inequalities for P .

Before beginning the proof of this proposition, we need an auxiliary lemma:

Lemma 2.4. Let cx ≤ c0 be a valid inequality for P = {x | Ax ≤ b, x ≥ 0}. If A =

(
A′

I

)

for some

matrix A′, then there exists u ≥ 0 such that uA ≥ c and ub ≤ c0.

Proof. Suppose that A =

(
A′

I

)

where A′ is an m × n matrix and I is an n × n matrix.

• Case 1: P 6= ∅. Then max{cx | x ∈ P} has a feasible solution bounded above by c0; hence the dual
of max{cx | x ∈ P} is also feasible, so there exists a real-valued, non-negative 1×m matrix u such
that uA ≥ c and ub < c0.

• Case 2: P = ∅. Consider the dual problem to max{cx | x ∈ P}, namely min{ub | uA ≥ c, u ≥ 0},
where u is a real-valued, non-negative 1 × (m + n) matrix. Consider a particular u where

uj =

{

0 if j ∈ {1, . . . ,m}

ci if j = m + i, i ∈ {1, . . . , n}.

We see that uA = c so u is a feasible solution to the dual, so by the duality theorem min{ub | uA ≥ c}
is unbounded. Hence, there exists u ≥ 0 such that uA ≥ c and ub ≤ c0.
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In both cases, we see that there exists u ≥ 0 such that uA ≥ c and ub ≤ c0.

Proof of Proposition 2.3. Suppose that cx ≤ c0 is valid for (P∩{x | xk ≤ π0})∪(P∩{x | xk ≥ π0+1}).
Then cx ≤ c0 is valid for P ∩ {x | xk ≤ π0} and P ∩ {x | xk ≥ π0 + 1}. Since P is bounded, either P is
of the form necessary for Lemma 2.4 or there exists K ∈ R

p+n such that x ≤ K and we can construct
an equivalent constraint matrix for P of the correct form. Hence, without loss of generality we can
conclude by Lemma 2.4 there exists a real-valued, non-negative 1×m matrix u1 such that u1A+αek ≥ c,
u1b + απ0 ≤ c0 and there exists a real-valued, non-negative 1 × m matrix u2 such that u2A − βek ≥ c,
u2b − β(π0 + 1) ≤ c0. Now, let x ∈ P and we see:

cx ≤ (u1A + αek)x

= u1Ax + αekx

≤ u1b + αxk

≤ c0 − απ0 + αxk.

So, cx − α(xk − π0) ≤ c0 is valid for P . Similarly,

cx ≤ (u2A − βek)x

= u2Ax − βekx

≤ u2b − βxk

≤ c0 + β(π0 + 1) − βxk.

So, cx + β(xk − (π0 + 1)) ≤ c0 is valid for P .

Proposition 2.5. Let P1(π, π0) = P ∩ {x | πx ≤ π0} and P2(π, π0) = P ∩ {x | πx ≥ π0 + 1}. Then an
inequality cx ≤ c0 is valid for P1(π, π0)∪P2(π, π0) if and only if it is valid for conv(P1(π, π0)∪P2(π, π0)).

Proof. “⇒” Suppose x ∈ conv(P1(π, π0) ∪ P2(π, π0)), then x = λx1 + (1 − λ)x2 for some λ ∈ [0, 1],
x1 ∈ P1, and x2 ∈ P2. Since cx1 ≤ c0 and cx2 ≤ c0, we thus have cx ≤ c0.
“⇐” Let x ∈ P1(π, π0) ∪ P2(π, π0) Then either x ∈ P1(π, π0) or x ∈ P2(π, π0). Since cx ≤ c0 is valid for
conv(P1(π, π0) ∪ P2(π, π0)), we thus have that it is certainly valid in the above cases.

2.2 Mixed integer rounding inequalities

The concept of mixed integer rounding was motivated by the work of Gomory [10]. In this section, we
define the mixed integer rounding cuts and verify the validity of these inequalities.

Definition 2.6 (Nemhauser and Wolsey, [13]). Let c1, c2 ∈ R
p+n be such that cj := c1

j = c2
j for all j ∈ J ,

let c1
0, c2

0 ∈ R and suppose that c1x ≤ c1
0 and c2x ≤ c2

0 are valid for P . Let f = (c2
0 − c1

0)− ⌊c2
0 − c1

0⌋, and
define the mixed integer rounding inequality as

∑

j∈I

⌊c2
j − c1

j⌋xj + 1
1−f

(
∑

j∈I

c1
jxj +

∑

j∈J

cjxj − c1
0

)

≤ ⌊c2
0 − c1

0⌋.

Remark 2.7. There is another definition (due to Wolsey, [15]) that is more compact but less general
than the above. If cx ≤ c0 is valid for P , then the following is valid for PI :

∑

j∈I
fj≤f

⌊cj⌋xj +
∑

j∈I
fj>f

(⌊cj⌋ +
fj−f

1−f
)xj + 1

1−f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋.

We will see a proof of the validity of the inequality in this form in Proposition 2.12 which will demonstrate
why it is less general than Definition 2.6. Articles in the literature refer to mixed integer rounding as one
of the above inequalities, though not always the exact form the author had in mind. Care must be taken
to use the correct definition for the application at hand.

We begin the process of demonstrating the validity of the mixed integer rounding inequality with a
preliminary lemma:
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Lemma 2.8 (Nemhauser and Wolsey, [12]). Given an inequality cx ≤ c0 that is valid for P , then the
following inequality is valid for PI :

∑

j∈I

⌊cj⌋xj +
1

1 − f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋.

Proof. Let x ∈ PI and recall that f = c0 − ⌊c0⌋.

• Case 1:
∑

j∈J

cjxj > f − 1. Since xj ≥ 0, we see that

∑

j∈I

⌊cj⌋xj ≤
∑

j∈I

cjxj

≤ c0 −
∑

j∈J

cjxj , since cx ≤ c0 is valid for P

< c0 − (f − 1)

= c0 − (c0 − ⌊c0⌋ − 1)

= ⌊c0⌋ + 1.

So, by the integrality of the left-hand side of the inequality,
∑

j∈I

⌊cj⌋xj ≤ ⌊c0⌋. Moreover,

1

1 − f

∑

j∈J
cj<0

cjxj ≤ 0

so we have
∑

j∈I

⌊cj⌋xj +
1

1 − f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋.

• Case 2:
∑

j∈J

cjxj ≤ f − 1. Since xj ≥ 0 we see that

∑

j∈I

⌊cj⌋xj + 1
1−f

(
∑

j∈J
cj<0

cjxj

)

≤
∑

j∈I

cjxj + 1
1−f

(
∑

j∈J
cj<0

cjxj

)

≤ c0 −
∑

j∈J

cjxj + 1
1−f

(
∑

j∈J
cj<0

cjxj

)

= c0 −
∑

j∈J
cj≥0

cjxj −
∑

j∈J
cj<0

cjxj + 1
1−f

(
∑

j∈J
cj<0

cjxj

)

≤ c0 −
∑

j∈J
cj<0

cjxj + 1
1−f

(
∑

j∈J
cj<0

cjxj

)

≤ c0 + ( 1
1−f

− 1)

(
∑

j∈J
cj<0

cjxj

)

≤ c0 + f
1−f

(f − 1), since
∑

j∈J
cj<0

cjxj ≤
∑

j∈J

cjxj ≤ f − 1

≤ c0 − f

= ⌊c0⌋.
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So, the inequality is valid for PI .

Theorem 2.9 (Nemhauser and Wolsey, [12]). Given two inequalities c1x ≤ c1
0 and c2x ≤ c2

0 that are
valid for P , define f = (c2

0 − c1
0) − ⌊c2

0 − c1
0⌋. Then

∑

j∈I

⌊c2
j − c1

j⌋xj + 1
1−f

(
∑

j∈I

c1
jxj +

∑

j∈J

min{c1
j , c

2
j}xj − c1

0

)

≤ ⌊c2
0 − c1

0⌋

is a valid inequality for PI .

Proof. Let x ∈ PI . Since xj ≥ 0 for all j ∈ J , c1x ≤ c1
0, and c2x ≤ c2

0, we see that
∑

i∈I

c1
jxj +

∑

j∈J

min{c1
j , c

2
j}xj ≤ c1

0 and
∑

i∈I

c2
jxj +

∑

j∈J

min{c1
j , c

2
j}xj ≤ c2

0. So, we have:

∑

j∈I

c2
jxj +

∑

j∈J

min{c1
j , c

2
j}xj −

∑

j∈I

c1
jxj +

∑

j∈I

c1
jxj − c1

0 ≤ c2
0 − c1

0

∑

j∈I

(c2
j − c1

j )xj − (c1
0 −

∑

j∈I

c1
jxj −

∑

j∈J

min{c1
j , c

2
j}xj) ≤ c2

0 − c1
0.

Let s = c1
0−

∑

j∈I

c1
jxj −

∑

j∈J

min{c1
j , c

2
j}xj . Since

∑

j∈I

c1
jxj +

∑

j∈J

min{c1
j , c

2
j}xj ≤ c1

0, we see that s ≥ 0 and so

−s ≤ 0. Consider
∑

j∈I

(c2
j − c1

j )xj +(−s) ≤ c2
0− c1

0 and apply Lemma 2.8 to obtain
∑

j∈I

⌊c2
j − c1

j⌋xj −
1

1−f
s ≤

⌊c2
0 − c1

0⌋. Replacing s, we get the desired result.

Corollary 2.10. The mixed integer rounding inequality is a valid inequality for PI .

Proof. Take c1
j = c2

j for each j ∈ J in Theorem 2.9 and we obtain this result.

Notation 2.11. For x, y ∈ R, define (x − y)+ =

{

0 if x ≤ y

x − y otherwise
.

Proposition 2.12. If cx ≤ c0 is valid for P , then the inequality

∑

i∈I

(⌊cj⌋ +
(fj−f)+

1−f
)xj + 1

1−f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋

is valid for PI .

Proof. We note that
0 ≤ 0 (1)

is valid for P . We have the following:
∑

j∈I
fj≤f

cjxj +
∑

i∈I
fj>f

cjxj +
∑

j∈J

cjxj ≤ c0

∑

j∈I
fj≤f

cjxj +
∑

j∈I
fj>f

(⌈cj⌉ − (1 − fj))xj +
∑

j∈J

cjxj ≤ c0

∑

j∈I
fj≤f

cjxj +
∑

j∈I
fj>f

⌈cj⌉xj +
∑

j∈J

cjxj −
∑

j∈I
fj>f

(1 − fj)xj ≤ c0.

We note that s =
∑

j∈I
fj>f

(1 − fj)xj > 0 so we have

∑

j∈I
fj≤f

cjxj +
∑

j∈I
fj>f

⌈cj⌉xj +
∑

j∈J

cjxj − s ≤ c0. (2)
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We apply Theorem 2.9 to (1) and (2):

∑

j∈I
fj≤f

⌊cj⌋xj +
∑

j∈I
fj>f

⌊⌈cj⌉⌋xj + 1
1−f

(
∑

j∈J
cj<0

cjxj − s) ≤ ⌊c0⌋

∑

j∈I
fj≤f

⌊cj⌋xj +
∑

j∈I
fj>f

⌈cj⌉xj + 1
1−f

(
∑

j∈J
cj<0

cjxj −
∑

j∈I
fj>f

(1 − fj)xj) ≤ ⌊c0⌋

∑

j∈I
fj≤f

(⌊cj⌋ +
(fj−f)+

1−f
)xj +

∑

j∈I
fj>f

(⌈cj⌉ −
1−fj

1−f
)xj + 1

1−f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋

∑

j∈I
fj≤f

(⌊cj⌋ +
(fj−f)+

1−f
)xj +

∑

j∈I
fj>f

(⌊cj⌋ + 1 − 1−fj

1−f
)xj + 1

1−f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋

∑

j∈I
fj≤f

(⌊cj⌋ +
(fj−f)+

1−f
)xj +

∑

j∈I
fj>f

(⌊cj⌋ +
fj−f

1−f
)xj + 1

1−f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋

∑

j∈I

(⌊cj⌋ +
(fj−f)+

1−f
)xj + 1

1−f

∑

j∈J
cj<0

cjxj ≤ ⌊c0⌋.

This is thus valid for PI .

2.3 The equivalence of disjunctive, split, and mixed integer rounding inequal-
ities

Theorem 2.13 (Nemhauser and Wolsey, [13]). The families of disjunctive inequalities, split cuts, and
mixed integer rounding inequalities are the same.

Proof.

1. We show that a split cut is a disjunctive inequality. Let D(π, π0) be a split disjunction and cx ≤ c0

be a split cut for this disjunction. Now the inequality cx ≤ c0 is valid for P ∩ {x | πx ≤ π0} if and
only if there exists α ≥ 0 such that cx − α(πx − π0) ≤ c0 is valid for P . We can see this using LP
duality:

cx ≤ c0 is valid for {x | Ax ≤ b, x ≥ 0, πx ≤ π0}

⇔ max{cx | Ax ≤ b, πx ≤ π0, x ≥ 0} ≤ c0

⇔ ∃y ≥ 0, α ≥ 0 such that yA + απ ≥ c and yb + απ0 ≤ c0.

Then for every x ∈ P ,

(c − απ)x ≤ yAx

≤ yb

≤ c0 − απ0.

Hence, for all x ∈ P , cx − α(πx − π0) ≤ c0.

Likewise, cx ≤ c0 is valid for P ∩ {x | πx ≥ π0 + 1} if and only if there exists β ≥ 0 such that
cx + β(πx − π0 − 1) ≤ c0 is valid for P , which we can again see using LP duality:

cx ≤ c0 is valid for {x | Ax ≤ b, x ≥ 0, πx ≥ π0 + 1}

⇔ max{cx | Ax ≤ b, πx ≥ π0 + 1, x ≥ 0} ≤ c0

⇔ ∃y ≥ 0, β ≥ 0 such that yA − βπ ≥ c and yb − β(π0 + 1) ≤ c0.
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Then for every x ∈ P ,

(c + βπ)x ≤ yAx

≤ yb

≤ c0 + β(π0 + 1).

Hence, for all x ∈ P , cx + β(πx − (π0 + 1)) ≤ c0.

So by Definition 2.1 we have that cx ≤ c0 is a disjunctive inequality.

2. If cx ≤ c0 is a disjunctive inequality, there exist α ≥ 0 and β ≥ 0 such that cx − α(πx − π0) ≤ c0

and cx+β(πx− (π0 +1)) ≤ c0 for all x ∈ P . We can use the above argument in the other direction
to conclude that cx ≤ c0 is a split cut. Hence, disjunctive inequalities and split cuts are equivalent.

3. Next, we will show that the mixed integer rounding inequality is a disjunctive inequality. Let x ∈ P
and suppose that

c1
IxI + cJxJ ≤ c1

0 (1)

c2
IxI + cJxJ ≤ c2

0. (2)

Let πI = c2
I − c1

I , πJ = 0, π0 = ⌊c2
0 − c1

0⌋, and γ = c2
0 − c1

0 − π0. Note that πx = πIxI .

Take 1
1−γ

· (1) and let α = 1. We notice that 1
1−γ

≥ 0 and we obtain:

c1
IxI + cJxJ − c1

0 ≤ 0
1

1−γ
(c1

IxI + cJxJ − c1
0) ≤ 0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) − (πx − π0) ≤ π0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) − α(πx − π0) ≤ π0 (1*)

Similarly, we take 1
1−γ

· (2) and β = γ
1−γ

to obtain:

c2
IxI + cJxJ − c2

0 ≤ 0

c2
IxI + cJxJ − (γ + c1

0 + π0) ≤ 0

(c2
I − c1

I)xI + (c1
IxI + cJxJ − c1

0) − γ ≤ π0

πIxI + 1
1−γ

(c1
IxI + cJxJ − c1

0) + 1−γ−1
1−γ

(c1
IxI + cJxJ − c1

0) − γ ≤ π0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) + γ
1−γ

(−c1
IxI − cJxJ + c1

0 − 1 + γ) ≤ π0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) + γ
1−γ

(−c1
IxI − cJxJ + (c1

0 + γ) − 1) ≤ π0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) + β(−c1
IxI − cJxJ + (c2

0 − π0) − 1) ≤ π0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) + β(−c1
IxI − cJxJ + c2

0 − π0 − 1) ≤ π0.

We note that −cJxJ + c2
0 ≥ c2

IxI and obtain:

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) + β(−c1
IxI + c2

IxI − π0 − 1) ≤ π0

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) + β(πx − π0 − 1) ≤ π0 (2*)

Now since (1∗) and (2∗) are valid for P , we can apply Definition 2.1 to (1∗) and (2∗) to obtain the
mixed integer rounding inequality, namely:

πx + 1
1−γ

(c1
IxI + cJxJ − c1

0) ≤ π0.
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4. Finally, we show that a disjunctive inequality is a mixed integer rounding inequality. Let x ∈ P
and let π be such that πj = 0 for all j ∈ J (hence we note that πIxI = πx). Suppose that for some
α ≥ 0, β ≥ 0 we have:

cx − α(πx − π0) ≤ c0 (1)

cx + β(πx − π0 − 1) ≤ c0. (2)

Let f = (c0 +β(π0 +1)−c0 +απ)−⌊c0 +β(π0 +1)−c0 +απ⌋ = (απ+β(π0 +1))−⌊απ+β(π0 +1)⌋.

If both α = 0 and β = 0, apply Definition 2.6 to (1) and (2) to obtain 1
1−f

(cx− c0) ≤ 0, and hence
cx ≤ c0.

If α = 0 but β 6= 0, apply Definition 2.6 to 1
β
(1) and 1

β
(2), noting that f = (β(π0+1)

β
)−⌊β(π0+1)

β
⌋ = 0:

( cI

β
+ πI −

cI

β
)xI + 1

1−f
1
β
(cx − c0) ≤ ⌊ 1

β
(c0 + β(π0 + 1) − c0)⌋

πIxI + 1
1−0

1
β
(cx − c0) ≤ ⌊β

β
(π0 + 1)⌋

πx + 1
β
(cx − c0) ≤ π0 + 1

1
β
(cx − c0) ≤ π0 + 1 − πx (*)

cx + β(πx − (π0 + 1)) ≤ c0.

So, if πx ≤ π0 + 1 then by line (*) we have 1
β
(cx − c0) ≤ 0, and hence cx ≤ c0. Otherwise, if

πx ≥ π0 + 1, then β(πx − (π0 + 1)) ≥ 0 and thus cx ≤ c0.

If β = 0 but α 6= 0, apply Definition 2.6 to 1
α
(1) and 1

α
(2):

1
α
(απIxI) + 1

α
(cx − απx + απ0 − c0) ≤ ⌊π0⌋

πIxI + 1
α
(cx − c0) − πx + π0 ≤ π0

πx + 1
α
(cx − c0) − πx + π0 ≤ π0

cx − c0 ≤ 0.

Hence, cx ≤ c0.

If we are not in one of the special cases, take 1
α+β

·(1) and 1
α+β

·(2) and rearrange in terms of xI

and xJ .

1
α+β

cIxI + 1
α+β

cJxJ − α
α+β

(πx − π0) ≤
1

α+β
c0 (1*)

1
α+β

cIxI + 1
α+β

cJxJ + β
α+β

(πx − π0 − 1) ≤ 1
α+β

c0. (2*)

Now we compute c2
I − c1

I = ( 1
α+β

(cI + βπI)) − ( 1
α+β

(cI − απI)) = β+α
α+β

πI = πI and c2
0 − c1

0 =
1

α+β
(c0 + β(π0 + 1)) − 1

α+β
(c0 − απ0) = π0 + β

α+β
. Let γ = β

α+β
and note that 0 < γ < 1. Apply

Definition 2.6 to (1∗) and (2∗) to obtain:

πIxI + 1
1−γ

(
1

α+β
((cI − απI)xI + cJxJ − c0 + απ0)

)

≤ π0

πx + 1

1−
β

α+β

1
α+β

((cI − απI)xI + cJxJ − c0 + απ0)) ≤ π0

πx + 1
α
(cIxI + cJxJ − c0) − πx + π0 ≤ π0

1
α
(cIxI + cJxJ − c0) ≤ 0

cx ≤ c0.

Hence, we have that cx ≤ c0.
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2.4 Are all mixed integer cuts disjunctive/split/mixed integer rounding cuts?

In the special case where 0 ≤ xj ≤ 1 for all j ∈ I ∪ J , we have the following result:

Theorem 2.14 (Nemhauser and Wolsey, [13]). Let P = {x ∈ R
p+n | Ax ≤ b, 0 ≤ x ≤ 1} and let

T = {x ∈ P | xj ∈ {0, 1} for all j ∈ I}. Then all valid inequalities for T are disjunctive inequalities for
P .

Using Theorem 2.13, we get the following corollary:

Corollary 2.15. All valid inequalities for T = {x ∈ R
p+n | Ax ≤ b, 0 ≤ x ≤ 1, xj ∈ {0, 1} for all j ∈ I}

are disjunctive inequalities, mixed integer rounding inequalities, and split cuts.

We naturally wonder whether or not the same idea holds in the general integer case; however, there
is an example due to Schrijver (see [12] for more information) which establishes that there are valid
inequalities to a general mixed integer problem which do not belong to any of the above families.

3 Mixed integer Gomory cuts and intersection cuts

As mentioned in the introduction, the Gomory pure integer cutting plane method does not convert into a
method for mixed integer programming (the technique used to create that family of cutting planes is not
valid in the mixed integer case). Realizing this, Gomory introduced a new family of cuts for the mixed
integer problem in [10]; we call these cuts mixed integer Gomory cuts. These cuts rely on the use of a
disjunction and rounding to cut off an extreme point of the polyhedron of the LP relaxation of a mixed
integer problem that is fractional for integer-constrained variables. There are several ways to derive this
cut due to the fact that this cut belongs to a number of families of cutting planes (as we shall demonstrate
throughout the remainder of this paper). We begin our discussion of the mixed integer Gomory cut with
an elementary derivation and definition of the cut.

3.1 Derivation of the mixed integer Gomory cut

Theorem 3.1. Let I ′ = I\{k} and suppose we have a row from an optimal simplex tableau of the form
xk +

∑

i∈I′

ākjxj +
∑

j∈J

ākjxj = b̄k where k ∈ I and b̄k /∈ Z. Define fj = ākj − ⌊ākj⌋ and f = b̄k − ⌊b̄k⌋.

Then the following inequality is valid for PI :

1
f

∑

j∈I′

fj≤f

fjxj + 1
1−f

∑

j∈I′

fj>f

(1 − fj)xj + 1
f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1. (MIG)

Proof. Rewrite xk +
∑

i∈I′

ākjxj +
∑

j∈J

ākjxj = b̄k as

xk +
∑

i∈I′

ākjxj +
∑

j∈J
ākj≥0

ākjxj +
∑

j∈J
ākj<0

ākjxj = b̄k. (1)

Let x ∈ PI and set t as follows (so that t is integral):

t = xk +
∑

i∈I′

fj≤f

⌊ākj⌋xj +
∑

i∈I′

fj>f

⌈ākj⌉xj . (2)

Take (1) − (2) to obtain:
∑

i∈I′

fj≤f

(ākj − ⌊ākj⌋)xj +
∑

i∈I′

fj>f

(ākj − ⌈ākj⌉)xj +
∑

j∈J
ākj≥0

ākjxj +
∑

j∈J
ākj<0

ākjxj = b̄k − t

∑

i∈I′

fj≤f

fjxj +
∑

i∈I′

fj>f

(fj − 1)xj +
∑

j∈J
ākj≥0

ākjxj +
∑

j∈J
ākj<0

ākjxj = b̄k − t. (*)
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Case 1: ⌊b̄k⌋ ≥ t. We note that
∑

j∈I′

fj>f

(fj − 1)xj ≤ 0 and
∑

j∈J
ākj<0

ākjxj ≤ 0. Hence, by (*)

∑

j∈I′

fj≤f

fjxj +
∑

j∈J
ākj≥0

ākjxj ≥ b̄k − t ≥ b̄k − ⌊b̄k⌋ = f.

Since 1
1−f

≥ 0, we have:

1
f

∑

j∈I′

fj≤f

fjxj + 1
f

∑

j∈J
ākj≥0

ākjxj + −1
1−f

∑

j∈I′

fj>f

(fj − 1)xj + −1
1−f

∑

j∈J
ākj<0

ākjxj ≥ 1

1
f

∑

j∈I′

fj≤f

fjxj + 1
1−f

∑

j∈I′

fj>f

(1 − fj)xj + 1
f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1.

Case 2: ⌈b̄k⌉ ≤ t. Then by (*)
∑

j∈I′

fj>f

(1 − fj)xj −
∑

j∈J
ākj<0

ākjxj =
∑

j∈I′

fj≤f

fjxj +
∑

j∈J
ākj≥0

ākjxj

︸ ︷︷ ︸

≥0

+ t − b̄k

≥ t − b̄k

≥ ⌈b̄k⌉ − b̄k

= ⌊b̄k⌋ + 1 − b̄k

= 1 − f.

Since 1
f

∑

j∈I′

fj≤f

fjxj ≥ 0 and 1
f

∑

j∈J
ākj≥0

ākjxj ≥ 0, we see that

1
f

∑

j∈I′

fj≤f

fjxj + 1
1−f

∑

j∈I′

fj>f

(1 − fj)xj + 1
f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1.

Since the inequality is valid under both terms of the disjunction t ≤ ⌊b̄k⌋ and ⌈b̄k⌉ ≤ t, we thus have that
the inequality is valid for PI .

Definition 3.2. The mixed integer Gomory cut (or MIG cut) is the inequality (MIG) derived as above.

3.2 Mixed integer Gomory cuts and pure integer Gomory cuts

We recall the derivation of the pure integer Gomory cuts, where J = ∅. Given a row of a simplex tableau
of the form xk +

∑

j∈N

ākjxj = b̄k, we rewrite the row as

xk +
∑

j∈N

⌊ākj⌋xj +
∑

j∈N

fjxj = ⌊b̄k⌋ + f.

We rearrange the terms to obtain
∑

j∈N

fjxj − f = ⌊b̄k⌋ − xk −
∑

j∈N

⌊ākj⌋xj .

Notice that when x ∈ PI the right hand side is integral, and also that
∑

j∈N

fjxj ≥ 0. Since
∑

j∈N

fjxj − f

must be integral for a feasible solution x, we see that
∑

j∈N

fjxj − f ≥ 0. We call the resulting valid

inequality
∑

j∈N

fjxj ≥ f the pure integer Gomory cut.
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We wish to compare this to the mixed integer Gomory cut so suppose now that J = ∅. Assuming
that b̄k /∈ Z we obtain the mixed integer Gomory cut:

1
f

∑

j∈I′

fj≤f

fjxj + 1
1−f

∑

j∈I′

fj>f

(1 − fj)xj ≥ 1.

We thus only recover the Gomory cut from the mixed integer Gomory cut when {j ∈ I | fj > f} = ∅.
Moreover, the mixed integer Gomory cut will have a slack that is not integer constrained, whereas in the
pure integer context this slack is always integer constrained. As a result, we see that the mixed integer
Gomory cut and the pure integer Gomory cut are not the same in general.

3.3 Mixed integer Gomory cuts and mixed integer rounding

The mixed integer Gomory cut is closely related to the mixed integer rounding inequalities. In fact, if we
expand the definition of a mixed integer rounding inequality to the inequality shown in Theorem 2.9, we
can derive the mixed integer Gomory cut as an expanded mixed integer rounding inequality. We define
this modified mixed integer rounding inequality as follows.

Definition 3.3. Let c1, c2 ∈ R
p+n, c1

0, c2
0 ∈ R be such that c1x ≤ c1

0 and c2x ≤ c2
0 are valid for P . Then

the expanded mixed integer rounding inequality is defined as

∑

j∈I

⌊c2
j − c1

j⌋xj + 1
1−f

(
∑

j∈I

c1
jxj +

∑

j∈J

min{c1
j , c

2
j}xj − c1

0

)

≤ ⌊c2
0 − c1

0⌋.

The difference between this definition and Definition 2.6 lies in the relaxation of the requirement that
c1
J = c2

J . As mentioned in the motivation of this definition, the validity of the inequality for PI was
established in Theorem 2.9. We now use this definition to derive the mixed integer Gomory cut [12].

Lemma 3.4. The mixed integer Gomory cut is an expanded mixed integer rounding inequality.

Proof. Suppose xk +
∑

j∈I′

ākjxj +
∑

j∈J

ākjxj = b̄k with k ∈ I and b̄k /∈ Z. We can apply Proposition 2.12

to the equation (this hides the application of Definition 3.3). So assume that x ∈ PI and then

xk +
∑

j∈I′

(⌊ākj⌋ +
(fj−f)+

1−f
)xj + 1

1−f

∑

j∈J
ākj<0

ākjxj ≤ ⌊b⌋.

We substitute for xk and simplify to obtain the following:

(b −
∑

j∈I′

ākjxj −
∑

j∈J

ākjxj) +
∑

j∈I′

(⌊ākj⌋ +
(fj−f)+

1−f
)xj + 1

1−f

∑

j∈J
ākj<0

ākjxj ≤ ⌊b⌋

∑

j∈I′

(⌊ākj⌋ − ākj +
(fj−f)+

1−f
)xj −

∑

j∈J
ākj≥0

ākjxj − (1 − 1
1−f

)
∑

j∈J
ākj<0

ākjxj ≤ −b + ⌊b⌋

∑

j∈I′

(−fj +
(fj−f)+

1−f
)xj −

∑

j∈J
ākj≥0

ākjxj + f
1−f

∑

j∈J
ākj<0

ākjxj ≤ −f

1
f

∑

j∈I′

fj≤f

fjxj + 1
f

∑

j∈I′

fj>f

(fj −
fj−f

1−f
)xj + 1

f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1

1
f

∑

j∈I′

fj≤f

fjxj + 1
f

∑

j∈I′

fj>f

f(−fj+1)
1−f

xj + 1
f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1

1
f

∑

j∈I′

fj≤f

fjxj + 1
1−f

∑

j∈I′

fj>f

(1 − fj)xj + 1
f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1.
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Hence, the mixed integer Gomory cut can be derived as an expanded mixed integer rounding inequality.

3.4 Intersection cuts

We next consider a type of cut introduced by Balas [3] based on a split disjunction. Suppose that we
have an optimal solution x̄ to the LP relaxation of (MIP). Assume that x̄ is fractional for some j ∈ I and
also that x̄ is basic with basis B. Given a non-basic variable j ∈ N , define rj as follows:

rj
k =







−ākj if k ∈ B

1 if k = j

0 otherwise

Intuitively, rj is the direction we move in if xj enters on a simplex pivot. Let D(π, π0) be a split
disjunction. Define ǫ(π, π0) = πx̄ − π0 as the amount the basic solution x̄ violates the split disjunction.
Furthermore, for α ∈ R let xj(α) = x̄ + αrj be the line following rj for nonbasic, integer constrained
variable xj . We set αj(π, π0) to be the smallest value α such that xj(α) satisfies D(π, π0) (so αj(π, π0) =
min{α | xj(α) ∈ P ∩ FD(π,π0)}).

Proposition 3.5. If j ∈ N , then

αj(π, π0) =







− ǫ(π,π0)
πrj if πrj < 0

1−ǫ(π,π0)
πrj if πrj > 0

∞ otherwise.

Proof.

• Case 1: πrj < 0. So we will approach πx = π0 as we follow rj toward P ∩ FD(π,π0).

πxj(αj(π, π0)) = π0

π(x̄ + αj(π, π0)r
j) = π0

πx̄ + αj(π, π0)πrj = π0

αj(π, π0) =
π0 − πx̄

πrj

= −
ǫ(π, π0)

πrj

• Case 2: πrj > 0. So we will approach πx = π0 + 1 as we follow rj toward P ∩ FD(π,π0).

πxj(αj(π, π0)) = π0 + 1

π(x̄ + αj(π, π0)r
j) = π0 + 1

αj(π, π0) =
π0 + 1 − πx̄

πrj

=
1 − ǫ(π, π0)

πrj

• Case 3: πrj = 0. Since there is no intersection, set αj(π, π0) = ∞.

Now, we consider the hyperplane passing through each of the points xj(αj(π, π0)), where αj(π, π0) is
finite.

Definition 3.6. The intersection cut is defined as
∑

j∈N

1
αj(π,π0)

xj ≥ 1.
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Figure 1: An example of an intersection cut

Example. Let’s consider a polyhedron P in two dimensions. Let P1(π, π0) = P ∩ {x | πx ≤ π0} and
P2(π, π0) = P ∩ {x | πx ≥ π0 + 1}, then we can visualize the intersection cut geometrically as shown in
Figure 1.

Theorem 3.7 ((Balas, [3]). All points in P ∩ FD(π,π0) satisfy the intersection cut
∑

j∈N

1
αj(π,π0)

xj ≥ 1,

where αj(π, π0) is defined as above.

Proof. Denote the intersection cut as γx ≥ 1; since we can assume that x̄ /∈ {x | γx ≥ 1} by our
construction of the cut, we want to show that P ∩ {x | γx < 1} contains no integral points.

Let C be the closure of P ∩ {x | γx < 1} (i.e. the set P ∩ {x | γx < 1} and all of its finite limit
points). This is the convex hull of x̄ and the points of intersection xj(αj(π, π0)) = x̄ + αj(π, π0)r

j ; each
of these points xj(αj(π, π0)), however, lies on {x | γx = 1}. Hence, {x | γx < 1} ∩ FD(π,π0) = ∅. So, the
intersection cut γx ≥ 1 does not cut off any integral points.

Intersection cuts are inequalities that are valid for P ∩ {x | πx ≤ π0} and P ∩ {x | πx ≥ π0 + 1}.
We thus have that intersection cuts are split cuts; geometrically we note that intersection cuts appear to
be relatively strong inequalities for P ∩ FD(π,π0) (where FD(π,π0) = {x | πx ≤ π0 or πx ≥ π0 + 1}). We
briefly examine this idea:

Definition 3.8.

• The set of all split disjunctions is denoted as Π = {D(π, π0) | (π, π0) ∈ Z
p+n+1, πj = 0 for all

j ∈ J}

• The split closure of P is defined as

SC(P ) =
⋂

D(π,π0)∈Π

conv(P ∩ FD(π,π0)).

In particular, if we denote by P (B) the polyhedral cone {x̄+
∑

j∈J

λjr
j | λj ≥ 0} , we have the following:

Theorem 3.9 (Anderson, Cornuéjols, and Li, [1]).

conv(P (B) ∩ FD(π,π0)) = {x ∈ P (B) |
∑

j∈N

xj

αj(π, π0)
≥ 1}

A deeper result along these lines is also possible. Let B be the set of all bases of (MIP), and let Π be
the set of all split disjunctions. Then we have the following:
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Theorem 3.10 (Anderson, Cornuéjols, and Li, [1]).

SC =
⋂

B∈B

⋂

D(π,π0)∈Π

conv(P (B) ∩ FD(π,π0))

Thus we need only the family of intersection cuts to fully describe the split closure of P .

3.5 The mixed integer Gomory and intersection cuts

We now show that the mixed integer Gomory cut is in fact an intersection cut with a particular choice
of π and π0.

Lemma 3.11 (Anderson, Cornuéjols, and Li, [2]). Let B be a basis of the LP relaxation of (MIP) and
let x̄ be its associated basic solution. Assume that x̄k /∈ Z for some k ∈ I. The mixed integer Gomory cut
obtained from the row of the simplex tableau corresponding to xk is given by

∑

j∈N

1
αj(π,π0)

xj ≥ 1, where

π0 = ⌊x̄k⌋, f = x̄k − ⌊x̄k⌋, and

πj =







⌊ākj⌋ if j ∈ NI and fj ≤ f

⌈ākj⌉ if j ∈ NI and fj > f

1 if j = k

0 otherwise

Proof. We need to compute αj(π, π0):

• First, compute ǫ(π, π0):
ǫ(π, π0) = πx̄ − π0 = x̄k − ⌊x̄k⌋ = f.

• We now compute πrj (noting that πir
j
i = 0 if i 6= k, j):

πrj = πkrj
k + πjr

j
j +

∑

i6=k,j

πir
j
i

= πkrj
k + πjr

j
j + 0

= rj
k + πj

= −ākj +







⌊ākj⌋ if j ∈ NI and fj ≤ f

⌈ākj⌉ if j ∈ NI and fj > f

0 otherwise

= −ākj +







⌊ākj⌋ if j ∈ NI and fj ≤ f

⌊ākj⌋ + 1 if j ∈ NI and fj > f

0 otherwise

=







−fj if j ∈ NI , fj ≤ f

1 − fj if j ∈ NI , fj > f

−ākj if j /∈ NI
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• We compute αj(π, π0):

αj(π, π0) =







− ǫ(π,π0)
πrj if πrj < 0

1−ǫ(π,π0)
πrj if πrj > 0

∞ otherwise

=







f
fj

if πrj < 0, j ∈ NI , fj ≤ f
f

ākj
if πrj < 0, otherwise

1−f
1−fj

if πrj > 0, j ∈ NI , fj > f
1−f
−ākj

if πrj > 0, otherwise

∞ otherwise

• Inserting αj(π, π0) into the intersection cut formula, we obtain the mixed integer Gomory cut:

∑

j∈N

xj

αj(π,π0)
≥ 1

∑

j∈NI

fj≤f

fj

f
xj +

∑

j∈NI

fj>f

1−fj

1−f
xj +

∑

j∈NJ

πrj<0

ākj

f
xj +

∑

j∈NJ

πrj>0

−ākj

1−f
xj ≥ 1

1
f

∑

j∈NI

fj≤f

fjxj + 1
1−f

∑

j∈NI

fj>f

(1 − fj)xj + 1
f

∑

j∈NJ

ākj≥0

ākjxj −
1

1−f

∑

j∈NJ

ākj<0

ākjxj ≥ 1

1
f

∑

j∈I
fj≤f

fjxj + 1
1−f

∑

j∈I
fj>f

(1 − fj)xj + 1
f

∑

j∈J
ākj≥0

ākjxj −
1

1−f

∑

j∈J
ākj<0

ākjxj ≥ 1.

We note that the change from NI and NJ to I and J occurs because ākj = 0 for all j ∈ B. We now
have the mixed integer Gomory cut, as desired.

4 Lift-and-project cuts

In the context of 0-1 programming problems, several authors have advocated the use of a lift-and-project
procedure for generating cuts. This idea is quite different from the approaches mentioned previously,
and there are several methods to generate such cutting planes. Among the main approaches are those of
Lovasz and Schrijver [11], Sherali and Adams [14], and Balas, Ceria, and Cornuéjols [6]. In this paper,
we will consider the approach taken in [6] to establish such cuts. We hold off on defining what we will
consider to be a lift-and-project cut and first present the theory that leads to the family of cutting planes.

For the remainder of this section, let K = {x ∈ R
n | Ax ≥ b, x ≥ 0, xj ≤ 1 for all j ∈ I} := {x ∈ R

n |

Ãx ≥ b̃}. We then define KI = {x ∈ K | xj ∈ {0, 1} for all j ∈ I}.

4.1 Sequential convexification procedure

4.1.1 One iteration of the procedure

1. Select j ∈ {1, . . . , p}.

2. Multiply Ãx ≥ b̃ by (1 − xj) and xj :

(1 − xj)(Ãx − b̃) ≥ 0

xj(Ãx − b̃) ≥ 0.

3. Linearize the convex body obtained in the previous step by setting xj = x2
j and yi = xixj for i 6= j.

Let Mj(K) be the polyhedron defined by the resulting set of inequalities.

17



4. Let Pj(K) = {x | (x, y) ∈ Mj(K)}.

Remark 4.1.

1. KI ⊆ Pj(K) since if x ∈ KI then xj = 0 or xj = 1. Thus, we have xj = 0 = 02 = x2
j or

xj = 1 = 12 = x2
j and hence x ∈ Pj(K).

2. Pj(K) ⊆ K since if x ∈ Pj(K) then there exists y such that (x, y) ∈ Mj(K). Hence, we have that
x ∈ K.

3. We recall from polyhedral theory that the set formed by the projection of a polyhedron into a lower-
dimensional space is itself a polyhedron. Hence, Pj(K) is a polyhedron since it is the projection of
the polyhedron Mj(K) onto the space of the x variables.

4. If x ∈ K then x satisfies

(1 − xj)(Ãx − b̃) ≥ 0

xj(Ãx − b̃) ≥ 0.

Hence, points from K satisfy the constraints for the convex body created by step 2.

5. Replacing xixj with yi does not tighten the constraints of K, either.

6. If xj ∈ (0, 1), then the point x is not in Pj(K). Hence, the assignment xj = x2
j accounts for the

tightening of constraints in the convexification procedure.

4.1.2 Iterated procedure

To iterate the procedure from the previous section, we use the following procedure:

1. Initialize K ′ = {x ∈ R
n | Ãx ≥ b̃}.

2. Set j′ = 1.

3. Run the procedure of the previous section, selecting variable j′ in step 1.

4. Set K ′ = P ′
j(K

′) at the termination of each iteration.

5. If j′ = p then STOP (we have K ′ = conv(KI)).

6. Otherwise, set j′ = j′ + 1 and go to step 3.

4.2 Correctness of convexification procedure

We now demonstrate that this algorithm does in fact find conv(KI) as claimed in step 5. To do so, we
present two theorems and two corollaries that together show that iterating the sequential convexification
procedure for j′ = 1 to p is a valid means of obtaining the convex hull of KI .

Theorem 4.2 (Balas, Ceria, and Cornuéjols, [6]).

Pj(K) = conv(K ∩ {x ∈ R
n | xj ∈ {0, 1}})

Proof. First, we show that conv(K ∩ {x | xj ∈ {0, 1}} ⊆ Pj(K). Let x̄ ∈ conv(K ∩ {x | xj ∈ {0, 1}}),
let yi = x̄ix̄j for i 6= j. Now (x̄, y) ∈ Mj(K) as x2

i = xi, so x̄ ∈ Pj(K).
Next, we show that Pj(K) ⊆ conv(K ∩ {x | xj ∈ {0, 1}}). Let (c, c0) ∈ R

p+n+1 and assume that for
all x ∈ conv(K ∩{x | xj ∈ {0, 1}}), cx ≥ c0. We want to show that cx ≥ c0 is valid for Pj(K), so we first
deal with the exceptional cases when conv(K ∪ {x | xj = 0}) = ∅ and conv(K ∪ {x | xj = 1}) = ∅:
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• If conv(K ∪ {x | xj = 0}) = ∅, then there exists ǫ > 0 such that for all x ∈ conv(K ∩ {x | xj = 0}),
xj ≥ ǫ. Since xj − ǫ ≥ 0 can be written in the form uAx ≥ ub for some non-negative 1 × m matrix
u, any x which satisfies

(1 − xj)(Ãx − b̃) ≥ 0

xj(Ãx − b̃) ≥ 0

must also satisfy (1 − xj)(xj − ǫ) ≥ 0. Thus, if x ∈ conv(K ∩ {x | xj = 0}),

(1 − xj)(xj − ǫ) = xj − ǫ − x2
j + xjǫ ≥ 0.

Substituting x2
j = xj , we obtain ǫ(xj − 1) ≥ 0 so xj ≥ 1 and thus xj = 1.

• If conv(K ∪ {x | xj = 1}) = ∅, then there exists ǫ > 0 such that for all x ∈ conv(K ∩ {x | xj = 1}),
xj ≤ 1 − ǫ. Thus, (1 − xj) − ǫ ≥ 0 and since this can be written in the form uAx ≥ ub for some
non-negative 1 × m matrix u, any x which satisfies

(1 − xj)(Ãx − b̃) ≥ 0

xj(Ãx − b̃) ≥ 0

must also satisfy xj((1 − xj) − ǫ) ≥ 0. So, if x ∈ conv(K ∩ {x | xj = 0}, we have xj − x2
j − xjǫ ≥ 0

and thus xj ≤ 0. So xj = 0.

In both cases, we see that Pj(K) ⊆ conv(K ∩ {x | xj ∈ {0, 1}}). We now proceed to the general case.
Let x ∈ conv(K ∩ {x | xj = 0}. We notice that conv(K ∩ {x | xj = 0} = conv(K ∩ {xj | xj ≤ 0}). Since
cx ≥ c0,

cx ≥ c0 is valid for {x | Ãx ≥ b̃, xj ≤ 0}

⇔ min{cx | Ãx ≥ b̃, xj ≤ 0} ≥ c0

⇔ ∃y, λ ≥ 0 such that yÃ − λej = c and yb̃ ≥ c0, (*)

where the last line follows from the duality theorem. Now, for any x ∈ {x | Ãx ≥ b̃, xj ≤ 0},

(c + λej)x = yÃx ≥ yb̃ ≥ c0. (1)

So, ∃λ ≥ 0 such that cx + λxj ≥ c0 for all x ∈ K.
Similarly, let x ∈ conv(K∩{x | xj = 1}) and notice again that conv(K∩{x | xj = 1}) = conv(K∩{x |

xj ≥ 1}). Since cx ≥ c0, we have

cx ≥ c0 is valid for {x | Ãx ≥ b̃, xj ≥ 1}

⇔ min{cx | Ãx ≥ b̃, xj ≥ 1} ≥ c0

⇔ ∃y, µ ≥ 0 such that yÃ + µej = c and yb̃ + µ ≥ c0. (**)

Now, for any x ∈ {x | Ãx ≥ b̃, xj ≥ 1},

(c − µej)x = yÃx ≥ yb̃ ≥ c0 − µ. (2)

So, ∃µ ≥ 0 such that cx + µ(1 − xj) ≥ c0 for all x ∈ K (We note that (∗) and (∗∗) follow only if the
dual problem is bounded - the two exceptional cases listed earlier account for situations where either (∗)
or (∗∗) do not hold). Now, since we can write both cx + λxj ≥ c0 and cx + µ(1 − xj) ≥ c0 in the form

uÃx ≥ ub̃ for some row vector u (one for each inequality), any x which satisfies

(1 − xj)(Ãx − b̃) ≥ 0

xj(Ãx − b̃) ≥ 0
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must also satisfy (using (1) and (2))

(1 − xj)(cx + λxj − c0) ≥ 0

xj(cx + µ(1 − xj) − c0) ≥ 0.

Adding these two inequalities together we get cx + (λ + µ)(xj − x2
j ) − c0 ≥ 0. Setting xj = x2

j , we see
that cx ≥ c0 is thus valid for Pj(K).

Theorem 4.3 (Balas, Ceria, and Cornuéjols, [6]). For t ∈ {1, . . . , p},

Pi1,...,it
(K) = conv(K ∩ {x ∈ R

n | xj ∈ {0, 1} for all j ∈ {i1, . . . , it}}).

Proof. Without loss of generality, let {i1, . . . , it} = {1, . . . , t} and define Fq = {x | xj ∈ {0, 1}, j =
1, . . . , q}. Proceed by induction on t:

• Base case: t = 1. Apply Theorem 4.2 to get the result.

• Suppose that for t = q−1, we have that P1,...,t(K) = conv(K∩{x ∈ R
n | xj ∈ {0, 1}, j ∈ {1, . . . , t}}.

• Let t = q, 2 ≤ q ≤ p. So,

P1,...,q(K) = Pq(P1,...,q−1(K))

= Pq(conv(K ∩ Fq−1)) (by the induction hypothesis)

= conv ( conv(K ∩ Fq−1) ∩ {x | xq ∈ {0, 1}}) (by Theorem 4.2)

= conv
(
(conv(K ∩ Fq−1) ∩ {x | xq = 0}) ∪ (conv(K ∩ Fq−1) ∩ {x | xq = 1})

)
.

Claim. Let S ⊆ R
n and H = {x ∈ R

n | cx = c0} be such that ∀x ∈ S, cx ≥ c0. Then H ∩ conv(S) =
conv(S ∩ H).

Proof. x ∈ H ∩ conv(S) ⇒ cx = c0 and x =
∑

i

λis
i,

∑

i

λi = 1, λi > 0, si ∈ conv(S), and csi ≥ c0.

Now,

c0 = cx = α
∑

i

λis
i =

∑

i

λics
i ≥

∑

i

λic0 = c0.

Hence, csi = c0 for each si and we have x ∈ conv(S).

Suppose now that x ∈ conv(S ∩ H). Then x satisfies cx = c0, and hence x ∈ H ∩ conv(S).

Applying the claim with S = conv(K ∩ Fq−1), and H as each of {x | xq = 0} and {x | xq = 1} in
succession, we have:

P1,...,q(k) = conv(conv(K ∩ Fq−1 ∩ {x | xq = 0}) ∪ conv(K ∩ Fq−1 ∩ {x | xq = 1}))

= conv(K ∩ Fq−1 ∩ {x | xq ∈ {0, 1}})

= conv(K ∩ Fq)

where the second last equality follows from the fact that for two sets A and B,

conv( conv(A) ∪ conv(B)) = conv(A ∪ B).

Corollary 4.4 (Balas, Ceria, and Cornuéjols, [6]).

P1,...,p(K) = conv(KI)

Proof. Set t = p in Theorem 4.3 and the result follows.

Corollary 4.5 (Balas, Ceria, and Cornuéjols, [6]).

Pi(Pj(K)) = Pj(Pi(K)) for i, j ∈ I, i 6= j

Proof. Apply Theorem 4.3 for {i, j} and {j, i} and the result follows.
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4.3 Generating cutting planes using sequential convexification

To use the results from this convexification procedure in a cutting plane algorithm, we need to define a
way to create cuts for K using the polyhedron Pj(K). A result of Balas [4] aids in this procedure.

Theorem 4.6 (Balas, [4]).

Pj(K) = {x ∈ R
n | αx ≥ β for all (α, β) ∈ P ∗

j (K)},

where P ∗
J (K) is the set of all (α, β) such that there exists u, v ∈ R

m+n+p, u0, v0 ∈ R that satisfy the
following equations:

α − uÃ + u0ej = 0

α − vÃ − v0ej = 0

− β + ub̃ = 0

− β + + vb̃ + v0 = 0
u, v ≥ 0.

Definition 4.7. A lift-and-project cut αx ≥ β is a cut such that (α, β) ∈ P ∗
j (K).

Remark 4.8. A lift-and-project cut is a cut for Pj(K). We can select a cut which maximizes the
Euclidean distance from x̄ to the cutting plane by taking (α, β) as follows:

min αx̄ − β

subject to α − uÃ + u0ej ≥ 0

α − vÃ − v0ej ≥ 0

− β + ub̃ = 0

− β + + vb̃ + v0 = 0
u, v ≥ 0.

with the additional normalization constraint

m+p
∑

i=1

ui + u0 +

m+p
∑

i=1

vi + v0 = 1.

We thus obtain a lift-and-project cut that would be valid for Pj(K) without needing to compute
Pj(K). We now introduce the general cutting plane procedure using lift-and-project cuts.

4.3.1 General procedure

1. Let S = {(α, β) | ‖α‖1 ≤ 1}

2. Set K1 = K = {x ∈ R
n | Ãx ≥ b̃}.

3. for t = 1, 2, . . . {

4. Find cxt = min{cx | x ∈ Kt}

5. If xt
j ∈ {0, 1} for all j ∈ I then STOP.

6. For all j such that 0 < xt
j < 1

7. Find −xtαj + βj = min{αxt − β | (α, β) ∈ P ∗
j (Kt) ∩ S}

8. Kt+1 = Kt ∩ (
⋂

j

{x | αjx ≥ βj})

9. }

Remark 4.9.
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1. In line 8, we could replace the coefficient −xt of α and 1 of β with any value of our choice. The
selection of −xt and 1 was made to obtain what “deepest cut” [6], namely to maximize the Euclidean
distance from x̄ to the hyperplane αx = β.

2. S is a normalization to truncate the cone P ∗
j (K). Other suggested choices from [6] for S include:

(a) {(α, β) | β = ±1}

(b) {(α, β) | ‖α‖∞ ≤ 1}

3. It can be shown that with the specification of some implementation details, a slight modification
to line 6, and one of these normalizations that this cutting plane algorithm will obtain an optimal
solution in a finite number of steps.

5 Improving mixed integer Gomory cuts

The use of mixed integer Gomory cuts appears to have a large impact on the speed of solving of real-
world mixed integer programming problems [8]. Bixby has argued in the same paper [8] that their
implementation is the most important innovation in recent years for obtaining solutions to ever-larger
MIP problems. As a result of their practical importance, the idea of somehow improving mixed integer
Gomory cuts appears capable of yielding results that translate into faster codes. In this section, we
examine approaches made to generate cuts which are stronger than mixed integer Gomory cuts.

5.1 Reduce-and-split cuts

We recall from Section 3.5 that the mixed integer Gomory cut is an intersection cut with a specific choice
of split disjunction. The first idea in obtaining a cut that improves on a mixed integer Gomory cut lies in
strengthening a split disjunction of the form D(π, π0) in order to produce a new disjunction that remains
valid for PI but such that the intersection cut resulting from this strengthened disjunction cuts off more
of P from an extreme point x̄. Following the approach of Anderson, Cornuéjols, and Li [2], we assume
that D(π, π0) is violated at x̄ ∈ P , set π0 = ⌊πx̄⌋, and attempt to replace D(π, π0) with D(πj(δ), πj

0(δ)),

where j ∈ I, δ ∈ Z, πj(δ) = π + δej , and πj
0(δ) = ⌊πj(δ)x̄⌋. We note that for j ∈ N , πj(δ)x̄ = πx̄ and

πj
0(δ) = π0. Hence, ǫ(π, π0) = ǫ(πj(δ), πj

0(δ)).

Lemma 5.1 (Anderson, Cornuéjols, and Li, [2]). Let B be a basis of the LP relaxation of (MIP) and x̄ its
associated basic solution, let D(π, π0) be a split disjunction violated by x̄, let k ∈ NI , and let D(πk(δ), π0)
be defined as above. Let δ∗ be as follows:

δ∗ =

{

−⌊πrk⌋ if ⌈πrk⌉ − πrk > ǫ(π, π0)

−⌈πrk⌉ if ⌈πrk⌉ − πrk ≤ ǫ(π, π0)

Then the intersection cut derived from D(πk(δ∗), π0) and B has the largest coefficient of xk of all the
intersection cuts derived from D(πk(δ), π0) and B with δ ∈ Z.

Proof. If k ∈ N and j ∈ N\{k}, πk(δ)rj = πrj for all δ ∈ Z. Recall that the cut derived from
D(πk(δ∗), π0) differs from the cut derived from D(π, π0) only in the coefficient of xk. So we need to
show that δ∗ maximizes αk(πk(δ), π0). Since rk

k = 1, we have πk(δ)rk = (π + δek)rk = πrk + δ. Since
ǫ(πk(δ), πk

0 (δ)) = ǫ(π, π0), we have

αk(πk(δ), π0) =







− ǫ(π,π0)
πrk+δ

if πrk + δ < 0
1−ǫ(π,π0)

πrk+δ
if πrk + δ > 0

0 otherwise.

Since αk(πk(δ), π0) attains its maximum as πk(δ) = πrk + δ → 0; there are two potential values for δ in
Z, δf = −⌊πrk⌋ and δc = −⌈πrk⌉ (the values when the denominator is as close to 0 as possible).

22



Remark 5.2. We note that we can decide which of δf or δc is the actual value to choose through the
following sequence of equivalences:

αk(πk(δc), π0) < αk(πk(δf ), π0) ⇔ −
ǫ(π, π0)

πrk + δc

<
1 − ǫ(π, π0)

πrk + δf

⇔ −
ǫ(π, π0)

πrk − ⌈πrk⌉
<

1 − ǫ(π, π0)

πrk − ⌊πrk⌋

⇔
ǫ(π, π0)

⌈πrk⌉ − πrk
<

1 − ǫ(π, π0)

πrk − (⌈πrk⌉ − 1)

⇔
⌈πrk⌉ − πrk

ǫ(π, π0)
>

1 − (⌈πrk⌉ − πrk)

1 − ǫ(π, π0)
.

We now consider the cases where ⌈πrk⌉ − πrk > ǫ(π, π0) and ⌈πrk⌉ − πrk ≤ ǫ(π, π0):

• Suppose ⌈πrk⌉ − πrk > ǫ(π, π0). Then

⌈πrk⌉ − πrk

ǫ(π, π0)
>

ǫ(π, π0)

ǫ(π, π0)
= 1

and
1 − (⌈πrk⌉ − πrk)

1 − ǫ(π, π0)
<

1 − ǫ(π, π0)

1 − ǫ(π, π0)
= 1.

So, we see the following:
⌈πrk⌉ − πrk

ǫ(π, π0)
> 1 >

1 − (⌈πrk⌉ − πrk)

1 − ǫ(π, π0)
.

• Suppose ⌈πrk⌉ − πrk ≤ ǫ(π, π0). Then

⌈πrk⌉ − πrk

ǫ(π, π0)
≤

ǫ(π, π0)

ǫ(π, π0)
= 1

and
1 − (⌈πrk⌉ − πrk)

1 − ǫ(π, π0)
≥

1 − ǫ(π, π0)

1 − ǫ(π, π0)
= 1

So, we see the following:
⌈πrk⌉ − πrk

ǫ(π, π0)
≤ 1 ≤

1 − (⌈πrk⌉ − πrk)

1 − ǫ(π, π0)
.

We thus see that δ∗ = δf if and only if ⌈πrk⌉ − πrk > ǫ(π, π0).

The previous lemma can be applied repeatedly to a particular intersection cut to derive the mixed
integer Gomory cut:

Lemma 5.3 (Anderson, Cornuéjols, and Li, [2]). Let x̄ be a basic feasible solution to the LP relaxation of
(MIP). The mixed integer Gomory cut for x̄i can be obtained from the disjunction D(ei, ⌊x̄i⌋) by applying
the strengthening procedure of Lemma 5.1 successively for each j ∈ NI .

We are thus able to construct mixed integer Gomory cuts via the strengthening procedure. This leads
us to consider the idea of [2] on a family of cuts called reduce-and-split cuts: we start with a split cut
and attempt to make it stronger. In a similar manner to lift-and-project cuts, we attempt to improve
the Euclidean distance between the hyperplane of the cut and the current basic feasible solution x̄.

Definition 5.4. Let d(B, π, π0) be the shortest distance from x̄ to the hyperplane {x |
∑

j∈N

xj

αj(π,π0)
= 1}.

Lemma 5.5 (Anderson, Cornuéjols, and Li, [2]).

d(B, π, π0)
2 =

1
∑

j∈N

( 1
αj(π,π0)

)2
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Proof. Let γT x ≥ 1 be the intersection cut derived from B and D(π, π0). So,

γj =

{

0 if j ∈ B
1

αj(π,π0)
if j ∈ N.

We note that γ is normal to the hyperplane {x |
∑

j∈N

xj

αj(π,π0)
= 1}. So, d(B, π, π0) satisfies:

γT (x̄ + d(B, π, π0)
γ

‖γ‖
2

) = 1

γT γ
‖γ‖

2

d(B, π, π0) = 1 − γT x̄

‖γ‖2 d(B, π, π0) = 1 since x̄j = 0 for all j ∈ N ⇒ γT x̄ = 0

d(B, π, π0) =
1

‖ γ‖2

d(B, π, π0) =
1

√ ∑

j∈N

( 1
αj(π,π0)

)2

d(B, π, π0)
2 =

1
∑

j∈N

( 1
αj(π,π0)

)2
.

From this formula, we see that a decrease in the magnitude of the coefficient 1
αj(π,π0)

of xj in the

intersection cut will increase d(B, π, π0). We explore further how this may be of use to improve intersection
cuts (and hence mixed integer Gomory cuts due to the results of Section 3.5).

Proposition 5.6. If D(π, π0) is a strengthened disjunction, then for all j ∈ NI ,
1

αj(π,π0)
∈ [0, 1].

Proof. Since D(π, π0) is a strengthened disjunction, then D(π, π0) = D(π(δ∗), π0). Again we note that
ǫ(π, π0) = ǫ(πj(δ), πj

0(δ)) and determine αj(π
j(δ), π0):

αj(π
j(δ), π0) =







− ǫ(π,π0)
πrj+δ

if πrj + δ < 0
1−ǫ(π,π0)

πrj+δ
if πrj + δ > 0

∞ otherwise.

Taking δ∗ as in Lemma 5.1, we get

δ∗ =

{

−⌈πrj⌉ if πrj + δ < 0

−⌊πrj⌋ if πrj + δ > 0.

So we have 3 cases for αj(π
j(δ), π0):

1. αj(π
j(δ), π0) = ∞. Then 1

αj(πj(δ),π0)
= 0

2. δ∗ = −⌈πrj⌉. Then

1

αj(πj(δ), π0)
=

πrj + δ∗

−ǫ(π, π0)
=

⌈πrj⌉ − πrj

ǫ(π, π0)
≤

ǫ(π, π0)

ǫ(π, π0)
= 1.

3. δ∗ = −⌊πrj⌋. Then

1

αj(πj(δ), π0)
=

πrj + δ∗

1 − ǫ(π, π0)
=

πrj − ⌊πrj⌋

1 − ǫ(π, π0)
≤

1 − (⌈πrj⌉ − πrj)

1 − ǫ(π, π0)
<

1 − ǫ(π, π0)

1 − ǫ(π, π0)
= 1.

Since by definition α(πj(δ), π0) > 0, 1
αj(πj(δ),π0)

≥ 0. Hence, 1
α(πj(δ),π0)

∈ [0, 1].

The same argument does not apply for j ∈ NJ , so to strengthen the cut (and create a reduce-and-split
cut) we look to reduce the size of |πrj | for each j ∈ NJ .

Remark 5.7. The quantity ǫ(π, π0) could also be used to improve the cut but the authors of [2] indicate
that this parameter is hard to control for the purposes of modifying αj(π, π0).
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5.1.1 Reduce-and-split algorithm

We now specify the reduce-and-split algorithm of [2], whose goal is to produce disjunctions that will give
deeper intersection cuts. Let Πs = {D(ei, ⌊x̄i⌋) | i ∈ BI} be the starting set of disjunctions, and we note
D(ei, ⌊x̄i⌋) is violated for all k ∈ I such that x̄k is fractional.

1. Set Π̄ = Πs.

2. Modify Π̄ repeatedly to obtain better disjunctions in the following manner:

Let D(π, π0) and D(π′, π′
0) ∈ Π̄; set π(δ) = π + δπ′ and π0(δ) = ⌊(π + δπ′)x̄⌋. Now consider

D(π(δ), π0(δ)) for δ ∈ Z.

As a way to indicate when D(π(δ), π0(δ)) is better than D(π, π0), we introduce a quadratic
merit function, f(δ) =

∑

j∈NJ

(π(δ)rj)2 = δ2g(π′) + 2δh(π, π′) + g(π) where g(π) =
∑

j∈NJ

(πrj)2

and h(π, π′) =
∑

j∈NJ

(πrj)(π′rj). This function is always non-negative and hence is minimized at

f(δ) = 0. Restricting ourselves to integer solutions δ, we need only to consider the two values

δ∗ ∈ {⌊−h(π,π′)
g(π′) ⌋, ⌈−h(π,π′)

g(π′) ⌉}.

We now replace D(π, π0) by D(π(δ∗), π0(δ
∗)) in Π̄ if f(δ∗) < f(0).

3. Strengthen the resulting set of disjunctions Π̄ via the technique of Lemma 5.1.

A final set of disjunctions can be converted into a set of intersection cuts that are valid for PI . We
use these cuts with the hope that they are deeper than the mixed integer Gomory cuts. Experimental
evidence ([2]) indicates that on average this procedure produces cuts which are stronger than mixed
integer Gomory cuts; however, there are examples where the cuts produced through this procedure are
not as strong as the corresponding mixed integer Gomory cuts. This looks promising as a technique for
solving some problems, though it would be more satisfying to have a systematic way of generating cuts
that are stronger than mixed integer Gomory cuts. We focus on a technique to do exactly this in the
next section.

5.2 Strengthening lift-and-project cuts

We recall that we obtain a lift-and-project cut αx ≥ β via a solution to the following linear program:

min αx̄ − β

subject to α − uÃ + u0ej ≥ 0

α − vÃ − v0ej ≥ 0

− β + ub̃ = 0

− β + + vb̃ + v0 = 0
u, v ≥ 0

Lift-and-project cutting planes as generated from the above LP are relatively expensive to compute
though they do show experimental evidence of generating solutions that are better than solutions found
using mixed integer Gomory cutting planes [6]. As a result, we consider the idea of strengthening such a
cut via the technique of Balas and Jeroslow [5] to obtain a cut that will be stronger than a mixed integer
Gomory cut. To do this, let Â be the constraint matrix of the constraints of the original problem that
are not of the form x ≥ 0, and let b̂ represent the corresponding set of entries of b.

For k = 1, . . . , p, k 6= j, let α1
k = ûÂk, α2

k = v̂Âk, α1
j = ûÂj +u0, α2

j = v̂Âj +v0, and β = ûb̂ = v̂b̂+v0.

Set αk = max{α1
k, α2

k} and define mk =
α2

k−α1
k

u0+v0
. We strengthen αx ≥ β to γx ≥ β

|β| , where γk is defined

as follows:

γk =

{

min{ 1
|β| (α

1
k + u0⌈mk⌉ , 1

|β| (α
2
k − v0⌊mk⌋)} for k ∈ I

min{ 1
|β|α

1
k , 1

|β|α
2
k} for k ∈ J
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Theorem 5.8 (Balas, Ceria, and Cornuéjols, [6]). Let xk +
∑

i∈I′

ākjxj +
∑

j∈J

ākjxj = b̄k be a row from a

simplex tableau with k ∈ I and assume b̄k /∈ Z. The mixed integer Gomory cut for the row is γx ≥ β
|β|

where u′
i = v′

i = 0 for i ∈ I, u0 = 1
f
, v0 = 1

1−f
, where f = b̄k − ⌊b̄k⌋.

Proof. Since b̄k ∈ (0, 1), ⌊b̄k⌋ = 0, and so f = b̄k. We compute α1
k =

ākj

f
, α2

k =
−ākj

1−f
, β = 1,

mk =

ākj

1−f
−

ākj

f
1
f

+
1

1−f

= −ākj , and

γk =







min
{

(
ākj

f
+ 1

f
⌈−ākj⌉ , (

−ākj

1−f
− 1

1−f
⌊−ākj⌋)

}

for k ∈ I

max
{

ākj

f
,

−ākj

1−f

}

for k ∈ J

Consider now the cut γx ≥ β
|β| :

1 ≤ γx =
∑

k∈I

(

min

{
ākj + ⌈−ākj⌉

f
,
−ākj − ⌊−ākj⌋

1 − f

})

xk +
∑

k∈J

(

max

{
ākj

f
,
−ākj

1 − f

})

xk

=
∑

k∈I

(

min

{
ākj − ⌊−ākj⌋

f
,
−ākj + ⌈ākj⌉

1 − f

})

xk + 1
f

∑

k∈J
ākj≥0

ākjxj −
1

1−f

∑

k∈J
ākj<0

ākjxk

=
∑

k∈I

(

min

{
fj

f
,

1 − fj

1 − f

})

xk + 1
f

∑

k∈J
ākj≥0

ākjxj −
1

1−f

∑

k∈J
ākj<0

ākjxk

= 1
f

∑

k∈I
fj≤f

fjxj + 1
1−f

∑

k∈I
fj>f

(1 − fj)xj + 1
f

∑

k∈J
ākj≥0

ākjxj −
1

1−f

∑

k∈J
ākj<0

ākjxk.

This is the mixed integer Gomory cut.

While Balas, Ceria, and Cornuéjols [6] give a method to compute their lift-and-project cuts, Balas and
Perregaard [7] provide a method to compute cuts that, though slightly different from the cuts presented
here, are more efficient to compute. They also characterize the exact relationships between their lift-and-
project cuts, split cuts, and mixed integer Gomory cuts. This relationship ensures that these strengthened
cuts (if they exist) are in fact stronger than mixed integer Gomory cuts at the cost of being more expensive
to compute. Experimental evidence ([7]) indicates that the use of these strengthened cuts does seem to
reduce the total computation time for solving many problems in MIPLIB 3.0 [9], a standard library of
mixed integer programming problems.

6 Conclusion

This report presented an outline of many families of cutting planes, namely disjunctive cuts, split cuts,
mixed integer rounding cuts, intersection cuts, mixed integer Gomory cuts, lift-and-project cuts, and
reduce-and-split cuts. The theme of this report was the generation of cutting planes for mixed integer
programming problems. In particular, we focused on the mixed integer Gomory cut and families of
cuts which may improve upon this family. Two such families, lift-and-project cuts and reduce-and-split
cuts, aim to systematically improve on the distance between a fractional solution and the mixed integer
Gomory cutting plane at an iteration of a cut procedure. Lift-and-project cuts, in their strengthened
form, will yield an improvement if such a cutting plane exists, whereas there is not yet a criterion for
determining if or when reduce-and-split cutting planes can guarantee an improvement; however, the
techniques presented in section 5 show promise against the MIPLIB 3.0 ([9]) test library of mixed integer
programming problems, as indicated in [2], [6], and [7].

Research into cut generation algorithms for mixed integer programming is very active at this time,
with many results appearing in the past 15 years. Families of cutting planes such as those presented in
this paper will no doubt improve the quality of mixed integer programming solver codes in the years to
come.
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