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Abstract

The Classical notions of Computation are rapidly entering Quantum Computation. Peo-
ple try to find Quantum counterparts for Classical concepts.

In this essay, we will discuss about classical t-design, the quantum counterpart, Mu-
tual Unbiased bases and a new technique for evaluating the expectation of a polynomial
over Haar measure.
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Chapter 1

Introduction

For a long time, algorithm and computation were equivalent to what we know today
as classical computation. The fundamental model of classical computation is Turing
machine. Informally speaking, Turing machine is a mathematical model for computation
with a head, an infinite tape, and a finite transition table. The head reads a symbol written
on a cell of the infinite tape and is able to alter the content of the cell and move right or
left according to the finite transition table stored internally. In the late 1960s and early
1970s [12, 8] people observed that it seemed Turing machine model of computation is
as strong as other models of computations. It is strong in the sense that if a particular
problem can be solved efficiently in one model of computation also it can be efficiently
solved in the Turing machine model. The strong Church-Turing thesis hypothesized this
observation:

Any algorithmic process which can be performed on any hardware can be
simulated efficiently using a Universal Turing machine.

In the mid 1970s, Robert Solovay and Volker Strassen found a randomized algorithm
to test whether an integer is prime or coprime. This algorithm used randomness as an
essential resource. At that time there was no deterministic version for primality test; so
it was proposed that computers with a random number generator as a resource would
be able to solve problems more efficiently. This was the first challenge to the strong
Church-Turing thesis. The result was a modification to the strong Church-Turing thesis:

Any algorithmic process can be simulated efficiently using a probabilistic
Turing machine.

The probabilistic Turing machine is a Turing machine which chooses among possible
transitions based on some probability distribution. Informally speaking, it is a Turing
machine with access to a random number generator.

The unpredicted modification to Church-Turing thesis left some people in doubt.
How could we be sure that this version of Church-Turing thesis would not need a new
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modification to cover new things? With this motivation in mind some people began to
investigate to find a model of computation which is guaranteed to be able to efficiently
simulate any other model of computations. To give the most fundamental answer to this
question we should think about laws of the world in which a real Turing machine can
operate. The Turing machine fully works in the classical world of physics. Considering
the fact that a process which inherently is not a classical phenomenon might not be
simulated efficiently using classical physics, Feynman proposed the notion of Quantum
Computation. Deutsch introduced the notion of a Universal Quantum Computer and
proposed a problem which was solved more efficiently on a Quantum Computer.

For a long time, People work on Classical Algorithms and in general Classical Com-
putation and so there are a variety of concepts and techniques built to deal with a problem
in Classical Computation. A lot of problems were studied in Classical Computation. In
theory part of Quantum Computing, one trend is to study the same problems once stud-
ied in Classical Computation. Counterpart concepts of the classical problems are firstly
defined and then studied in Quantum Computation, e.g, Quantum Complexity classes.

In this essay the concept of t-design and its quantum counterpart will be studied. We
will deal with the definition of the classical t-design, mutually unbiased bases and the
concept of Cubature formula in integration, and then we will define quantum t-design
and will cover a few related topics including an alternative proof on the formula related
to the expectation of monomials over the Haar-measure which is my small contribution.

1.1 Mathematical Formalism of Quantum Computing

The Quantum Mechanical laws governing the world of Quantum Computing can largely
be expressed in terms of Linear Algebra. In this chapter we are going to build up the
preliminaries needed for this essay.

The notion of a classical bit in a quantum computer is substituted by the notion of a
quantum bit. A classical bit’s state is either 0 or 1. A quantum bit, say |ψ〉, can be in any
linear combination of two base states, let’s say |0〉 and |1〉, which can be realized using
two distinct states of a quantum system, e.g., spins of an electron. We show this linear
superposition using the following notation:

|ψ〉 = α|0〉+ β|1〉, where |α|2 + |β|2 = 1

If a device measures |ψ〉 to read its value, the outcome will be |0〉 with probability of |α|2
or |1〉 with probability of |β|2. All quantum states can be seen as elements of a Hilbert
space.

1.1.1 Hilbert Space

Definition 1.1.1. An Inner product space is a vector space V defined over a field F with
an inner product. The inner product function 〈·|·〉 : V × V 7→ F has the following
properties:
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1. 〈v|u〉 = 〈u|v〉
2. 〈av|u〉 = a〈v|u〉
3. 〈v + w|u〉 = 〈v|u〉+ 〈w|u〉
4. 〈v|v〉 ≥ 0

5. 〈v|v〉 = 0 if and only if v = 0.

Definition 1.1.2. A Hilbert space is a real or complex inner product space where the
norm function ‖ · ‖ : V 7→ R defined by

‖x‖ =
√
〈x, x〉

We can combine two Hilbert spaces to get a larger one. This combination can be
expressed in terms of the direct sum or the tensor operation. If we are given two Hilbert
spaces H1 and H2 with inner products 〈·|·〉1 and 〈·|·〉2 then we can define a new Hilbert
space H = H1 ⊗H2 to be the vector space with vectors of the form∑

j

αjψ
j
1 ⊗ ψj2, where ψj1 ∈ H1 and ψj2 ∈ H2

And, the inner product of H will be defined as

〈φ1 ⊗ φ2|ψ1 ⊗ ψ2〉 = 〈φ1|ψ1〉1〈φ2|ψ2〉2

This expansion of Hilbert spaces using tensor operation gives us a very strange
and powerful tool known as entanglement. We can make states of the form |ψ〉 =
1√
2
|0〉1|0〉2 + |1〉1|1〉2. Suppose we give Alice the part corresponding to the first Hilbert

space and Bob the second part. Then if Alice measures her Qubit and gains |0〉 (or |1〉),
the part of Bob collapses to |0〉 (or |1〉). This notion will be covered later.

1.1.2 Quantum Sates

The world of Quantum bits is Hilbert space, and any normalized element in the Hilbert
state can represent a Quantum state or Quantum bit.

If |ψi〉 ∈ H for i = 1, . . . , n then any linear combination of them given by

|ψ〉 = α1|ψ1〉+ · · ·+ αn|ψn〉

lies in the Hilbert space H .

We represent the elements of the Hilbert space H by “ket” vectors |·〉. The “bra”
vectors will represent the duals of elements of H, e.g., 〈ψ| = |ψ〉∗ where |ψ〉 ∈ H. The
“braket” notation 〈φ|ψ〉 stands for the inner product of |φ〉 and |ψ〉.
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If the dimesion ofH is n then we can choose an orthonormal basis forH, say {|i〉}ni=1.
Then any state like |φ〉 can be uniquely expressed as a linear superposition of the elements
of this basis. Let’s have |φ〉 = α1|1〉+ · · ·+ αn|n〉. If we measure |φ〉 in the same basis
the outcome of the measurement will be |i〉 with the probability of |αi|2. Since the sum
of the probabilities should be one we have

n∑
i=1

|αi|2 = 1

1.1.3 Quantum Operations

The Quantum Mechanical laws describe two kinds of operations:

1. Unitary Transformation

2. Measurements

Definition 1.1.3. The state of an isolated quantum system evolve according to a Unitary
Linear map. A system in the state |ψ〉, after evolving according to a unitary map U ,
evolves to the state corresponding to U |ψ〉.

The famous Pauli matrices σx, σy, σz are unitary matrices defined by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
Definition 1.1.4. Quantum Projective measurements are described by a collection {Mm}
of measurement operators each of which describes the projection of the state onto a
subspace. These operators satisfy in the following equation:∑

m

M †
mMm = I

If a pure state |ψ〉 is measured the probability of observing the outcome m will be

p(m) = 〈ψ|M †
mMm|ψ〉

and the state of the system after the measurement will be

Mm|ψ〉√
〈ψ|M †

mMm|ψ〉
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1.1.4 Entanglement

Let {|hi〉} be the basis of the Hilbert space H, and {|kj〉} be the basis of the Hilbert
space K then {|hi〉 ⊗ |kj〉} is the basis for the Hilbert space H ⊗ K. In H ⊗ K we can
have any state in the linear combination of {|hi〉 ⊗ |kj〉} in the form of

|ψ〉 =
∑
ij

αij|hi〉|kj〉,where
∑

ij |αij|2 = 1

This tensor product composition gives us the entanglement property which is not seen in
classical physics.

Definition 1.1.5. Entanglement is a quantum mechanical phenomomen in which two
quatum systems are linked together such that no description is adequate to describe the
behaviour of one of them without considering the other one. This entanglement can be
preserved between two or more objects although they become spatially far separated.

Suppose we prepare |ψ〉 in the following state

|ψ〉 =
1√
n

∑
i

|hi〉|ki〉

and then give the half corresponding to H to Alice and the other half corresponding to
K to Bob. Then upon Alice measures her qubit and get |hi〉 for some i Bob’s state will
collapse to the state with the same index |ki〉.

1.1.5 Density Matrix

Definition 1.1.6. A density matrix is a Hermition positive-semidefinite matrix of trace
one that describes the state of a quantum system. For a pure state |ψ〉 the density matrix
representation is defined by

|ψ〉〈ψ|
.

Consider a random generator generating a number from the set {1, . . . , n} where the
number i is picked with probability of pi. Now suppose Alice uses this random number
generator, and upon receiving i from this random number generator makes a state |ψi〉
and sends that state to Bob without telling him the number i. Therefore the state of the
quantum system Bob receives will be

ρ =
∑
i

pi|ψi〉〈ψi|

Intuitively speaking, Bob’s quantum state is a mixed state.
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Definition 1.1.7. A mixed state is an ensemble (pi, ρi). That is a probability distribution
over density operators. So the density matrix of the system can be described by

ρ =
∑
i

piρi

Density matrix representation is another representation for quantum systems. If we
apply the unitary evolution U on the system of the state of |ψ〉, the state of the system will
evolve to U |ψ〉. Similarly the density matrix evolution of this system can be represented
by

|ψ〉〈ψ| 7→ U |ψ〉〈ψ|U †
Just by studying the definition of a mixed state it can be seen that in the general case the
unitary evolution U of a system with the density matrix ρ can be described by

ρ 7→ UρU †
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Chapter 2

Discrete Design

2.1 Block Design

Definition 2.1.1. A block design D with parameters (v, b, r, k, λ) consists of a point set
V of v points and block set B with b blocks, where each of the blocks is a k-subset of V ,
such that the following conditions hold:

1. each point lies on exactly r blocks.

2. each pair of points lies on exactly λ blocks.

The above design is called a 2-design.

Example 2.1.2. The following is a block design with parameters (v, b, r, k, λ) = (7, 7, 3, 3, 1).

{0, 1, 3}
{1, 2, 4}
{2, 3, 5}
{3, 4, 6}
{4, 5, 0}
{5, 6, 1}
{6, 0, 2}

The parameters of a design are not independent. Let’s take a pair (x, α) where x ∈ V
and α ∈ B such that x lies on α. If we first choose x then α, we have v choices for x and
r choices for α such that α contains x. If we first choose α then x, we have b choices for
α and k choices for x such that x lies on α. Therefore we have the following equality:

vr = bk (2.1)
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Now let’s take (x, y, α) where x 6= y ∈ α. Similarly by choosing x, y in v(v − 1)
ways we will have λ ways to choose α. Conversely by choosing α in b ways we will have
k(k − 1) ways to choose x, y. Therefore we have the following equality:

v(v − 1)λ = bk(k − 1) (2.2)

From the above two equality we can conclude that

(v − 1)λ = r(k − 1) (2.3)

2.2 Classical t-design

Definition 2.2.1. Generalized t-design is a class of k-subsets of point set V such that
the number of blocks, say bi, that contain any chosen i-subset of V is independent of the
choice of the i-subset for all i = 1, . . . , t.

Again the parameters of the design are not independent. The following equations will
hold [3]:

bi = bt

(
v−i
t−i

)(
k−i
t−i

) , for i = 0, . . . , t (2.4)

With the above definition we can conclude that the prior defined block design is
2-design. Design theory has very important applications in other fields such as Code
Design.

Suppose the machine A1 is a random number generator which generates uniformly
independent numbers x1, x2, . . . , xk from the set V = {1, 2, . . . , n}. The machine A2

uses a pre-determined t-design on the set V whose block size is k. This machine picks
a number from the set {1, 2, . . . , b} where b is the block size. Then it will output the
elements of the k-th block. We are given these two oracles one of the first type and the
other of the second type, but we do not know which is which. We want to find out which
oracle is of which type.

By running machine A we are allowed to uniformly at random pick t elements of its
k-set output and read those elements. It can be shown that using the described procedure
it is not possible to distinguish between A1 and A2.

Later we will define the notion of Quantum t-design which has some similarities with
the above problem.

2.3 Mutually Unbiased Basis

One of the very basic principles of Quantum Mechanics is that position and momentum
are two complementary observables. That is if we know one of them with certainty, we
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cannot know anything about the other one. This arises from the fact that their corre-
sponding operators are not commutative. We can see Mutually Unbiased Basis from the
same viewpoint.

Definition 2.3.1. Two quantum mechanical observables are called complementary if and
only if precise knowledge of one of them implies zero knowledge of the other one that is
all possible outcomes are possible with equal probability.

There is a one-to-one correspondence between non-degenerate complementary ob-
servables and mutually unbiased bases.

Definition 2.3.2. Suppose x1, x2 . . . , xd and y1, y2 . . . , yd are two orthogonal bases in
Cd. If there is a constant γ such that for all choices of i, j = 1, 2, . . . , d the norm of inner
product of xi and xj is γ we say they are unbiased:

〈xi|yj〉〈yj|xi〉 = γ, for all i, j = 1, 2, . . . , d

A set of orthonormal bases is mutually unbiased if each pair of bases is unbiased.

Now suppose H1 and H2 are two hermitian d× d matrices whose eigenbases B1 and
B2 are Mutually Unbiased. Let quantum qubit |ψ〉 be prepared in an eigenbasis of H1,
i.e., |ψ〉 = b1i ∈ B1. If we measure observable H1 following by measuring H2 we will
get one of the eigenbasis of H2, say b2j with probability 〈b1i|b2j〉 = 1/d. That means
observables H1 and H2 are two complementary observables. Conversely eigenbases of
two arbitrary complementary observable H1 and H2 are mutually unbiased provided that
the eigenbases are non-degenerate.

Mutually Unbiased Bases also plays a role in Quantum Tomography. The Quantum
Tomography is the process of reconstructing quantum state using measurement on many
state copies. We are given a source of unknown quantum state |ψ〉. Using a large number
of measurements for an observable H =

∑
b∈B xb|b〉〈b| we can find all the statistics

Tr(ρ|b〉〈b|) for all the eigenvalues of H . The question is how many distinct observables
are needed to be measured to reconstruct |ψ〉. It is found that at least d + 1 distinct
observables should be measured. Also the lower bound d + 1 is enough when we use
d + 1 non-degenerate pairwise complementary observables. A simple example of this
process is when Pauli Matrices σx, σy, σz are used as observables to reconstruct a 2 × 2
density matrix.

Consider the following example for a set of 3 Mutually Unbiased Bases in the Hilbert
space of dimension 2.

B1 = {|0〉, |1〉},
B2 = {|+〉 =

|0〉+ |1〉√
2

, |−〉 =
|0〉 − |1〉√

2
},

B2 = {|+ i〉 =
|0〉+ i|1〉√

2
, | − i〉 =

|0〉 − i|1〉√
2
}
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|0〉

|1〉

|+〉|−〉

|+i〉

|−i〉

Figure 2.1: A set of 3 Mutually Unbiased Bases in the Hilbert space of dimension 2.

Since for each xi and yj chosen from distinct bases we have |〈xi|yj〉| = 1√
2

using the
interpretation above the corresponding angle is π

4
. Figure 2.1 shows that on the Bloch

sphere the angles are double.

Now we will have a few properties. Since x1, x2, . . . , xd forms a basis we have |yj〉 =∑
i〈xi|yj〉|xi〉. So we have

〈yj|yj〉 =
∑
i

|〈xi|yj〉|2 = dγ

Therefore γ = 1
d
. One interpretation of |〈xi|yj〉|2 is the angle between the lines spanned

by xi and yj . In the above example it can be seen that 3 is maximal. It is suggested that
in a Hilbert space of dimension d there are at most d+ 1 mutually-unbiased bases. Later
we will come back to this and show some construction for special cases.

Mutually Unbiased Basis was introduced by Schwinger [14]. Suppose B1 and B2 are
two unbiased bases. If a state |ψ〉 is prepared as a state of Bi and then measured in basis
Bj where i 6= j no information about |ψ〉 is revealed. This is one of the key ideas in
BB84 QKD protocol where as long as the choice of basis in unknown no one can gain
any information about the key.

2.3.1 Constructions

One fundamental question to be answered is how many mutually unbiased bases in di-
mension d we can have. This problem is solved partially for prime power dimensions. In
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general Let’s define MUB : N 7→ N as the following:

MUB(n) = max{|B| : B is the set of MUBs in Cn}

Then the following properties are known:

• MUB(pr) = pr + 1 for prime number p.

• MUB(n) ≤ n+ 1

• MUB(mn) ≥ min{MUB(m),MUB(n)}
• MUB(d2) ≥ N(d), whereN(d) is the number of mutually orthogonal Latin squares

of size d× d.

There are different constructions for mutually unbiased basis. We will discuss a few
of them here. By giving these construction the truth of the above facts will be shown.

For add prime power dimension we have the following construction given by Woot-
ters and Fields [16]. Let p be any odd prime number, and , wp be the pth root of unity
exp(2πi/p). For a and b in GF(pk) define |ψab 〉 as the following:

|ψab 〉 =
1√
pk

∑
x∈GF(pk)

wTr(ax2+bx)
p |x〉

where Tr(z) for z ∈ GF(pk) is defined as

Tr(z) = zp
0

+ zp
1

+ · · ·+ zp
d−1

Theorem 2.3.3. For any odd prime p, the sets

Ba = {|ψab 〉|b ∈ GF(pk)},where a ∈ GF(pk)

with the computational basis form a set of d+ 1 mutually unbiased bases.

Proof. We have

〈ψab |ψa
′

b′ 〉 =
1

pk

∣∣∣∣∣∣
∑

x∈GF(pk)

wTr((a′−a)x2+(b−b′)x)
p

∣∣∣∣∣∣
If |ψab 〉 and |ψa′b′ 〉 are from the same basis then a = a′ and that means

〈ψab |ψab′〉 =
1

pk

∣∣∣∣∣∣
∑

x∈GF(pk)

wTr((a′−a)x2

p

∣∣∣∣∣∣
Therefore if b = b′ we have 〈ψab |ψab′〉 = 1 and if b 6= b′ we have 〈ψab |ψab′〉 = 0.
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Lemma 2.3.4. Suppose Fq is a finite field of odd characteristic. Let X be a non-trivial
additive character of Fq. Let P (X)Fq[X] be a polynomial of degree 2. Then∣∣∣∣∣∣

∑
x∈Fq

X (P (x))

∣∣∣∣∣∣ =
√
q

For a proof you can refer to [11]

If a 6= a, |ψab 〉 and |ψa′b′ 〉 are from distinct bases. Now using the above lemma we have

〈ψab |ψa
′

b′ 〉 =
1

pk

∣∣∣∣∣∣
∑

x∈GF(pk)

wTr((a′−a)x2+(b′−b)x
p

∣∣∣∣∣∣
=

1√
d

In dimension 3 the above construction gives us the following bases

B0 = { 1√
3

(1, 1, 1),
1√
3

(1, w3, w
2
3),

1√
3

(1, w2
3, w3)},

B1 = { 1√
3

(1, w3, w3),
1√
3

(1, w2
3, 1),

1√
3

(1, 1, w2
3)},

B2 = { 1√
3

(1, w2
3, w

2
3),

1√
3

(1, w3, 1),
1√
3

(1, 1, w3)}.

So B0, B1, B2 with the computational basis form four mutually unbiased bases.

The above construction only works for odd prime power dimensions. For dimensions
of the power of 2 we have the following construction:

Let G(4, n) be a finite Galois ring with Teichmuller set Tn Then define

|ψba〉 = 2−n/2
∑
x∈Tn

w
Tr(a+2b)x
4 |x〉

Theorem 2.3.5. For any prime of 2, say 2n, the sets

Ba = {|ψab 〉|b ∈ Tn(pk)},where a ∈ Tn
with the computational basis form a set of 2n + 1 mutually unbiased bases.

For a proof, refer to [2].
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In dimension 4 the above constructing gives us the following bases:

B0 = {1

2
(1, 1, 1, 1),

1

2
(1, 1,−1,−1),

1

2
(1,−1,−1, 1),

1

2
(1,−1, 1,−1)},

B1 = {1

2
(1,−1, i,−i), 1

2
(1,−1, i, i),

1

2
(1, 1, i,−i), 1

2
(1, 1,−i, i)},

B2 = {1

2
(1,−i,−i,−1),

1

2
(1,−i, i, 1),

1

2
(1, i, i,−1),

1

2
(1, i,−i, 1)},

B3 = {1

2
(1,−i,−1,−i), 1

2
(1,−i, 1, i), 1

2
(1, i, 1,−i), 1

2
(1, i,−1, i)},

The above four bases together with the computational basis are 5 MUBs in C4.

2.4 Cubature

In mathematics integration plays an important role, and that is to evaluate∫ b

a

f(x)dx

In some cases carrying out numerical integration is the only option in evaluating an
integration. There are a few reasons to evaluate an integration using numerical methods:

• The value of integrand, f(x), is only known at specific points, for example, via
sampling.

• It is difficult to find an antiderivative, for example when f(x) = exp(x2)

• Computing a numerical approximation for a known antiderivative is hard, for ex-
ample when the antiderivative is given as an infinite series.

To overcome these issues a number of numerical quadrature techniques were introduced.
The main idea behind them is interpolating. Simpson’s rule is one of them:∫ b

a

f(x)dx ≈ (b− a)

6

(
f(a) + 4f(

a+ b

2
) + f(b))

)
There is a generalization to these approximation integrations to higher dimensions.

Definition 2.4.1. Let µ be a measure on Rn with finite moments. A cubature formula of
degree t for µ is a set of points F = {−→pa} ∈ Rn and a weight function −→pa 7→ wa ∈ R
such that ∫

P (−→x )dµ =
N∑
a=1

waP (−→pa)

for some polynomial P of degree at most t. Also we refer to
∑N

a=1waP (−→pa) using the
notation P (F ).
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π

Figure 2.2: Archimedes’ hat-box theorem

In the above definition if n = 1, then F is also called a quadrature formula which
is the same notion discussed in the numerical integration section. There is motivation to
determine how many points are needed for a given formula and a given degree t to make
the cubature formula as simple as possible. We will discuss later about equal-weight
formula under the name of t-designs.

2.5 Connection between Quadrature and Cubature

The main question to be answered in this section is to show a connection between quadra-
ture on the interval [−1,−1] and cubature on the unit sphere S2, both with uniform mea-
sure.

Let’s define π to be the orthogonal projection from S2 to the z coordinate. Then
according to Archimedes’ hat-box theorem for any interval I ∈ [a, b] the area of π−1(I)
is proportional to the length of I [10]. We can conclude that if F is a t-cubature formula
on S2, then π(F ) is a t-cubature on [−1, 1].

Using this conclusion we can derive a few well-known quadrature formula using
cubature formula on S2. The vertices of a regular octahedron form a 3-design on S2.
Figure 2.3 shows that by projecting this formula we get Simpson’s rule If we project the
same set of points using a different projection we get 2-point Gauss-Legendre quadrature
shown in figure 2.4.
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π

1
6

1
6

2
3

Figure 2.3: Simpson’s rule: If the vertices of a regular octahedron which form a 3-design
on S2 is projected on [−1, 1] in the above way, we will get the familiar Simpson’s rule.

π

1
2

1
2

Figure 2.4: 2-point Gauss-Legendre rule: Using a different projection of the vertices of
a regular octahedron on [−1, 1] we will get the 2-point Gauss-Legendre rule.
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Chapter 3

Quantum t-design

3.1 Introduction

Formerly, we talked about cubature formulas for evaluating integrations. Intuitively
speaking, the idea of cubature formulas can be extended to the Quantum world in which
integrand is a quantum state picked from some special measure. Suppose we have two
quantum machines C and D. Machine C upon running outputs t copies of a quantum
state |ψ〉 picked up from a continues probability distribution, while machine D outputs t
copies of a quantum state |ψi〉 where i is chosen from a discrite probability distribution.
Suppose D acts in a way that its output cannot be distinguished from the output of C.
That means if one is given one of the two machines as an oracle, knowing the probabil-
ity distribution of C, cannot determine which machine is given to him or her using any
possible Quantum Operation on the output of the machine he or she is possessed.

Formally speaking, what we want is a disjoint probability distribution over quantum
states (pi, |φi〉) such that ∑

i

pi(|φi〉〈φi|)⊗t =

∫
ψ

(|ψ〉〈ψ|)⊗tdψ

The integration in the right hand side is over Haar measure. Intuitively speaking, Haar
measure is a uniform measure over CSd−1. For example, when the dimension of the
space is 2, picking up states from Haar measure is equivalent to picking uniformly up
states from the Block sphere (for more detail refer to the appendix).

To understand the space over which the integration is taken we have to study the
space spanned by all states of the form |ψ〉⊗t. Let’s call this space Hsym.

Suppose SWAPi,j is the operator acting on any state fromH swaps the ith qubit with
the jth qubit. Since SWAPi,j|ψ〉⊗t = |ψ〉⊗t, SWAPi,jHsym = Hsym. So we can conclude
that Hsym is the simultaneous eigenspace corresponding to +1 eigenvalue of SWAPi,j

for all i, j = 1, . . . , t.

The eigenvectors corresponding to the eigenvalue +1 of the SWAP operator can be
easily determined.
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For example, let the dimension of the space be d = 2 and suppose we are working
with t = 2 copies, then the eigenbasis of SWAP operator and similarly Hsym are the
normalized version of the following vectors:

|00〉, |11〉, |01〉+ |10〉

We can easily generalized the above example for d = 2 and any t. Let |bn〉 be defined
as the following:

|bn〉 =
1√(
t
n

)
 ∑

The number of 0s in {r1, . . . , rt} is n

|r1r2 . . . rt〉


Then {|bn〉}tn=0 is an eigenbasis of the SWAP operator and Hsym. This result can be
easily generalized for any dimension d. Let’s define

|bi1,i2,...,id〉 =
1√(
t

i1,i2,...,id

)
 ∑
∀j : 1 ≤ j ≤ d the number of js in r1, . . . , rd is ij

|r1r2 . . . rt〉


It is clear that for all r, s = 1, . . . , t we have SWAPr,s|bi1,i2,...,id〉 = |bi1,i2,...,id〉. If the
sequences i1, i2, . . . , id and j1, j2, . . . , jt differ in just one location, i.e., im 6= jm, then
all terms in corresponding sums of |bi1,i2,...,id〉 and |bj1,j2,...,jt〉 will be different and so the
terms are orthonormal to each other. Since the number of terms in the sum is

(
t

i1,i2,...,id

)
so |bi1,i2,...,id〉 is normalized.

Theorem 3.1.1. {|bi1,i2,...,id〉} is an eigenbasis for the simultaneous +1 subspace for all
SWAPi,j , where i, j = 1, . . . , t. Similarly it forms a basis for Hsym.

Proof. The key points of the above theorem were discussed.

Corollary 3.1.2. One important result of this theorem is that the dimension of Hsym is
the number of non-negative integer solutions to the following equation:

i1 + i2 + · · ·+ id = t

Therefore the dimension of Hsym is
(
t+d−1
t

)
.

Theorem 3.1.3. Let Hsym be the subspace spanned by all t-tensor states |ψ〉⊗t. Then we
have ∫

ψ

|ψ〉〈ψ|⊗tdψ =
I

M

Where I
M

is just the completely mixed state over Hsym and so M is the dimension of the
Hsym evaluated above to be

(
t+d−1
t

)
.

Proof. [1] .
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Definition 3.1.4. A probability distribution over quantum states (pi, |φi〉) is a complex
projective t-design if ∑

i

pi(|φi〉〈φi|)⊗t =

∫
ψ

(|ψ〉〈ψ|)⊗tdψ

where the integrand |ψ〉 is taken from the Haar measure.

In the earlier work on this topic another definition, which is proved to be equivalent,
for complex projective t-design was used.

Let P (x1, x2, . . . , xd, y1, y2, . . . yd) be a polynomial of degree at most t in variables
x1, x2, . . . xd and degree at most t in variables y1, y2, . . . yd. For a quantum state |ψ〉 =∑d

j=1 αj|j〉 we define

P (ψ) = P (α1, α2, . . . , αd, α
∗
1, α

∗
2, . . . , α

∗
d)

The alternative definition for the complex projective t-design is given bellow:

Definition 3.1.5. If for any arbitrary polynomial P (x1, x2, . . . xd, y1, y2, . . . yd) of degree
at most t in variables x1, x2, . . . xd and degree at most t in variables y1, y2, . . . , yd the
following equation holds ∫

ψ

P (ψ)dψ =
∑
i

piP (φi) (3.1)

then, the probability distribution over quantum states (pi, |φi〉) is a complex projective
t-design.

3.2 Properties

Theorem 3.2.1. The two given definitions, 3.1.5 and 3.1.4, for complex projective t-
design are equivalent.

Proof. It suffices to study the case in which P is a monomial since then we can take sum
over different monomials to prove the theorem for the general case.

Let a probability distribution over (pi, |φi〉) be a complex projective t-design accord-
ing to the second definition. Therefore the equation (3.1) holds for each monomial of
degree at most t in terms of the first d variables and degree at most t in terms of the
second d variables.

Each entry of the density matrix of
∑

i pi(|φi〉〈φi|)⊗t is an expectation of a monomial
over |φi〉s, and the corresponding entry in

∫
ψ
(|ψ〉〈ψ|)⊗t is also an expectation of the

same monomial over the Haar measure. By taking polynomial P the monomial showing
up in this entry, we can conclude that the corresponding entry in

∑
i pi(|φi〉〈φi|)⊗t and∫

ψ
(|ψ〉〈ψ|)⊗t are equal. Therefore our probability distribution is a complex projective

t-design according to the first definition.

The other direction is quite the same as the first direction [1].
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Theorem 3.2.2. Suppose X is a finite subset of CSd−1. Then the following statements
are equivalent:

1. X is a uniform t-design.

2. For all |ψ〉 ∈ H and all 0 ≤ k ≤ t we have

〈ψ|ψ〉k(
d+k−1
k

) =
1

|X|
∑
|φ〉∈X

|〈ψ|φ〉|2k

3. For all 0 ≤ k ≤ t we have

1

|X|2
∑

|ψ〉,|φ〉∈X

|〈ψ|φ〉|2k =
1(

d+k−1
k

)
Proof. To show that 1 implies 2, we use theorem 3.1.3. Since X is a uniform t-design,
all pi = 1

|X| . Therefore

∑
i

1

|X|(|φi〉〈φi|)
⊗t =

∫
ψ

(|ψ〉〈ψ|)⊗tdψ

Using theorem 3.1.3 we have

I

M
=

∫
ψ

(|ψ〉〈ψ|)⊗tdψ

=
∑
i

1

|X|(|φi〉〈φi|)
⊗t

Here according to the theorem 3.1.3, I is the identity operator in Hsym space. Therefore
for an arbitrary |ψ〉 ∈ H we have

〈ψ|ψ〉k
M

= 〈ψ|⊗t I
M
|ψ〉⊗t

= 〈ψ|⊗t
(∑

i

1

|X|(|φi〉〈φi|)
⊗t

)
|ψ〉⊗t

=
∑
i

1

|X| 〈φi|ψ〉
k〈ψ|φi〉k

=
∑
i

1

|X| |〈φi|ψ〉|
2k

Now recall that M =
(
d+k−1
k

)
. So (1) implies (2).
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The prove that (2) implies (3) we use (2), |X| times with all possible values of ele-
ments of X for |ψ〉, then summing up the results will imply (3).

The proof that (3) implies (1) is a little bit tricky. The trick is to define

|v〉 =
1

|X|
∑
|ψ〉∈X

|ψ〉⊗k ⊗ |ψ〉⊗k −
∫
ψ

|ψ〉⊗k ⊗ |ψ〉⊗kd|ψ〉

Then, it can be shown that 〈v|v〉 = 0, and that means |v〉 = 0. So X is a t-design.

3.3 Equivalence of MUBs and 2-designs

The importance of the above theorem is that it gives us a framework to study t-designs
better, and a tool to check whether a given set of quantum states is a t design.

Theorem 3.3.1. The states corresponding to a mutually-unbiased bases in a Hilbert
spaceH of dimension d form a 2-design X in CSd−1.

Proof. We use the theorem 3.2.2. Let X be the set of all the states corresponding to the
mutually-unbiased bases. Then X has d(d+ 1) elements, for k = 1 we have

1

|X|2
∑

|ψ〉,|φ〉∈X

|〈ψ|φ〉|2k =
1

d2(d+ 1)2

(
2

(
d+ 1

2

)(
d

1

)(
d

1

)
1

d
+

(
d+ 1

1

)(
d

1

))
=

1

d

=
1(

d+1−1
1

)
For k = 2 we have

1

|X|2
∑

|ψ〉,|phi〉∈X

|〈ψ|φ〉|2k =
1

d2(d+ 1)2

(
2

(
d+ 1

2

)(
d

1

)(
d

1

)
1

d2
+

(
d+ 1

1

)(
d

1

))
=

2

d(d+ 1)

=
1(

d+2−1
2

)
Therefore according to the thorem 3.2.2, X is a 2-design [9].

3.4 Polynomials Over Haar-measure

We call a monomial P =
∏d

j=1 x
cj
j (x∗j)

ej balanced if cj = ej for all j = 1, . . . , d. We
have the following theorem:
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Theorem 3.4.1. For any unbalanced monomial P∫
ψ

P (ψ)dψ = 0

and the Haar-expectation of any balanced monomial of the form P =
∏d

j=1 x
cj
j (x∗j)

cj is∫
ψ

P (ψ)dψ =
c1! · · · cd!

(d+ t− 1) · · · (d+ 1)d
where t =

∑
j cj .

This theorem is provided and proved in [1]. Before this paper was officially published
I found a simpler proof for this theorem, and presented it in our research meetings with
one of the authors of this paper. The following proof gives us more intuition.

The idea of the proof lies in the proof of the equivalence of the two definitions of
quantum t-design. That is to evaluate

∫
ψ
P (ψ)dψ we can look at the proper entry in

the density matrix of
∫
ψ
(|ψ〉〈ψ|)⊗tdψ. Now note that for any density matrix ρ we have

ρij = 〈i|ρ|j〉 where {|k〉} is an eigenbasis for the space in which ρ exists. Now note that∫
ψ
(|ψ〉〈ψ|)⊗tdψ lies in Hsym and we have evaluated the eigenbasis of Hsym before. So

what we will do is to evaluate 〈v| ∫
ψ
(|ψ〉〈ψ|)⊗tdψ|u〉 for some |u〉 and |v〉 which are two

elements of the eigenbasis of Hsym.

Proof. Recall the definition of |bi1,i2,...,id〉:

|bi1,i2,...,id〉 =
1√(
t

i1,i2,...,id

)
 ∑
∀j : 1 ≤ j ≤ d the number of js in r1, . . . , rd is ij

|r1r2 . . . rt〉


Just using the above definition we get

〈bc1,c2,...,cd |ψ⊗t〉 =
1√(
t

c1,...,cd

)( t

c1, . . . , cd

) d∏
i=1

〈i|ψ〉ci =

√(
t

c1, . . . , cd

) d∏
i=1

ψi
ci (3.2)

Since ∫
ψ

(|ψ〉〈ψ|)⊗tdψ =
I

M

we have ∫
ψ

〈bc1,c2,...,cd |ψ⊗t〉〈ψ⊗t|be1,e2,...,ed
〉dψ = 〈bc1,c2,...,cd |

I

M
|be1,e2,...,ed

〉

=
1

M
〈bc1,c2,...,cd|be1,e2,...,ed

〉

=
1

M
δc1,e1δc2,e2 · · · δcd,ed

(3.3)
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By using the equations (3.2) and (3.3) we get∫
ψ

√(
t

c1, . . . , cd

) d∏
i=1

ψi
ci

√(
t

e1, . . . , ed

) d∏
i=1

ψ∗i
eidψ =

∫
ψ

〈bc1,c2,...,cd |ψ⊗t〉〈ψ⊗t|be1,e2,...,ed
〉dψ

=
1

M
δc1,e1δc2,e2 · · · δcd,ed

Therefore if cj 6= ej we have ∫
ψ

d∏
i=1

ψi
ciψ∗i

eidψ = 0

and ∫
ψ

d∏
i=1

ψi
ciψ∗i

eidψ =

(
t

c1, . . . , cd

)∫
ψ

〈bc1,c2,...,cd |ψ⊗t〉〈ψ⊗t|be1,e2,...,ed
〉dψ

=
1(

t+d−1
t

)(
t

c1,...,cd

)
=

c1! · · · cd!
(d+ t− 1) · · · (d+ 1)d

3.5 Future work

3.5.1 Efficient Construction

For Quantum 2-designs, construction with O(d2) states is known where d is the dimen-
sion of the space. For an arbitrary t in dimension d, a construction by O(td) states was
found by Hayashi [7]. The problem isO(td) is only efficient when the dimension dwhich
is the power of the polynomial in O(td) is fixed. So for the cases when d is much larger
than t we have to look for other constructions.

3.5.2 Approximate Construction of t-design

One solution to this issue is to find inexact approximate t-design. Intuitively speaking,
that is a discrete distribution over (pi, |φi〉) with the property that the construction it gives
us is close enough to what we want.

The notion of closeness to an ideal t-design can be defined in many different ways
using many different norms. The one chosen in the [1] uses l∞ norm:

Definition 3.5.1. A probability distribution over quantum states (pi, |φi〉) is an ε-approximate
t-design if

(1− ε)
∫
ψ

(|ψ〉〈ψ|)⊗tdψ ≤∞
∑
i

pi(|φi〉〈φi|)⊗t ≤∞ (1 + ε)

∫
ψ

(|ψ〉〈ψ|)⊗tdψ
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and ∑
i

pi(|φi〉〈φi|)⊗t =

∫
ψ

(|ψ〉〈ψ|)⊗tdψ

In the above definitionA ≤∞ B meansB−A is a positive semidefinite, and ‖A ‖∞ ≤
‖B ‖∞. For more detail on∞-norm refer to the appendix.

For a fixed constant t and for every d ≥ 2t [1] gives a construction of an O( 1
d1/3 )-

approximate t-design.
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Appendix A

Mathematical preliminaries

A.1 Measure Theory

In studying the set theory, to be able to compare the volume of subsets of a set, we define
a mathematical model to formally assign a value to each subset based on its volume.
Specially when the universal set is not discrete, such model becomes very useful.

Definition A.1.1. A subset Σ of the power set of a set X is a σ-algebra if and only if it
has the following properties:

1. Σ is non-empty.

2. If E ∈ Σ then Ec ∈ Σ.

3. If E1, E2, E3, . . . is a countably sequence of sets in Σ, then
⋃
iEi ∈ Σ.

The above properties can be summarized: Σ containsX , Σ is closed under complements,
and Σ is closed under countable unions.

Definition A.1.2. A measure µ is a function defined on a σ-algebra Σ over a set X and
takes values from the interval [0,∞] such that the following properties hold:

• The measure of the empty set is zero:

µ({}) = 0

• Countable additivity: ifE1, E2, E3, . . . is a countable sequence of pairwise disjoint
sets in Σ, then the measure of the union of them is equal to the sum of the measures
of each of them:

µ

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

µ(Ei)
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One can simply interpret probability distribution over events as a measure. In that
case the measure function should satisfy µ(X) = 1.

Definition A.1.3. A probability measure is a measure µ : X 7→ [0, 1] where µ(X) = 1.

Now we define the Haar measure which was used for evaluating expectation of a
polynomial. Consider the case when H is a Hilbert space of dimension 2. Each nor-
malized |ψ〉 ∈ H by ignoring its phase can be visualize in the Bloch sphere. If we talk
about expectation of a function f(·) over Haar-measure,

∫
ψ
f(ψ)dµ(ψ), what we mean

is the expectation of f(ψ) when |ψ〉 moves uniformly on the Block sphere. The idea
of moving uniformly over Block sphere can guide us to understand Haar-measure when
whenH has the arbitrary dimension d.

Definition A.1.4. Let G be a locally compact group. Then a left invariant Haar measure
on G is a measure µ which satisfies the following properties:

• µ(aE) = µ(E) for every a ∈ G and every measurable E over G.

• µ(A) > 0 for every non-empty open set A over G.

• µ(A) < 1 for every compact set K over G.

A.2 Topology

Definition A.2.1. A metric spaceM is a space for which a metric function d : M×M 7→
R is defined such that

1. d(x, y) ≥ 0.

2. d(x, y) = 0 if and only if x = y.

3. d(x, y) = d(y, x).

4. d(x, y) ≤ d(x, z) + d(z, y).

We show the metric space M with the metric function d as the pair (M,d).

Definition A.2.2. In the metric space (M,d), the ball Br(x) for any positive real r and
x ∈M is defined as

Br(x) = {y ∈M : d(x, y) < r}
Definition A.2.3. A set O in a metric space (M,d) is called open if for each x ∈ O there
is a neighbourhood set Br(x) for some positive real r, such that Br(x) ⊆ O.

Definition A.2.4. A set C in a metric space (M,d) is called closed if its complement set
is open.

Definition A.2.5. A subset K of the Euclidean space Rn is called compact if it is closed
and bounded.
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A.3 Group Theory

The definition of compactness and openness used in the definition A.1.4 are given in the
Topology section of the appendix. For deeper understanding of group theory, a classical
group theory textbook [4] can be used.

Definition A.3.1. A non-empty set G with a binary operation · on G is called a group if
the following properties hold:

1. a(bc) = (ab)c for all a, b, c ∈ G.

2. There exist a identity element e ∈ G such that ea = a for all a ∈ G.

3. For every a ∈ G there exist an inverse a−1 ∈ G such that a−1a = e.

Definition A.3.2. An abelian group, is a group (G, ∗) with the property that the group
operation ∗ is commutative that is for all a, b ∈ G we have a ∗ b = b ∗ a.

Definition A.3.3. The system (F ,+, ·) where F is a nonempty set and +, · are binary
operations on F is called field if the following properties hold:

1. F is an abelian group respect to the additive group operation +.

2. F \ {0} is an abelian group respect to the multiplicative group operation ·.
3. The multiplicative operation · distributes over the additive operation +:

x(y + z) = xy + sz

Definition A.3.4. A manifold is a space in which neighbourhood of each point resembles
the Euclidean space, but the global structure may be more complicated.

Let Sd−1 be the sphere of unit vectors in the complex vector space Cd. Two vectors
u, v ∈ Sd−1 are called equivalent u ≡ v if and only if u = eiθv for some real θ. Note that
if S1 is the Block sphere and if u ≡ v then u and v have the same representation in the
Block sphere. Let CSd−1 be the quotient manifold Sd−1/ ≡.

Definition A.3.5. The system (R,+, ·) where R is a nonempty set and +, · are binary
operations on R is called ring if the following properties hold:

1. R is an abelian group respect to the additive group operation +.

2. (R, ·) is a monoid with identity 1 that is

(x · y) · z = x · (y · z)

1 · a = a · 1 = a
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3. The multiplicative operation · is distributive over the additive operation +:

x(y + z) = xy + xz

(y + z)x = yx+ zx

Each field is a ring with two more properties. A field is a commutative ring with an
multiplicative inverse for every non zero element.

Definition A.3.6. Let R be a ring. A left ideal I of R is a nonempty subset I ⊂ R with
the following properties:

1. x− y ∈ I for all x, y ∈ I
2. r · x ∈ I for all a ∈ I and r ∈ R.

Definition A.3.7. A quotient ring is a ring that is the quotient of a ring A and one of its
ideals I , denoted A/I . In general, a quotient ring is a set of equivalence classes where
[x] = [y] if and only if x− y in I .

Definition A.3.8. A finite field or Galois field is a field that contains finitely many ele-
ments. A finite field with q elements is denoted by GF(q).

Definition A.3.9. Galois Ring is a finite ring isomorphic to the quotient ring Zpk [X]/(P )
where p is a prime and P is a unitary polynomial with the property that P mod p is an
irreducible polynomial with coefficients in GF(p). We denote GR(pk,m) the Galois ring
isomorphic to Zpk [X]/(P ) where P has degree m

Definition A.3.10. The set of roots of Xpm−1−1 is a cyclic multiplicative group of order
pm − 1. By adding 0 to this we get the set T = {0, ζ, . . . , ζpm−1} where ζ is a generator
of the cyclic group. We call this set the Tiechmuller set [6].

Definition A.3.11. Characteristic of a field is the smallest number n such that adding
up the identity of the field n-times to itself gives zero of the field. Therefore

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n

= 0

For any finite field of q elements for some prime number p we have q = pk. In a finite
fields with pk elements where p is a prime, GF(pk), the characteristic is p.

If F is a field of Characteristic p, then the following map is an automorphism of the
field F and fixes elements in the prime field Zp:

σ : x 7→ xp

For a field F subfield of E when |E : F| = d we define the trace of an element of F
relative to the extension E/F in the following way:

TrE/F(z) = z + σ(z) + · · ·+ σd−1(z)

If z ∈ E then TrE/F(z) is fixed by σ and lies in F.
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A.4 Archimedes’ Hat-Box theorem

Theorem A.4.1. If two parallel planes of distant h cut of a sphere of radios r into a
slice, then the aria of the surface of the slice enclosed by the two planes is equal to the
area of a slice on a cylinder of radius r produced by the same two planes perpendicular
to its axis.

Therefore the surface of the slice is 2πh.

A.5 Operator Norm

Definition A.5.1. In the Hilbert space H, the spectral norm or the operator norm of an
operator A is defined as

‖A ‖ = max{‖Au ‖ : u ∈ H, ‖u ‖ = 1}

By the above definition ‖A ‖ is the largest singular value of the operator A. This norm
also is called∞-norm and can be shown by ‖A ‖∞ [15].
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