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Abstract

This essay looks at the clique partition and covering numbers of graphs and introduces

some new results.

In the first part, two cornerstone theorems in clique partitions are presented and

proved. Namely, the Erdős-Goodman-Pósa Theorem and the de Bruijn-Erdős The-

orem. The problem of partitioning the complement of a clique is looked at, and

asymptotic results are provided. The existence of Steiner systems and projective

planes can be used to construct clique partitions of complements of graphs. Using

Steiner systems, upper bounds on the clique partition number of the complement

of paths, cycles, and perfect matchings are given. For the first time, we provide an

upper bound for the clique partition number of the complement of a forest and the

complement of graphs with bounded maximum degree.

In the second part, the clique covering number of the complement of small graphs

is analyzed. We provide results by Kohayakawa of induced paths and cycles in the

Kneser graph. Bounds on the clique covering number of the complement of a path

and cycle are given. Also, the clique covering number of the complement of a perfect

matching is determined, a result of Gregory and Pullman. By using the Erdős-Ko-

Rado Theorem, we are able to generalize this result to obtain a lower bound on the

clique covering number for complete multipartite graphs. The clique covering number

of the complement of the union of cycles and paths is looked at, and we demonstrate

that in general, a lower bound of log2 n cannot be obtained. Finally, for the first time,

we obtain bounds on the clique covering number of the complement of a forest.
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Part I

Introduction

1.1 Edge-partitioning and covering problems

A clique partition of a graph G is a collection of complete subgraphs of G (called

cliques) that partition the edge set of G. Similarly, a clique cover of G is a collection

of cliques that cover the edge set of G (that is, every edge appears in at least one

clique of the clique cover). In this essay, we study the problem of finding clique

partitions and covers of minimum size of a graph. We analyze the clique partition

number of a graph in Chapter II, the clique covering number of a graph in Chapter

III, and state some open problems in Chapter IV. Monson, Pullman, and Rees [21]

survey recent results regarding clique partitions and coverings of graphs.

The first result on clique partitions and covers is due to Hall [18], who proved

that the edge set of any graph G on n vertices can be covered using at most bn2/4c
cliques, none of which need to be larger than a triangle. Later, Erdős, Goodman and

Pósa [14] showed that Hall’s result holds for clique partitions as well. In Chapter

II we look at this result among others dealing with the clique partition number of a

graph. In particular, Erdős, Goodman and Pósa [14] showed that the edge set of any

graph G with n vertices can be partitioned using at most bn2/4c triangles and edges,

and the complete bipartite graph Kbn/2c,dn/2e gives equality. We present the theorem

and its proof in Section 2.2.

In Section 2.3 we look at Steiner systems. A rich family of clique partitions of

Kn is provided by the existence of Steiner systems. We use the terminology from

Cameron and Van Lint [9]. The complete subgraphs of Kn induced by each block in

a Steiner system form a clique partition of Kn.

In Section 2.4 we present and prove the de Bruijn-Erdős [8] Theorem. It states

that for n ≥ 3, if C is a non-trivial clique partition of Kn, then |C| ≥ n. Further,

equality holds if and only if C consists of one clique on n − 1 vertices and n − 1

copies of K2 incident with a single vertex of Kn; or C consists of n copies of Kq+1,

n = q2 + q + 1 and each vertex of Kn is a vertex of exactly q + 1 cliques of C. This

second condition is equivalent to the existence of a projective plane of order q. There
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are several proofs of the de Bruijn-Erdős Theorem in the literature. In this essay, we

follow the proof given by Conway, which may be found in Batten and Beutelspacher

[4].

A natural generalization is to consider the clique partition number of Kn\Km, the

complement of a clique of size m, for m ≥ 2. Using the edge chromatic number of

a graph, Pullman and Donald [23] compute the clique partition number of Kn\Km,

for n
2
≤ m ≤ n. This result is presented in Section 2.5.1. Wallis [26] determined that

for m ≤
√

n, the number of cliques required to partition the edge set of Kn\Km is

asymptotic to n. This result follows from a theorem in Section 2.6. To try and fill in

the gap, Erdős, Faudree and Ordman [13] use affine planes to get asymptotic results

for other values of m, which can be found in Section 2.5.2. A consequence is that the

clique partition number of Kn\Km is asymptotic to max{m2, n}, for m = o(n).

The existence of Steiner systems and projective planes can be used to construct

clique partitions of complements of graphs. The idea is to fit most of the graph into

few blocks to get good clique partitions of the complement. In Section 2.6, we prove a

result of Wallis [28] where if H is a graph with at most
√

n vertices, the complement

of H in Kn can be partitioned into O(n) cliques. It is more difficult to determine

clique partitions of complements of spanning subgraphs of Kn. In Sections 2.7− 2.8,

we consider matchings, paths, cycles and forests. Gregory, McGuinness and Wallis

[15] prove that for n sufficiently large, the complement of a perfect matching on n

vertices can be partitioned into about n log2 log2 n cliques. The details can be found

in Section 2.7. In an attempt to generalize these results, we look at the complement of

a spanning forest of Kn in Section 2.8. Using projective planes we show the existence

of a clique partition of the complement of a forest using about n(log2 n)log2 3 cliques.

Finally, we present a general method for finding upper bounds for any graph with

bounded maximum degree. We use Steiner systems and a probabilistic argument to

prove the existence of a clique partition of Ḡ using n3/2
√

∆(log2 n)2 cliques, where

∆ = o(n/(log2 n)4) is the maximum degree of G. This is done in Section 2.9. We

conjecture that the complement of any graph on n vertices with o(n2) edges can be

partitioned into o(n2) cliques.

In Chapter III, we analyze the clique covering number of the complement of graphs

with very few edges, such as a cycle, path, and perfect matching. Finding an induced

graph H in the Kneser graph gives rise to a clique cover of H̄. Thus, by looking at
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induced subgraphs in the Kneser graph we may obtain upper bounds on the clique

covering numbers of graphs. In Section 3.1, we show the relationship between clique

coverings and intersection graphs. Using this result, Gyárfás [17] gives a lower bound

of log2(n+1) for a graph with n vertices that has no isolated vertices and no equivalent

vertices.

In Section 3.2, we present a result of Gregory and Pullman [16]. In particular, it is

shown that the clique covering number of the complement of a perfect matching on n

vertices is asymptotic to log2 n. This is accomplished by using the famous Erdős-Ko-

Rado Theorem on set intersections. We use the terminology from set theory found

in Bollobás [6]. For the first time, we generalize this result to give a lower bound

on the clique covering number of Ks(t), the complete s-partite graph with parts of

size t. In particular, we show for s sufficiently large and fixed t, covering the edges

of Ks(t) requires at least logb(st) cliques, where b = b(t) ∈ (1, 2], which when t = 2,

gives Gregory and Pullman’s [16] result.

In Section 3.3, the clique covering number of the complement of a cycle and path

are analyzed. For m sufficiently large, de Caen, Gregory, and Pullman [11] give a

lower bound of log2 m and an upper bound of 2 log2 m on the clique covering number

of the complement of a cycle and path on m vertices. They conjecture that the

clique covering number is log2 m asymptotically. Alles and Poljak [1] improve the

upper bound to 1.695 log2 m, and Kohayakawa [19] improves the upper bound to

1.459 log2 m, for m sufficiently large. This is done by finding a long induced path

in the Kneser graph. In particular, Kohayakawa [19] uses a bipartite graph to give

a recursive construction for an induced path in the Kneser graph. Kohayakawa [19]

made a conjecture regarding the length of a longest induced path in the Kneser

graph, which if true, would imply de Caen, Gregory, and Pullman’s [11] conjecture

of the existence of a clique cover of the complement of a cycle and path with size

asymptotic to log2 m. We follow Vander Meulen [25] for most of the results in Section

3.3 regarding induced cycles and paths in the Kneser graph.

In Section 3.4, bounds on the clique covering number of the complement of graphs

whose maximum degree is two are obtained. de Caen, Gregory and Pullman [11] prove

that for n sufficiently large, an upper bound on the order of log2 n can be obtained.

They ask if an upper bound of (1 + o(1)) log2 n can be obtained, and for the first

time we demonstrate that in general, it cannot. We demonstrate with the complete
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multipartite graph whose parts each have size three, and show this graph requires at

least 1.088 log2 n cliques in a minimum size clique covering.

In Section 3.5, we use the techniques of Section 3.4 to obtain bounds on the clique

covering number of the complement of a forest. We show an upper bound of 10.3 log2 n

for the clique covering number of the complement of a forest, and a lower bound of

log2 k, where k is the size of the largest induced matching of the forest.

Finally, in Section 4.1, we list some open problems and present some conjectures

dealing with clique partitions and coverings of graphs.

1.2 Notation

We use the usual definitions from graph theory found in Bondy and Murty [12]. We

often write Gn to emphasize that G has n vertices. The complement Ḡ of Gn is the

graph on vertex set V , with edge set E(Kn)\E(G). If G has n vertices, then we also

use Kn\G to denote the complement of the graph G. If N > n and V (G) ⊂ V (KN),

then KN\G denotes the graph with vertex set V (KN) and edge set E(KN)\E(G).

Let G be a non-empty graph. If v ∈ V (G), then the set of vertices adjacent to v

in G is denoted by Γ(v). The union G ∪ H of two graphs G and H has vertex set

V (G) ∪ V (H) and edge set E(G) ∪ E(H).

We use the usual definitions from set theory found in Bollobás [6]. Sets with k

elements will be called k-sets ; subsets with k elements are k-subsets. Let A be a set.

By A(k) we denote the set of all k-subsets of A. For convenience, we use [n] to denote

the set {1, 2, . . . , n}.

The Kneser graph Kn:k is the graph whose vertex set consists of the k-subsets of

[n], and where two vertices are adjacent if and only if they are disjoint. Note that Kn:k

is an
(

n−k
k

)
-regular graph. For example, K5:2 is isomorphic to the Petersen graph. If

n < 2k, then Kn:k is the empty graph, and if n = 2k, then Kn:k is a matching of size(
2k
k

)
.
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Part II

Clique Partitions

2.1 Preliminary results

Let G be a graph with vertex set V (G) and edge set E(G). We call a complete

subgraph of G a clique of G. A clique partition of G is a set of cliques of G, which

together contain each edge of G exactly once. The smallest cardinality of any clique

partition of G is called the clique partition number of G, and is denoted by cp(G).

This number exists as the edge set of G forms a clique partition for G. A clique

partition of G with size cp(G) is referred to as a minimum clique partition of G. Note

that any minimum clique partition does not contain any cliques of size one, and also

the clique partition number of the empty graph is 0.

Orlin [22] first noted that a clique partition of G gives rise to a clique partition

of G − v. Namely, delete the vertex v from each clique in the partition of G. If

this produces a clique with a single vertex, then delete this vertex from the clique

partition.

Conversely, a clique partition of G−v gives rise to a clique partition of G. Namely,

add the edges adjacent to v to the clique partition of G− v to get a clique partition

of G.

Lemma 2.1.1 Given any graph G,

cp(G)− deg(v) ≤ cp(G− v) ≤ cp(G).

This lemma can be generalized as follows.

Lemma 2.1.2 If H is an induced subgraph of G then,

cp(G)− (|E(G)| − |E(H)|) ≤ cp(H) ≤ cp(G).

Also, if H is a subgraph of G, then for any n ≥ |V (G)|

cp(Kn\H) ≤ cp(Kn\G) + |E(G)| − |E(H)|.
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Proof. By taking a clique partition of H and adding the edges E(G)\E(H) we get a

clique partition of G, so the first inequality follows. If H is an induced subgraph of

G, then cp(H) ≤ cp(G) follows by applying Lemma 2.1.1 to each vertex of G\H.

If H is a subgraph of G, then to get a clique partition of Kn\H, we take a clique

partition of Kn\G and add the edges of G that do not appear in H.

Monson [20] lists other results that the effect vertex and edge deletion have on

the clique partition number of a graph.

2.2 The Erdős-Goodman-Pósa Theorem

How large in absolute terms can cp(G) be for a simple graph on n vertices?

Erdős, Goodman and Pósa [14] showed that the edge set of any simple graph G

with n vertices can be partitioned using at most bn2/4c triangles and edges, and that

the complete bipartite graph Kbn/2c,dn/2e gives equality. This is the first fundamental

result in clique partitions of graphs. Note that their proof can be adapted to show

that Kbn/2c,dn/2e is the only graph that gives cp(G) = bn2/4c.

Theorem 2.2.1 Let G be a simple graph with n vertices. Then G has a clique par-

tition of size at most bn2/4c consisting of edges and triangles. In particular,

cp(G) ≤ bn2/4c,

with equality if and only if G ∼= Kbn/2c,dn/2e.

Proof. First note that given any positive integer n,

bn2/4c = b(n− 1)2/4c+ bn/2c.

We will prove the theorem by induction on the number of vertices n of G. If

n = 1, 2, then the theorem is true. Assume that it is true for all graphs with less than

n vertices, and let G be a simple graph with n vertices. Suppose that the minimum

degree of G is δ = bn/2c+ r, where r is an integer, and let x be a vertex of smallest

degree in G.
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Case 1: r ≤ 0. Then deg(x) ≤ bn/2c. By induction, G − x can be partitioned

into b(n− 1)2/4c edges and triangles. Hence, by Lemma 2.1.1,

cp(G) ≤ cp(G− x) + deg(x)

≤ b(n− 1)2/4c+ bn/2c
= bn2/4c.

Furthermore, this clique partition of G consists of the edges and triangles from

the clique partition of G − x and the edges incident to x. For equality to hold in

the theorem, we need cp(G − x) = b(n − 1)2/4c and deg(x) = bn/2c. By induction,

G − x ∼= Kb(n−1)/2c,d(n−1)/2e. Since deg(x) = bn/2c and cp(G) = bn2/4c, x may only

be adjacent to vertices on one side of G− x (otherwise we form a triangle which may

be included in our clique partition to give cp(G) < bn2/4c). Hence, G ∼= Kbn/2c,dn/2e.

Case 2: r > 0. Let Γ(x) = {y1, y2, . . . , yδ}, and let H be the subgraph of G

induced by Γ(x). We claim that H has at least r independent edges. We prove this

claim by contradiction. Suppose H has at most r − 1 independent edges. Without

loss of generality, assume this set of edges is

{y1y2, y3y4, . . . , ys−1ys},

for some maximal even integer s ≤ 2r − 2. By hypothesis, deg(ys+1) ≥ δ. Note that

Γ(ys+1) ⊆ V (G)\{ys+1, ys+2, . . . , yδ}. Hence,

deg(ys+1) ≤ n− (δ − s)

≤ (2r − 2) + (n− δ)

= dn/2e+ r − 2

≤ bn/2c+ r − 1

< bn/2c+ r = δ.

This contradicts that deg(ys+1) ≥ δ. Thus H has at least r independent edges.

Without loss of generality, assume they are

{y1y2, y3y4, . . . , y2r−1y2r}.

For convenience, define G′ = (G − x)\{y1y2, y3y4, . . . , y2r−1y2r}. By induction, G′

can be partitioned into at most b(n − 1)2/4c edges and triangles. These edges and
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triangles along with the triangles induced by {x, y2i−1, y2i}, for i = 1, 2, . . . , r, and

the edges {xy2r+1, xy2r+2, . . . , xyδ} give a partition of G into at most

b(n− 1)2/4c+ r + (δ − 2r) = b(n− 1)2/4c+ r + bn/2c+ r − 2r = bn2/4c

edges and triangles.

For equality to hold in the theorem, we need cp(G′) = b(n − 1)2/4c. Hence, by

induction, G′ ∼= Kb(n−1)/2c,d(n−1)/2e. We may assume that G is not the complete graph,

since n > 2 and cp(G) > 1. Thus, there is a vertex, say z, which is not adjacent to x

(as x is of minimum degree). But then z is adjacent to at most d(n− 1)/2e vertices

in G, as z belongs to one of the parts of G′. So, as r > 0,

deg(z) ≤ d(n− 1)/2e = bn/2c < bn/2c+ r = δ,

contradicting that δ is the minimum degree of G.

2.3 Steiner systems, projective planes and clique partitions

A rich family of clique partitions of Kn is provided by the existence of Steiner systems.

In defining a Steiner system, we use the text by Cameron and Van Lint [9].

A Steiner system S(n, k) is a pair (X,B), where X is a set of points of cardinality

n, and B is a collection of k-element subsets of X called blocks, with the property

that any two points are contained in precisely one block. We assume that X and B
are non-empty, and that n ≥ k ≥ 2. As any two points of a Steiner system S(n, k)

appear in exactly one block, we can think of the blocks of S(n, k) as cliques of Kn,

such that every edge of Kn appears in exactly one clique. Hence, we get a clique

partition of Kn into
(

n
2

)
/
(

k
2

)
cliques of size k.

A projective plane of order q is a Steiner system S(q2 + q + 1, q + 1). We call the

blocks of a projective plane lines. Alternatively, a projective plane of order q consists

of q2 + q + 1 points, where any two points determine a line; any two lines determine

a point; every point has q + 1 lines on it; and every line has q + 1 points. Projective

planes are known to exist for all prime power orders, but no plane of non-prime power

order is known.
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For example, the projective plane of order 2 provides a clique partition of K7 into

seven cliques, each of size three. This is called the Fano plane and corresponds to the

Steiner system S(7, 3).

The cliques are the triangles induced by the sets

{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {1, 5, 6}, {2, 6, 7}, {1, 3, 7},

which correspond to the lines of the Fano plane.

An affine plane of order q is a Steiner system S(q2, q). Note that an affine plane

can be created from a projective plane by deleting all of the points of a particular

block. We call the blocks of an affine plane lines, and we say two lines are parallel

if they are equal or disjoint. Then if L is a line, and p is a point, there is a unique

line parallel to L which contains p. Hence, parallelism is an equivalence relation on

the set of lines, and the lines in any parallel class partition the set of points. So, any

parallel class has q lines, and there are q + 1 parallel classes. It is straightforward to

prove that there exists an affine plane of order q if and only if there exists a projective

plane of order q.

2.4 The de Bruijn-Erdős Theorem

A clique partition is said to be trivial if it consists of a single clique, and non-trivial

otherwise.

For n ≥ 3, de Bruijn and Erdős [8] prove that if C is a non-trivial clique partition

of Kn, then |C| ≥ n. They further showed that equality holds if and only if C consists

of one clique on n− 1 vertices and n− 1 copies of K2 incident with a single vertex of

Kn; or C consists of n copies of Kq+1, n = q2 + q +1 and each vertex of Kn is a vertex
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of exactly q + 1 cliques of C. This second condition is equivalent to the existence of a

projective plane of order q. There are several proofs in the literature. We follow the

proof given by Conway, which may be found in Batten and Beutelspacher [4].

Theorem 2.4.1 If n ≥ 3 and C is a non-trivial clique partition of Kn, then |C| ≥ n,

with equality if and only if

(i) C consists of one clique on n− 1 vertices and n− 1 copies of K2 incident with

a single vertex of Kn, or

(ii) C consists of n copies of Kq+1, n = q2 + q + 1 and each vertex of Kn is a vertex

of exactly q + 1 cliques of C.

Proof. Clearly if (i) or (ii) is satisfied, then we get |C| = n.

Let C be a clique partition of Kn with size |C| ≤ n. We will show that |C| = n and

either (i) or (ii) is satisfied. Let V be the vertex set of Kn. For v ∈ V , let rv denote

the number of cliques of C that contain the vertex v. Since n ≥ 3, |C|− rv > 0, for all

vertices v ∈ V . Also, for any clique K ∈ C, |C| − |V (K)| > 0. This follows as taking

any vertex not in V (K) (one exists as |C| > 1) gives rise to a set of |V (K)| edges, no

two which may share a clique in C.

For any vertex v ∈ V and clique K ∈ C, define

δ(v, K) =

{
0 if v is not a vertex of K

1 if v is a vertex of K

We note that for each K ∈ C, ∑
v∈V

δ(v, K) = |V (K)|,

and for every fixed v ∈ V , ∑
K∈C

δ(v, K) = rv.

Now,

n =
∑
v∈V

|C| − rv

|C| − rv

=
∑
v∈V

∑
K∈C

1− δ(v, K)

|C| − rv

.
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Note that for any clique K ∈ C and any vertex v which is not a vertex of K, then

rv ≥ |V (K)|. This follows as no two edges joining v to a vertex of K can appear in

the same clique. Thus,
1− δ(v, K)

|C| − rv

≥ 1− δ(v, K)

|C| − |V (K)|
(1)

for all cliques K ∈ C and vertices v ∈ V . So,

n ≥
∑
v∈V

∑
K∈C

1− δ(v, K)

|C| − |V (K)|

=
∑
K∈C

∑
v∈V

1− δ(v, K)

|C| − |V (K)|

=
∑
K∈C

n− |V (K)|
|C| − |V (K)|

≥
∑
K∈C

n

|C|
= n.

The last inequality follows as |C| ≤ n and |C| > |V (K)| imply

n− |V (K)|
|C| − |V (K)|

≥ n

|C|
,

for any clique K ∈ C. Thus we must have equality everywhere, implying that |C| = n.

In addition, for each vertex v ∈ V not in clique K, equality in equation (1) implies

rv = |V (K)|. We claim that any two cliques J, K ∈ C meet in at least one vertex.

Suppose J, K do not meet in a vertex. Take v ∈ V (J). Then v appears in |V (K)|
cliques of C, as rv = |V (K)|. But there are |V (K)| edges from v to K, no two of

which appear in the same clique of C. As v also appears in clique J , we get that

rv ≥ |V (K)| + 1, a contradiction. Hence, any two cliques must meet in at least one

vertex.

Note, if two cliques shared a pair of vertices, there would be an edge which appears

in two cliques, contradicting that C is a clique partition. Therefore, any two cliques

meet in exactly one vertex. Also, any two vertices determine a clique.

Now let J, K ∈ C be any two different cliques from C, and say J, K share vertex

v.

11



First suppose V (Kn) = V (J ∪K). Then rv = 2, implying that all other cliques

of C have size 2. This implies that either J or K is a clique on n− 1 vertices. Hence,

C satisfies (i).

Now suppose that for any choice of J and K, there is always a vertex of Kn, say

w, such that w 6∈ V (J∪K). Then rw = |V (J)| = |V (K)|. As J and K were arbitrary,

every clique in C must have the same size, say q + 1. As there are n cliques in C, an

edge count gives,
n(n− 1)

2
= n

(q + 1)q

2
,

implying, n = q2 + q + 1. Hence, C satisfies (ii).

Thus it follows that C satisfies either (i) or (ii).

Corollary 2.4.2 If G is a graph on n vertices, and is neither the complete graph nor

the empty graph then,

cp(G) + cp(Ḡ) ≥ n.

Proof. Suppose G is a graph on n vertices, and is neither the complete graph nor the

empty graph. If cp(G) + cp(Ḡ) < n, then we would get a clique partition of Kn into

fewer than n cliques, contradicting Theorem 2.4.1.

The de Bruijn-Erdős Theorem can be used to construct clique partitions of the

complement of small graphs, as done in Sections 2.5−2.8. The Fano plane in Section

2.3 gives an example of Theorem 2.4.1 (ii).

2.5 Complement of a clique

We wish to know how many cliques are required to partition the edge set of Kn\Km,

for m < n. For n ≥ 3, Orlin [22] first noted that Theorem 2.4.1 gives cp(Kn\K2) =

n− 1 and

cp(Kq2+q+1\Kq+1) = q2 + q

whenever a projective plane of order q exists. As for a lower bound, we get

cp(Kn\Km) ≥ n− 1

12



for 1 < m < n, by Corollary 2.4.2.

In the next section we will see a result due to Wallis [26], who shows if m > 1 is

fixed or m ≤
√

n, then

cp(Kn\Km) ∼ n.

Using the edge chromatic number of a graph, Pullman and Donald [23] show that

cp(Kn\Km) =
1

2
(n−m)(3m− n + 1)

for n > m ≥ 1
2
(n− x), (where x = 0 for n−m odd, and x = 1 otherwise).

To try and fill in the gap, Erdős, Faudree and Ordman [13] use affine planes to

prove that for m = o(n),

cp(Kn\Km) ∼ max{n, m2}.

2.5.1 The Pullman-Donald Theorem

Let χ′(G) denote the edge chromatic number of G, that is, the minimum number of

colours required to colour the edges of G, so that no pair of adjacent edges have the

same colour.

We define the join H1 ∨ H2 of two vertex disjoint graphs H1 and H2, to be the

graph with vertex set V (H1)∪ V (H2), and edge set consisting of E(H1)∪E(H2) and

edges ij, where i ∈ V (H1) and j ∈ V (H2). If H is a graph, then Pullman and Donald

[23] compute the clique partition number of the join of H and K̄q, for q ≥ χ′(H).

Choosing H = Kn will then provide us with the clique partition number of Kn\Km,

for particular values of m.

Theorem 2.5.1 Let H be a graph with h vertices and e edges. If q ≥ χ′(H) then

cp(H ∨ K̄q) = hq − e. Further, any minimal clique partition consists of edges and

triangles only.

Proof. Let H be a graph with h vertices and e edges and fix q ≥ χ′(H). We first

construct a clique partition of H ∨ K̄q into hq− e edges and triangles. Suppose Ei is

the set of edges of colour i in a minimal edge colouring of H, for 1 ≤ i ≤ χ′(H). For

convenience, we denote the vertices of K̄q by {v1, v2, . . . , vq}.

13



Note that Ei is a matching. Let Ti be the family of |Ei| triangles with one vertex at

vi and the opposite edge in Ei. This gives a clique partition of H ∨ K̄q into edges and

triangles. Namely, we use the triangles from T1, T2, . . . , Tχ′(H) and all of the remaining

edges. As every edge of H belongs to a triangle using a vertex from K̄q, there are

e triangles. Removing these triangles from H ∨ K̄q gives a triangle-free graph with

hq − 2e edges. Thus,

cp(H ∨ K̄q) ≤ e + (hq − 2e) = hq − e.

Now suppose C is a clique partition of H∨K̄q having r of its members C1, C2, . . . , Cr

with edges in H. For convenience, let cj = |V (Cj)∩V (H)|. For each Cj, the clique on

vertices V (Cj)∩ V (H) has at least cj − 1 edges, with equality if |V (Cj)∩ V (H)| = 2.

Thus, e + r ≥
∑r

j=1 cj. If e + r =
∑r

j=1 cj then no member of C has size more than

three. Let s be the number of edges outside of H that are covered by C1, C2, . . . , Cr.

Then s ≤
∑r

j=1 cj. Note that |C| = r + (hq− s), as removing the C1, C2, . . . , Cr from

C leaves a triangle-free graph with hq − s edges. Then,

|C| = r + (hq − s) ≥ r + hq −
r∑

j=1

cj ≥ hq − e.

If we have equality, then no member of C may have more than three vertices. Hence,

cp(H ∨ K̄q) = hq− e, and any minimal clique partition uses only triangles and edges.

If q < χ′(H) then Theorem 2.5.1 may be false. For example, if n ≥ 10, H = Kn−3

and q = 3, then Theorem 2.5.1 gives cp(H ∨ K̄q) = (n − 3)3 −
(

n−3
2

)
≤ 0, but

cp(H ∨ K̄q) > 0 as H ∨ K̄q is not the empty graph.

To get a result on the complement of clique, we note that χ′(K2k) = χ′(K2k−1) =

2k − 1. Thus when m ≥ χ′(Kn−m) we get cp(Kn\Km) = (n − m)m −
(

n−m
2

)
by

Theorem 2.5.1.

Theorem 2.5.2 For n > m ≥ 1
2
(n − x), (where x = 0 for n − m odd, and x = 1

otherwise),

cp(Kn\Km) =
1

2
(n−m)(3m− n + 1).

Also, any minimal clique partition consists of edges and triangles only.
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2.5.2 The Erdős-Faudree-Ordman Theorem

The proof of Theorem 2.5.1 relies on the fact that there are hq edges connecting H to

K̄q; two lie in the same clique only if that clique contains at least one edge selected

from the e edges of H. Erdős, Faudree and Ordman [13] make use of this fact to

extend several existing lower bounds on the clique partition number of a graph.

We first need a numerical lemma.

Lemma 2.5.3 Let
∑q

i=1 ei = c and
∑q

i=1 e2
i ≤ d. Then q ≥ c2/d.

Proof. Note that the ei’s may be distinct. If we substitute ei = c/q, for i = 1, 2, . . . , q,

then the first sum is preserved. This substitution can only decrease
∑q

i=1 e2
i , as the

sum of the e2
i is minimized when e1 = e2 = · · · = eq = c/q. This is because

∑
i x

2
i is

a convex function. Thus,
∑q

i=1(c/q)
2 ≤ d implying that q(c/q)2 ≤ d.

Let G be a graph with n vertices, and partition V (G) into two sets A and B

(which we call sides) such that A ∩ B = ∅. The edges of the graph G now fall into

three classes, which we call A edges, B edges, and connecting edges, depending as to

whether their ends lie both in A, both in B, or one in each. If a clique in G contains

more than one of the connecting edges of G, then it must contain some A edges or

B edges (or both). If the number of connecting edges is large, then there will not be

enough A edges or B edges of G available to combine the connecting edges into a few

number of cliques. Erdős, Faudree and Ordman [13] provide a lower bound on cp(G)

if one of the sides has no edges.

Lemma 2.5.4 Suppose G is a graph with n vertices, and A, B ⊆ V (G) such that

A ∩ B = ∅. If G has k edges in side A, no edges in side B, and c connecting edges,

then

cp(G) ≥ c2

(2k + c)
.

Proof. If G is partitioned by q cliques and clique i has ei connecting edges, then clique

i has ei(ei − 1)/2 edges in side A. Then
∑q

i=1 ei = c and

k ≥
q∑

i=1

ei(ei − 1)

2
=

1

2

(
q∑

i=1

e2
i −

q∑
i=1

ei

)
=

1

2

(
q∑

i=1

e2
i − c

)
.
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Hence,
∑q

i=1 e2
i ≤ 2k + c, and the result follows by Lemma 2.5.3.

Thus we obtain a lower bound for the clique partition number of the complement

of a clique.

Theorem 2.5.5 For 1 < m < n,

cp(Kn\Km) ≥ (n−m)m2

(n− 1)
.

Proof. Substituting c = m(n−m) and k =
(

n−m
2

)
into Lemma 2.5.4 gives,

cp(Kn\Km) ≥ (n−m)2m2

(n−m)(n−m− 1) + m(n−m)
=

(n−m)m2

(n− 1)
.

To get an upper bound for the complement of a clique, Erdős, Faudree and Ordman

[13] use a modification of the strategy that Wallis [26] used, that is, affine planes. One

problem is our lack of knowledge of affine planes when q is not a prime power. To

get around this problem we use the following result.

Lemma 2.5.6 There exists a constant α ∈ [1/2, 1), such that if p < q are consecutive

primes, then,

q − p = O(pα).

Note that α = 21/40 is possible, as shown in [3] by Baker, Harman and Pintz.

By constructing a clique partition using an affine plane, Erdős, Faudree and Ord-

man [13] showed that if m = f(n) and for n sufficiently large,
√

n < m < n, we have

cp(Kn\Km) < m2 + o(m2).

Theorem 2.5.7 Let m = f(n) and
√

n < m < n. Then for n sufficiently large,

cp(Kn\Km) < m2 + o(m2).
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Proof. Let t be the smallest integer such that t ≥ m and there is an affine plane of

order t. By Lemma 2.5.6, we may assume for sufficiently large m,

m ≤ t ≤ m + cmα,

for some constant c and α ∈ [1/2, 1). Thus, t2 = m2 + o(m2). In an affine plane of

order t, choose a line L, and delete all but m points from L. In the other lines, delete

a total of (t2 − n)− (t−m) points. This leaves a total of n points, with m of them

on a selected line. Use this design to construct a clique partition of Kn\Km into at

most t2 + t− 1 cliques. Thus,

cp(Kn\Km) ≤ t2 + t− 1 < m2 + o(m2),

as required.

Theorem 2.5.8 If m = o(n) and m ≥
√

n, then

cp(Kn\Km) ∼ m2.

Proof. If m = o(n) and m ≥
√

n then for a lower bound, we note that for n large

enough, Theorem 2.5.5 gives,

cp(Kn\Km) ≥ (n−m)m2

n− 1
∼ m2.

For an upper bound, we note that for n large enough, Theorem 2.5.7 gives,

cp(Kn\Km) ≤ m2 + o(m2) ∼ m2.

If m ≤
√

n, we will see in the next section that

cp(Kn\Km) ∼ n.

For comparison, we note that Theorem 2.5.2 gives,

cp(Kn\Km) ∼ (1− c)(3c− 1)

2c2
m2

when m = cn, for some constant 1/2 ≤ c ≤ 1. If c = 1/2 this gives 1
8
n2, and

if c = 3/4 this gives 5
32

n2. Various authors have analyzed the case c < 1/2. See

Monson, Pullman, and Rees [21] for these results.
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2.6 Complement of small graphs

In the previous section, we analyzed the clique partition number of the graph Kn\H,

where H is Km. What can be said about the clique partition number of Kn\H, if H

is not a clique?

As in Theorem 2.5.7, we will exploit the second part of Theorem 2.4.1 to con-

struct clique partitions of complements of small graphs. Wallis [26, 28] examined the

asymptotic behaviour of the clique partition number of complements of graphs with

few vertices, thus proving (i) and (ii) of the following theorem. Using the same argu-

ment, we can prove if H has a subgraph H ′ which has O(
√

n) components, with each

component having at most
√

n vertices, and further if H has O(
√

n) edges between

components of H ′, then cp(Kn\H) = O(n3/2).

Theorem 2.6.1 Let H be a graph.

(i) If H has
√

n or less vertices, then,

cp(Kn\H) = O(n).

(ii) If H has o(
√

n) vertices then,

cp(Kn\H) ∼ n.

(iii) If H has a subgraph H ′ which has O(
√

n) components, with each component hav-

ing at most
√

n vertices, and further if H has O(
√

n) edges between components

of H ′, then

cp(Kn\H) = O(n3/2).

Proof. Let H be a graph satisfying one of the three conditions in the theorem and

suppose H has h vertices. Let t be the smallest integer such that t ≥
√

n, and such

that there is a projective plane of order t. Then by Lemma 2.5.6, t2 = n+o(n). Since

Kn\H is an induced subgraph of Kt2+h\H, by Lemma 2.1.2,

cp(Kn\H) ≤ cp(Kt2+h\H)

Suppose H satisfies (i) or (ii). Then take a finite projective plane of order t, and

construct a copy of Kt2+t+1 with a distinguished subgraph H. Do this by identifying
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points of the plane with vertices in such a way that the vertices of H are identified with

the points of one block, say B. This can be done since, h ≤ t. Then we delete from

Kt2+t+1, all the points of B except the ones belonging to H. This results in a Kt2+h

partitioned into t2 + t+1 cliques, with one clique of size h, and the remaining cliques

of size t or t + 1. We replace the clique of size h by a clique partition of Kh\H using

cp(Kh\H) cliques. This gives a clique partition of Kt2+h\H into t2 + t + cp(Kh\H)

cliques. Hence,

cp(Kn\H) ≤ cp(Kt2+h\H) ≤ t2 + t + cp(Kh\H).

If H satisfies (i) then, cp(Kh\H) ≤ 1
2
h(h− 1) < t2, giving that

cp(Kn\H) = O(t2) = O(n).

If H satisfies (ii), then h = o(
√

n), implying 1
2
h(h − 1) = o(n). Thus, cp(Kn\H) ≤

n + o(n) But cp(Kn\H) ≥ n−
√

n by Theorem 2.4.2, thus,

cp(Kn\H) ∼ n.

Finally, suppose H satisfies (iii). Thus, the vertices of H can be identified with

points in a projective plane of order t such that the edges of H ′ appear in r = O(
√

n)

blocks, say, B1, B2, . . . , Br. Suppose there are e = O(
√

n) edges in H not in H ′, then,

Kt2+t+1\H can be partitioned into at most

t2 + t + 1− (r + e) + (r + e)(n/2)+ ≤ n + o(n) + O(n3/2) = O(n3/2)

cliques, as the edges of H not in H ′ are contained in at most e blocks and each block

which contains edges of H can be partitioned into less than n/2 edges. Hence, we

get a clique partition of Kn\H into at most O(n3/2) cliques, by deleting points not

identified with a vertex of H.

Note that if H is the graph Km, for m ≤
√

n, then we get

cp(Kn\Km) ∼ n,

as cp(Kh\H) would be zero in the proof of Theorem 2.6.1 (i). Thus, along with

Theorem 2.5.8 we have established the following theorem.
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Theorem 2.6.2 If m = o(n), then

cp(Kn\Km) ∼ max{n, m2}.

More generally, the proof of Theorem 2.6.1 (iii) implies that if H has a subgraph

H ′ which has O(
√

n) components, with each component having at most
√

n vertices,

and there are o(n) edges connecting these components, then

cp(Kn\H) = o(n2).

2.7 Complement of paths, cycles, and perfect matchings

If we fix H in Theorem 2.6.1(iii) to be a particular graph, we can provide better bounds

on the clique partition number of the complement of H. In particular, consider the

clique partition numbers of the complement of a path Pn, a cycle Cn, and a perfect

matching Mn each on n vertices.

In this essay, M̄n denotes the complement of a perfect matching on n vertices,

where n must be even. For convenience, if n is odd, we use the notation M̄n to

denote the complement graph Kn\Mn−1. It was Orlin [22] who first asked about the

asymptotics of the clique partition number of the complement of a perfect matching.

Wallis [27] showed that for any fixed ε > 0, cp(M̄n) = o(n1+ε). Later, Gregory,

McGuinness and Wallis [15] proved for n sufficiently large, we have

n ≤ cp(M̄n) ≤ (1 + o(1))n log2 log2 n

and conjecture that cp(M̄n) ∼ n.

The first result regarding the clique partition number of the complement of a

cycle is by Wallis [29], who shows cc(C̄n) < 3
16

n2. Using the same argument as for

the complement of a perfect matching, Wallis [28] proves that for the path, cp(P̄n) ≤
(1 + o(1))n log2 log2 n, for n sufficiently large. Wallis [28] also notes (but does not

prove), that this technique can be extended to the complement of H, where every

vertex of H is of degree one or two, namely Cn. Since de Caen and Gregory [10] prove

that for n ≥ 11, cp(C̄n) ≥ n, for the complement of a cycle we have,

n ≤ cp(C̄n) ≤ (1 + o(1))n log2 log2 n.
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Lemma 2.1.2 gives cp(P̄n) ≥ cp(C̄n−1). Thus, for the complement of a path we have,

n− 1 ≤ cp(P̄n) ≤ (1 + o(1))n log2 log2 n.

In this essay, we will prove the result cp(P̄n) ≤ (1+o(1))n log2 log2 n by Wallis [28].

Note that this result can be used to show that cp(C̄n) and cp(M̄n) are O(n log2 log2 n),

by Lemma 2.1.2.

Theorem 2.7.1 If Pn is the path on n vertices then,

cp(P̄n) ≤ (1 + o(1))n log2 log2 n,

for n sufficiently large.

Proof. Note that by Lemma 2.1.2, cp(P̄n) ≤ cp(P̄r), for n ≤ r. Let d = b
√

nc and

choose e to be the smallest integer such that de ≥ n.

Let t be the smallest prime power such that t ≥
√

n. We embed a path Pn

in a copy of an affine plane of order t. One parallel class, say P1, is chosen and

all but d of its lines are deleted. Now select another parallel class P2 and delete

t − e of its lines, leaving e lines. Denote the point of intersection of line i of P1

with line j of P2 by aij. Replace line j of P2 by a copy of Pd, in particular, the

complement of path (a1j, a2j, . . . , adj), for j = 1, 2, . . . , e. Now replace line 1 of P1 by

the complement of path (a11, a12, . . . , a1e) and line d of P1 by the complement of path

(ad1, ad2, . . . , ade). What we have done is selected e+2 blocks and replaced them with

copies of complements of paths, while the remaining blocks are left untouched. By

construction, we have an embedded path Ped along with e− 1 additional edges in an

affine plane of order t. Thus,

cp(P̄n) ≤ cp(P̄ed) ≤ t2 + t− (e + 2) + e cp(P̄d) + 2 cp(P̄e) + e− 1,

≤ t2 + t− 3 + e cp(P̄d) + 2[cp(P̄d) + 3d− 1],

since P̄e can be partitioned into at most cp(P̄d) + 3d− 1 cliques, as e ≤ d + 3. So,

cp(P̄n) ≤ t2 + d cp(P̄d) + 5 cp(P̄d) + t + 6d− 5,

≤ t2 + d cp(P̄d) + o(d2).
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by Theorem 2.6.1 (iii), as the path satisfies the condition of the theorem. We write

c(x) = cp(P̄bxc), so that,

c(x) ≤ t2 +
√

xc(
√

x) + o(x),

where t is the closest integer bigger than
√

x. Hence,

c(x) ≤ x +
√

xc(
√

x) + o(x).

By Lemma 5.2.1,

c(x) ≤ (1 + o(1))x log2 log2 x,

for x sufficiently large.

2.8 Complement of forests

In this section, we use projective planes to prove that if Fn is a forest on n vertices,

then the edge set of F̄n can be partitioned into O(n(log2 n)log2 3) cliques. We use the

techniques of the previous section to set up a recursion and solve it.

But first, we need to know that we can partition Fn into components of size at

most
√

n such that two components intersect in at most one vertex. If the components

are small, then this corresponds to using lots of blocks of our projective plane, thus

increasing the number of cliques required to partition F̄n. Hence, we will prove a

lower bound on the size of the components.

We assume that we are working with trees, as a clique partition for F̄n can be

extended to a clique partition of the complement of some tree Tn with E(Fn) ⊆ E(Tn),

by adding at most n − 1 edges (namely edges E(Tn)\E(Fn)) to our clique partition

of F̄n.

Definition 2.8.1 A tree partition of a tree Tn is a collection of subtrees

{T 1, T 2, . . . , T r},

such that every edge of Tn is in exactly one subtree, Tn = ∪r
i=1T

i and

|V (T i) ∩ V (T j)| ≤ 1

for all i 6= j.

22



For any positive integers k and b with 2 ≤ k ≤ n and b > 1, we say a tree partition is

(k, b)-smooth if k/b ≤ |T i| ≤ k, for i = 1, 2, . . . , r. We will prove that a (k, 3)-smooth

tree partition of Tn always exists.

Lemma 2.8.2 Let Tn be a tree on n vertices, and 2 ≤ k ≤ n be a positive integer.

Then there exists a (k, 3)-smooth tree partition of Tn.

Proof. Let Tn be a tree on n vertices, and 2 ≤ k ≤ n be a positive integer. Note that

there is always a tree partition of Tn into two subtrees. It is well known that there

exists a tree partition {T 1, T 2} of Tn such that n/3 ≤ |T i| ≤ 2n/3, for i = 1, 2. To

see this, take an arbitrary tree partition {T 1, T 2} of Tn so that ||V (T 1)| − |V (T 2)||
is minimized, and assume T 1 and T 2 share vertex v. If n/3 ≤ |T i| ≤ 2n/3, for

i = 1, 2, then we are done. Without loss of generality, suppose that |T 1| < n/3. As

||V (T 1)| − |V (T 2)|| is minimized, v is adjacent to at least two vertices of T 2. Form a

tree partition {J1, J2} of T 2, such that J1 and J2 share vertex v. Then,

2n

3
+ 1 < {|T 1|+ |J1|}+ {|T 1|+ |J2|} <

4n

3
+ 1,

as 2n/3 + 1 < 2|T 1| + |T 2| + 1 < 4n/3 + 1. Hence, n/3 < |V (T 1 ∪ J1)| < 2n/3 or

n/3 < |V (T 1 ∪ J2)| < 2n/3. Thus, we constructed a tree partition of Tn consisting of

two subtrees that share a vertex, with sizes between n/3 and 2n/3.

We will construct a (k, 3)-smooth tree partition S of Tn as follows. Repeatedly split

trees using the above argument that have size more than k. Then, for all subtrees T i

of S, we have that k/3 ≤ |T i| ≤ k, as required. We get a (k, 3)-smooth tree partition

of Tn, as each time we split a subtree, the two resulting trees share exactly one vertex.

For convenience of the next proof, we define the following functions g(n) and h(x),

where n ∈ N and x ∈ R+,

g(n) = max{cp(T̄n) : Tn is a tree on n vertices},

h(x) = max{cp(K9bxc\Tbxc) : Tbxc is a tree on bxc vertices}.

Note that g(n) ≤ h(n), and cp(T̄n) ≤ g(n), for any tree Tn.
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Theorem 2.8.3 If Fn is a forest on n vertices then,

cp(F̄n) = O(n(log2 n)log2 3),

for n sufficiently large.

Proof. We assume that we are working with trees, as a clique partition for F̄n can

be extended to a clique partition of T̄n, for some tree Tn with E(Fn) ⊆ E(Tn), by

adding O(n) edges to our clique partition of F̄n. Since cp(T̄n) ≤ g(n), for any tree Tn,

it suffices to show that g(n) = O(n(log2 n)log2 3). Let Tn be a tree on n vertices such

that h(n) = cp(K9n\Tn). Let t be the smallest integer such that t ≥ 4
√

n + 11 and

there is a projective plane of order t. Lemma 2.5.6 gives that t = 4
√

n+ o(
√

n) which

gives t2 = 16n+o(n) upon squaring. Let S = {T 1, T 2, . . . , T r} be a (b
√

nc, 3)-smooth

tree partition of Tn, which exists by Lemma 2.8.2. Then, we have for i = 1, 2, . . . , r,

b
√

nc
3

≤ |T i| ≤ b
√

nc.

Without loss of generality, suppose that

V (T i) ∩

(
i−1⋃
j=1

V (T j)

)
= {vi}

for i = 2, 3, . . . , r. Note that we need |T 1|+(|T 2|−1)+(|T 3|−1)+ · · ·+(|T r|−1) = n,

which implies that

r ≤ 3(n− 1)√
n− 4

as
√

n ≤ b
√

nc+ 1. Then we get r ≤ 3
√

n + 13, if n is large enough.

Choose a projective plane of order t. We claim that we can find blocks

{B1, B2, . . . , Br}

such that Bi contains T i, no two vertices of Tn are identified with the same point

of the projective plane and the blocks Bi have the same tree like structure as the

subtrees T i. First identify the vertices of T 1 with points from an arbitrary block, say

B1, of the projective plane, where the vertex v2 is identified with some point w2, and

all other vertices of T 1 are identified arbitrarily with points from B1\{w2}. We will

show how to find blocks B2, B3, . . . , Br satisfying the requirements. Suppose for some
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2 ≤ i ≤ r, we have already identified the vertices of T i−1 with the points of Bi−1,

such that vertex vi is identified with point wi of some block Bj, where j ≤ i−1. Pick

a block Bi (different from B1, B2, . . . , Bi−1) that contains the point wi. There exists

such a block as there are t+1 ≥ 4
√

n+11 blocks containing the point wi (and at most

r ≤ 3
√

n+13 blocks have been used). Identify the vertices of T i with points from Bi

such that vi is identified with wi, and all other vertices of T i are identified arbitrarily

with points from Bi\W , where W is the set of points from B1 ∪B2 ∪ · · · ∪Bi−1 that

intersect with Bi. Note that |W | < r, as Bi intersects every other block in at most

one point. This identification can be done, as each block has t+1 ≥ 4
√

n+12 points,

each tree has at most b
√

nc ≤
√

n vertices, and removing at most r − 1 ≤ 3
√

n + 12

points of block Bi leaves at least
√

n points which can be identified with T i. This

gives a collection of blocks {B1, B2, . . . , Br} that contain the edges of T̄n.

Then by Lemma 2.1.2,

g(n) ≤ h(n) = cp(K9n\Tn) ≤ cp(Kt2+t+1\Tn).

As r is the number of blocks Bi that contain edges of Tn, we have

h(n) ≤ t2 + t + 1− r +
r∑

i=1

cp(K|Bi|\T i)

≤ O(n) +
r∑

i=1

cp(K|Bi|\T i)

≤ O(n) +
r∑

i=1

cp(K9b
√

nc\T i).

The last inequality follows as, Lemma 2.5.6 implies t + 1 ≤ 4
√

n + o(
√

n) ≤ 9b
√

nc,
for n sufficiently large. But, if Tp is an induced subgraph of Tq, then cp(T̄p) ≤
cp(T̄q) + q− p, for p ≤ q, by Lemma 2.1.2. Hence, we can extend the trees T i to have

b
√

nc vertices. Then we have,

h(n) ≤ O(n) + r · h(
√

n)

≤ O(n) + (3
√

n + 13)h(
√

n)

= O(n) + 3
√

nh(
√

n)

since h(
√

n) = O(n). Hence,

h(x) ≤ O(x) + 3
√

xh(
√

x).
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Dividing through by x and setting z = log2 log2 x, and r(z) = h(x)/x gives,

r(z) ≤ O(1) + 3 · r(z − 1).

So,

r(z) = O(3z)

for x (and hence z) arbitrarily large. Hence,

h(x) < O(x3z) = O(x(log2 x)log2 3),

implying that

g(n) = O(n(log2 n)log2 3).

It would be interesting to know if there is a forest Fn such that

lim
n→∞

cp(F̄n)

n
= ∞.

Regardless, we conjecture that a bound of O(n log2 log2 n) is possible.

Conjecture 2.8.4 If Fn is a forest on n vertices then,

cp(F̄n) = O(n log2 log2 n),

for n sufficiently large.

We believe that Fn can be partitioned into (1 + o(1))
√

n components each with

size (1 + o(1))
√

n, such that any two components intersect in at most one vertex. If

this is true, then Theorem 2.8.3 can be adapted to give O(n log2 log2 n).

2.9 Complement of graphs with bounded maximum degree

The Probabilistic Method has recently been developed intensively. We use the termi-

nology from Alon [2] and follow Beth, Jungnickel and Lenz [5] regarding the existence

of Steiner systems. Necessary existence conditions for the existence of an S(n, k) are

n ≡ 1 mod k − 1,
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n(n− 1) ≡ 0 mod k(k − 1).

Wilson’s theorem [5] says that the necessary conditions above for the existence

of an S(n, k) are sufficient for almost all n ∈ N. However, the proofs presented

by Wilson do not give an explicit constant n0(k) such that an S(n, k) exists for

all n ≥ n0(k) satisfying the necessary conditions. Recently, Chang showed that

n0(k) ≤ exp(exp(kk2
)) (see page 800 in [5]). In the next theorem, we will show that

if a graph G has bounded maximum degree, then the existence of a Steiner system

gives rise to a clique partition of Ḡ.

Theorem 2.9.1 Let G be a graph on g vertices with maximum degree ∆ = o(n/ log4 n),

where n = O(g). Let k = d
√

n/
√

2∆e. If n is large enough, and if a Steiner system

S(n, k) exists then,

cp(G) = O(n3/2
√

∆(log2 n)2).

Proof. Suppose G, n, k satisfy the conditions of the theorem. Let S = (X,B) be a

Steiner system with blocks of size k on n points. For a random permutation of the

points, the probability that a fixed set of k points is a fixed block in B is exactly

1/
(

n
k

)
. Take G to be a fixed graph on the same set of n points, with maximum degree

∆. Let GB denote the subgraph of G spanned by the edges contained in a block

B ∈ B.

Consider the event |E(GB)| ≥ r, for some integer r. Pick a subgraph HB of GB

with exactly r edges. If the maximum size of a matching in HB is i for some positive

integer i ≤ r, and if there are s vertices of HB which are unsaturated by a maximum

matching, then

max

{
r −

(
2i
2

)
2i

, 0

}
≤ s ≤ r − i.

For convenience, let si = (r −
(
2i
2

)
)/2i. Let AB(i, s) denote the event that the

largest matching in HB has size i and HB has s + 2i vertices. Fixing a matching M

of size i in G, there are at most (2i∆)s ways to choose a set S of s vertices so that

V (M) ∪ S = HB. Then there are
(

n−2i−s
k−2i−s

)
ways to choose the vertices of B\V (HB)

from G. Therefore

P[AB(i, s)] ≤ 1(
n
k

)(∆n

i

)
(2i∆)s

(
n− 2i− s

k − 2i− s

)
.
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Since {|E(GB)| ≥ r} ⊂
⋃

i,s AB(i, s), it follows that

P[|E(GB)| ≥ r] ≤ 1(
n
k

) r∑
i=1

r−i∑
s≥si
s≥0

(
∆n

i

)
(2i∆)s

(
n− 2i− s

k − 2i− s

)
.

To estimate the sums on the right, we use the inequality(
a−t
b−t

)(
a
b

) <
bt

at
.

Let j be the largest integer such that

r −
(

2j

2

)
≥ 0

so that definitely
√

r/2− 1 ≤ j ≤
√

r/2 + 1. Put k = d
√

n/
√

2∆e. Then

P[|E(GB)| ≥ r] ≤
r∑

i=1

r−i∑
s≥si
s≥0

(
∆n

i

)
(2i∆)s

(
n−2i−s
k−2i−s

)(
n
k

)
<

r∑
i=1

r−i∑
s≥si
s≥0

(∆n)i(2r∆)s k2i+s

n2i+s

=
r∑

i=1

(
∆k2

n

)i r−i∑
s≥si
s≥0

(
2rk∆

n

)s

≤
j∑

i=1

(
1

2

)i r−i∑
s=si

(
1

2

)s

+
r∑

i=j+1

(
1

2

)i r−i∑
s=0

(
1

2

)s

(∗)

≤ 2

j∑
i=1

(
1

2

)i(
1

2

)si

+ 4

(
1

2

)j+1

=
√

2

j∑
i=1

(
1

2

)r/(2i)

+

(
1

2

)j−1

≤
√

2j

(
1

2

)r/(2j)

+

(
1

2

)j−1

.
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Note that (2rk∆)/n ≤ 1/2 is true if we set r = 2(log2(2n
2∆))2 and suppose

∆(log2 n)4

n
→ 0,

for large n. Also, ∆k2/n ≤ 1/2 by our choice of k. Hence, (∗) follows. We want the

above expression less than 1/|B|. That is,[
√

2j

(
1

2

) r
2j

+

(
1

2

)j−1
]

n(n− 1)

k(k − 1)
< 1.

But, the left hand side (LHS) of this is

LHS = O

(
n2

k2
j

(
1

2

) r
2j

)

= O

(
∆n log2(2n

2∆)

(
1

2

) r
2 log2(2n2∆)+1

)

= O

(
∆n log2(2n

2∆)

(
1

2

)log2(2n2∆)
)

= O

(
log2(2n

2∆)

n

)
= O(log2 n/n).

So with positive probability |E(GB)| < r for all B ∈ B, and

cp(G) < rk|B| = O(n3/2
√

∆ log2 n),

if n is sufficiently large. This completes the proof.

Provided that ∆ = o(n/ log4 n), the expression in the theorem is o(n2). We

conjecture the following stronger statement:

Conjecture 2.9.2 Let Gn be a graph on n vertices with o(n2) edges. Then the clique

partition number of Ḡn is o(n2).
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Part III

Clique Coverings

3.1 Intersection graphs and Kneser graphs

Let G be a graph. A clique covering of G is a set of cliques of G, which together

contain each edge of G at least once. The smallest cardinality of any clique covering

of G is called the clique covering number of G, and is denoted by cc(G). This number

exists as the edge set of G forms a clique covering for G. A clique covering of G with

size cc(G) is referred to as a minimum clique covering of G. The results on clique

partitions in Sections 2.1− 2.2 also hold for clique coverings. Namely, Lemma 2.1.1,

Lemma 2.1.2 and Theorem 2.2.1. Brigham and Dutton [7] list other results that the

effect vertex and edge deletion have on the clique covering number of a graph.

Before Erdős, Goodman and Pósa [14] proved Theorem 2.2.1 for clique partitions,

Hall [18] proved that the edge set of any graph G on n vertices can be covered using

at most bn2/4c cliques, none of which need to be larger than a triangle. We note that

Hall’s result follows trivially from Theorem 2.2.1. This is because a clique partition

of a graph G is also a clique covering of G, so we have the inequality cc(G) ≤ cp(G).

Thus, by Theorem 2.2.1, we have cc(G) ≤ cp(G) ≤ bn2/4c, with equality everywhere

if and only if G ∼= Kbn/2c,dn/2e.

Let S = {S1, S2, . . . , Sm} be a family of subsets of [n]. The intersection graph

Ω(S) is the graph whose vertex set is S, with two vertices being adjacent if their sets

intersect. That is, Si is adjacent to Sj if and only if Si ∩Sj 6= ∅, for i 6= j, Si, Sj ∈ S.

The Kneser graph Kn:k is the complement of the intersection graph of all distinct

k-subsets of an n-set. We have the following relationship between intersection graphs

and clique coverings which is essentially due to Spilrajn-Marczewski [24] and Erdős,

Goodman and Pósa [14].

Theorem 3.1.1 Given a graph G,

G ∼= Ω(S) ⇐⇒ cc(G) ≤ n

where S = {S1, S2, . . . , Sm} is a family of subsets of [n].
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Proof. We first prove that G ∼= Ω(S) implies cc(G) ≤ n. Let G ∼= Ω(S) with

S = {S1, S2, . . . , Sm}, Si ⊆ [n]. Let Cj = {Si : j ∈ Si, i ∈ [m]}, for each j ∈ [n]. Then

Cj induces a clique whenever |Cj| ≥ 2. Then {Cj : |Cj| ≥ 2} is a clique covering of

G of size at most n, implying cc(G) ≤ n.

We now show that cc(G) ≤ n implies that G ∼= Ω(S), for some family S of subsets

of [n]. Let {C1, C2, . . . , Cn} be a clique covering of G of size n. Let Sv = {i ∈ [n] :

v ∈ V (Ci)}. Let S = {Sv : v ∈ V (G)}. Then G is the intersection graph of S.

Notice that cc(G) does not change if isolated vertices are removed from G. We

give another operation on G which does not affect cc(G). We call vertices x, y ∈ V (G)

equivalent if xy ∈ E(G) and Γ(x)\{y} = Γ(y)\{x} 6= ∅. Then if x is equivalent to

another vertex of G, cc(G) = cc(G−x). Gyárfás [17] gives a lower bound for a graph

with no isolated vertices and no equivalent vertices.

Theorem 3.1.2 Let G be a graph on n vertices that contains neither isolated vertices

nor equivalent vertices. Then

cc(G) ≥ log2(n + 1).

Proof. Let C be a clique covering of G of minimum cardinality k. Index the vertices

of G by v1, v2, . . . , vn. Let Fi consist of those members of C having vi as a vertex and

define F = {F1, F2, . . . , Fn}. Then Ω(F) is isomorphic to G. Since G contains no

isolated vertices, Fi 6= ∅, for i ∈ [n]. We now show that Fi 6= Fj, for i 6= j. Suppose

that i 6= j. If vivj 6∈ E(G), then Fi 6= Fj as they are disjoint sets. If vivj ∈ E(G), then

by assumption they are not equivalent. So there is a vertex vr, for some r ∈ [n]\{i, j},
such that vr is adjacent to exactly one of vi and vj. Without loss of generality, suppose

vivr ∈ E(G) and vjvr 6∈ E(G). Let K ∈ C be the clique that covers edge vivr. Then

K ∈ Fi and K 6∈ Fj showing that Fi 6= Fj. As the sets Fi are distinct non-empty

subsets of [k], we have that

n = |F| ≤ 2k − 1.

Hence, k ≥ log2(n + 1), as required.

Gyárfás [17] showed the inequality in Theorem 3.1.2 is tight for infinitely many

n. However, if we know more about the intersection properties of the sets Fi in the

proof of Theorem 3.1.2, then we may obtain a better upper bound on |F| than 2k−1,

thus improving the lower bound on the clique covering number.
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3.2 Clique covers of complete multipartite graphs

In Section 2.5 we looked at the clique partition number of the complement of a

clique. The corresponding problem for clique coverings is an easy one. Namely,

cc(Kn\Km) = m, for m > 2, because we require a unique clique in our clique covering

for each vertex of Km.

A more interesting problem is determining the clique covering number of the

complement of the union of complete graphs. Gregory and Pullman [16] compute the

clique covering number of the complement of a perfect matching. We generalize this

result of Gregory and Pullman [16] to give bounds on the clique covering number of the

complement of the union of complete graphs. Note that the complement of the union

of complete graphs is the s-partite complete graph Kt1,t2,...,ts , whose parts are of size

t1, t2, . . . , ts respectively. If each part has the same size, t1 = t2 = · · · = ts = t > 1,

then we denote the graph by Ks(t). In the next section we will prove the following

theorem.

Theorem 3.2.1 If 0 < ε < 1 and t > 1 are fixed, then for s sufficiently large,

cc(Ks(t)) ≥ logb(st) +
1− ε

2
logb logb(st)

where

b =
t

(t− 1)(t−1)/t
.

3.2.1 The Erdős-Ko-Rado Theorem and clique coverings

We will use a variant of the Erdős-Ko-Rado Theorem [6] to give a lower bound on the

clique covering number of Ks(t). We use the usual definitions from set theory found

in Bollobás [6]. An antichain is a family F of sets such that F 6⊂ G, for all F 6= G

in F . In 1928, Sperner [6] proved the following theorem on the maximum size of an

antichain:

Theorem 3.2.2 Let F be an antichain on [n], then

|F| ≤
(

n

bn/2c

)
.
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In 1961, Erdős, Ko, and Rado [6] gave an upper bound for the maximum size

of an intersecting family of k-element sets in [n], for n ≥ 2k. This is known as the

Erdős-Ko-Rado Theorem.

Theorem 3.2.3 If F is an intersecting family of k-element sets in [n], where n ≥ 2k,

then |F| ≤
(

n−1
k−1

)
. Also, if n > 2k, then we get equality if and only if the sets in F

all contain a common element.

We say F is an intersecting antichain if it is an antichain of sets Fi such that

Fi ∩ Fj 6= ∅, for all Fi, Fj in F . If F is an intersecting antichain whose sets are of

size at most k, then a variant of the Erdős-Ko-Rado Theorem holds. The proof uses

a technique known as the Katona Circle Method [6].

Theorem 3.2.4 Let n ≥ 2k. If F is an antichain and an intersecting family of sets

of size at most k in [n], then |F| ≤
(

n−1
k−1

)
.

Proof. Let F be an intersecting family of subsets of [n], such that F is an antichain.

Note that there are exactly 1
2
(n − 1)! circular permutations on n elements. We will

count the ordered pairs (π, F ), where π is a circular permutation of [n], and F is a set

in F whose image under π is an interval. Fix any particular circular permutation π.

At most k members of F have their image under π as an interval, as each member of

F must intersect the others (and have size at most k). Thus, the number of ordered

pairs (π, F ) is at most k · 1
2
(n− 1)!.

Now, fix any particular member F of F . Then F is the image of an interval

for 1
2
· |F |! · (n − |F |)! circular permutations, as there are |F |! ways to permute the

elements of F , and (n−|F |)! ways to permute the remaining elements for the circular

permutation. Hence, the number of ordered pairs (π, F ) is∑
F∈F

1

2
· |F |! · (n− |F |)! ≤ k · 1

2
(n− 1)!

Thus, it suffices to show

|F| · k! · (n− k)! ≤
∑
F∈F

|F |! · (n− |F |)!
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But, ∑
F∈F

|F |! · (n− |F |)!
k! · (n− k)!

=
∑
F∈F

[(
n

k

)
/

(
n

|F |

)]
≥
∑
F∈F

1 = |F|

since
(

n
k

)
≥
(

n
|F |

)
, for each F ∈ F , as |F | ≤ k ≤ n/2.

3.2.2 t-Balanced families

Definition 3.2.5 A family F is t-balanced if it is the intersection graph of the com-

plete multipartite graph on |F| vertices, whose components each have size t.

It is implied that |F| is divisible by t and F is a set of subsets in [n], for some n ∈ N.

It is easy to see that a t-balanced family is an antichain. Suppose on the contrary

that F is a t-balanced family which is not an antichain. Then there are sets A, B ∈ F
with A ⊂ B. Consider D ∈ F such that B ∩ D = ∅. But then A ∩ D 6= ∅ by the

definition of t-balanced, a contradiction. The Erdős-Ko-Rado Theorem can be used

to provide an upper bound on the size of a t-balanced family.

Theorem 3.2.6 Let F be a t-balanced collection of sets in [n]. Then

|F| ≤ t

(
n− 1

dn/te

)
.

Further, there exists a t-balanced family F that gives equality when t = 2.

Proof. Take F to be a t-balanced collection of sets in [n]. Then for some s, Ω(F) ∼=
Ks(t), and the vertices of Ks(t) correspond to sets in [n]. For each part of Ks(t),

choose a single vertex whose set in [n] is smallest among all other vertices of that

part, and let B be the set of these vertices. Then B consists of s sets of size at most

bn/tc. Since F is t-balanced, F is an antichain implying that B is an antichain. Also,

B is intersecting as it contains one vertex from each part. Thus, by Theorem 3.2.4,

|F| = t|B| ≤ t

(
n− 1

bn/tc − 1

)
= t

(
n− 1

dn/te

)
.

Note that we may obtain equality when t = 2. Let r = bn/2c − 1 < n/2, and B be

the set of r-subsets of [n] containing a point x. Then F = B ∪ B̄ gives equality.
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This theorem provides us with a lower bound for cc(Ks(t)). Throughout the rest

of this essay let

σt(s) = min

{
n : s ≤

(
n− 1

dn/te

)}
.

Corollary 3.2.7 For all s, t > 1, cc(Ks(t)) ≥ σt(s), where σt(s) is defined above.

Proof. Let C be a clique covering of Ks(t) of minimum cardinality k. Index the

vertices of Ks(t) by v1, v2, . . . , vts. Let Fi consist of those members of C having vi as

a vertex and define F = {F1, F2, . . . , Fts}. Since Ω(F) is isomorphic to Ks(t), the

family F is t-balanced. Thus by Theorem 3.2.6,

|F| = ts ≤ t

(
k − 1

dk/te

)
and hence, cc(Ks(t)) = k ≥ σt(s) by definition of σt(s).

For t = 2, we may obtain equality. In general, suppose equality holds in Theorem

3.2.6. Take k = σt(s) and choose a t-balanced family F in S = {1, 2, . . . , k} with

cardinality

|F| = ts ≤ t

(
k − 1

dk/te

)
.

Then the intersection graph of F is isomorphic to Ks(t) and cc(Ω(F)) ≤ k, by The-

orem 3.1.1. Thus, for values of t where equality holds in Theorem 3.2.6, cc(Ks(t)) =

σt(s). We conjecture that cc(Ks(t)) = σt(s), for t > 1. Theorem 3.2.1 now follows

as it is straight forward to compute a lower bound on σt(s). See Lemma 5.1.1 in the

Appendix for details. Theorem 3.1.2 gives

cc(Ks(t)) ≥ log2(st + 1).

Theorem 3.2.1 is an improvement on this result since b → 1 as t → ∞. This gives

a lower bound for complete multipartite graphs whose parts have different size. If

Kt1,t2,...,ts has r parts of size bigger than one and if

t = min{ti : ti > 1, i = 1, 2, . . . , s}

then

cc(Kt1,t2,...,ts) ≥ σt(r) ≥ logb r
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where

b =
t

(t− 1)(t−1)/t
.

This follows from Lemma 2.1.2 for clique covers, by deleting vertices in parts of size

one, and deleting vertices in parts of size bigger than t, until every part has size t.

3.3 Complement of paths, cycles, and perfect matchings

In Section 2.7 we analyzed the clique partition number of the complement of paths,

cycles and perfect matchings. It would be nice to know how the clique covering num-

ber behaves for these graphs. It was Orlin [22] who first asked about the asymptotics

of the clique covering number of the complement of a perfect matching. Gregory and

Pullman [16] answer this question and show that asymptotically, cc(M̄m) ∼ log2 m.

Regarding the complement of a cycle and path, de Caen, Gregory, and Pullman [11]

have computed exact values for cc(C̄m) and cc(P̄m), for small values of m.

m 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

cc(C̄m) 2 5 5 7 6 7 6 8 7 7 7 8 7 8 7 8 8

cc(P̄m) 3 4 5 5 6 6 6 6 7 7 7 7 7 7 7 7 8

They show that for m large enough,

log2 m ≤ cc(C̄m)− 2 ≤ cc(P̄m) ≤ 2 log2 m

and conjecture that asymptotically, cc(C̄m) ∼ log2 m and cc(P̄m) ∼ log2 m. Alles and

Poljak [1] improve the upper bound to cc(P̄m) ≤ 1.695 log2 m, for m sufficiently large.

Kohayakawa [19] again improves the upper bound to cc(P̄m) ≤ 1.459 log2 m, for m

sufficiently large, by finding a long induced path in the Kneser graph.

First, note that if we have a clique covering for P̄m−1 then this gives rise to a

clique covering of C̄m using at most cc(P̄m−1) + 2 cliques. Using Lemma 2.1.1 for

clique coverings, we get that cc(C̄m) ≤ cc(P̄m−1) + 2 ≤ cc(P̄m) + 2.

Remark 3.3.1 cc(C̄m) ≤ cc(P̄m) + 2.

We use the results from the previous section to provide a lower bound on the

clique covering number of the complement of a cycle, and hence, the complement of
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a path. We note that if we have a clique covering for C̄m, then by adding at most

three cliques, we get a clique covering for M̄m.

Remark 3.3.2 cc(M̄m) ≤ cc(C̄m) + 3.

Hence, for m sufficiently large and fixed ε > 0, Corollary 3.2.1 gives

log2 m +
1− ε

2
log2 log2 m− 3 ≤ cc(C̄m) ≤ cc(P̄m) + 2.

Thus,

log2 m ≤ cc(C̄m)− 2 ≤ cc(P̄m),

for m sufficiently large.

3.3.1 Induced cycles and paths in Kneser graphs

In this section, we will look at how to get an upper bound for the clique covering

number of the complement of a path, and hence, the complement of a cycle. We

will follow Vander Meulen [25] for most of the results in this section. Theorem 3.1.1

says that finding an induced graph H in the Kneser graph Kn:k gives rise to a clique

covering of H̄. Thus, we look at the problem of finding the order of the longest cycle

(or path) in the Kneser graph Kn:k. We define p(n, k) and c(n, k) to be the maximum

order (number of vertices) of an induced path and cycle respectively in Kn:k. Upper

bounds on p(n, k) and c(n, k) have been given by Alles and Poljak [1] and Kohayakawa

[19]. A simple argument relates these two numbers. If Cm is an induced cycle in a

graph, then removing a vertex gives an induced path of order m− 1.

Proposition 3.3.3 Fix k ≥ 1, then p(n, k) ≥ c(n, k)− 1, for n ≥ 2k + 1.

Further, if H is an induced subgraph of the Kneser graph Kn:k, the intersection

graph of V (H) is the complement of H. Hence, cc(H̄) ≤ n. Also, if there is an

induced path of order m in Kn:k, then cc(P̄m) ≤ n. In particular, if H is an induced

path or cycle, cc(P̄m) ≤ cc(P̄m+1) implies the following:

Lemma 3.3.4 Given k ≥ 1, n > 2k, we have cc(C̄c(n,k)) ≤ n and cc(P̄s) ≤ n, for all

positive integers s ≤ p(n, k).
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To provide an upper bound on the clique covering number of the complement

of a path, we must obtain a lower bound on p(2k + 1, k). Kohoyakawa [19] bounds

p(2k+1, k) from below by using a bipartite graph and giving a recursive construction

for an induced path in K2k+1:k. Let s ∈ N and define Gs to be a bipartite graph with

vertex classes [2s](s) and [2s](s−1). Two vertices in different classes are adjacent if and

only if they are disjoint. (Note that we are using Gs to represent this bipartite graph,

and not a graph on s vertices).

We define w(s) to be the maximum number of vertices in [2s](s) in an induced

path in Gs. Note that w(s) is roughly half the order of a maximum induced path in

Gs. The proof of the following theorem gives a construction of long induced paths in

the Kneser graph K2k+1:k. For the next proof, we use Ka1,a2,...,al:k to denote the graph

whose vertex set consists of the k-subsets of {a1, a2, . . . , al}, and where two vertices

are adjacent if and only if they are disjoint. Note that Ka1,a2,...,al:k is isomorphic to

Kl:k.

Theorem 3.3.5 For k ≥ 2, s ≥ 1,

p(2(k + s) + 1, k + s) ≥

{
w(s) · (p(2k + 1, k) + 1)− 1, if p(2k + 1, k) is odd

w(s) · p(2k + 1, k)− 1, if p(2k + 1, k) is even

Proof. Let A1B1A2B2 . . . Bm−1Am be an induced path in Gs, where Ai ∈ [2s](s), for

1 ≤ i ≤ m, and Bj ∈ [2s](s−1), for 1 ≤ j ≤ m− 1. Let V1V2, . . . Vn be an induced path

of order n (with n odd) in

K2s+1,2s+2,...,2(k+s)+1:k

which is isomorphic to K2k+1:k. Consider the paths,

Pi = Ai ∪ V1, Āi ∪ V2, Ai ∪ V3, . . . , Āi ∪ Vn−1, Ai ∪ Vn

where Āi is the complement of Ai in [2s](s), for 1 ≤ i ≤ m. The paths end in vertex

Ai ∪ Vn, as n was chosen to be odd.

Then the set of paths P = ∪iPi is a collection of m vertex disjoint induced paths

in K2(k+s)+1:k+s. Note that we could have Ai = Āj, for some i 6= j, as Ai ∈ [2s](s).

We join these paths together to create a path of order m(n + 1)− 1 in K2(k+s)+1:k+s.

Take b ∈ V3\V1 and a ∈ Vn−2\Vn. Then, for i ∈ {1, 2, . . . ,m− 1}, define

Ci =

{
Vn−1 ∪Bi ∪ {a}, if i is odd

V2 ∪Bi ∪ {b}, if i is even
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Then, as vertices, the Ci are non-adjacent as Vn−1 ∩ V2 ⊆ Ci ∩ Cj and Vn−1 ∩ V2 6= ∅
(for n ≥ 5 and 1 ≤ i, j ≤ m− 1). Also, each Ci is connected to exactly two vertices

in P , namely Vn ∪ Ai and Vn ∪ Ai+1 for odd i, or V1 ∪ Ai and V1 ∪ Ai+1 for even i.

Thus, we get a path of order m(n + 1) − 1 in K2(k+s)+1:k+s. Since the longest

induced path in Gs might not have initial and end vertices in [2s](s), then we simply

delete these vertices to get a path as above. This can be done as w(s) counts the

vertices in [2s](s). Taking m = w(s) and

n =

{
p(2k + 1, k)− 1, if p(2k + 1, k) is even

p(2k + 1, k), if p(2k + 1, k) is odd

gives the result.

Theorem 3.3.5 gives a lower bound on p(2k + 1, k).

Corollary 3.3.6 Fix s ≥ 1. Then p(2k + 1, k) ≥ w(s)b(k−1)/sc, for all k ≥ 1.

Proof. Note that the theorem is true when s = 1, as w(s) = 1. Fix s ≥ 2 and

recursively use p(2k + 1, k + 1) ≥ w(s) · p(2(k − s) + 1, k − s)− 1 to get

p(2k + 1, k + 1) ≥ w(s)t · p(2(k − ts) + 1, k − ts)−
t−1∑
i=0

w(s)i

for any integer 1 ≤ t ≤ k−1
s

. As w(s) ≥ 2 for s ≥ 1, we get

p(2k + 1, k + 1) ≥ w(s)t · [p(2(k − ts) + 1, k − ts)− 1].

As p(3, 1) = 2, taking t = b(k − 1)/sc gives

p(2k + 1, k + 1) ≥ w(s)b(k−1)/sc[p(3, 1)− 1] = w(s)b(k−1)/sc

as required to prove.

By using a computer search, Kohayakawa [19] found a long induced path in G6.

Remark 3.3.7 There exists an induced path in G6 with 300 vertices in [12](6) (that

is, w(6) ≥ 300).
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Thus by Corollary 3.3.6, p(2k + 1, k) ≥ 300b(k−1)/6c ≥ (2.587)k−1, for all k ≥ 1.

By Lemma 3.3.4, cc(P̄m) ≤ 2k + 1, for m ≤ p(2k + 1, k). Take m =
⌊
(2.587)k−1

⌋
+ 1.

Then we have,

k ≤ log2 m

log2 2.587
+ 1.

This implies for m large enough,

cc(P̄m) ≤ 2k + 1 ≤ 1.459 log2 m.

Kohayakawa [19] conjectured that sup w(s)1/s = 4. If this is correct, then we will

be able to improve the 1.459 in the upper bound to 1 + o(1). Note that de Caen and

Gregory [11] also conjectured that cc(P̄m) ∼ log2 m. Thus we have established the

following theorem.

Theorem 3.3.8 For m large enough,

log2 m ≤ cc(C̄m)− 2 ≤ cc(P̄m) ≤ 1.459 log2 m.

3.4 Complement of graphs with maximum degree two

In this section we will obtain bounds on the clique covering number of the complement

of graphs whose maximum degree is two. Let Gn be a graph on n vertices with

maximum degree two. Then Gn is a graph whose components are paths and cycles.

We will assume that the paths and cycles are nontrivial. de Caen, Gregory and

Pullman [11] prove that for n sufficiently large

log2 n ≤ cc(Ḡn) ≤ 5.8 log2 n.

To provide a lower bound on cc(Ḡn), where Gn is a graph whose components

are paths and cycles, we use the complement of a perfect matching. Notice that by

removing at most d3n/5e vertices from Gn, we obtain a perfect matching on at least

b2n/5c vertices. Thus by Lemma 2.1.2 and Lemma 5.1.1, if n is large enough,

cc(Ḡn) ≥ cc(M̄b2n/5c) ≥ log2 n.

For an upper bound on cc(Ḡn), we first need the following lemma which may be

found in de Caen, Gregory and Pullman [11].
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Lemma 3.4.1 Let G be a graph with components Gi, for i = 1, 2, . . . , s. Then

cc(Ḡ) ≤ max{cc(Ḡi) : i = 1, 2, . . . , s}+ cc(Kt1,t2,...,ts)

where ti is the chromatic number of Gi, for i = 1, 2, . . . , s.

Proof. We will first cover the edges of the form vw such that v ∈ Gi =⇒ w 6∈ Gi.

Since ti is the chromatic number of Gi, we can select ti cliques in Ḡi which partition

the vertices of Ḡi. Call the cliques Ki(1), Ki(2), . . . , Ki(ti). Note that Ki(j) could

be a single vertex if tj = 1. Recall the join and union of graphs [12]. Consider the

graph

H =
s∨

i=1

(Ki(1) ∪Ki(2) ∪ · · · ∪Ki(ti)).

A clique covering of H covers the edges of the form vw such that v ∈ Gi =⇒ w 6∈ Gi.

Note that if x, y ∈ V (Ki(j)), then x, y are equivalent. Hence, cc(H) = cc(Kt1,t2,...,ts).

If Ki is a clique in Ḡi, for each i = 1, 2, . . . , s, their join K1∨K2∨· · ·Ks is a clique in

Ḡ. By joining cliques from minimum clique coverings of the Ḡi, for i = 1, 2, . . . , s, the

remaining edges within the graphs Ḡi can be covered by max{cc(Gi) : i = 1, 2, . . . , s}
cliques in G.

de Caen, Gregory and Pullman [11] use this result to obtain an upper bound on

cc(Ḡn).

Theorem 3.4.2 If Gn has components consisting of nontrivial cycles and paths then

cc(Ḡn) = O(log2 n)

for sufficiently large n.

Proof. Suppose Gn has components Gi for i = 1, 2, . . . , s, where each Gi is a cycle

or a path on ni > 1 vertices. As the chromatic number of each Gi is at most three,

Lemma 3.4.1 gives

cc(Ḡn) ≤ max{cc(Ḡi) : i = 1, 2 . . . , s}+ cc(Ks(3))

Note that as Theorem 3.3.8 is for ni sufficiently large, cc(Ḡi) ≤ 1.459 log2 ni + O(1),

for ni > 1. For an upper bound on cc(Ks(3)), we note that Lemma 3.4.1 gives

cc(K3s(3)) ≤ cc(Ks(3)) + cc(K3(3)) = cc(Ks(3)) + 9.

41



Thus,

cc(Ks(3)) ≤ 9 log3 s + O(1).

Note that de Caen, Gregory and Pullman [11] provide an upper bound of 6 log3 s +

O(1) for cc(Ks(3)) by using Latin squares, however, 9 log3 s + O(1) is sufficient for

our purposes. This implies

cc(Ḡn) ≤ 1.459 log2 n + 9 log3 s = O(log2 n)

for n sufficiently large.

de Caen, Gregory and Pullman [11] ask whether or not for n sufficiently large, we

can get

cc(Ḡn) < (1 + o(1)) log2 n

in Theorem 3.4.2. We give an example of a graph, which is the complement of paths

and cycles, where this fails to be true. Consider Gn to be the graph where each

component is a K3, and n is divisible by three. Corollary 3.2.1 gives,

cc(Ḡn) ≥ 1.088 log2 n.

So Ḡn is a counterexample.

3.5 Complement of forests

In this section, we use the techniques of the previous section to obtain bounds on the

clique covering number of the complement of a forest, F̄n, were Fn denotes a forest

on n vertices. For the first time, we show

log2 k ≤ cc(F̄n) ≤ 10.3 log2 n

where k is the length of the longest path in Fn.

To provide a lower bound on cc(F̄n) we use the complement of a path. Let Pk be

an induced path in Fn with k vertices. Then by Lemma 2.1.2 and Theorem 3.3.8, if

n is large enough,

cc(F̄n) ≥ cc(P̄k) ≥ log2 k.

Note that this bound is achieved by the star graph. Also note that this lower bound

holds if k is replaced the size of the largest induced matching of Fn.
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We now obtain an upper bound on cc(F̄n). For the remainder of this section, let

g be the function defined by

g(n) = max{cc(F̄n) : Fn is a forest on n vertices}.

It is easy to see that g(n) ≤ g(n + 1) ≤ g(n) + 2.

Lemma 3.5.1

g(n) ≤ g(b2n/3c) + 6.

Proof. Let Fn be a forest such that g(n) = cc(F̄n). By Lemma 2.8.2, we may split Fn

into forests F 1 and F 2 such that |F i| ≤ b2n/3c, for i = 1, 2, and V (F 1)∩V (F 2) = {v},
for some vertex v of Fn. We will construct a clique covering of F̄n. By Lemma 3.4.1,

Fn − v can be covered using at most

max{cc(F 1 − v), cc(F 2 − v)}+ cc(K2(2))

cliques. But cc(K2(2)) = 4. Also, the edges adjacent to v in F̄n can be covered by at

most two cliques. The result now follows, as

max{cc(F 1 − v), cc(F 2 − v)} ≤ g(b2n/3c).

We will show if n is large enough, then cc(F̄n) = O(log2 n).

Theorem 3.5.2 Let Fn be a forest on n vertices. Then

cc(F̄n) ≤ 10.3 log2 n

for n sufficiently large.

Proof. Let Fn be a forest on n vertices. Then cc(F̄n) ≤ g(n), so it suffices to prove

that g(n) ≤ 10.3 log2 n. Let r = log3/2 n, so that n ≤ b(3/2)rc+1. Then by repeatedly

using Lemma 3.5.1 and the fact that g(n) ≤ g(n + 1) ≤ g(n) + 2 gives,

g(n) ≤ g(b(3/2)rc+ 1) ≤ 6r + O(1) ≤ 10.3 log2 n
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for n sufficiently large.

It would be interesting to know whether or not

cc(F̄n) ≤ (1 + o(1)) log2 n

for n sufficiently large. If in fact cc(P̄n) ∼ log2 n, then this would seem like a rea-

sonable guess. Perhaps the upper bound is O(log2 k), where k is the size of a largest

matching in Fn.
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Part IV

Conclusion

4.1 Open Problems

In Chapter II, we looked that the clique partition number of graphs. In Section 2.7,

we gave a result due to Gregory, McGuinness and Wallis [15], that is, for n sufficiently

large,

n ≤ cp(M̄n) ≤ (1 + o(1))n log2 log2 n.

They conjecture that cp(M̄n) ∼ n. Similar results hold for P̄n and C̄n, although it

does not appear that projective planes can be used to get a linear bound for the clique

partition number of M̄n, P̄n, and C̄n.

Conjecture 4.1.1 If Gn is Mn, Pn or Cn, then cp(Ḡn) ∼ n.

In Section 2.8, the clique partition number of the complement of a forest was

looked at. We believe that Fn can be partitioned into (1 + o(1))
√

n components each

with size (1+o(1))
√

n, such that any two components intersect in at most one vertex.

Conjecture 4.1.2 If Fn is a forest on n vertices then,

cp(F̄n) = O(n log2 log2 n),

for n sufficiently large.

A probabilistic argument could give the existence of a forest whose clique partition

number is not linear.

Conjecture 4.1.3 There exists a forest such that

lim
n→∞

cp(F̄n)

n
= ∞.

In Section 2.9 we used a probabilistic argument to give an upper bound on the

clique partition number of the complement of a graph with bounded maximum degree.

If the maximum degree is not bounded, a similar argument might exist.
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Conjecture 4.1.4 If |E(Gn)| = o(n2) then cp(Ḡn) = o(n2).

In Chapter II, we analyzed the clique covering number of graphs. As cc(Ks(2)) =

σ2(s), we suspect that cc(Ks(t)) = σt(s), for all t > 1.

In Section 3.3, cc(P̄m) and cc(C̄m) were analyzed. de Caen, Gregory, and Pullman

[11], as well as Kohayakawa [19], conjecture that cc(C̄m) ∼ log2 m and cc(P̄m) ∼
log2 m. It would be interesting to know if this is the case and whether or not

sup w(s)1/s is indeed equal to four.

Conjecture 4.1.5 cc(C̄m) ∼ log2 m and cc(P̄m) ∼ log2 m.

In Section 3.5 we looked at the clique covering number of the complement of a

forest. We suspect that the upper bound is log2 n.

Conjecture 4.1.6

cc(F̄n) ≤ (1 + o(1)) log2 n

for n sufficiently large.
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Part V

Appendix

5.1 Lower bound for σt(s)

Lemma 5.1.1 Let t > 1 be an integer, σt(s) = min{n : s ≤
(

n−1
dn/te

)
} and fix 0 < ε < 1.

Then for s sufficiently large,

σt(s) ≥ logb(st) +
1− ε

2
logb logb(st)

where

b =
t

(t− 1)(t−1)/t
.

Proof. We first note Stirling’s formula,

√
2πn(n/e)ne1/(12n+1) ≤ n! ≤

√
2πn(n/e)ne1/(12n).

The following inequality can be derived from Stirling’s formula,(
tn

n

)
≤

√
t

2π(t− 1)

1√
n

(
tt

(t− 1)t−1

)n

.

Then, as σt(s) = min{n : s ≤
(

n−1
dn/te

)
}, we get,

s ≤
(

n− 1

dn/te

)
=

n− dn/te
n

(
n

dn/te

)
≤ t− 1

t

(
n

dn/te

)
≤ t− 1

t

(
tdn/te
dn/te

)
.

Thus,

s ≤ t− 1

t

√
t

2π(t− 1)

1√
n/t

(
tt

(t− 1)t−1

)dn/te

.

For convenience, we let

b =
t

(t− 1)(t−1)/t
and c =

t2b2(t− 1)

2π
.

Then as b > 1 for t > 1,

st ≤
√

t− 1

2π

1√
n
· bn+1t = bn

√
c

n
.
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Then,

logb(st) ≤ n− 1

2
logb n +

1

2
logb c

n ≥ logb(st) +
1

2
logb n− 1

2
logb c.

Take s sufficiently large so that

logb(st) ≥ c (logb(st))
1−ε +

1

2
logb c.

This can be done as t, b, c, ε are all constant. This implies

n ≥ logb(st) +
1

2
logb

(
c (logb(st))

1−ε)− 1

2
logb c

= logb(st) +
1− ε

2
logb logb(st).

As σt(s) is the smallest such n, we are done.

Note that b = 2 when t = 2. Also, as t →∞, b → 1. A similar argument can be

used to give a lower bound on σt(s). Note that we actually have that(
tn

n

)
∼

√
t

2π(t− 1)

1√
n

(
tt

(t− 1)t−1

)n

For convenience, denote σ = σt(s). Thus, for a lower bound on s we can use

s ≥
(

σ − 2

dσ−1
t
e

)
≥ d1(t)

(
tdσ−1

t
e

dσ−1
t
e

)
where d1(t) is some function of t. Then we have,

s ≥ d2(t)
bσ

√
σ

for some function d2(t). There is also a function d3(t) so that we have,

d2(t)
bσ

√
σ
≤ s ≤ d3(t)

bσ

√
σ

.

Taking logarithms base b, dividing by σ and taking the limit as s → ∞ (and hence

σ →∞), we have

1 ≤ lim
s→∞

logb s

σ
≤ 1

Thus, σt(s) ∼ logb s, where

b =
t

(t− 1)(t−1)/t
.
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5.2 A recurrence relation

Lemma 5.2.1 Let x be a positive real number and ε > 0. If

c(x)

x
≤ 1 + ε +

c(
√

x)√
x

,

then

c(x) ≤ (1 + ε)x log2 log2 x + Mx

for some constant M .

Proof. Let z = log2 log2 x and define h(z) = c(x)
x

. Then

log2 log2

√
x = log2

1

2
log2 x

= log2 log2 x + log2

1

2
= z − 1.

Thus, h(z − 1) = c(
√

x)√
x

. By our assumption in the lemma,

h(z) ≤ 1 + ε + h(z − 1).

By repeatedly using this inequality, we get

h(z) ≤ (1 + ε)bzc+ h(z − bzc).

Let

M = sup
z∈[0,1]

h(z).

Then

h(z) ≤ (1 + ε)z + M

implying

c(x) ≤ (1 + ε)x log2 log2 x + Mx.
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