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Abstract

This essay considers semidefinite programming problems that exhibit a
special form of symmetry called group-invariance. We demonstrate the effect
of such symmetries on certain path-following interior-point algorithms, and
highlight a reduction technique that is particularly useful on certain group-
invariant semidefinite programming problems. Two applications of group-
invariant semidefinite programming problems–one in truss design and the
other in graph theory–are presented.
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Chapter 1

Introduction

Semidefinite programming (SDP) can be regarded as an extension of linear
programming. In SDP problems, the nonnegative variables are replaced by
symmetric, positive semidefinite matrix variables. Research interests in SDP
have increased tremendously during the last fifteen years, which is spurred
by the development of efficient algorithms and the potential applications in
various different areas.

Several efficient polynomial-time algorithms for SDP have been proposed
since the late-1980s. These algorithms can be classified into three categories:
ellipsoid methods, interior-point methods, and bundle methods. Among the
algorithms proposed so far, the primal-dual interior-point algorithms are
most popular in practice. See the handbook [1] for an overview of this area.

SDP has various applications in combinatorial optimization, stochastic
optimization, engineering, and so forth. In combinatorial optimization, SDP
plays an important role in improving the quality of the bounds for some
interesting but hard problems. Also, many applications of SDP can be
found in engineering. Structural optimization is one important area of these
engineering applications.

This essay is organized as follows. We begin by reviewing some funda-
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mentals of SDP. In Chapter 2, we study a special class of SDP problems
where each problem is invariant under a group acting on its variables. Sev-
eral applications of such SDP problems are discussed in Chapters 3 and 4. In
Chapter 3, an optimal design of symmetric truss is obtained by formulating
it into a group-invariant SDP problem. In Chapter 4, we get an improved
lower bound on the crossing number of complete bipartite graphs through
an invariant SDP formulation. Chapter 5 gives a summary of this essay and
mentions some potential research areas.

1.1 Notation

In this essay, the following notations are used.

Rn: the space of n-dimensional real vectors
Rn

+: the space of nonnegative vectors in Rn

Rn×n: the space of n× n real matrices
Sn: the space of symmetric n× n real matrices
Sn

+: the cone of symmetric positive semidefinite n× n real matrices
Sn

++: the cone of symmetric positive definite n× n real matrices
N (A): the null space of the linear operator A
R(A): the range of the linear operator A
•: the inner product (X, S) ∈ Sn

⊕
Sn 7→ trace(XS)

1.2 Basic Theorems of Semidefinite Programming

We consider SDP problems in the following standard form:

(P)

inf C •X

s.t. A(i) •X = bi, i = 1, . . . , m,

X ∈ Sn
+,
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where A(1), . . . , A(m), C ∈ Sn and b ∈ Rm are given. Using the linear oper-
ator A : Sn 7→ Rm defined by

[A(X)]i = A(i) •X for i = 1, . . . , m,

the first constraint can be written as

A(X) = b.

The Lagrange dual problem of (P) is

(D)

sup bT y

s.t.
m∑

i=1

yiA
(i) + S = C,

S ∈ Sn
+.

Throughout this essay we make the following two assumptions:

Assumption 1.2.1 The matrices A(1), . . . , A(m) are linearly indepen-
dent. That is, the linear operator A is surjective.

Assumption 1.2.2 Both (P) and (D) have strictly feasible solutions.
Namely, there exist a feasible solution X of (P) and a feasible solution (y, S)
of (D) such that X ∈ Sn

++ and S ∈ Sn
++.

The first assumption can be made without loss of generality. If A(1), . . . , A(m)

are not linearly independent, then either the system A(i) • X = bi (i =
1, . . . , m) has no solution, or it has some redundant equations. Those re-
dundant equations can be removed without changing the solution set, upon
which we get an equivalent problem satisfying our assumption.

Under the first assumption, if (y, S) is a feasible solution of (D), then y

is uniquely determined by S via
∑m

i=1 yiA
(i) = C − S. Thus we may refer

to S as the dual feasible solution.

Under the second assumption, both (P) and (D) have finite optimal so-
lutions; see Nesterov and Nemirovskii [9]. This condition, which is necessary
for interior-point algorithms, is called the Slater Constraint Qualification.
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Suppose X and (y, S) are feasible for (P) and (D), respectively. Then
the duality gap (C •X − bT y) is

C •X − bT y =

(
m∑

i=1

yiA
(i) + S

)
•X −

m∑

i=1

(A(i) •X)yi = X • S.

This observation leads to the well-known weak duality relation.

Proposition 1.1 (Weak duality relation) Let X and (y, S) be feasible
for (P) and (D), respectively. Then

C •X ≥ bT y.

Proof
Since X and S are positive semidefinite, so is X1/2SX1/2. Therefore,

C •X − bT y = X • S = trace(XS) = trace(X1/2SX1/2) ≥ 0.

2

As an immediate consequence of the weak duality relation, we have the
following sufficient condition for optimality.

Corollary 1.2 Let X and (y, S) be feasible for (P) and (D), respectively,
and X •S = 0. Then X and (y, S) are optimal for their respective problems.

Note that if XS = 0, then

X • S = trace(XS) = 0.

On the other hand, if X • S = 0, then

trace(X1/2SX1/2) = 0.
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If X and S are further feasible, then X1/2SX1/2 ∈ Sn
+ implies that all

the eigenvalues of X1/2SX1/2 are nonnegative. Thus all the eigenvalues of
X1/2SX1/2 must be zero. Therefore,

0 = X1/2SX1/2 = (X1/2S1/2)(X1/2S1/2)T .

It follows that X1/2S1/2 = 0, and hence

XS = X1/2(X1/2S1/2)S1/2 = 0.

Consequently, we may alternatively use the equivalent condition XS = 0
in the above corollary.

Unfortunately, the above condition is not necessary in general. It is
possible that X and (y, S) are optimal, while the duality gap is strictly
positive. However, when both (P) and (D) have strictly feasible solutions,
the above condition is necessary.

Theorem 1.3 (Strong duality theorem) Suppose both (P) and (D) have
strictly feasible solutions. Then both (P) and (D) have optimal solutions and
their optimal objective values are the same.

The proof of the strong duality theorem is not trivial; see Nesterov and
Nemirovskii [9] or Chapter 4 of the handbook [1] for a detailed proof.

From Corollary 1.2 and the strong duality theorem, we know that X

and S are optimal for (P) and (D), respectively, if and only if the conditions
below are satisfied:

A(i) •X = bi (i = 1, . . . , m), X ∈ Sn
+,

m∑

i=1

yiA
(i) + S = C, S ∈ Sn

+,

XS = 0.

In subsequent sections, we briefly describe how Newton’s method may
be employed to approximately solve the above nonlinear system.
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1.3 Central Path

Interior-point methods are among the most efficient methods for solving
SDP problems. The central path performs an important function in the
study of interior-point methods.

Path-following algorithms are an important family of interior-point meth-
ods. (Another family of interior-point methods is based on potential func-
tions; see, for example, [1].) The path-following algorithms restrict each
iterate to a neighborhood of the so-called central path and trace the central
path to get an approximate optimal solution.

The central path is defined as the set of solutions {(X(µ), S(µ)) : µ > 0}
to

(CPµ)

A(i) •X = bi (i = 1, . . . , m), X ∈ Sn
+,

m∑

i=1

yiA
(i) + S = C, S ∈ Sn

+,

XS = µI,

where I is the n×n identity matrix. We see that (CPµ) is actually a system
of perturbed optimality conditions.

The solution to the above system of equations clearly gives strictly fea-
sible solutions to (P) and (D), since the last equation implies both X and
S are positive definite. On the other hand, we will show that if Assumption
1.2.2 holds (i.e., both (P) and (D) have strictly feasible solutions), then
(CPµ) has a unique solution for each µ > 0.

We begin by defining a barrier function for Sn
+. Let f : Sn

++ 7→ R be
defined by

f(X) := − ln det X.

Observe that when X converges to a point on the boundary of Sn
+, the value

of the barrier function goes to infinity.
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We need to use the notation ¯ in the following proof. Here ¯ is known
as the symmetric Kronecker product and defined by

(P ¯Q)U =
1
2
(PUQT + QUP T ),

for all n× n matrices P, Q and U .

Proposition 1.4 The barrier function f is strictly convex over its domain
Sn

++.

Proof
We can verify this by calculating the derivatives of f at each X ∈ Sn

++.

The first derivative of f is f ′(X) = −X−1, and the second derivative is
f ′′(X) = X−1 ¯X−1. Since for each n× n matrix H, we have

(f ′′(X)H) •H = trace[X−1HX−1H] = trace[(X−1/2HX−1/2)2] ≥ 0

with equality holding if and only if H = 0, we know f is strictly convex. 2

Now consider the following problem for each µ > 0:

(Pµ)
inf C •X + µf(X)

s.t. A(i) •X = bi, i = 1, . . . , m.

In this problem, X ∈ Sn
++ is implied since the the domain of f is Sn

++. Also
note that the objective function is strictly convex over its domain; thus, (Pµ)
has at most one optimal solution for each µ > 0.

Theorem 1.5 Suppose both (P) and (D) have strictly feasible solutions.
Then there exists a unique solution (X(µ), S(µ)) to the central path equations
(CPµ).
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Proof
First we prove the uniqueness. Note that the Karush-Kuhn-Tucker optimal-
ity conditions for (Pµ) are both necessary and sufficient in our case, since the
objective function is convex and the constraints are linear. The optimality
conditions for (Pµ) are

A(i) •X = bi, i = 1, . . . , m (X ∈ Sn
++)

−
m∑

i=1

yiA
(i) − µX−1 + C = 0.

If we set S := µX−1 ∈ Sn
++, then the optimality conditions are ex-

actly the central path equations (CPµ). Therefore, (X, y, S) solves (CPµ)
if and only if X is an optimal solution to (Pµ), S = µX−1 and y solves∑m

i=1 yiA
(i) = C − S. We have shown that (Pµ) has at most one optimal

solution. Thus, this also proves that (CPµ) has at most one optimal solution.

To prove the existence, we use the Weierstrass theorem. So we aim to
reduce (Pµ) to the problem of taking the infimum of a continuous function
over a nonempty compact set. However, our current feasible region may be
unbounded and relatively open.

Let X̂ and (ŷ, Ŝ) be strictly feasible solutions for (P) and (D), respec-
tively. Since we have shown that

C •X = X • Ŝ + bT ŷ,

the original objective function C •X + µf(X) differs from Ŝ •X + µf(X)
only by the constant bT ŷ. Thus, we may replace the objective function in
(Pµ) by Ŝ •X + µf(X). Furthermore, we can add the constraint

Ŝ •X + µf(X) ≤ Ŝ • X̂ + µf(X̂),

since X̂ is a feasible solution for (Pµ). We now show

F := {X ∈ Sn
++ : A(X) = b, Ŝ •X + µf(X) ≤ Ŝ • X̂ + µf(X̂)}
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is a nonempty compact set, and Ŝ•X+µf(X) is continuous over F . Clearly,
it is nonempty since it contains X̂. We show it is bounded by showing that
the eigenvalues λj(X) of X on F are bounded. Suppose α > 0 is the smallest
eigenvalue of Ŝ. Define

φ(λ) = αλ− µ lnλ for λ > 0.

Note that φ is strictly convex, and the infimum of φ is attained at µ/α. Also
note that as λ tends to 0 or ∞, φ tends to ∞. For each X ∈ F , we have

∑

j

φ(λj(X)) =
∑

j

(αλj(X)− µ lnλj(X))

= α
∑

j

λj(X)− µ ln
∏

j

λj(X)

= αI •X + µf(X)

≤ Ŝ • X̂ + µf(X̂).

It follows that φ(λj(X)) is bounded above on F , and thus for each eigenvalue
λj(X), we have

λ ≤ λj(X) ≤ λ

for some positive λ and some finite λ. The set F is closed since it is defined
by linear equations and an inequality on a function that is continuous on
such sets.

The objective function Ŝ•X+µf(X) is continuous on F since F contains
only positive definite matrices. Hence the Weierstrass theorem applies and
the existence follows.

2

We have thus established that the central path is well defined. The
following theorem states that the central path in fact converges to optimal
solutions of (P) and (D).

Theorem 1.6 The sequence X(µ) (resp. S(µ)) always converges to an op-
timal solution X∗ (resp. S∗) of the SDP problem (resp. its dual) as µ ↓ 0.

9



Proof
See Theorem A.3 in [10]. 2

If we can find solution pairs (X(µ), S(µ)) for some decreasing sequence of
µ that approaches zero, we will arrive at an optimal solution in the end. That
is the idea behind the path-following algorithms. Since the last equation of
(CPµ) is nonlinear, it is expensive to find an exact solution. So the path-
following algorithms try to find approximate solutions to (CPµ).

To measure the quality of approximation, a neighborhood of the central
path is defined. The neighborhood is defined either in terms of norms of
(X1/2SX1/2 − µI) or in terms of the eigenvalues of this matrix. See [1] for
a detailed discussion.

1.4 Search Directions

At each iteration, the pair (X(µ), S(µ)) on the central path can be approxi-
mated using Newton’s method. However, to ensure that the iterates remain
strictly feasible, damped Newton steps are usually taken. The Newton step,
or solution (dX, dy, dS) of the linearization of (CPµ), is called a search di-
rection.

A straightforward linearization of (CPµ) yields an overdetermined lin-
ear system with (n(n + 1) + m) unknowns and

(
n(n + 1) + m + n(n−1)

2

)

equations, we usually symmetrize XS = µI to reduce the number of equa-
tions. The most natural symmetrization is to replace XS = µI with
1
2(XS + SX) = µI. Linearizing it gives the following equation:

1
2
((dX)S + S(dX) + X(dS) + (dS)X) = µI − 1

2
(XS + SX).

The resulting search direction is called the Alizadeh-Haeberly-Overton (AHO)
direction because it was first introduced and analyzed by Alizadeh, Haeberly
and Overton [11].
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The second search direction we introduce here is the HRVW/KSH/M
direction. This direction was discovered independently by Helmberg, Rendl,
Vanderbei, and Wolkowicz [12] and Kojima, Shindoh, and Hara [13]. Later,
Monteiro [14] gave another derivation of this direction. The motivation of
this direction is that if we view the left-hand side of equations (CPµ) as
a map from Rn×n × Rm × Sn into itself, then a direction (d̃X, dy, dS) in
Rn×n × Rm × Sn can be defined. However, we require that all the iterates
be in Sn × Rm × Sn, so we project d̃X onto Sn; that is, we take the search
direction (dX, dy, dS) with dX = (d̃X + d̃X

T
)/2. More specifically, the

HRVW/KSH/M direction can be obtained as the solution (dX, dy, dS) to
the following system:

A(i) • dX = 0, (i = 1, . . . , m), dX ∈ Sn,
m∑

i=1

(dy)i A
(i) + dS = 0, dS ∈ Sn,

(d̃X)S + X(dS) = µI −XS, d̃X ∈ Rn×n, dX = (d̃X + d̃X
T
)/2.

Kojima et al. in [13] also described the dual counterpart of the HRVW/KSH/M
direction. The dual direction results from interchanging X and S and cor-
respondingly dX and dS in the third equation above. Namely, it is the
solution (dX, dy, dS) to the system

A(i) • dX = 0, (i = 1, . . . , m), dX ∈ Sn,
m∑

i=1

(dy)i A
(i) + dS = 0, dS ∈ Sn,

(dX)S + X(d̃S) = µI −XS, d̃S ∈ Rn×n, dS = (d̃S + d̃S
T
)/2.

All directions described above can be viewed as members of the Monteiro-
Zhang family. This family was first introduced by Monteiro in order to give
another derivation of the HRVM/KSH/M search direction. Later Zhang
generalized Monteiro’s work, and the resulting set of directions is called
the Monteiro-Zhang family. These directions are the Newton steps for the

11



central path equation (CPµ) with the last equation replaced by

HP (XS) := [PXSP−1 + (PXSP−1)T ]/2 = µI,

where P ∈ Sn
++ is arbitrary but fixed. In other words, the Monteiro-Zhang

search direction that corresponds to some positive definite matrix P is the
solution (dX, dy, dS) to the system

(MZP )

A(i) • dX = 0 (i = 1, . . . , m), dX ∈ Sn,
m∑

i=1

(dy)i A
(i) + dS = 0, dS ∈ Sn,

PX(dS)P−1 + P−T (dS)XP T

+P (dX)SP−1 + P−T S(dX)P T = 2µI − PXSP−1 − P−T SXP T .

This system has a unique solution if
(1) PXSP−1 + P−T SXP T ∈ Sn

+ (see Proposition 2.2 in [21]),
or
(2) ‖S1/2XS1/2 − µI‖2 < µ/

√
2 for some µ > 0, where ‖ · ‖2 denotes the

operator 2-norm (see Proposition 10.4.2 in [1]).

If we choose P = I, then the resulting direction is the AHO direction.
When P = S1/2 and P = X−1/2, it gives the HRVW/KSH/M direction
and its dual direction, respectively. If we choose P = W−1/2, where W =
X1/2(X1/2SX1/2)−1/2X1/2 = S−1/2(S1/2XS1/2)1/2S−1/2, then we obtain
another widely-used search direction, the Nesterov-Todd (NT) direction;
see also [15, 16]. The NT direction (dX, dy, dS) can also be viewed as the
solution to the system

A(i) • dX = 0 (i = 1, . . . , m),
m∑

i=1

dyi A
(i) + dS = 0,

W−1dXW−1 + dS = µX−1 − S.

The AHO, HRVW/KSH/M, and NT directions are the most commonly
used in practice. However, there are several other directions addressed in
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the literature; see, for example, Tseng [17], Monteiro and Tsuchiya [18]. For
long-step path-following algorithms, those based on the NT direction have
the lowest possible iteration-complexity bound.
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Chapter 2

Group-invariant SDP

Many optimization problems possess symmetries and the SDP formulations
inherit them. This chapter describes a representation of these symmetries
and their impact on interior-point algorithms.

Let G be a finite group, and let σ : G 7→ Aut(Sn
+) be a linear represen-

tation. An SDP problem is invariant under σ if the objective function and
the feasible set are invariant under every σ(π), π ∈ G. In most practical
instances, the action of σ(π) on matrix variable X can be described by the
linear operator

X 7→ Q(π)XQ(π)T ,

where Q(π) is an orthogonal matrix. Throughout this essay, we assume that
the linear representation σ takes this form.

The invariance of the objective function implies that for any π ∈ G and
any X ∈ Sn,

C •X = C • σ(π)(X)

= C •Q(π)XQ(π)T

= Q(π)T CQ(π) •X.
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It is easy to see that this equality holds for every X ∈ Sn and every
π ∈ G if and only if

C = Q(π)T CQ(π) for all π ∈ G;

i.e., C is invariant under σ.

In the subsequent sections, we discuss the effect of group-invariance on
interior-point algorithms.

2.1 Invariance of Search Directions

In this section, we show that if both (P) and (D) are invariant under σ,
and the current iterates X, S are invariant under σ, then (dX, dS) is also
invariant under σ for some of the search directions discussed in the previous
chapter.

Let the null space of A be denoted by L, and the orthogonal complement
of L by L⊥.

Clearly the constraint A(X) = b is equivalent to X ∈ (L+ X̂), where X̂

is any feasible solution to (P). Suppose the feasible set of (P) is invariant
under σ; i.e.,

σ(π)(L+ X̂) = L+ X̂ for all π ∈ G.

Similarly, the constraint S = C −∑m
i=1 yiA

(i) is equivalent to

S ∈ (R(A∗) + Ŝ) = (L⊥ + Ŝ),

where Ŝ is any feasible solution to (D), and A∗ denotes the adjoint of A.
Suppose the feasible set of (D) is invariant under σ; i.e.,

σ(π)(L⊥ + Ŝ) = L⊥ + Ŝ for all π ∈ G.

Proposition 2.1 If dX ∈ L, then σ(π)(dX) ∈ L for all π ∈ G. Similarly,
if dS ∈ L⊥, then σ(π)(dS) ∈ L⊥ for all π ∈ G.
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Proof
Suppose dX ∈ L and π ∈ G.

Applying the group action σ(π) to both sides of dX ∈ L gives

σ(π)(dX) ∈ σ(π)(L).

Let X̄ be a feasible solution of (P). Then the group average

X̂ =
1
| G |

∑

π∈G

σ(π)(X̄)

is also feasible for (P). Moreover, X̂ is invariant under σ. Therefore

L+ X̂ = σ(π)(L+ X̂) = σ(π)(L) + σ(π)(X̂) = σ(π)(L) + X̂

for all π ∈ G, where the first equality follows from the invariance of the
feasible set, and the last equality follows from the invariance of X̂. So

L = σ(π)(L).

Thus, we have
σ(π)(dX) ∈ σ(π)(L) = L.

A similar argument shows that

σ(π)(dS) ∈ L⊥

for all dS ∈ L⊥ and all π ∈ G.

2

Theorem 2.2 Suppose both (P) and (D) are invariant under σ, and the
current iterates X, S are invariant under σ. Then the matrices dX and dS

in the Monteiro-Zhang search direction (dX, dy, dS) that corresponds to P

are invariant under σ whenever the search direction is well-defined and P is
invariant.
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Proof
Recall that σ(π) : U 7→ Q(π)UQ(π)T for each π ∈ G, where Q(π) is an
orthogonal matrix. We fix π ∈ G and abbreviate Q(π) as Q below.

Since both (P) and (D) are invariant, we know from the preceding propo-
sition that Q(dX)QT ∈ L and Q(dS)QT ∈ L⊥ for any dX ∈ L and any
dS ∈ L⊥; i.e., (Q(dX)QT , dy, Q(dS)QT ) solves the first two equations of
(MZP ) (see Section 1.4) for some dy ∈ Rm.

The third equation of (MZP ) can be written as

PX(dS)P−1 + P−T (dS)XP T + P (dX)SP−1 + P−T S(dX)P T

= 2µI − PXSP−1 − P−T SXP T .

Applying σ(π) to both sides gives

QPX(dS)P−1QT +QP−T (dS)XP T QT +QP (dX)SP−1QT+QP−T S(dX)P T QT

= 2µQIQT −QPXSP−1QT −QP−T SXP T QT .

Since Q is orthogonal, the above equation is equivalent to

QPQT QXQT Q(dS)QT QP−1QT + QP−T QT Q(dS)QT QXQT QP T QT

+QPQT Q(dX)QT QSQT QP−1QT + QP−T QT QSQT Q(dX)QT QP T QT

= 2µI −QPQT QXQT QSQT QP−1QT −QP−T QT QSQT QXQT QP T QT .

Since the current iterates X, S are invariant under σ, we have QXQT = X

and QSQT = S. Suppose P is also invariant under σ. Then P = QPQT ,
and thus

P−1 = Q−T P−1Q−1 = QP−1QT .

Therefore, we have that (Q(dX)QT , dy, Q(dS)QT ) also satisfies the third
equation of (MZP ). Consequently, since the search direction is well-defined,

Q(dX)QT = dX and Q(dS)QT = dS.

17



2

Suppose the assumptions of Theorem 2.2 are satisfied. Then we know
the AHO direction is invariant since the matrix I satisfies I = QIQT for
any orthogonal matrix Q.

Also, since X is invariant under σ, we have

X−1 = (QXQT )−1 = QX−1QT

and

(QX−1/2QT )2 = QX−1/2QT QX−1/2QT = X−1 = (X−1/2)2

for any Q = Q(π), π ∈ G. Thus X−1/2 is invariant under σ. Similarly,
S1/2 is invariant under σ. Hence the HRVW/KSH/M direction and its dual
direction are invariant as well.

For the NT direction to be invariant, we require the matrix

W = X1/2(X1/2SX1/2)−1/2X1/2

to be invariant under σ. For this, we only need the above observations and
the fact that if Y, Z ∈ Sn are invariant under σ, then

QY ZY QT = (QY QT )(QZQT )(QY QT ) = Y ZY

for any Q = Q(π), π ∈ G, which shows that Y ZY is invariant under σ.

As a direct consequence of Theorem 2.2, we have the following corollary.

Corollary 2.3 Suppose (P) and (D) are invariant under σ, and the feasible
solutions X0 and S0 are invariant under σ. If we use an interior-point
algorithm based on the AHO, HRVM/KSH/M or NT search direction, and
start from (X0, y0, S0), then all iterates generated have X and S invariant
under σ.
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2.2 Reducing the Size of Invariant SDP

If an SDP problem is invariant under a group representable by permuta-
tions, then we have a method to reduce the number of unknowns in the
underlying matrix so that we can solve that problem much more efficiently.
This method, proposed by E. de Klerk et al. [5], is based on constructing a
‘regular ∗-representation’ of a matrix ∗-algebra. We introduce it briefly in
this section.

This method applies to SDP problems in the standard form (P), and
it is particularly effective when the matrices C, A(1), . . . , A(m) are invariant
under a large group G of symmetric permutations of rows and columns.

Let G be a subgroup of permutations on {1, . . . , n}, and for each π ∈ G

define

(Mπ)i, j =





1 if π(i) = j;

0 otherwise.

Note that for any π, π
′ ∈ G,

MπMπ′ = Mππ′ and MT
π = Mπ−1 .

Suppose that C, A(1), . . . , A(m) are invariant under X 7→ MπXMT
π for all

π ∈ G. Since the group average X
′
= 1

|G|
∑

π∈G Mπ(X̄)MT
π of an optimal

solution X̄ is also optimal, we can restrict the problem to the invariant
subspace {X : Mπ(X̄)MT

π = X, ∀π ∈ G}.

Let C be the linear subspace spanned by {Mπ : π ∈ G}; i.e.,

C =

{∑
π

λπMπ : λπ ∈ R, π ∈ G

}
.

Observe that C is a matrix ∗-algebra; i.e., it is a collection of matrices closed
under addition, scalar and matrix multiplication, and transposition. The
commutant C′ of C is

C′ := {X ∈ Rn×n|XM = MX for all M ∈ C}.
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The commutant is also a matrix ∗-algebra. Note that X ∈ Sn is invariant
under σ : π ∈ G 7→ Mπ ·MT

π if and only if X ∈ C′ .

The matrix ∗-algebra C′ has a basis of {0,1}-matrices E1, ..., Ed such that

E1 + · · ·+ Ed = J,

where J is the all-one matrix. See [19] for the basics of the matrix ∗-algebra.
For each i, let Bi be the normalization of Ei ; i.e.,

Bi = trace(ET
i Ei)−

1
2 Ei.

Then {Bi : i = 1, . . . , d} is an orthonormal basis of C′ . For k = 1, . . . , d, let
Lk be the d× d matrix defined by

(Lk)i,j = trace(BiBkBj).

Let K be the linear subspace spanned by {Lk : k = 1, . . . , d}. We can prove
that the linear operator φ : C′ 7→ K defined by φ(Bk) = Lk for k = 1, . . . , d

is a ∗-isomorphism; i.e., for any Y, Z ∈ C′ , we have

φ(Y Z) = φ(Y )φ(Z) and φ(Y T ) = φ(Y )T .

Theorem 2.4 φ is a ∗-isomorphism.

Proof
See Theorem 1 of [5]. 2

A consequence of Theorem 2.4 is that, for any x1, . . . , xd ∈ R,

d∑

k=1

xiBi ∈ Sn
+ if and only if

d∑

k=1

xiLi ∈ Sd
+.

We can see this result as a well-known fact from matrix ∗-algebra or view it as
follows. On the one hand, since φ is a ∗-isomorphism, φ maintains symmetry
of matrices. On the other hand, let M ∈ C′ be symmetric and let p(x) be
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the minimal polynomial of M . Because φ is an algebra ∗-isomorphism, p is
also the minimal polynomial of φ(M). Therefore, M ∈ Sn

+ if and only if all
roots of p are nonnegative, which is in turn equivalent to φ(M) ∈ Sn

+.

Since the order d of the matrices Li is equal to the number of matrices Bi,
we can reduce the number of variables in (P) from n(n+1)

2 to the dimension
of the subspace of C′ of symmetric matrices.

This reduction technique was successfully applied by E. de Klerk et al. to
efficiently compute an SDP lower bound of the crossing number of complete
bipartite graphs, which will be introduced in Chapter 4. Another potential
application is the truss topology design problem, which will be discussed in
Chapter 3.
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Chapter 3

Application to Optimal

Design of a Symmetric Truss

3.1 Topology Optimization Problem of Trusses

The topology of a truss means an assemblage of nodes connected by mem-
bers. The optimization problem considered here is to minimize the total
structural volume of the trusses under free vibration frequency constraints.

It is well-known in physics that free vibratory systems without damping
can be described by differential equations. The equation of motion for such
a system can be written in the form of

[m]ü + [k]u = 0

where u is the vector of displacements, [m] is the mass matrix with the mass
values at the diagonal entries, and [k] is the stiffness matrix. Upon solving
this ordinary differential equation, we obtain general solutions of the form

u =
∑

i

[Ci sin(λit) + Di cos(λit)],
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where λ2
i are generalized eigenvalues satisfying

[k]ui = λ2
i [m]ui,

where ui is an associated eigenvector. See, for example, [20]. Thus we can
use eigenvalue analysis in the study of such problems.

In fact, the eigenvalues of free vibration are an important performance
measure of the structures. It is well-known that optimal designs for specified
fundamental eigenvalues often have repeated eigenvalues, which gives rise to
the difficulties in optimizing such problems. Since the repeated eigenvalues
are not differentiable in normal cases, and we can only calculate the direc-
tional derivatives with respect to the design variables. No globally conver-
gent algorithm for structural optimization problems with large multiplicity
of eigenvalues were proposed before the algorithm presented in [3]. By for-
mulating the topology optimization problem (TOP) of trusses for specified
eigenvalues of vibration as an SDP problem, we can make use of some path-
following algorithms for semidefinite programming to compute the optimal
solution efficiently and accurately.

3.2 SDP Formulation

Consider a truss with fixed locations of nodes and members. Suppose the
number of degrees of freedom for displacements is n, and the number of
members of a truss is m. Let y = (y1, · · · , ym) ∈ Rm denote the vector of
member cross-sectional areas. The stiffness matrix and the structural mass
matrix are denoted by K ∈ Sn and Ms ∈ Sn, respectively, both of which are
linear functions of y. The nonstructural mass matrix is denoted by M0 ∈ Sn.

The eigenvalue problem of vibration is formulated as

KΦr = Ωr(Ms + M0)Φr for r = 1, · · · , n

where Ωr and Φr are the rth smallest eigenvalue and associated eigenvector,
respectively.
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Let Ω̄ denote the lower bound of the eigenvalues. The vector of member
length is denoted by b ∈ Rm. Then the TOP for specified fundamental
eigenvalues is formulated as

(TOP )

min
m∑

i=1

biyi

s.t. Ωr ≥ Ω̄, r = 1, . . . , n,

yi ≥ 0, i = 1, . . . , m.

Note that in practice a small positive lower bound ȳi is often given for yi

to prevent instability of the structure. So we reformulate the TOP as

(TOP
′
)

min
m∑

i=1

biyi

s.t. Ωr ≥ Ω̄, r = 1, . . . , n,

yi ≥ ȳi, i = 1, . . . , m.

If the eigenvalue of the optimal design is simple, we can calculate the
derivative of Ω1 with respect to yi easily and use nonlinear programming
techniques to solve it. However, if the eigenvalue is of large multiplicity, only
directional derivatives can be calculated. Fortunately, some path-following
algorithms for SDP do not need the derivative but only directional deriva-
tives. Now the question is how to formulate (TOP ′) as an SDP problem.

Consider a structure with Ω1 ≥ Ω̄. By Rayleigh’s principle, it can be
shown that

ψT [K − Ω̄(Ms + M0)]ψ ≥ 0

for any ψ; see [4] for more details. This implies that [K−Ω̄(Ms+M0)] ∈ Sn
+,

so it is possible to formulate it as a constraint in an SDP problem.

Define Ki and Mi as

Ki =
∂K

∂yi
, Mi =

∂Ms

∂yi
for i = 1, . . . , m.

Note that K =
∑m

i=1 yiKi and Ms =
∑m

i=1 yiMi, because K and Ms are
linear functions of yi. Therefore, (TOP

′
) can be reduced to the SDP problem
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in dual form:

(D′
)

max − bT y

s.t. −
m∑

i=1

(Ki − Ω̄Mi)yi + S = −Ω̄M0,

S ∈ Sn
+,

y ≥ ȳ.

The corresponding primal problem (P ′
) is

(P ′
)

min − Ω̄M0 •X − ȳT η

s.t. (Ki − Ω̄Mi) •X + ηi = bi, i = 1, . . . , m,

X ∈ Sn
+,

η ≥ 0.

3.3 Exploiting Symmetry

From the practical point of view, a symmetric design of a truss is usually ex-
pected. A symmetric design for TOP means that the symmetrically located
members have the same cross-sectional areas. For a symmetric truss, there
exists a transformation group under which the geometry and the mechanical
properties of the truss are invariant.

Let G be a finite group such that the geometry, the stiffness and mass
distributions and support conditions are all invariant under the action of any
π ∈ G. More specifically, it has the following properties: the locations of
nodes and members are symmetric; the locations and the values of the non-
structural masses are symmetric; support conditions are symmetric; and the
symmetrically located members have the same material and cross-sectional
areas.

Mathematically, such group G can be described as follows. For each
π ∈ G, let hπ : {1, . . . , m} 7→ {1, . . . , m} denote the permutation of members
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under the action of π. Define D(π) ∈ Rm×m as the permutation matrix
satisfying

Di, j(π) =





1 if hπ(i) = j;

0 otherwise.

So the action of π ∈ G on the vector member lengths b can be written as

b̃(π) = D(π)T b.

The invariance of members under the action of π can thus be expressed as

(3.1) b = b̃ = D(π)T b.

Similarly, the invariance of the lower bounds on the cross-sectional areas
under the action of π means

(3.2) ȳ = D(π)T ȳ.

Now consider the action of π ∈ G on nodal transformation. Suppose the
vector of the nodal displacements u of the truss corresponding to a mode of
vibration is transformed to ũ by P (π), namely,

ũ = P (π)T u.

Here, P (π) ∈ Rn×n is a matrix of the nodal displacements, and it can be
obtained as the product of an appropriate linear transformation matrix and
permutation matrix for assignment of displacement numbers. Note that
P (π) is an orthogonal matrix. For any π ∈ G, the action of π on K, Ms and
M0 are thus given by

K̃(π) = P (π)T KP (π),

M̃s(π) = P (π)T MsP (π),

M̃0(π) = P (π)T M0P (π).

We have

(3.3) M̃0(π) = M0
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for each π ∈ G, since the locations and the values of nonstructural masses
are invariant under π ∈ G. Also,

∂K̃(π)
∂yhπ(i)

=
∂K

∂yi
and

∂M̃s(π)
∂yhπ(i)

=
∂Ms

∂yi
for i = 1, . . . , m

for each π ∈ G, because the stiffness and mass distributions are also invariant
under π ∈ G. Therefore, for each π ∈ G,

(3.4) Ki =
∂

∂yhπ(i)

(
P (π)T KP (π)

)
= P (π)T Khπ(i)P (π)

and

(3.5) Mi =
∂

∂yhπ(i)

(
P (π)T MsP (π)

)
= P (π)T Mhπ(i)P (π)

for i = 1, . . . , m.

We now show that (P ′
) and (D′

) are both invariant SDP problems under
σ : G 7→ Aut(Sn

+ ⊕ Rm
+ ) defined by

σ(π) : (x, η) 7→ (
P (π)XP (π)T , D(π)T η

)

for each π ∈ G. First consider the objective function of (P ′
). Applying

σ(π), π ∈ G to the pair (x, η), the objective function becomes

−Ω̄M0 • P (π)XP (π)T − ȳT D(π)T η = −Ω̄P (π)T M0P (π) •X − (D(π)ȳ)T η

= −Ω̄M0 •X − ȳT η,

where the last equality follows from (3.2) and (3.3). Hence, the objective
function is invariant under σ.

Now consider the feasible set of (P ′
). For each π ∈ G, applying (3.1),

(3.4) and (3.5) to the constraints

(Ki − Ω̄Mi) •X + ηi = bi, i = 1, . . . , m,

gives

(
P (π)T Khπ(i)P (π)− Ω̄P (π)T Mhπ(i)P (π)

) •X + ηi = bhπ(i), i = 1, . . . , m,
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or equivalently,

(Khπ(i) − Ω̄Mhπ(i)) • P (π)XP (π)T + (D(π)T η)hπ(i) = bhπ(i), i = 1, . . . , m.

Thus, (X, η) is feasible for (P ′
) if and only if σ(π)(X, η) is feasible for each

π ∈ G ; i.e., the feasible set of (P ′
) is invariant under σ.

We can show that (D′
) is also invariant under σ using the same argument.

We thus established that (P ′
) and (D′

) are invariant SDPs. If we start
from an initial invariant solution (X0, y0, S0), and use the search directions
described in Theorem 2.3, we will obtain an invariant solution in the end,
which is exactly the desired design.
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Chapter 4

Application to the Crossing

Number of Graphs

4.1 The Crossing Number of Complete Bipartite

Graphs

The crossing number of a graph G is the minimum number of intersections
of edges among drawings of G in the plane. We use cr(G) to denote the
crossing number of the graph G.

Zarankiewicz’s crossing-number conjecture states that for the complete
bipartite graph Km,n,

cr(Km,n) = Z(m,n),

where Z(m,n) = b1
4(m− 1)2cb1

4(n− 1)2c.

We can construct drawings of Km,n with exactly Z(m,n) crossings by
using the following strategy: arrange the m and n vertices along the x− and
y−axes, respectively, in each case with as close to half of them on either side
of the origin as possible, and join them by mn straight-line segments. Then
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the number of crossings is
(bn

2 c
2

)(bm
2 c
2

)
+

(bn
2 c
2

)(dm
2 e
2

)
+

(dn
2 e
2

)(bm
2 c
2

)
+

(dn
2 e
2

)(dm
2 e
2

)

=
⌊n

2

⌋⌊
n− 1

2

⌋ ⌊m

2

⌋⌊
m− 1

2

⌋
.

This shows that Z(m,n) is an upper bound for cr(Km,n). We want to
find a reasonably good lower bound for this problem. It turns out that the
quality of the lower bound can be improved greatly by using SDP.

4.2 SDP Relaxation

For any m,n, suppose Km,n has bipartition {1,2,...,m} and {u1, ..., un}. For
a fixed planar drawing of Km,n, we use γ(ui) to denote the cyclic permu-
tation (i1, i2, ..., im) such that the edges incident with ui leave ui and go to
(i1, i2, ..., im) in the clockwise order.

Let Zm denote the set of all cyclic permutations of {1,2,...,m}. Note
that | Zm |= m!/m = (m − 1)!. For any σ, τ ∈ Zm, let Cσ,τ denote the
minimum number of crossings when drawing Km,2 such that γ(u1) = σ and
γ(u2) = τ . Then Cσ,τ define a matrix C = (Cσ,τ ) in SZm . It was shown in
[7] that Cσ,σ = b1

4(m− 1)2c. Moreover, other entries in C can be efficiently
computed.

Consider a fixed drawing W of Km,n which has cr(Km,n) crossings. For
each σ ∈ Zm, let

xσ =
1
n
|{ui ∈ (u1, u2, ..., un)| γ(ui) = σ} |,

that is, nxσ is the number of vertices ui in W with γ(ui) = σ. Consider x

as the column vector in RZm . Then eT x = 1, where e is the all-one vector.
Let βi,j denote the number of crossings in W that involve an edge incident
with ui and an edge incident with uj . Clearly, βi,j ≥ Cγ(ui),γ(uj) if i 6= j. So
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we have

(nx)T C(nx) =
n∑

i,j=1

Cγ(ui),γ(uj)

≤
n∑

i,j=1,i6=j

βi,j +
n∑

i=1

Cγ(ui),γ(ui)

= 2cr(Km,n) + nb1
4
(m− 1)2c.

This implies that

(4.1) cr(Km,n) ≥ 1
2
n2xT Cx− 1

2
nb1

4
(m− 1)2c.

If we let X̂ := xxT , then eT x = 1 is equivalent to J • X̂ = eT X̂e =
(eT x)(xT e) = 1, where J is the all-one matrix in SZm .

Now consider the following SDP problem

(Pm,n)

inf C •X

s.t. J •X = 1,

X ∈ Sn
+.

Suppose the infimum is attained, and let αm be the optimal value of (Pm,n).
Since X̂ satisfies all the constraints of (Pm,n), we have αm ≤ C •X̂ = xT Cx.

It follows directly from (4.1) that

Theorem 4.1 cr(Km,n) ≥ 1
2n2αm − 1

2n
⌊

1
4(m− 1)2

⌋
for any m,n.

As a consequence of Theorem 4.1, we have the following corollary.

Corollary 4.2 cr(Km,n) ≥ m(m−1)
k(k−1)

(
1
2n2αk − 1

2nb1
4(k − 1)2c) for all n and

k ≤ m.
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Proof
Consider an optimal drawing W of Km,n. Since each crossing in W lies in(
m−2
k−2

)
distinct Kk,n ⊆ Km,n, and there are

(
m
k

)
distinct Kk,n’s in total, we

have

cr(Km,n) ≥
(
m
k

)
cr(Kk,n)(
m−2
k−2

) =
m(m− 1)
k(k − 1)

(
1
2
n2αk − 1

2
n

⌊
1
4
(k − 1)2

⌋)
.

2

Corollary 4.3 limn→∞
cr(Km,n)
Z(m,n) ≥ 8αk

k(k−1)
m

m−1 for all k ≤ m.

Proof

lim
n→∞

cr(Km,n)
Z(m,n)

≥ lim
n→∞

m(m− 1)
(

1
2n2αk − 1

2nb1
4(k − 1)2c)

k(k − 1)Z(m,n)

= lim
n→∞

m(m− 1)
(

1
2n2αk − 1

2nb1
4(k − 1)2c)

k(k − 1)b1
4(m− 1)2cb1

4(n− 1)2c

=
2αk

k(k − 1)
m(m− 1)
b1

4(m− 1)2c
≥ 8αk

k(k − 1)
m

m− 1
.

2

4.3 Inherent Symmetry

It was shown in [6] that there exists a finite group G with orthogonal repre-
sentation σ : G 7→ Aut(SZm

+ ) such that the matrix C is invariant under the
action of any element in G; namely,

C = σ(π)C for all π ∈ G.
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We now describe the group G.

Let G := Sym(m)×Sym(2), where Sym(m) denotes the symmetric group
of degree m (i.e., the group of all permutations of m objects) and Sym(2) :=
{−1, 1}. Here Sym(m) acts as a permutation group by conjugation on the
(m − 1)! elements of Zm, while Sym(2) acts on Zm by switching σ ∈ Zm

with σ−1 ∈ Zm. Define h : G 7→ Sym(Zm) by

hπ, i(σ) := πσiπ−1

for π ∈ Sym(m), i ∈ Sym(2), σ ∈ Zm. Therefore, for each (π, i) ∈ G,hπ, i is
an automorphism on Zm.

For each (π, i) ∈ G, define Mπ, i ∈ RZm×Zm by

(Mπ, i)σ,τ =





1 if hπ, i(σ) = τ ;

0 otherwise,

for σ, τ ∈ Zm. Then Mπ,i is the Zm×Zm permutation matrix corresponding
to the permutation hπ, i of Zm. Moreover, for all (π, i), (π

′
, i
′
) ∈ G, we have

M(π, i),(π′ , i′ ) = Mπ, iMπ′ , i′ and M(π, i)−1 = MT
π, i.

Hence, σ : G 7→ Aut(SZm
+ ) defined by σ(π, i) : X 7→ Mπ,iXMT

π,i is an
orthogonal representation of G.

It turns out that the cost matrix C is invariant under the action of group
G; i.e.,

Mπ, iCMT
π, i = C for each (π, i) ∈ G.

A short explanation is that the action of σ(π, i) on C corresponds to a
re-labelling of the nodes {1, . . . , m} to {π(1), . . . , π(m)}, together with a
change from clockwise order to counter-clockwise order in the definition of
γ in the case i = −1. See [6] for more details. Also it is easy to check that

Mπ, iJMT
π, i = J for each (π, i) ∈ G.
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Thus the SDP relaxation (Pm,n) is invariant under σ. Since the Mπ,i’s are
permutation matrices, we may apply the reduction technique described in
section 2.2. The computational results are given in [5].

It was found that α9 ≈ 7.73521, so by Theorem 4.1,

cr(K9,n) ≥ 3.8676n2 − 8n,

For each m ≥ 9 and n, we have by Corollary 4.2,

cr(Km,n) ≥ 0.0537m(m− 1)n2 − 1
9
m(m− 1)n,

and for each m ≥ 9, by Corollary 4.3,

lim
n→∞

cr(Km,n)
Z(m,n)

≥ 0.8594
m

m− 1
.

The best factor previously known was 0.8303 instead of 0.8594.
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Chapter 5

Concluding Remarks

In this essay, we introduced SDP, and the basic theorems of SDP. Then
the central path and several of the most popular search directions for the
primal-dual interior-point methods were discussed. The motivation of these
search directions and the relationship among them were also presented.

The special class of group-invariant SDP problems was investigated. It
was proved that if both (P) and (D) are invariant under σ, and the current
iterates X, S are invariant under σ, then the Monteiro-Zhang search direc-
tion (dX, dy, dS) corresponding to P is also invariant under σ whenever P

is invariant. This new result is a contribution of this essay. A method for
reducing the size of the underlying matrices was presented. This reduc-
tion technique is especially effective for a special class of group-invariant
SDP problems where the data matrices are invariant under a large group of
symmetric permutations of rows and columns.

The powerful application of invariant SDP was demonstrated through
two examples. The first one is an engineering problem–the topology opti-
mization problem. The other is a combinatorial problem–the crossing num-
ber of complete bipartite graphs. The TOP was formulated as an SDP
problem, which is group-invariant if the data possess symmetries. Using

35



the invariance of popular search directions, we deduced that interior-point
algorithms based on these directions always produce symmetric designs.

SDP was used to obtain good lower bounds on the crossing number of
complete bipartite graphs. These SDP problems inherit symmetries from
the bipartite graphs, which were exploited in the reduction of the sizes of
the SDP problems. The numerical results of the reduction technique of
section 2.2 applied to the lower bound problem were given. We note that
the potential application of this technique to the TOP is worth further study.
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