
Signatures for Network Coding

by

Ning Zhang

A research paper
presented to the University of Waterloo
for the degree of Master of Mathematics

in
Combinatorics and Optimization

Waterloo, Ontario, Canada, 2010

c© Ning Zhang 2010

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In communication networks, files commonly are separated into data packets and trans-
mitted from the source node to a prescribed set of destination nodes by a method known
as “store and forward”, in which data packets received are stored and then forwarded to
the next node. Network coding has been proposed to replace the traditional “store and
forward” model, and to improve the throughput and robustness of networks. With linear
network coding, instead of copying and forwarding, intermediate nodes compute linear
combinations of previously received information, and create and transmit a new packet
to the next nodes. However, some malicious intermediate nodes may modify the data of
packets and the recipients not can distinguish the corrupted packets from uncorrupted
ones. This is known as a “pollution attack”.

Homomorphic hashings and homomorphic signatures were proposed to provide crypto-
graphic protection against pollution attacks. First, we present Krohn et al.’s homomorphic
hashing schemes for rateless erasure codes. This paper presented six homomorphic signa-
ture schemes for network coding including three pairing-based homomorphic signature
schemes, three RSA-based homomorphic signature schemes, and a signature scheme using
a vector orthogonal to the message linear subspace. We then discuss and compare the
memory and communication overhead of five of these homomorphic signature schemes.
Finally, we point out flaws with some of these schemes, even though some security analysis
has been presented, and we present solutions to prevent such attacks.

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Professor Edlyn Teske-Wilson,
who gave me valuable help and supervision with her endless patience throughout the period
of my MMath graduate degree program.

I would like to thank Professor Alfred Menezes at the University of Waterloo for an-
swering my many questions on the security of cryptographic protocols for network coding.
I am also grateful to Professor David Jao for all the discussions about the formal security
proofs of cryptographic schemes.

I would like to give special thanks to all my (former) colleagues and friends for their
valuable friendship and support.

Last but not least, I would like to thank my family and my friends for their support
and for their endless love to me. Special thanks go out to my husband Xinxin Fan who
gives me his unconditional love and valuable help.

To all of you thank you very much!

iv

Contents

1 Introduction 1

1.1 Network Coding . 1

1.2 Homomorphic Signatures for Network Coding 2

1.3 This Work . 3

1.4 Outline . 3

2 Preliminaries 5

2.1 Finite Fields . 5

2.2 Elliptic Curves . 6

2.3 Bilinear Groups and Bilinear Maps . 8

2.4 Security Assumptions . 9

2.4.1 Discrete-Logarithm (DL) and Diffie-Hellman (DH) Problems 9

2.4.2 Elliptic Curve DL Problem and Bilinear DH Problem 11

2.5 Definitions of Digital Signatures . 12

3 Introduction to Network Coding Theory 15

3.1 Basic Concepts of Network Coding . 15

3.1.1 What is Network Coding? . 15

3.1.2 Where is Network Coding Used? 17

3.2 Benefits of Network Coding . 19

3.2.1 Throughput . 19

3.2.2 Robustness . 20

v

3.3 Linear Network Coding . 20

3.3.1 Encoding . 20

3.3.2 Decoding . 21

3.4 Network Security . 22

4 Related Signature Schemes for Network Coding 23

4.1 Krohn et al.’s Homomorphic Hashing Schemes for Rateless Erasure Codes . 24

4.2 Definitions of Homomorphic Signatures . 27

4.2.1 Definitions of Homomorphic Signatures for Network Coding 28

4.3 Boneh et al.’s Signatures on a Linear Subspace for Network Coding 31

4.3.1 A Homomorphic Network Coding Signature Scheme S2 with Random
Oracles . 31

4.3.2 A Network Coding Signature Scheme S1 without Random Oracles . 33

4.4 Charles et al.’s Signatures for Network Coding 34

4.5 RSA-Based Homomorphic Signature Schemes for Network Coding 36

4.5.1 Yun et al.’s signature scheme . 37

4.5.2 Gennaro et al.’s signature scheme 38

4.6 Zhao et al.’s Signatures for Network Coding 40

4.6.1 The Signature Scheme . 41

4.6.2 The Security Analysis of the Signature Scheme 42

4.7 Discussion and Comparison . 42

5 Attacks on Signature Schemes for Network Coding 47

5.1 A Weakness of the Homomorphic Property 47

5.2 An Attack on Yun et al.’s RSA-based Signature Scheme 49

5.3 Attacks on Zhao et al.’s Signature Scheme 49

5.3.1 Attack 1 . 50

5.3.2 Attack 2 . 51

6 Conclusion and Future Work 52

6.1 Conclusion . 52

6.2 Future Work . 53

vi

References 58

vii

Chapter 1

Introduction

In communication networks, information is transmitted by a routing mechanism, in which
data packets are sent from the source to the destination. Network coding has proposed
to replace the traditional “store and forward” model, and to improve the capacity and
robustness of networks. If we assume all nodes in the network system are honest, the data
packets can be transmitted without being modified intentionally. However, some malicious
intermediate nodes may modify the data of packets and the recipients cannot distinguish
the corrupted packets from uncorrupted ones. This is known as a “pollution attack”.

Network coding signatures have been proposed to protect against pollution attacks.
This work focuses on six homomorphic signature schemes for network coding. We present
their security and performance comparisons, and discuss and analyze some flaws of these
signature schemes.

This chapter starts with a brief introduction to network coding theory and homomor-
phic signatures for network coding.

1.1 Network Coding

In various communication networks such as phone networks, Internet, Peer-to-Peer(P2P)
networks, wireless ad hoc networks and sensor networks, files commonly are separated into
data packets and transmitted from the source node to a prescribed set of destination nodes
by a method known as “store and forward” (see Fig 1.1), in which data packets received
are stored and then forwarded to the next node.

With (linear) network coding, instead of copying and forwarding, intermediate nodes
compute (linear) combinations of previously received information, and create and transmit
a new packet to the next nodes. Network coding has vast application potential and has been

1

A

B

C

D E

source

destination

1P

3P

2P

Figure 1.1: File Distribution in Communication Networks: Store-and-Forward

shown to offer a number of significant benefits: improved throughput, increased robustness
of networks and data security. We will give more detailed explanation in Chapter 3.

1.2 Homomorphic Signatures for Network Coding

Network coding presents some challenges as well as advantages in networks. A major
concern for any network coding system is the protection against pollution attacks. In such
systems, malicious nodes can make modifications of packets intentionally. This problem can
be particularly serious because errors introduced into even a single packet can propagate
and pollute multiple packets. To solve this problem, a signature scheme can be used to
provide cryptographic protection. By verifying the signature appended to each packet,
intermediate nodes can detect errors and filter out any corrupted packets, and then make
sure the destination node recovers the correct file (see Fig 1.2).

What we need is to guarantee the integrity of the message packets in the transmissions.
However, since the content of packets in transmissions is modified by the intermediate
nodes, the regular signature by the source node on the original message is not sufficient.
Homomorphic signatures are appropriate for linear network coding. In linear network cod-
ing systems, the intermediate nodes need to verify the incoming homomorphic signatures
and accept the packets passing the verification. Then the intermediate nodes can combine
these correct signatures and construct a new valid signature without any access to the
private key of the source node.

2

1m

2m

M

km

1

0

0

1

0

0

…

…

0

0

σ1

σ2

File F

0 0 0 … 1 σk

Network

Figure 1.2: Network Coding Signatures

1.3 This Work

Over the past years, several homomorphic signature schemes for network coding have been
proposed. In this paper, we introduce some related work in this research area. Homomor-
phic hashing was first proposed by Krohn et al. [33]; their scheme needs a reliable channel
for pre-distributing the hash values. Zhao et al. [46] proposed a signature scheme using a
vector orthogonal to the message subspace. Charles et al. [15] presented a homomorphic
signature based on aggregate signatures. Boneh et al. presented two signature schemes S1

and S2 [8] that use bilinear pairings. The scheme S2 is a provably secure homomorphic
signature with random oracles, and the scheme S1 is to authenticate all hash values us-
ing a standard signature scheme. Also, Two RSA-based homomorphic signature schemes
were given for network coding [45, 23]. In particular, Gennaro et al. [23] proposed an
RSA-based scheme in which small integers can be chosen as the coefficients in the linear
combinations, and thus the total bandwidth overhead for the transmission from the source
to the destination can be reduced significantly.

However, there are flaws in some of these schemes. In this paper, we present these
flaws and some existential forgeries to the homomorphic signatures for network coding.
Because of the homomorphic property, the adversary may forge a valid signature on a
message packet chosen by herself, and so the next nodes will accept this corrupted packet
as a correct one.

1.4 Outline

The outline of this paper is as follows:

• Chapter 1 introduces the background of network coding, the basic concepts of homo-

3

morphic signatures for network coding, typical attacks and security. The motivation
and the context of the work in this paper are also presented.

• Chapter 2 gives a brief overview of the mathematical tools and security assump-
tions that will be extensively used throughout this work. We first introduce the
properties of finite fields, followed by a description of elliptic curves and bilinear
pairings. We also present some assumptions on the problems (Discrete-Logarithm
Problem, Diffie-Hellman Problem, Elliptic Curve Discrete-Logarithm Problem and
Elliptic Curve Diffie-Hellman Problem) that are widely used in the security proofs
of many cryptographic primitives. In these assumptions, we say that the intractable
problems cannot be solved by any probabilistic polynomial time (PPT) algorithm
with non-negligible probability.

• Chapter 3 gives a brief introduction to network coding theory. We show some ba-
sic concepts of network coding, describe the applications of network coding in P2P
content distribution networks and wireless ad hoc networks, and explain the benefits
of network coding with respect to throughput, robustness and security. We also in-
troduce linear network coding, which is used frequently in practice, and consider the
problem of network security.

• Chapter 4 contains our main work. First, we introduce homomorphic hashings and
the definitions of homomorphic signatures. Then six homomorphic signature schemes
for network coding are presented:

· Boneh-Freeman-Katz-Waters’ two schemes S1 and S2 [8].

· Charles-Jain-Lauter’s scheme [15].

· Yun-Cheon-Kim’s RSA-based scheme [45].

· Gennaro-Katz-Krawczyk-Rabin’s RSA-based scheme [23].

· Zhao-Kalker-Medard-Han’s scheme [46].

Next, we discuss the security and compare the memory and communication overhead
of the six homomorphic signature schemes above.

• Chapter 5 discusses flaws of some of the signature schemes described in Chapter
4. We introduce a weakness of the homomorphic property in signature schemes
based on the standard model, give a forgeability attack on Charles et al.’s scheme,
a forgeability attack on Yun et al.’s RSA-based signature scheme, and describe two
forgeries of the scheme by Zhao et al..

• Chapter 6 concludes this paper, summarizes our main work, and suggests some di-
rections for future research.

4

Chapter 2

Preliminaries

In this chapter, we give a brief overview of the mathematic tools and security assumptions
that will be extensively used throughout this paper. We first introduce the definition and
some properties of finite fields, followed by the description of elliptic curves and bilinear
pairings. We also present some intractability assumptions that are widely used in the
security proofs of many cryptographic primitives, such as key exchange protocols, public
key encryption algorithms, and digital signature schemes. In these assumptions, we say
that the intractable problems cannot be solved by any probabilistic polynomial time (PPT)
algorithm with non-negligible probability.

2.1 Finite Fields

The definition of finite fields is given and some basic properties are provided as well.

Definition 2.1.1 (Finite Fields [37]) A finite field is a field F which contains a finite
number of elements. The order of F is the number of elements in F.

We list some facts about finite fields which are important in many cryptographic
schemes.

1. If F is a finite field, then F contains pm elements for some prime p and integer m ≥ 1.

2. For every prime power order pm, there is a unique (up to isomorphism) finite field of
order pm. This field is denoted by Fpm .

3. If Fq is a finite field of order q = pm, p is a prime, then the characteristic of Fq is p.

5

4. If Fq is a finite field of order q = pm, then every subfield of Fq has order pn, for some
n that is a positive divisor of m. Conversely, if n is a positive divisor of m, then there
is exactly one subfield of Fq of order pn; an element a ∈ Fq is in the subfield Fpn , if
and only if ap

n
= a. We have aq = a for all a ∈ Fq.

Definition 2.1.2 (Cyclic Group [37]) A group G is cyclic if there is an element g ∈ G
such that for each a ∈ G there is an integer m with a = gm. Such an element g is called a
generator of G.

Definition 2.1.3 (Multiplicative Group [37]) The non-zero elements of Fq form a group
under multiplication called the multiplicative group of Fq, denoted by F∗q.

2.2 Elliptic Curves

In this section, we provide the necessary background for elliptic curves and the bilinear
maps from elliptic curve pairings. Most results in this section come from [2, 3].

Let Fq be a finite field of the order q and characteristic p. An elliptic curve E over Fq
is defined by the affine Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (2.1)

where ai ∈ Fq. The set E(Fq) of Fq-rational points consists of the points (x, y) ∈ Fq × Fq
that satisfy the affine Weierstrass equation, together with an point at infinity denoted by
∞.

Assuming that p 6= 2, 3, we consider the following admissible changes of variables given
by

x = x′ − b2

12
, y = y′ − a1

2

(
x′ − b2

12

)
− a3

2
, (2.2)

and substitute x, y in the affine Weierstrass equation; we get the equation of an isomorphic
curve, called the short Weierstrass form,

y2 = x3 + ax+ b (2.3)

for some a, b ∈ Fq.

The set of points E(Fq) forms an abelian group, where ∞ is the identity element.
The group operation, denoted by +, is given by a chord-and-tangent rule, that can be
best explained geometrically. Let P and Q be two distinct points on E. If the straight

6

P

P+Q

R

Q

Figure 2.1: Addition of two points on an elliptic curve

line through P and Q intersects the curve at another point, say R = (x, y), then we say
P +Q = −R = (x,−y), where −R is a reflection of R in the x-axis (see Figure 2.1).

If P = Q, then P +Q = 2P is called doubling operation of a point on an elliptic curve
E(Fq). When the tangent line to E(Fq) at the point P intersects E(Fq) in exactly one
other point, say R = (x, y), then we say 2P = −R = (x,−y), where −R is a reflection of
R in the x-axis. (see Figure 2.2).

In a special case, if Q is the reflection of P in the x-axis, that is, Q = −P , the straight
line through P and Q does not intersect the curve in any other points. In this case, we
define P+Q = P+(−P) =∞, so −P is called the inverse of P . Also, we define P+∞ = P
and ∞+ P = P for any point P ∈ E(Fq). So ∞ is the identity element in E(Fq).

With the group law described above, E(Fq) is commutative and associative under ad-
dition, that is, P +Q = Q+ P and (P +Q) +R = P + (Q+R) for all P,Q,R ∈ E(Eq).

The notation nP denotes the scalar multiplication of P ∈ E(Fq) by an integer n. The
value of nP is the following:

• For n = 0, it is equal to ∞.

• For n ≥ 1, it is equal to P + · · ·+ P︸ ︷︷ ︸
n points

.

• For n < 0, it is equal to (−n)(−P).

7

P

2P

R

Figure 2.2: Doubling of a point on an elliptic curve

In general, scalar multiplication on elliptic curves is believed to be hard to invert. This
problem is the so-called Discrete Logarithm Problem on an elliptic curve E(Fq), which is
to be described in more detail in Section 2.3.1.

2.3 Bilinear Groups and Bilinear Maps

Let G1, G2 and GT be multiplicative groups of prime order q. A bilinear pairing is a map
e : G1 ×G2 → GT with the following properties [3]:

1. Bilinearity: For any g1, g2 ∈ G1, h1, h2 ∈ G2, we have e(g1 ·g2, h1) = e(g1, h1)·e(g2, h1)
and e(g1, h1 · h2) = e(g1, h1) · e(g1, h2).

2. Non-degeneracy: If ĝ is a generator of G1, and ĥ is a generator of G2, then e(ĝ, ĥ) is
a generator of GT .

3. Computability: The map e can be efficiently computed.

The following properties of bilinear pairings can be easily verified. For any g ∈ G1,
h ∈ G2:

1. e(g, h−1) = e(g−1, h) = e(g, h)−1.

8

2. e(ga, hb) = e(g, h)ab, for all a, b ∈ Z.

3. e(g, 1G2) = 1GT
, and e(1G1 , h) = 1GT

, where 1G1 , 1G2 and 1GT
are the identity elements

of G1, G2 and GT , respectively.

4. If e(g, h) = 1GT
for all h ∈ G2, then g = 1G1 ; if e(g, h) = 1GT

for all g ∈ G1, then
h = 1G2 .

A bilinear group tuple is a tuple 〈G1,G2,GT , q, e〉 with the properties above. For
currently known bilinear group tuples, G1 and G2 are subgroups of groups of points on
elliptic curves, GT is a subgroup of a multiplicative group of a finite field, and the map e
can be derived by modifying either the Weil pairing [3] or Tate pairing [3] on an elliptic
curve E over Fq. Generally the computational complexity of the Tate pairing is less than
that of the Weil pairing.

2.4 Security Assumptions

For the security, all cryptographic protocols must rely on intractability assumptions, which
state that problems cannot be solved in polynomial time. This section presents the stan-
dard Discrete-Logarithm (DL) Problem and Diffie-Hellman (DH) Problem, and also de-
scribes some variants and related security assumptions over elliptic curves.

2.4.1 Discrete-Logarithm (DL) and Diffie-Hellman (DH) Prob-
lems

Definition 2.4.1 (Discrete Logarithm Problem [2]) Let G be a cyclic group of prime
order q, and let g be a random generator of G. Given a random element a ∈ G, the Discrete
Logarithm Problem in G is to find an ω ∈ Zq such that a = gω.

Such an ω is called discrete logarithm of a in G, denoted DL(a, g). We say that an
algorithm A has advantage ε in solving the DL Problem in G if

Pr[A(a, g) = DL(a, g)] ≥ ε,

where the probability is measured over the random choices of a, g ∈ G and the random
inputs of A, if any.

Diffie and Hellman [20] proposed the Diffie-Hellman Problem in the key exchange pro-
tocol, which is closely related to the DL Problem and is the basis for the security of many

9

cryptographic protocols. The DH Problem that we discuss comes in two forms: compu-
tational and decisional. Generally speaking, a decisional problem asks to distinguish a
random element and a computational problem asks to output a valid element. We present
the definitions of the computational DH Problem and decisional DH Problem as follows.

Definition 2.4.2 (Computational Diffie-Hellman Problem (CDH) [3]) Let G be a
cyclic group of prime order q, and let g be a random generator of G. Given g and the
random elements ga and gb in G, where a, b ∈ Zq, the Computational Diffie-Hellman
(CDH) Problem in G is to find gab ∈ G.

We say that an algorithm A has advantage ε in solving the CDH Problem in G if

Pr[A(ga, gb) = gab] ≥ ε,

where the probability is measured over the random choices of g, ga, gb ∈ G and the random
inputs of A, if any.

If we suppose that the DL Problem can be efficiently solved, then one can solve the
CDH Problem as follows. Given g and the random elements ga and gb in G, find a from
ga by solving the DL Prolem, and then compute (gb)a = gab.

The decisional Diffie-Hellman (DDH) Problem is closely related to the CDH Problem.

Definition 2.4.3 (Decisional Diffie-Hellman (DDH) Problem [3]) Let G be a cyclic
group of prime order q, and let g be a random generator of G. Given g and the random
elements ga, gb and gc in G, where a, b, c ∈ Zq, the Decisional Diffie-Hellman (DDH)
Problem in G is to determine if gab = gc.

If there exists a group G in which the CDH Problem is hard but the DDH Problem is
easy, we call G a Gap Diffie-Hellman (GDH) group. The first example of a GDH group
was given in [31].

Now we introduce two variants of the DH Problem: co-DH Problem and (q, k, N)-DH
Problem. The co-Diffie-Hellman Problem was proposed by Boneh, Lynn and Shacham [10]
to assist in the security proof of the BLS signature scheme. The (q, k, N)-Diffie-Hellman
Problem was proposed by Zhao et al. [46] and is used in Chapter 4.

Definition 2.4.4 (Computational co-Diffie-Hellman (co-CDH) Problem) Let G1

and G2 be cyclic groups of the same prime order q, and let g1 be a random generator of G1

and g2 be a random generator of G2. Given g2 and the random elements ga1 ∈ G1, gb2 ∈ G2,
where a, b ∈ Zq, the Computational co-Diffie-Hellman (co-CDH) Problem is to compute
gab1 ∈ G1.

10

Definition 2.4.5 (Decisional co-Diffie-Hellman (co-DDH) Problem) Let G1 and G2

be cyclic groups of the same prime order q, g1 be a random generator of G1 and g2 be a
random generator of G2. Given ga1 , h ∈ G1 and g2, g

b
2 ∈ G2, where a, b ∈ Zq, the Decisional

co-Diffie-Hellman (co-DDH) Problem is to determine if h = gab1 .

We note that the co-CDH Problem and co-DDH Problem are the generalizations of the
CDH Problem and DDH Problem. When G1 = G2 and g1 = g2, the co-CDH Problem and
co-DDH Problem reduce to the standard CDH Problem and DDH Problem, respectively.

Definition 2.4.6 ((q, k, N)-Diffie-Hellman Problem [46]) Let G be a multiplicative
cyclic group of prime order q, k and N be two integers such that k < N − 1, and Γ =
{g1, . . . , gN} be a set of generators of G. Given a linear subspace V of rank k in FNq such

that for every v ∈ V , the equality Γv :=
∏N

j=1 g
vj
j = 1 holds, the (q, k,N)-Diffie-Hellman

Problem is defined as the problem of finding a vector w ∈ FNq with Γw = 1 but w 6∈ V .

The (q, k,N)-Diffie-Hellman Problem is proposed to assist in the security proof of a
signature for network coding [46], and is proven to be as hard as the Discrete Logarithm
Problem. In this problem, we need to set k < N −1, since if k = N −1, then the (q, k,N)-
Diffie-Hellman Problem has no solution. To prove this, we suppose that there exists a w′

such that
∏N

i=1 g
w′

i
i = 1 and w′ /∈ V . Then w′+V spans the whole space FNq . Thus we have

any vector w ∈ FNq satisfying
∏N

i=1 g
wi
i = 1. This is clearly impossible. Therefore, no such

w′ exists. When k < N − 1, there exist solutions to the (q, k,N)-Diffie-Hellman Problem,
but finding a solution to the (q, k,N)-Diffie-Hellman Problem is as hard as solving the
Discrete Logarithm Problem in the cyclic group G (see the proof in [46]).

2.4.2 Elliptic Curve DL Problem and Bilinear DH Problem

Some intractability assumptions provided in Section 2.3.1 can be extended to the bilinear
group setting. The variant of the DL Problem on an elliptic curve E over some finite field
Fq is given as follows.

Definition 2.4.7 (Elliptic Curve Discrete Logarithm (ECDL) Problem [2]) Let E(Fq)
be the group of points on an elliptic curve E over a finite field Fq, and let P be an element
of E(Fq). P generates a cyclic subgroup of E(Fq), denoted by 〈P 〉. Given Q ∈ 〈P 〉, the
Elliptic Curve Discrete Logarithm (ECDL) Problem on E is to find an integer n such that
Q = nP .

11

The most natural generalization of the Diffie-Hellman Problem to a bilinear group
setting is the series of bilinear Diffie-Hellman (BDH) problems. We present two variants
of the BDH problems. The most basic BDH version appeared in Joux’s construction of
the three-party Diffie-Hellman key agreement protocol [30], and also in the security proof
of the IBE scheme of Boneh and Franklin [7].

Definition 2.4.8 (Bilinear Diffie-Hellman (BDH) Problem) Let G be a cyclic group
of prime order q with an efficiently computable bilinear map e : G × G → GT , where GT

is a multiplicative group. Let g be a generator of G. Given g, ga, gb, gc ∈ G, for any
a, b, c ∈ Zp, the Bilinear Diffie-Hellman Problem is to compute e(g, g)abc ∈ GT .

Definition 2.4.9 (Decisional Bilinear Diffie-Hellman (DBDH) Problem) Let G be
a cyclic group of prime order q with an efficiently computable bilinear map e : G×G→ GT ,
where GT is a multiplicative group. Let g be a generator of G. Given g, ga, gb, gc ∈ G
and v ∈ GT , for any a, b, c ∈ Zp, the Decisional Bilinear Diffie-Hellman Problem is to
determine if v = e(g, g)abc ∈ GT .

The hardness of the BDH Problem forms the security foundation for many pairing-
based cryptographic schemes. There also exist other important computational problems
related to pairing-based schemes, most of which are based on the hardness of the standard
DH Problem [4, 11].

2.5 Definitions of Digital Signatures

A digital signature scheme is one of the most important cryptographic primitives enabled
by public key cryptography, and is fundamental in providing various cryptographic services
such as data origin authentication, data integrity, and non-repudiation. In this section, we
present the definition of digital signatures and security notions.

Definition 2.5.1 (Digital Signature Scheme [37]) A digital signature scheme typically
consists of four algorithms: {Setup, KeyGen, Sign, Verify} as follows:

• Setup(l): On input security parameter l, outputs a set of parameters params.

• KeyGen(params): On input the public parameters params, outputs a public key PK
and a private key SK.

• Sign(m, SK): On input a message m and a private key SK, outputs a signature σ
for the message m.

12

• Verify(m, PK, σ): On input a message m, a public key PK and a signature σ,
outputs either 0 (reject) or 1 (accept).

Informally, signatures produced by the Sign algorithm should be valid, that is, accepted
by the Verify algorithm. Creating a signature also should be computationally infeasible
for any entity other than the signer. These two properties are the basis for provable security
of signature schemes. We also present the definition of unforgeability for digital signatures.

Correctness

A digital signature scheme is correct if, for any σ produced by running Sign on message
m and private key SK, then Verify(m, PK, σ) outputs accept.

Unforgeability

We define the existential unforgeability under a chosen message attack [26]. This is defined
via the following game between a challenger C and an adversary A.

• Initialization: C runs Setup on security parameter l to generate the public param-
eters and runs KeyGen to obtain a public key PK and a private key SK. C sends
the parameters and the public key PK to A.

• Sign: A can query q times to C, and C computes σi = Sign(mi, SK), where mi, i =
1, . . . , q can be any message chosen by A. C gives σi, i = 1, . . . , q to A.

• Output: A outputs a signature σ∗ and a message m∗, where m∗ /∈ {m1, . . . ,mq}. A
wins the game if Verify(m∗, PK, σ∗) outputs accept.

We say that a digital signature scheme is existentially unforgeable under an adaptive
chosen message attack if the probability of success of any polynomially bounded adversary
in the above game is negligible.

Classification of Signature Schemes

Signature schemes are usually based on computational intractability assumptions. A sig-
nature scheme is said to be secure in the standard model [4, 6], if it can be proven secure
using only computational complexity assumptions.

Security proofs of signature schemes are not easy to achieve in the standard model, so
signature schemes often employ random oracles to provide proofs of security. A random

13

oracle is an oracle (or a black box) that responds to every query by selecting a random
element from its range. Random oracles can be used in cryptographic proofs of security.
A signature scheme that is proven secure using such a proof is said to be secure in the
random oracle model, as opposed to secure in the standard model.

In practice, random oracles are typically used to model cryptographic hash functions in
schemes where strong randomness requirements are needed of the hash function’s output
[7, 9, 8]. No practical function can implement a true random oracle. In fact, certain
signature schemes are known which are proven secure in the random oracle model, but
which are trivially insecure when any real function is substituted for the random oracle
[14]. However, not all uses of cryptographic hash functions require random oracles: schemes
which require only the property of collision resistance can be proven secure in the standard
model.

14

Chapter 3

Introduction to Network Coding
Theory

The fundamental concept of network coding was first proposed for satellite communication
networks [44], and then fully developed as a new theory by Ahlswede et al. [1]. Due to its
generality and its vast application potential, network coding has generated much interest in
information theory, wireless communications, complexity theory, cryptography and graph
theory.

The aim of this chapter is to give a brief introduction to network coding theory. We
show some basic concepts of network coding and explain where and why network coding
needs to be used. We also introduce linear network coding, which is used frequently in
practice, and consider the problem of network security.

3.1 Basic Concepts of Network Coding

In this section, we begin with the definition of network coding, and give several simple but
convincing examples of network coding. We also describe applications of network coding
in a variety of networks.

3.1.1 What is Network Coding?

There are several definitions about network coding that have been used for different network
environments. Based on the descriptions of networking coding in [28, 1], we give the
following definition to capture the main characteristics of network coding.

15

1

21
bb ⊕

1
b

s

2 t
2

t
1

43

21
bb ⊕

21
bb ⊕

1
b

1
b

2
b

2
b

2
b

1
1

b

s

2 t
2

t
1

43

1
b

1
b

2
b

2
b

2
b

1
b

1
b

(a) (b)

2
b

2
b

Figure 3.1: Multicasting two packets, b1 and b2, from the source node S to the destination
nodes t1 and t2 in the butterfly network

Definition 3.1.1 (Network Coding) Network coding is a particular data processing tech-
nique in networks that is applied for the purpose of increasing the capacity or the throughput
of networks in the broadcast communication channel.

Unfortunately, the above definition does not distinguish the study of network coding
from communication network or information theory. Throughout this paper the concept
of network coding we use means coding at a node in a packet network, in which data is
separated into packets and the coding is applied to the content of each packet.

Communication networks today share the same fundamental principle of operations. In
the traditional store-and-forward routing mechanisms, data packets are transmitted from
the source node to each destination node through a chain of intermediate nodes. Each
intermediate node, after receiving a data packet from an input link, replicates and stores
the data, and then forwards it to the next node via an output link. In contrast to the
store-and-forward method, network coding refers to a new class of routing mechanisms,
in which intermediate nodes modify the received data packets in transit. For instance,
instead of simply forwarding data, intermediate nodes can recombine several input packets
into one or several output packets. A simple example is network coding on the butterfly
network ([28], see Figure 3.1), which features a multicast from a single source to two sinks,
or destinations.

Assume that source node S multicasts two packets, b1 and b2, to both destination
nodes t1 and t2. In Figure 3.1 (a), every channel carries one packet, b1 or b2, and every
intermediate node needs to replicate the received packets and then send them out. Figure
3.1 (b) describes a different way to multicast two packets in the same network. Instead of
copying and forwarding each single packet, the intermediate node 3 computes and outputs
the bitwise xor of b1 and b2, b1⊕ b2. The channel from node 3 to node 4 is used to transmit
b1⊕b2, which is then replicated at node 4 for passing on to nodes t1 and t2. The destination

16

2

1

S

2
b

1
b

T1
b

1
b

2
b

2
b

2

1

S

1
b

T21
bb ⊕

2
b

21
bb ⊕

21
bb ⊕

(a) (b)

Figure 3.2: Conversation between two parties

nodes decode by performing further decoding operations on the received packets, that is,
the node t1 can recover b2 by computing the xor of the received packets b1 and b1⊕ b2, and
similarly, the node t2 can recover b1 by computing the xor of b2 and b1 ⊕ b2.

Another example is the conversation between two parties S and T (see Figure 3.2). In
the network as shown in Figure 3.2 (a), the two parties S and T send one data packet
to each other through the network in the straightforward manner, say, S sends a packet
to T through the intermediate nodes 1 and 2, and vice versa. Figure 3.2 (b) shows the
same network as in Figure 3.2 (a) but with one less channel. Upon receiving b1 form S
and b2 from T, the intermediate node 1 derives a new packet b1 ⊕ b2, which is sent to the
intermediate node 2, and then to S and T. As a result, S and T can get the data packet
from each other by performing the bitwise xor.

Linear network coding is similar to this example; the difference is that the xor operation
is replaced by a linear combination of the data, interpreted as numbers over some finite
field. In practice, linear network coding can achieve the best possible benefits of network
coding. This allows for a much larger degree of flexibility in the way packets can be
combined. Linear network coding is discussed further in Section 3.3.

3.1.2 Where is Network Coding Used?

In the following, we introduce applications of networks coding in wired network and wireless
networks, and discuss how network coding improves the performance in concrete settings.

Peer-to-Peer (P2P) Content Distribution Network

In practical P2P content distribution networks, the file is split into many packets by the
server before distributing. In a set of selected peers, peer nodes maintain connections to a

17

limited number of neighboring peers that can exchange packets. Peer nodes first download
packets of the original file and then distribute them to their neighbors.

When using network coding in a content distribution network, instead of helping the
server to distribute the packets intact, the peers compute randomly linear combinations
of the packets before they forward them to neighbor peers; this system is called Avalance
[25]. The coding coefficients are also transmitted together with packets. According to the
matrix formed by coding coefficients of different packets, a peer node can determine how
many new packets are needed to be transmitted to the neighbor, and these new packets
can be generated by linear combinations of the original packets.

Network coding can improve the performance of P2P networks in several aspects [16,
21, 28]. Firstly, in a large scale content distribution system, optimal packet scheduling
is very complicated since hosts only have very limited information about the underlying
network topology. Employing network coding, the performance of the system depends
much less on the specific topology structure and the scheduling mechanism. Secondly,
in some special cases, for example, the server leaves before all peers have finished their
download, or peer nodes only join for a short period of time or leave immediately after
finishing their download. Network-coding based solutions are much more robust, because
they can generate different coded packets with different linear combinations of original
packets.

Wireless Network

The wireless network medium is different from the wired one. The wireless network sup-
ports mobility and portability, however, current wireless networks suffer from unreliability,
unpredictability, low throughput and inadequate mobility support. However the charac-
teristics of wireless networks provide opportunities for the application of network coding.

In a wireless environment, network coding can be used to offer benefits in terms of
throughput, wireless bandwidth, and delay. We use a wireless ad hoc network as an
example (see Figure 3.3). The nodes S and T exchange the packets b1 and b2 via the relay
M. We assume that the time is slotted, that is, a device either transmits or receives a
packet during a time slot.

Figure 3.3 (a) depicts a standard approach [22]: nodes S and T send their packets to
the relay M, then M forwards each packet to the corresponding destination. With network
coding in Figure 3.3 (b), the relay M first creates a new packet b1⊕b2, then sends it to both
S and T. As a result S and T can decode the packet from each other by using a bitwise
xor operation.

In the above example, the node M that uses network coding transmits once instead of
twice, and the transmission needs two instead of three time slots. Moreover, the wireless

18

S TM

S TM

S TM

S TM

S TM

b
1

b
1

b
1

b
1

b
2

b
2

b
2

b
2

21
bb ⊕

21
bb ⊕

(a) (b)

Figure 3.3: Information exchange in wireless ad hoc network

bandwidth is only occupied for a shorter time. Therefore, network coding in this example
offers benefits in terms of resource utilization, throughput, delay and bandwidth.

3.2 Benefits of Network Coding

In this section, we discuss how network coding can improve the throughput and the ro-
bustness of networks.

3.2.1 Throughput

Network coding has been shown to offer a number of advantages, the most well-known of
which is the possibility of increasing throughput in certain network topologies [28, 21]. The
throughput benefit is achieved by using fewer packet transmissions to communicate more
information in networks.

To demonstrate this benefit of network coding, we review the first example in Section
3.1.1 (see Figure 3.1) in the butterfly network. The source node S multicasts two packets,
b1 and b2, to both the destination nodes t1 and t2. With the traditional approach ten
transmissions are needed for communicating two packets of data, whereas there is one less
transmission by using network coding in the same network. The butterfly network clearly
illustrates that network coding can improve throughput for multicast in a wired network.

In wireless networks, it becomes much easier to find examples in which network coding
yields a throughput advantage over routing. The example in Figure 3.3 illustrates that,
using network coding, the relay M transmits only once instead of twice, therefore the
downlink bandwidth can be reduced by 50%.

19

3.2.2 Robustness

Network coding has also been suggested as a means of improving robustness against random
network failures since the destination can recover the original data (with high probability)
once it has received sufficiently many correct packets, even if a large fraction of packets
are lost [28, 21].

The reasons for packet loss are various in wireless networks, such as link failure, buffer
overflow and collision. Network coding can be used to protect against packet loss, because
the linear combination of packets is performed all over the network, not only at the source
node. Thus the destination nodes can recover the original file with incomplete information
they receive. Another method used in practical networks is called erasure coding, which
introduces some redundancy information to each packet so that the original file can be
recovered if the destination nodes receive a sufficient number of encoded packets. This is
discussed further in Section 3.3.

Besides robustness against packet loss, network coding can provide protection against
link failure. A natural solution is to transmit both a primary and a backup packet for each
connection, and it is helpful for a fast recovery from link failure. However, double network
bandwidth is occupied by using this method. Koetter and Médard [32] investigated the
problem of network recovery from link failure, and proved that there exist coding strategies
that provide maximally robust networks for the multicast setup, and that there exists a
static network coding solution for network recovery under any failure pattern without
rerouting.

3.3 Linear Network Coding

In this section, we focus on the introduction to linear network coding, which can offer the
best possible benefits [35]. Linear network coding regards each packet of data as a vector
over a certain base field and allows a node to apply a linear transformation to a vector
before passing it on.

3.3.1 Encoding

Assume that k original packets are generated by a file. Each packet can be viewed as an
n-dimensional vector m̄i ∈ Fnq , i = 1, . . . , k, where q is prime. Before transmission, the
source node creates k augmented vectors m1, . . . ,mk as follows:

mi = (m̄i,

k︷ ︸︸ ︷
0, . . . , 0, 1︸ ︷︷ ︸

i

, 0, . . . , 0) ∈ Fn+k
q ,

20

that is, each original vector m̄i is appended with a vector of length k containing a single
’1’ in the ith position. Typically, one chooses k � n. These augmented vectors are then
sent by the source as innovative packets in the network.

Let N := n + k. Upon receiving k packets m1, . . . ,mk ∈ FNq , a node forms a new

packet (vector) m =
∑k

j=1 αjmj, where αj ∈ Fq for j = 1, . . . , k. The coefficient vector

α = (α1, . . . , αk) is called an encoding vector, and the encoded data m =
∑k

j=1 αjmj is
called an information vector [17].

Encoding can be performed recursively for packets that have been encoded. Consid-
ering that an intermediate node receives k encoded packets w1, . . . ,wk which are linear
combinations of packets m1, . . . ,mk, the node can generate a new packet w =

∑k
j=1 βjwj

by picking a new coefficient vector β = (β1, . . . , βk). In fact, the new packet w is still a
linear combination of packets m1, . . . ,mk.

3.3.2 Decoding

When any such node receives k linearly independent encoded packets w1, . . . ,wk, it can
recover the original file as follows [35, 8]: for a received vector wi = (w̄i, w̃i) ∈ FNq , where
w̄i is the left-most n positions of the vector, and w̃i the right-most k positions. The receiver
first computes a k × k matrix G such that

G =

 w̃1
...

w̃k

 .

The matrix G is invertible as long as all the received vectors are correct, and the original
file m̄1, . . . , m̄k can be obtained by m̄1

...
m̄k

 = G−1 ·

 w̄1
...

w̄k

 .

Note that the recipient does not need to know the coefficient vectors α used by any
intermediate node in the network in order to recover the file. On the other hand, if all the
coefficient vectors α are known to the recipient, then the matrix G can be computed in
advance and the scheme can be built on the original file vectors m̄1, . . . , m̄k rather than
on the augmented vectors m1, . . . ,mk. For security purposes, these augmented vectors are
necessary.

21

3.4 Network Security

As we have seen, network coding can provide significant benefits in practical networks,
such as increasing throughout, improved robustness and higher reliability. However, from
a security point of view, network coding also raises serious concerns [21].

Firstly, network coding offers a natural way to take advantage of multipath diversity
for protecting data packets from an eavesdropping attack, since nodes in the network send
linear combinations of packets instead of uncoded data. Information spread makes it more
difficult for the attackers to eavesdrop. Cai and Yueng [13] discussed how to design secure
network coding in wiretap networks, where some links are tapped by attackers. More
specifically, the source combines the original data with random information and designs a
network code in such a way that only the receivers are able to decode the original packets.

Without additional protection in networks, an attacker can arbitrarily modify data
packets without being detected by the recipient. This is called the malicious node attack for
networks. Fortunately, due to the randomly linear combinations made by the intermediate
nodes, the attacker cannot control the outcome of the decoding process at the destination,
without knowing all other coded packets the destination will receive. Therefore, network
coding can provide protection against the malicious node attack and make the man-in-the-
middle attack almost impossible.

However, the malicious modification to packets can cause a more serious attack, named
pollution attack, in which attackers inject modified packets involving some errors (called
corrupted packets) into the network. Since intermediate nodes forward packets coded from
their received packets, as long as at least one of the input packets is corrupted, the errors
will spread and all output packets forwarded by the node will be corrupted. Moreover,
traditional error correction codes that deal with a limited proportion of corrupted packets
are less effective.

More recently, a homomorphic signature scheme has been proposed, which is based on
elliptic curves and allows nodes to sign linear combinations of packets. Under the assump-
tion of the hardness of the computational co-Diffie-Hellman problem on elliptic curves, the
proposed signature scheme prevents the forging of signatures and detects corruption of
packets. We will introduce it and related signature schemes in the following chapters.

22

Chapter 4

Related Signature Schemes for
Network Coding

A cryptographic function f : D → R is defined to be homomorphic if, given f(x) and
f(y) for any x, y ∈ D, any one can compute f(xy) without access to the private key. The
basic RSA signature scheme is homomorphic: the message m is signed as σd(m) = md

(mod n), where d is the private key, and for two different messages m1 and m2, we have
σd(m1 · m2) ≡ (m1 · m2)d ≡ md

1 · md
2 = σd(m1) · σd(m2) (mod n). That means anyone

can get the valid signature of the message m1 · m2 without any need of the private key,
only if he can capture the signatures σd(m1) and σd(m2). The homomorphic property
was previously considered to be a drawback and should be avoided in signature schemes.
However, in recent years a wide range of positive applications of this property were found
[39, 40, 18, 19]. An important application is homomorphic signatures for network coding,
which can be used to protect against malicious code(s) and pollution attacks.

In this chapter, we firstly introduce homomorphic hashing and the definitions of ho-
momorphic signatures. Then six homomorphic signature schemes for network coding are
presented:

• Boneh-Freeman-Katz-Waters’ two schemes S1 and S2 [8].

• Charles-Jain-Lauter’s scheme [15].

• Yun-Cheon-Kim’s RSA-based scheme [45].

• Gennaro-Katz-Krawczyk-Rabin’s RSA-based scheme [23].

• Zhao-Kalker-Medard-Han’s scheme [46].

In the last section, we discuss the security and compare the memory and communication
overhead of five of these homomorphic signature schemes.

23

4.1 Krohn et al.’s Homomorphic Hashing Schemes for

Rateless Erasure Codes

Krohn et al. [33] suggested homomorphic hashing for preventing pollution attacks in peer-
to-peer content distribution networks (P2P-CDNs). In these hashing schemes, the sender
computes a hash hi = H(m̄i) of each packet of a file so that the verifier can check the
integrity of any received packet. Krohn et al. [33] proposed two authentication protocols
based on a homomorphic collision-resistant hash function (CRHF): global homomorphic
hashing and per-publisher homomorphic hashing.

In global homomorphic hashing [33], an original file F can be separated into k packets
(m̄1, . . . , m̄k), and each packet m̄i = (mi1, . . . ,min)T ∈ Fnq is mapped to H(m̄i) by a one-
way hash function with the global parameters G = (p, q,g), where p and q are two large
primes with q|(p − 1), and g = (g1, g2, . . . , gn) is an n-dimensional vector composed of
elements of order q in F∗p. Typically, a file can be represented as an n×k matrix as follows:

F = (m̄1, . . . , m̄k) =

 m1,1 . . . mk,1
...

. . .
...

m1,n . . . mk,n

 ∈ Fn×kq .

We can compute:

m̄i + m̄j = (mi1 +mj1, . . . ,min +mjn) ∈ Fnq . (4.1)

This scheme consists of five algorithms: precoding, encoding, hashing generation, hash
verification and decoding.

Precoding

The precoding stage is to construct a binary k × (k + kδt) matrix Y = (I|P), where I
is the k × k identity matrix, and each column of P is the sum (via xor) of some number
of the columns of the identity matrix I. Then F ′ = FY is the precoded file. The first k
columns of F ′ = (m̄1, . . . , m̄k, . . . , m̄k+kδt) are the message packets and the last kδt columns
are auxiliary packets, each of which is the sum (via xor) of some number of the message
packets. Auxiliary packets can be generated by a public deterministic algorithm of the
input packet number k, and the parameters t and δ (δ < 1), which are fixed beforehand
and guarantee that the original message fails to be recovered completely with probability
less than δt [36, 33].

24

Encoding

Let n′ = k + kδt. The encoder randomly chooses an n′-dimensional bit vector X =
(x1, . . . , xn′)T ∈ {0, 1}n′

, and computes c = F ′X =
∑n′

j=1 xjm̄j ∈ Fnq . c = (c1, . . . , cn) is

called a check block, where cJ =
∑n′

j=1 xjmjJ , J = 1, . . . , n. Then 〈X, c〉 is sent to the
receiver.

Hashing Generation

For any message packet m̄i ∈ Fnq , i = 1, . . . , k, its hash is defined as follows:

h(m̄i) =
n∏
J=1

gmiJ
J ∈ F∗p, (4.2)

where h(·) is a homomorphic hash function. The sender computes hash values of all message
packets, obtains

H(F) = (h(m̄1), h(m̄2), . . . , h(m̄k)), (4.3)

and sends 〈H(F), G〉 to the receiver. Typically, n� log p/ log q so that the length of each
hash value is much shorter than that of each message packet.

However, we assume a reliable channel, in which data can be transmitted without any
error, for pre-distributing the hashes before the receiver can verify the hashing and decode
for the original file. We can use a standard signature scheme also to achieve a secure
solution without a reliable channel (see Section 4.2.2).

Hashing Verification

Since auxiliary packets are generated by a public deterministic algorithm of the input
packet number k and the pre-fixed encoding parameters t and δ, the receiver can compute
Y and then obtain the hash of F ′ after receiving 〈X, c〉 and 〈H(F), G〉:

H(F ′) = H(FY) = H(F) · Y = (h(m̄1), . . . , h(m̄k), . . . , h(m̄n′)). (4.4)

Then the receiver computes h(c) =
∏n

J=1 g
cJ
J and verifies if

h(c) =
n′∏
j=1

h(m̄j)
xj . (4.5)

25

Correctness

n′∏
j=1

h(m̄j)
xj =

n′∏
j=1

(
n∏
J=1

g
mjJ

J

)xj

=
n∏
J=1

(
n′∏
j=1

g
mjJxj
J

)

=
n∏
J=1

g
∑n′

j=1mjJxj
J

=
n∏
J=1

gcJJ

= h(c). (4.6)

Decoding

After receiving n′ check blocks (c1, . . . , cn′) and corresponding X1, . . . , Xn′ , where Xj =
(xj1, . . . , xjn′), the receiver can decode by solving the following equations: x1,1 · · · x1,n′

...
. . .

...
xn′,1 · · · xn′,n′

 ·
 m̄1

...
m̄n′

 =

 c1
...

cn′

 .

Then, the original file can be recovered from the solutions (m̄1, . . . , m̄n′).

In the pre-publisher hashing scheme [33], each publisher, who wishes to distribute
a file, can pick individual hash parameters G = (p, q,g), thus different publishers can
generate different hashes of the same file F . To generate g, a publisher picks a random
g ∈R F∗p of order q, and an n-dimensional vector v = (v1, . . . , vn) ∈ Fnq , and then computes
g = gv = (gv1 , . . . , gvn). The hashes of the file F can be written as

H(F) = gvF = (gvm̄1 , . . . , gvm̄k), (4.7)

where gvm̄i =
∑n

l=1 vlmil, i = 1, . . . , k. Thus, to obtain the full file hashH(F), the publisher
needs to perform only one modular exponentiation for each message packet. So the pre-
publisher hashing scheme enables publishers to generate hashes more efficiently with the
same verification overhead.

26

4.2 Definitions of Homomorphic Signatures

The homomorphic property in signature schemes was first presented in a positive way by
Rivest in 2000 [39]. Rivest presented two new signature schemes: a prefix aggregation
signature scheme and a transitive signature scheme, both of which take advantage of the
homomorphic property. In the first scheme, anyone can compute the signature σSK(m)
from σSK(m ‖ 0) and σSK(m ‖ 1) without any need for the private key SK. For instance,
in a tree-based routing network, in which each parent route node has two child route nodes,
if the child node x0 can route to IP addresses of the form (100 ∗ ∗∗), and another child
node x1 can route to IP addresses of the form (101 ∗ ∗∗), then the parent node x can route
to IP addresses of the form (10 ∗ ∗ ∗ ∗). The scheme also has another property: the child
signature σSK(m ‖ 1) can be computed from signatures σSK(m) and σSK(m ‖ 0). An open
problem was left to find a scheme satisfying that the signature σSK(m) can be computed
from σSK(m ‖ 0) and σSK(m ‖ 1), but the signature σSK(m ‖ 1) is not computable from
σSK(m) and σSK(m ‖ 0).

Rivest’s second signature scheme [39] is a so-called transitive signature scheme on an
undirected graph. A graph G(E, V) is transitively closed if for any edges (u, v) ∈ E and
(v, w) ∈ E, there exists the edge (u,w) ∈ E. Then the transitive closure of G(E, V) is
a graph such that there is an edge for any two vertices in V . In the transitive signature
scheme on an undirected graph, from two signatures σSK((u, v)) and σSK((v, w)) on two
edges (u, v) and (v, w), a valid signature σSK((u,w)) on the edge (u,w) in the transitive
closure can be computed without any need for the private key SK. An open problem is to
find a similar signature scheme for directed graphs.

Rivest also proposed an open problem of finding a concatenation signature scheme, in
which a valid signature σSK(m1 ‖ m2) can be computed from two signatures σSK(m1) and
σSK(m2) without any need for the private key SK.

For a message space M, a signature space S, a set of public keys PK and a set of
private keys SK, a signature scheme includes a signing algorithm Sign : SK ×M → S
and a verifying algorithm Verify : PK×M×S → {0, 1} so that if the verifying algorithm
outputs 1, the signature is accepted; otherwise, it is rejected. For a binary operation
� :M×M→M, and a set S ⊆M, span�(S) denotes the smallest set T with S ⊆ T and
m1 �m2 ∈ T for all m1,m2 ∈ T . Johnson et al. [29] defined the notion of a homomorphic
signature scheme as follows.

Definition 4.2.1 (Homomorphic Signature Scheme [29]) A signature scheme is ho-
momorphic with respect to � if it comes with an efficient family of binary operations
⊗ : S × S → S so that σ1 ⊗ σ2 = Sign(SK,m1 �m2) for all σ1, σ2 ∈ S,m1,m2 ∈M, and
SK ∈ SK satisfying Verify(PK,m1, σ1) = Verify(PK,m2, σ2) = 1 with PK ∈ PK.

27

For the security of homomorphic signature schemes, the standard existential unforge-
ability does not hold, since in a homomorphic signature scheme, given two signatures
Sign(SK,m1) and Sign(SK,m2) on the messages m1 and m2, one can generate a valid
signature on the message m = m1 � m2 without any need for the private key SK. So
Johnson et al. [29] gave a new definition of security for homomorphic signature schemes
as follows.

Definition 4.2.2 (Existential Unforgeability [29]) A homomorphic signature scheme
is (t, q, ε)−secure against existential forgeries with respect to � if every adversary A making
at most q chosen-message queries and running in time at most t has advantage Adv(A) ≤
ε. The advantage of an adversary A is defined as the probability that, after queries
on the message m1, . . . ,mq, A outputs a valid signature 〈m,σ〉 on some message m 6∈
span�(m1, . . . ,mq). In other words,

Adv(A) = Pr[(A(m1, . . . ,mq) = 〈m,σ〉)∧(Verify(PK,m, σ) = 1)∧(m 6∈ span�(m1, . . . ,mq))].

4.2.1 Definitions of Homomorphic Signatures for Network Cod-
ing

In linear network coding system, to prevent the malicious modifications and pollution
attacks, what is needed is a way for intermediate nodes to be able to verify the validity of
incoming message packets. Since we need to guarantee the integrity of the message packets
in the transmissions, the regular signature by the source node on the original message is
not sufficient, so we introduce a new concept, the network coding signature, to solve the
problem in the network coding system. Here is the formal definition of network coding
signature given by Boneh et al. [8]:

Definition 4.2.3 (Network Coding Signature [8]) A network coding signature scheme
is composed of four probabilistic, polynomial-time algorithms: Setup,KeyGen,Sign,Verify
as follows:

– Setup(l, N). Given a security parameter l and an integer N , outputs a prime q.

– Keygen(q). Given the prime q, let Fq be a finite field, and output the public-private
key pair (PK, SK).

– Sign(SK, id, V). For a private key SK, a file identifier id ∈ {0, 1}∗, and a k-
dimensional subspace V ⊂ FNq (with 0 < k < N) described as a set of basis vectors
{m1, . . . ,mk}, outputs a signature σ.

28

– Verify(PK, id,w, σ). On input a public key PK, an identifier id ∈ {0, 1}∗, a vector
w =

∑k
i=1 αimi ∈ FNq , and a signature σ, outputs either 0 (reject) or 1 (accept).

First, we give a weak definition of security for a network coding signature. To prove
the security of the network coding signature against existential forgery under the chosen
plaintext attack, the following game between a challenger and an adversary A can be used:

– Setup. The challenger runs algorithm KeyGen to obtain the public key PK and
the private key SK, and the adversary A is given PK.

– Queries. A requests signatures with PK on at most qs vectors m1,m2, . . . ,mqs ∈ FNq
of her choice, and the challenger responds to each query with a signature σi.

– Output. A outputs a signature σ and a vectorm ∈ FNq (m /∈ span(m1,m2, . . . ,mqs)).
The adversary A succeeds if the verification goes through with her outputs.

We define Adv(A) to be the probability that A succeeds in the above game.

Definition 4.2.4 (Weak Secure Network Coding Signature) A network coding sig-
nature scheme is weakly secure against existential forgeries under chosen plaintext attack,
if the probability that any probabilistic, polynomial-time adversary A can succeed in the
above game is negligible; that is, Adv(A) ≤ ε.

Now we introduce a definition of secure network coding signature given by Boneh et al.
[8], which is stronger than the security definition above, since a file identifier id ∈ {0, 1}∗
is applied for each file in the following game between a challenger and an adversary A:

– Setup. The challenger runs algorithm KeyGen to obtain the public key PK and
the private key SK, and the adversary A is given PK.

– Queries. Proceeding adaptively, A requests signatures with PK on at most qs vector
subspaces V1, V2, . . . , Vqs ⊂ FNq by her choice, and the challenger randomly chooses
idi ∈ {0, 1}∗ and responds to each query with a signature σi = Sign(SK, idi, Vi).

– Output. A outputs an identifier id ∈ {0, 1}∗, a signature σ and a vector m ∈ FNq .

The adversary wins this game above in the following two cases:

(1) Verify(PK, id,m, σ) = 1 and id 6= idi for all i;

(2) Verify(PK, id,m, σ) = 1 and id = idi for some i, but m /∈ Vi.

29

We define Adv(A) to be the probability that A succeeds in the above game.

Definition 4.2.5 (Secure Network Coding Signature [8]) A network coding signa-
ture scheme is secure against existential forgeries under chosen plaintext attack, if the
probability that any probabilistic, polynomial-time adversary A wins in the above game is
negligible; that is, Adv(A) ≤ ε.

In the most of current work on network coding signatures, the homomorphic property
is used in the signature schemes for network coding such that the signature on a linear
combination of message packets results in a corresponding homomorphic combination of
signatures on each message packet. The following definitions of the homomorphic signa-
tures for network coding can completely describe the property and the security.

Definition 4.2.6 (Homomorphic Signature for Network Coding [8]) A homomor-
phic signature scheme for network coding is defined by five probabilistic, polynomial-time
algorithms: Setup,KeyGen,Sign,Combine,Verify:

– Setup(l, N). Given a security parameter l and an integer N , this algorithm outputs
a prime q.

– Keygen(q). Given the prime q, let Fq be a finite field, and output the public-private
key pair (PK, SK).

– Sign(SK, id,mi). For a secret key SK, a file identifier id ∈ {0, 1}∗, and a packet
mi ∈ FNq , this algorithm outputs a signature σi on mi.

– Combine(PK, id, {(αi, σi)}i=1,...,k). For a public key PK, a file identifier id, and
a set of tuples {(αi, σi)}i=1,...,k, where σi is a signature on mi, with αi ∈ Fq, this

algorithm outputs a signature σ on w =
∑k

i=1 αimi.

– Verify(PK, id,w, σ). Upon obtaining a public key PK, an identifier id ∈ {0, 1}∗,
a packet w =

∑k
i=1 αimi ∈ FNq , and a signature σ, this algorithm outputs either 0

(reject) or 1 (accept).

A homomorphic signature for network coding is a special case of network coding sig-
nature ([8], Lemma 3), since if each σi is a valid homomorphic network coding signature
on the vector mi, then σ is a valid network coding signature on any linear combination∑k

i=1 αimi.

30

4.3 Boneh et al.’s Signatures on a Linear Subspace

for Network Coding

Boneh et al. [8] proposed two signature schemes for network coding to prevent malicious
modification of data. The first scheme is a homomorphic signature scheme on linearly
independent packets, and the security proof is given in the random oracle model. The
second signature scheme can be viewed as signing the linear subspace V spanned by the
augmented basis m1, . . . ,mk which are independent packets received. The second signature
scheme does not rely on random oracles but uses a standard signature scheme based on
the assumption of the hardness of the Discrete Logarithm (DL) Problem. Here, a standard
signature scheme is a signature scheme which is proven secure in the standard model [5, 6].

Boneh et al. ([8], Lemma 3) showed that a homomorphic network coding signature
scheme S2 is secure against forgeability under chosen-plaintext attack if the network cod-
ing signature scheme S1 constructed from S2 is secure against forgeability under chosen-
plaintext attack. But the converse does not hold.

4.3.1 A Homomorphic Network Coding Signature Scheme S2
with Random Oracles

The homomorphic network coding signature scheme S2 = {Setup,KeyGen,Sign,Combine,Verify}
with random oracles is described as follows:

– Setup(l, N). Given a security parameter l and a positive integer N , choose cyclic
groups G1 and G2 of some large prime order q of l-bit length, and let GT be a
multiplicative group of the same size as G1 and G2. Let e : G1 × G2 → GT be a
bilinear pairing (see Section 2.2.2), and H : {0, 1}l×{0, 1}l → G1 be a hash function,
viewed as a random oracle. g is a generator in G2. params = 〈G1,G2,GT , e,H, g〉 is
the public system parameter.

– KeyGen(params). Choose s ∈ F∗q as the private key SK, and set u = gs as the
public key.

– Sign(SK, id,mi). For the packets mi = (mi1, . . . ,miN) ∈ FNq , for i = 1, 2, . . . , k, a
secret key SK = s, and an identifier id ∈ {0, 1}l, generate the signature

σi = (
N∏
j=1

H(id, j)mij)s. (4.8)

31

– Combine(PK, id, {(αi, σi)}i=1,...,k). Given a public key PK, an identifier id, and

{(αi, σi)}i=1,...,k with αi ∈ Fq, σ =
∏k

i=1 σ
αi
i is the signature on the vector w =∑k

i=1 αimi, which is a linear combination of the packets mi.

– Verify(PK, id,w, σ). Given a public key PK = (H, g, u), an identifier id, after
receiving a signature σ, and a vector w ∈ FNq , check whether

e(σ, g) = e(
N∏
j=1

H(id, j)wj , u). (4.9)

If yes, this algorithm outputs 1; otherwise it outputs 0.

Correctness

If the vector w and the signature σ received are valid, then the equation (4.9) holds, since

e(σ, g) = e

(
k∏
i=1

σαi
i , g

)

= e

(
k∏
i=1

(
N∏
j=1

H(id, j)mij

)sαi

, g

)

= e

(
k∏
i=1

N∏
j=1

H(id, j)mijsαi , g

)

= e

(
k∏
i=1

N∏
j=1

H(id, j)mijαi , gs

)

= e

(
N∏
j=1

H(id, j)
∑k

i=1mijαi , u

)

= e

(
N∏
j=1

H(id, j)wj , u

)
. (4.10)

In fact, this signature scheme is based on the aggregate signature schemes of Boneh et
al. [9]. The signer in this scheme uses the hash value H of the identifier id to sign the
packets mi. In this scheme both the signature σ and the public key have size O(l), where
l is a cryptographic security parameter. The security of this signature scheme is based on
the assumption of the hardness of the co-computational Diffie-Hellman (co-CDH) Problem.

32

4.3.2 A Network Coding Signature Scheme S1 without Random
Oracles

Firstly, define a standard signature scheme by S0 = {Gen0,Sign0,Verify0} with public-
private key pair (PK0, SK0). The network coding signature scheme S1 = {Setup,Sign,Verify}
is described as follows:

– Setup(l, N). Given a security parameter l and a positive integer N > k, choose a
cyclic group G1 of prime order q of l-bit length, and params = 〈N, k, q,G1〉 is the
public system parameter.

– KeyGen(params). Choose generators g1, . . . , gN ∈ G1. The public key is PK =
(g1, . . . , gN , PK0), and the private key is SK = SK0.

– Sign(SK, id, V). Given a secret key SK, a file identifier id, and a k-dimensional sub-
space V spanned by an augmented basis {m1, . . . ,mk}, wheremi = (mi1,mi2, . . . ,miN) ∈
FNq for i = 1, 2, . . . , k, compute σi =

∏N
j=1 g

−mij

j ∈ G1 for i = 1, . . . , k. Sign
id, σ1, . . . , σk using the signing algorithm in the standard signature scheme, that
is, τ ← Sign0(SK, (id, σ1, . . . , σk)). Output σ = (σ1, . . . , σk, τ).

– Verify(PK, id,w, σ). Upon obtaining a vector w =
∑k

i=1 αimi = (w1, . . . , wN) ∈
FNq , a signature σ = (σ1, . . . , σk, τ), the public key PK and the identifier id, first
check whether Verify0(PK0, (id, σ1, . . . , σk), τ) = 1 using the verification algorithm
of the standard signature scheme S0. If no, output 0 (reject) and abort; if yes, then

check whether
(∏N

j=1 g
wj

j

)(∏k
i=1 σ

αi
i

)
= 1, where wj =

∑k
i=1 αimij, j = 1, 2, . . . , N .

If yes, output 1 (accept); otherwise, output 0 (reject).

Correctness

If the vector w and the signature σ received are valid, then we have the equation(
N∏
j=1

g
wj

j

)(
k∏
i=1

σαi
i

)
= 1,

33

since (
N∏
j=1

g
wj

j

)(
k∏
i=1

σαi
i

)
=

(
N∏
j=1

g
wj

j

)(
k∏
i=1

(
N∏
j=1

g
−mij

j)αi

)

=

(
N∏
j=1

g
wj

j

)(
N∏
j=1

k∏
i=1

g
−mijαi

j

)

=

(
N∏
j=1

g
wj

j

)(
N∏
j=1

g
−

∑k
i=1 αimij

j

)

=
N∏
j=1

g
wj−

∑k
i=1 αimij

j

=
N∏
j=1

g
wj−wj

j

= 1. (4.11)

The network coding signature scheme S1 described above can be viewed as an instan-
tiation of the scheme of Krohn et al. [33], who proposed authenticating network coding
data using a homomorphic hash function (see Section 4.1). In fact, the network coding
signature scheme S2 by Boneh et al. takes advantage of the standard signature scheme to
authenticate all the hash values along with the file identifier, so that basis vectors from
different files can also be combined. In this scheme, the signature σ has size O(l(k + 1)),
and the public key has size O(l(n + 1)). This signature scheme is proven secure based on
the assumption of the hardness of the DL Problem.

4.4 Charles et al.’s Signatures for Network Coding

Charles et al. [15] proposed a homomorphic signature scheme for network coding to de-
tect pollution attacks (see Section 3.4). The homomorphic property is that, given valid
signatures σ1, . . . , σk on packets m1, . . . ,mk, the scheme can produce a valid signature σ
on any linear combination of m1, . . . ,mk. That is, σ(

∑k
i=1 αimi) =

∏k
i=1 σi(mi)

αi . The
homomorphic signature scheme is described as follows:

– Setup(l, N). Given the security parameter l and an integer N , let G1, G2 and GT be
multiplicative groups of some large prime order q of l-bit length. Let e : G1×G2 → GT

be a bilinear pairing. Choose distinct g1, g2, . . . , gN ∈ G1 and h ∈ G2, and define a

34

hash function Hg1,g2,...,gN : FNq → G1 as follows: for a vector v = (v1, v2, . . . , vN) ∈ G1,

Hg1,g2,...,gN (v) =
N∏
j=1

g
vj
j .

Then the system parameters are params = 〈e,G1,G2,GT , N, q, g1, g2, . . . , gN , h,Hg1,g2,...,gN 〉.

– KeyGen(params). For the packets mi = (mi1, . . . ,miN) ∈ G1, for i = 1, 2, . . . , k,
the signer chooses (s1, . . . , sN) ∈ FNq as the private key SK, and the public key PK
is (g1, g2, . . . , gN , h, h1, h2 . . . , hN), where hj = hsj , j = 1, 2, . . . , N .

– Sign(SK, g1, g2, . . . , gN ,mi). Any packet mi = (mi1, . . . ,miN), i = 1, . . . , k can be
signed as follows:

σi = Hs1g1,s2g2,...,sNgN (mi) =
N∏
j=1

g
mijsj
j , i = 1, . . . , k. (4.12)

– Combine(PK, {(αi, σi)}i=1,...,k). Suppose a vector w received is a linear combination

w =
∑k

i=1 αimi. Since the signing function is a homomorphism, the signature on w
is

σ =
k∏
i=1

σαi
i . (4.13)

– Verify(PK,w, σ). After receiving the packet w = (w1, . . . , wN) appended to the
signature σ, the verifier checks whether

N∏
j=1

e(g
wj

j , hj) = e(σ, h). (4.14)

35

Correctness

The correctness of the verification process is shown below:

e(σ, h) = e

(
k∏
i=1

σαi
i , h

)

=
k∏
i=1

e (σαi
i , h)

=
k∏
i=1

e

(
g
αi

∑N
j=1mijsj

j , h

)

=
k∏
i=1

N∏
j=1

e
(
g
αimijsj
j , h

)
=

N∏
j=1

e
(
g
∑k

i=1 αimij

j , hsj
)

=
N∏
j=1

e
(
g
wj

j , hj
)
. (4.15)

The hash function H in this scheme is proven to be collision resistant, and the security
of Charles et al.’s signature scheme is based on the assumption of the hardness of the co-
CDH Problem. In this scheme, the signature σ has size O(l), and the public key has size
O(l(n+ k)). Charles et al.’s signature scheme can only sign a single file, and after one file
is distributed, the public key must be refreshed. If not, a malicious node can forge a valid
signature on a message chosen by this node. Moreover, the computation of the verification
is large, because the verifier needs to compute (N + 1) pairings. This restriction limits the
scheme’s applicability.

4.5 RSA-Based Homomorphic Signature Schemes for

Network Coding

In this section, we discuss two RSA-based homomorphic signature schemes for network
coding. As we discussed in the beginning of this chapter, the basic RSA scheme is homo-
morphic, however, there exist some pollution attacks on the RSA-based signature schemes
for network coding. We will start with the definition of the Standard RSA Problem.

36

Definition 4.5.1 (Standard RSA Problem) Given an RSA public key (N, e), and a
ciphertext C ≡ P e (mod N), the RSA Problem is to compute P , where N is a product of
two large primes, 2 < e < N and e is coprime to φ(N). C is chosen randomly in [0, N).

In the Standard RSA Assumption, we say that the RSA problem is intractable. That
is, given the RSA public key (N, e) and a ciphertext C, it is infeasible to find the plaintext
P such that C ≡ P e (mod N). The RSA problem reduces to factoring the integer N [37],
since if one can factor N , he can compute the private key d, such that ed = 1 (mod φ(N)),
from the public key (N, e), and then solve the RSA problem. However, we do not know
whether the converse is true, that is, whether an algorithm for integer factoring can be
efficiently constructed from an algorithm for solving the RSA Problem.

4.5.1 Yun et al.’s signature scheme

The security of the signature schemes in this section are all based on the Standard RSA
Assumption. Firstly we introduce an RSA-based homomorphic signature scheme for net-
work coding by Yun et al. [45] in the standard model, which is a revision of Yu et al.’s
signature scheme [43].

– Setup(l, k, n). Given the security parameter l, choose two primes p and q of l/2-bit
length, q|(p− 1), and pick g1, g2, . . . , gk+n of order q in Zp.

– KeyGen(g1, g2, . . . , gk+n, p, q). For the RSA public key PK = (N, e) and private
key SK = (φ(N), d), where ed ≡ 1 (mod φ(N)) and N = pq. Suppose that all nodes
know g1, g2, . . . , gk+n as well as the RSA public key PK.

– Sign(SK, g1, g2, . . . , gk+n,mi). For each augmented message packetmi, i = 1, 2, . . . , k,
which can be viewed as a (k + n)-dimensional vector mi = (mi1,mi2, . . . ,mi(k+n)) ∈
Zk+n
q , the source node calculates the signature

σi = (
k+n∏
j=1

g
mij

j)d (mod N),

and appends σi to mi.

– Combine(PK, {(αi, σi)}i=1,...,k). The intermediate nodes can calculate the signature

on the linear combination of original message packets, w =
∑k

i=1 αimi ∈ Zk+n
q as

σ =
k∏
i=1

σαi
i (mod N).

37

– Verify(PK,w, σ, g1, g2, . . . , gk+n). To verify the signature σ on w = (w1, w2, . . . , wk+n),
the destination node needs to check whether

σe (mod N) =
k+n∏
j=1

g
wj

j (mod N).

Correctness

If the vector w and the signature σ received are valid, then the verification process outputs
1, since:

σe (mod N) =

(
k∏
i=1

σαi
i

)e

(mod N)

=

 k∏
i=1

(
k+n∏
j=1

g
mij

j

)dαi
e

(mod N)

=
k∏
i=1

(
k+n∏
j=1

g
mij

j

)αi

(mod N)

=
k∏
i=1

(
k+n∏
j=1

g
αimij

j

)
(mod N)

=
k+n∏
j=1

g
∑k

i=1 αimij

j (mod N)

=
k+n∏
j=1

g
wj

j (mod N).

In this homomorphic signature scheme, a pollution attack can be derived because of
the weakness of the homomorphic property, which we will discuss in detail in Chapter 5.

4.5.2 Gennaro et al.’s signature scheme

Gennaro et al. [23] also proposed an RSA-based homomorphic signature scheme for network
coding in the random oracle model. Before signing each packet, the source needs to bound
the coordinates of any vectors mi = m̄i ‖ ui = (mi1, . . . ,min, ui1, . . . , uik), i = 1, 2, . . . , k,
where ui is the i-th unit vector (see Section 3.3.1). To encode the data using the linear

38

combination, we suppose that the coefficients are chosen uniformly from Zp = {0, . . . , p−1},
where p is a prime of 8-bit length.

Let L be an upper bound on the path length from the source to the destination,
and a bound B = (kp)L represents the largest possible value of a u-coordinate in any
vector transmitted in the network. If M denotes an upper bound on the magnitude of
the coordinates of the initial vectors m̄i, and then B∗ = BM is the upper bound on the
magnitude of any coordinates in any vectors transmitted in the network.

– Setup(l). Given the security parameter l, let N of l-bit length be the product of
two secure primes of the form 2n + 1, where n is also a prime, and QRN be the
quadratic residues in Z∗N . The output parameters are params = (N,M,B,B∗) as
defined above.

– KeyGen(params). Choose the RSA public key (N, e) and the private key SK =
(φ(N), d), where e is a prime larger than kB∗, N is a product of two primes a and b of
half the size of N , and ed ≡ 1 (mod φ(N)). Pick n generators g1, g2, . . . , gn in QRN ,
and the public key is PK = (N, e, g1, g2, . . . , gn). For a file identifier id, use a hash
function H : {0, 1}∗ → QRN , and compute hi = H(i, id) ∈ QRN , i = 1, 2, . . . , k.

– Sign(SK,F, g1, g2, . . . , gn). If a file F is split into k packets m̄1, m̄2, . . . , m̄k, the
source node can generate the augmented vectorsmi = m̄i ‖ ui = (mi1, . . . ,min, ui1, . . . , uik),
i = 1, 2, . . . , k, where ui is the i-th unit vector (see Section 3.3.1). Then the signature
on mi is defined by

σi =

(
n∏
J=1

gmiJ
J

k∏
j=1

h
uij
j

)d

(mod N).

– Combine(PK, {(αi, σi)}i=1,...,k). Upon receiving packets wi with the same file iden-
tifier id and valid signatures σi, the intermediate node first discards any wi having
a u-coordinate larger than B/kp or a m̄i-coordinates larger than B∗/kp. After that,
the signature on the linear combination of non-discarded vectors, w =

∑k
i=1 αimi,

can be computed as

σ =
k∏
i=1

σαi
i (mod N).

– Verify(PK,w, σ). To verify the signature σ on the vector w =
∑k

i=1 αimi =
(w1, w2, . . . , wn+k), we need to check whether

σe (mod N) =
n∏
J=1

gwJ
J

k∏
j=1

h
wn+j

j (mod N).

39

Correctness

For any valid vector w and signature σ, the verification equation holds, since

σe (mod N) =

(
k∏
i=1

σαi
i

)e

(mod N)

=
k∏
i=1

(
n∏
J=1

gmiJ
J

k∏
j=1

h
uij
j

)ed

(mod N)

=
k∏
i=1

n∏
J=1

gmiJ
J

k∏
j=1

h
uij
j (mod N)

=
n∏
J=1

g
∑k

i=1miJ

J

k∏
j=1

h
∑k

i=1 uij
j (mod N)

=
n∏
J=1

gwJ
J

k∏
j=1

h
wn+j

j (mod N). (4.16)

There are some improvements of this scheme compared with Yun et al.’s scheme [45]:

1. For the RSA public key (N, e) and the private key (φ(N), d), where N is the product
of two primes, choose a cyclic subgroup QRN of quadratic residues in Z∗N , so we can
choose n generators g1, g2, . . . , gn in QRN .

2. Using a file identifier id for each file, the immediate notes can identify and distinguish
multiple files which are distributed simultaneously.

3. This signature scheme for network coding is performed over the integers rather than
over a field as is traditionally done, so we can choose small integer coefficients for the
linear combinations and reduce the bandwidth overhead for the transmission.

Under the RSA assumption, the scheme is proven to be a secure homomorphic signature
for network coding with random oracles.

4.6 Zhao et al.’s Signatures for Network Coding

Zhao et al. [46] proposed a signature scheme for network coding to detect malicious codes
in content distribution systems. This scheme takes advantage of the linearly independent

40

packets, and allows nodes to check validity and integrity the packets received without
decoding. And this scheme supplies the security in the areas of detection and correction
of Byzantine attacks [27]. Zhao et al. proved the security based on the assumption of the
hardness of the (q, k,N)-Diffie-Hellman Problem (see Definition 2.4.6).

4.6.1 The Signature Scheme

The signature scheme for a subspace is defined by the following algorithms:

– Setup(l, k, n). p and q are two big primes, and q|(p−1). Given the security parameter
l, let G = 〈g〉 be a cyclic subgroup of order q of l-bit length in Fp, where g is a
generator. A file is separated into k original packets m̄i ∈ Fnq , i = 1, . . . , k, where
q is prime, and the augmented vectors m1, . . . ,mk span a subspace V of FNq , where
N = n+ k (see Section 3.3.1). The system parameters are params = (p, q,G, g, N)

– KeyGen(params). Given the system parameters, the signer chooses SK = {sj}j=1,...,N

as the private key, where the sj are random elements in F∗q, and the public key is
PK = {gsj}j=1,...,N in FNp .

– Sign(SK, {(αi, σi)}i=1,...,k). Using the vectorsm1, . . . ,mk ∈ FNq and a linear combina-

tion of these vectors, w =
∑k

i=1 αimi, the signer finds a vector u = (u1, . . . , uN) ∈ FNq
orthogonal to the subspace V (using the Gram-Schmidt method, for example), that
is,

mi · u =
N∑
j=1

mijuj = 0, i = 1, . . . , k. (4.17)

Then the signature is σ = {σj = uj/sj}j=1,...,N ∈ FNq .

– Verify(PK,w, σ). After obtaining the vector w =
∑k

i=1 αimi = {w1, . . . , wN}, and
the signature σ = (σ1, . . . , σN), the receiver computes

d =
N∏
j=1

(gsj)σjwj (mod p), (4.18)

and verifies whether d = 1. If yes, this algorithm outputs 1; otherwise it outputs 0.

41

Correctness

For any valid vector w and signature σ, d is equal to 1 in the verification process, since

d =
N∏
j=1

(gsj)σjwj

=
N∏
j=1

(gsj)ujwj/sj

=
N∏
j=1

gujwj

= g
∑N

j=1 ujwj

= g
∑N

j=1 uj
∑k

i=1 αimij

= g
∑k

i=1 αi
∑N

j=1 ujmij

= g0

= 1. (4.19)

4.6.2 The Security Analysis of the Signature Scheme

For the security of this signature scheme, Zhao et al. [46] gave the definition of the (q, k,N)-
Diffie-Hellman Problem (see Definition 2.4.6), and proved the problem is as hard as the
Discrete Logarithm Problem in Fp for any k < N − 1. In the (q, k,N)-Diffie-Hellman
Problem, {h1, . . . , hN} is a set of generators of G, and V is a linear subspace of rank k in
FNq such that for every v ∈ V , the equality

∏N
i=1 h

vi
i = 1 holds.

The signature scheme requires the sender to know the entire file before the signature
can be computed. In this scheme, the public key must be refreshed after the system
distributes a single file. This is because using information from a previous download of
files, a malicious node can generate a random vector and a corresponding signature which
can also pass the verification function.

4.7 Discussion and Comparison

In this section, we discuss the pros and cons of some of these signature schemes described
in this chapter, and then give a comparison of the computational complexities of these
signature schemes.

42

Boneh et al.’s two signature schemes (see Section 4.3) can be used to provide cryp-
tographic protection against pollution attacks, e.g., corrupted or modified intermediate
nodes, eavesdroppers on all network traffic (see Section 3.4). The homomorphic signature
scheme S2 (see Section 4.2.1) has low communication overhead since both the signature
and the public key have sizes independent of the file size. The destination needs to re-
ceive a minimum number of packets to recover the original file, however the intermediate
nodes need not to be aware of the entire file before computing the signature. This scheme
is proven secure in the random oracle model under the security definition given in this
paper (see Definition 4.2.5), assuming that the co-CDH Problem in (G1,G2) is infeasible.
The network coding signature scheme S1 (see Section 4.2.2) is less efficient than S2 since
both the signature and the public key are comparatively large. This scheme is based on a
standard signature scheme, and if the standard signature scheme is existentially unforge-
able under the chosen plaintext attack [4], the network coding signature is secure in the
standard model under Definition 4.2.5 assuming hardness of the DL Problem in G1.

Charles et al.’s homomorphic signature scheme (see Section 4.5) provides a solution to
the problem of detecting pollution attacks. In this scheme the signature has constant size,
but the public key is large. This scheme is a variant of the aggregate signature scheme of
Boneh et al. [9]. Under the assumption of the co-CDH Problem, this scheme is proven
secure in the standard model according to the Definition 4.2.4. However, the scheme
can only sign a single file, after which the public key must to be refreshed, so it will be
impractical for key distribution. The verification is expensive since (n + k + 1) pairings
need to be computed.

Gennaro et al. presented an RSA-based homomorphic signature scheme for network
coding (see Section 4.6) that works modulo a composite number N . A core technique
in this scheme is to apply network coding over the integers rather than over a field as is
traditionally done. By working over the integers we can choose small (e.g., 8-bit) integer
coefficients for the linear combinations. Therefore, the computational efficiency at inter-
mediate nodes can be improved and the total bandwidth overhead for the transmission
from the source to destination is reduced. In this scheme, they used a hash function of the
file identifier as a random oracle, and under the Standard RSA assumption, the signature
scheme is secure in the random oracle model under Definition 4.2.5.

Zhao et al. (see Section 4.4) proposed a signature scheme for network coding that
allows nodes to check the validity and integrity of the packets received without decoding.
In this scheme a node computes the signature derived from a vector orthogonal to the space
span(m1, . . . ,mk). Zhao et al. defined a (q, k,N)-Diffie-Hellman Problem (see Definition
2.4.6), in which given a set S of vectors satisfying the verification criterion it is proven to be
as hard as solving the DL Problem to find a new set of vectors which satisfy the verification
criterion but are not any linear combinations of S. However, attacks described later show
that Zhao et al.’s scheme is insecure under Definition 4.2.4 against the pollution attacks.

43

The communication overhead of this scheme is high: both the signature and the public
key are comparatively large; the public key must be refreshed after distributing each single
file. The sender is required to know the entire file before the signature can be computed.

Table 4.1 compares the underlying problem, the computational model, the reusable
public key and the security proof of each scheme above.

Table 4.1: Performance analysis
reusable security

underlying problem computational model public key proof
Boneh et al. [8] co-CDH Problem

(scheme S2) on Elliptic curve random oracle model yes yes
Boneh et al. [8]

(scheme S1) DL Problem standard model yes yes
Charles et al. [15] co-CDH Problem

on Elliptic curve standard model no yes
Gennaro et al. [23] RSA Problem random oracle model no yes

Zhao et al. [46] (q, k,N)-DH Problem standard model no no

Now we discuss the complexities of each scheme: the signature size, the public key
size and the verification computation (see Table 4.2). Assuming that a 1MB file will be
distributed and the maximum packet size is up to 65535 Bytes, the file can be separated
into 16 packets, that is, k = 16. For this example, Table 4.3 gives the comparison of the
signature size and public key size in each scheme at the security level of 1024-bit RSA.

Table 4.2: Complexity analysis
public key signature verification computation

size size pairings exponentiations multiplications
Boneh et al. [8]

(scheme S2) O(l)[1] O(l) 2 O(n+ k) in G1 O(n+ k) in G1

Boneh et al. [8]
(scheme S1) O(l(n+ k + 1)) O(l(k + 1)) 1 O(n+ k) in G1 O(n+ k) in G1

Charles et al. [15] O(l(n+ k + 1)) O(l) n+ 1 O(n+ k) in G1 O(n+ k) in GT

Gennaro et al. [23] O(l(n+ 2)) O(l) – O(n+ k) in ZN O(n+ k) in ZN
Zhao et al. [46] O(l(n+ k)) O(l(n+ k)) – O(n+ k) in Fq O(n+ k) in Fq
[1] l is the security parameter, k is the number of packets of a file and n is the dimension of a
packet.

Boneh et al.’s scheme S2 has constant public key and constant signature (a point on
an elliptic curve), and S1 requires longer public key and signatures to be delivered for
each session, which could reduce the advantage of the network coding. The public key is

44

(k + n+ 1) points and the signature is (k + 1) points on the same elliptic curve. Suppose
that the signature scheme is to achieve a security level that is equivalent to the security
provided by the RSA scheme with 1024-bit modulus. Boneh et al.’s schemes require the
160-bit security parameter l since they are based on bilinear maps. So the length of q is
approximately 160 bits and the size of a point on the elliptic curve is 161 bits. We assume
that a file can be separated into 16 packets, that is, k = 16. Each packet is viewed as an
n-dimensional vector in Fnq , where

n =
packet size(bits)

|q|
=

65535× 8

160
= 3277,

where |q| is the binary length of q. If we assume that a short signature scheme [5] is
used in S1 as a standard signature scheme, then only one bilinear pairing is needed in the
verification phase.

The security of Zhao et al.’s signature scheme is based on the hardness of (q, k,N)-
Diffie-Hellman Problem, which is as hard as the Discrete Logarithm Problem in Fp. If the
signature scheme is to achieve a security level that is equivalent to the security provided by
the RSA scheme with 1024-bit modulus, then the security parameter l of this scheme should
be 1024 bits, that is, the length of p is 1024 bits, and we need a 160-bit q. In Zhao et al.’s
signature scheme, both the public key and the signature are (k+ n) elements in Fq, where
q|(p− 1). And in the verification process, we need to compute (k + n) exponentiations in
G, which is a cyclic subgroup of order q in Fp. We assume that a 1MB file can be separated
into 16 packets, that is, k = 16. Each 65535-byte packet is viewed as an n-dimensional
vector in Fnq , where

n =
packet size(bits)

|q|
=

65535× 8

160
= 3277,

where |q| is the binary length of q.

Charles et al.’s signature scheme is based on the bilinear map on elliptic curves. If this
scheme is to achieve a security level of 1024-bit RSA, 160-bit security parameter l is enough
and the length of q is also approximately 160 bits. In Charles et al.’s scheme, the signature
is a point on an elliptic curve (161 bits), and the public key includes 2(k + n) + 1 points
on the same elliptic curve. In the verification process, we need to compute (k + n + 1)
bilinear pairings, which make this scheme less efficient. We assume that a 1MB file can
be separated into 16 packets (k = 16), and each 65535-byte packet can be split into n
elements in Fq, where n = 3277.

The security of Gennaro et al.’s RSA-based signature scheme is based on the hardness
of RSA problem. If this scheme is to achieve a security level of 1024-bit RSA, then we
choose the integer N of 1024-bit length. In Gennaro et al.’s scheme, each message packet

45

Table 4.3: Memory and communication overhead on the security level of 1024-bit RSA
security parameter public key size signature size

(bits) (bits) (bits)
Boneh et al. [8]

(scheme S2) 160 161 161
Boneh et al. [8]

(scheme S1) 160 530334 2737
Charles et al. [15] 160 1060507 161
Gennaro et al. [23] 1024 526336 1024

Zhao et al. [46] 1024 526880 526880

belongs to ZN , and all operations (e.g., exponentiation and multiplication) are done over
integers in ZN . The public key includes the integer N and n + 1 elements in ZN , and in
the verification process, we need to compute (k + n + 1) exponentiations and (k + n− 1)
multiplications in ZN . We assume that a 1MB file can be separated into 16 packets, that
is, k = 16. Each 65535-byte packet is viewed as an n-dimensional vector in ZN , where

n =
packet size(bits)

|N |
=

65535× 8

1024
= 512.

For a larger file, k becomes increasingly large. Therefore, the memory and communi-
cation overhead per file is very high, if the signature size and public key size depend on
the file size. So one of the design principles for network coding signatures is that signature
and public key have sizes independent of the file size.

46

Chapter 5

Attacks on Signature Schemes for
Network Coding

As we discussed in the previous chapter, the homomorphic property can be viewed to
be positive in signature schemes for linear network coding, since by this property the
intermediate nodes can construct a valid signature without any access to the private key
of the source node. The intermediate nodes can combine the signatures appended to the
received message packets and forward a new valid signature with the combined message
packet.

On the other hand, however, the homomorphic property can be considered to be nega-
tive, and there exist some flaws to the current homomorphic signature schemes for network
coding. In this chapter, we discuss attacks on some of the signature schemes described in
the previous chapter.

5.1 A Weakness of the Homomorphic Property

In this section, we discuss a weakness of the homomorphic property used in network
coding signatures. Let m1,m2, . . . ,mN be augmented vectors from one file, and V =
span(m1,m2, . . . ,mN). Any intermediate node can collect the packet-signature pairs (wi, σi),
where wi ∈ V , and generate a new signature σ =

∏k
i=1 σ

αi
i on the combined packet

w =
∑k

i=1 αiwi ∈ V . Meanwhile, there are malicious nodes who can construct a linear
combination of incoming packets in different subspaces and can forge a signature satisfying
the verification criterion. Here we claim that it is not a new “attack”, since we can solve
this problem by generating a new public key for each file. We take Charles et al.’s scheme
[15] to illustrate this process as follows.

47

Suppose that the source node will share the same public key (g1, g2, . . . , gN , h, h1, h2 . . . , hN)
for simultaneously distributing two files F1, F2, where N = n + k. V1, V2 ⊂ FNq are two
subspaces spanned by two sets of basis vectors from F1 and F2, respectively. Let σ1 be the
signature on w1 ∈ V1, then we have σ1 =

∏N
j=1 g

w1jsj
j and

N∏
j=1

e(g
w1j

j , hj) = e(σ1, h).

Similarly, let σ2 be the signature on w2 ∈ V2, we have σ2 =
∏N

j=1 g
w2jsj
j and

N∏
j=1

e(g
w2j

j , hj) = e(σ2, h).

After receiving (w1, σ1) and (w2, σ2), the malicious node can construct a new valid
signature σ = σc11 σ

c2
2 for a new message w = c1w1 + c2w2 ∈ span(w1,w2), since

N∏
j=1

e(g
wj

j , hj) =
N∏
j=1

e
(
g
c1w1j+c2w2j

j , hj

)
=

(
N∏
j=1

e
(
g
c1w1jsj+c2w2jsj
j , h

))

= e

(
N∏
j=1

g
c1w1jsj
j

N∏
j=1

g
c2w2jsj
j , h

)
= e (σc11 σ

c2
2 , h)

= e (σ, h) . (5.1)

But w /∈ V1, V2. This process will generate a pollution in the further transmission, since
the following nodes cannot decide which file the received packets comes from. So it is
infeasible for the source to distribute multiple files at the same time.

The weakness of homomorphic property exists in most network coding signature schemes
in the standard model [45, 15], though these schemes are proven secure according to the
security definition (see Definition 4.2.4). To solve this problem, the source node is required
to refresh the public key for distributing each file; this will introduce extra overhead in
transmissions and significantly reduce the performance of network coding. Another ap-
proach is in these signature schemes to introduce a hash function of the file identity to
label different files, and the hash function can be viewed a random oracle in the security
proofs [8, 23].

48

5.2 An Attack on Yun et al.’s RSA-based Signature

Scheme

Yun et al. [45] provided an RSA-based signature scheme for network coding, which is a
homomorphic scheme in the standard model. In this section, we introduce a pollution
attack on Yun et al.’s scheme.

For two primes p and q with q|(p−1), the RSA public key is PK = (N, e), whereN = pq,
1 < e < φ(N) and gcd(e, φ(N)) = 1. Each augmented message packet mi, i = 1, 2, . . . , k,
can be viewed as a (k + n)-dimensional vector mi = (mi1,mi2, . . . ,mi(k+n)) ∈ Zk+n

q . Given
a valid signature-message pair (σ,mi), an adversary can construct a new message m∗i and
forge a valid signature σ∗ on m∗i as follows. The adversary can select β and compute a new
message m∗i = (m′i1,mi2, . . . ,mi(k+n)), where m′i1 = mi1 + e · β ∈ Zq. Then the signature

on the message w∗ is σ∗ = σ · gβ1 , since(
σ · gβ1

)e
≡ σe · gβ·e1

≡

(
k+n∏
j=1

g
mij

j

)de

· ge·β1

≡
k+n∏
j=1

g
mij

j · ge·β1

≡ gmi1+e·β
1

k+n∏
j=2

g
mij

j

≡

(
g
m′

i1
1

k+n∏
j=2

g
mij

j

)de

≡ (σ∗)e (mod N). (5.2)

Hence, Yun et al.’s signature scheme is existentially forgeable under the known-message
attacks. Similarly, the adversary can generate a valid signature σ∗∗ on any message m∗∗i =
(m′i1,m

′
i2, . . . ,m

′
i(k+n)) by her choice.

5.3 Attacks on Zhao et al.’s Signature Scheme

In Zhao et al.’s scheme [46], we need to calculate a vector u orthogonal to all the message
packetsmi, that is, mi·u = 1, i = 1, 2, . . . , k, and the signature is σ = (u1/s1, u2/s2, . . . , un/sn),

49

where (s1, s2, . . . , sn) is the private key of the source node. If an adversary can attain k
combined message packets with linearly independent coefficient vectors, then she can re-
cover the original messages packets m1,m2, . . . ,mk.

If the algorithm of computing the orthogonal vector u is public and deterministic in
this scheme, the orthogonal vector u can be uniquely recovered by the adversary, who will
then be able to recover the private key of the source node using a valid signature. Keeping
the algorithm of computing u secret or using a probabilistic algorithm to compute u can
protect the private key of the source node. In this section we discuss two forgeability
attacks to Zhao et al.’s signature scheme under the security definition 4.2.4,

5.3.1 Attack 1

There exists a forgeability attack mentioned in the original paper [46]. If σ1 is the signature
on File 1, and w a valid received vector which is a combination of original packets of File
1, then we have

d =
N∏
j=1

(gsj)σ1jwj = 1

.

If the source node then distributes File 2 using the same public key, a malicious node,
instead of forwarding the signed File 2, can construct a signature σ2 on a vector v chosen
by the malicious node, as σ2j = (σ1jwj)/vj. The signature σ2 also satisfies

d =
N∏
j=1

(gsj)σ2jvj =
N∏
j=1

(gsj)σ1jwj = 1.

But v may not be any valid combination of the packets of File 2.

To prevent this attack, the source node needs to refresh the public key of the source
key or to recalculate the orthogonal vector u for distributing each file. Alternatively, Zhao
et al. introduced another method, which will cost less overhead in the network coding
system. For each new file, the source node can replace a random element si in the private
key, and publish the new gsi in the public key. To compute the signature on the new file,
we need to compute a new vector u which is orthogonal to the subspace V spanned by the
new file. Since V has dimension k, we just modify the entries un+1, . . . , un+k in the vector
u, and then republish σn+1, . . . , σn+k for the new signature. The overhead of this method
is less than the previous one of refreshing whole public key or the orthogonal vector u.
And security can be increased by changing more elements in the private key for each new
file.

50

5.3.2 Attack 2

Wang [41] presented a pollution attack on Zhao et al.’s signature scheme. For the aug-
mented message packets mi = (mi1,mi2, . . . ,min, 0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0), i = 1, 2, . . . , k, we

can construct a vector

u = (1, 1, . . . , 1︸ ︷︷ ︸
n

,−
n∑
j=1

m1j,−
n∑
j=1

m2j, . . . ,−
n∑
j=1

mkj),

which is orthogonal to all augmented message packets mi, i = 1, 2, . . . , k.

A malicious node can construct messages m∗i = (m∗i1,m
∗
i2, . . . ,m

∗
in, 0, . . . , 0, 1, 0, . . . , 0)),

where
∑n

j=1 m
∗
ij =

∑n
j=1 mij. It is clear that m∗i is orthogonal to the vector u, and the

signature on m∗i will be accepted as a valid signature. The malicious node inserts the
corrupted messages m∗i , and the pollution will be spread in any further transmission.

51

Chapter 6

Conclusion and Future Work

This chapter summarizes the work in this paper. A summary of the main results as well
as recommendations for future research is provided.

6.1 Conclusion

In this paper, we gave a brief introduction of network coding theory, and then described six
homomorphic signature schemes for network coding that are targeted to protect against
the pollution attacks.

Network coding has vast application potential and significant benefits: improved through-
put, increased robustness of networks and data security. In this paper, we presented linear
network coding which is used frequently in practice, and discussed some security problems
of network coding such as eavesdropping attacks, pollution attacks.

Considering the security of network coding, we introduced homomorphic hashing and
homomorphic signatures. We first gave the definitions of homomorphic signature for net-
work coding and two security definitions. Then we described three pairing-based homomor-
phic signature schemes [8, 15], three RSA-based homomorphic signature schemes [45, 23],
and a signature scheme using a vector orthogonal to the message linear subspace [46].

Next, we presented a detailed analysis of the security and the complexity. A prelim-
inary security analysis showed that, in the different security models and under various
intractability assumptions, these signature schemes can provide cryptographic protection
for network coding against pollution attacks. A comparison of the computational com-
plexities of these signature schemes showed that Boneh et al.’s scheme S2 [8] has constant
public-key size and per-packet overhead; Gennaro et al.’s RSA-based signature scheme over

52

the integers [23] can reduce the bandwidth overhead for transmission since small integer
coefficients can be chosen for the linear combinations.

Finally, we pointed out flaws of some of these schemes, even though some security
analysis had been presented. We gave existential forgeries for some of the schemes presented
in this paper. Further, we gave solutions (e.g., refreshing the public key) to prevent such
attacks.

6.2 Future Work

Signatures for network coding is an interesting and challenging research area. While many
solutions have been proposed, there are many problems that still need further study. Even
the problems that have been addressed might have to be revisited in terms of the various
applications in different networks and improvements of the performance and the efficiency.
Further work could be pursued in the following research areas.

• Designing a secure RSA-based homomorphic signature for network coding in wireless
ad hoc network still needs to be investigated.

• Finding more applicable homomorphic functions for network coding is another inter-
esting topic to increase the protocol efficiency or to reduce the system overhead.

• The homomorphic property is the only currently available and effective tool for sig-
natures for network coding. Other new solutions without the homomorphic property
might bring more novel ideas or innovations in this research area.

53

Bibliography

[1] R. Ahlswede, N. Cai, S. Li, and R. Yeung. Network information flow. IEEE Transac-
tions on Information Theory, 46:1204–1216, 2000. 15

[2] I. Blake, G. Seroussi, and N. Smart. Elliptic Curves in Cryptography. Cambridge
University Press, 1999. 6, 9, 11

[3] I. Blake, G. Seroussi, and N. Smart. Advances in Elliptic Curves Cryptography. Cam-
bridge University Press, 2005. 6, 8, 9, 10

[4] D. Boneh and X. Boyen. Efficient selective-ID secure identity based encryption without
random oracles. In Eurocrypt 2004, volume 3027 of Lecture Notes in Computer Science,
pages 223–238. Springer Berlin/Heidelberg, 2004. 12, 13, 43

[5] D. Boneh and X. Boyen. Short signatures without random oracles. In Eurocrypt 2004,
volume 3027 of Lecture Notes in Computer Science, pages 56–73. Springer Berlin /
Heidelberg, 2004. 31, 45

[6] D. Boneh and X. Boyen. Short signatures without random oracles and the SDH
assumption in bilinear groups. pages 149–177, Secaucus, NJ, USA, 2008. Springer-
Verlag New York, Inc. 13, 31

[7] D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM,
Journal on Computing, 32(3):586–615, 2003. 12, 14

[8] D. Boneh, D. Freeman, J. Katz, and B. Waters. Signing a linear subspace: Signature
schemes for network coding. In Public Key Cryptography (PKC) 2009, volume 5443 of
Lecture Notes in Computer Science, pages 68–87. Springer Berlin/Heidelberg, 2009.
3, 4, 14, 21, 23, 28, 29, 30, 31, 44, 46, 48, 52

[9] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and verifiably encrypted
signatures from bilinear maps. In Eurocrypt 2003, volume 2656 of Lecture Notes in
Computer Science. Springer Berlin/Heidelberg, 2003. 14, 32, 43

54

[10] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In
ASIACRYPT ’01, volume 2248 of Lecture Notes in Computer Science, pages 514–532.
Springer-Verlag, 2001. 10

[11] X. Boyen. The Uber-assumption family – a unified complexity framework for bilinear
groups. In 2nd International Conference on Pairing-based Cryptography 2008, volume
5209 of Lecture Notes in Computer Science, pages 39–56. Springer-Verlag/Berlin, 2008.
12

[12] E. Bresson, D. Catalano, and D. Pointcheval. A simple public-key cryptosystem with a
double trapdoor decryption mechanism and its applications. In ASIACRYPT’03, vol-
ume 2894 of Lecture Notes in Computer Science, pages 37–54. Springer-Verlag/Berlin,
2003.

[13] N. Cai and R. Yeung. Secure network coding. In IEEE International Symposium on
Information Theory, pages 323–346, 2002. 22

[14] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodology, revisited.
Journal of ACM, 51(4):557–594, 2004. 14

[15] D. Charles, K. Jain, and K. Lauter. Signatures for network coding. Intermational
Journal of Information and Coding Theory (IJICOT), 1(1):3–14, 2006. 3, 4, 23, 34,
44, 46, 47, 48, 52

[16] D. Chiu, R. Yeung, J Huang, and B. Fan. Can network coding help in p2p networks?
In 4th International Symposium on Modeling and Optimization in Mobile, Ad Hoc and
Wireless Networks, 2006. 18

[17] Y. Chou, P.and Wu and K. Jain. Practical network coding. Allerton Conference on
Communication, Control, and Computing, Monticello, IL, October, 2003. 21

[18] J. Cohen and M. Fischer. A robust and verifiable cryptographically secure election
scheme. In 26th Annual Symposium on Foundations of Computer Science, 1984, pages
372–382, 21–23 Oct. 1985. 23

[19] R. Cramer and I. Damg̊ard. Zero-knowledge proofs for finite field arithmetic; or:
Can zero-knowledge be for free? In CRYPTO ’98, volume 1462 of Lecture Notes in
Computer Science, pages 424–441. Springer-Verlag, 1998. 23

[20] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, 22:644–654, 1976. 9

55

[21] C. Fragouli, J. Le Boudec, and J. Widmer. Network coding: an instant primer.
SIGCOMM Computer Communication Review, 36(1):63–68, January 2006. 18, 19, 20,
22

[22] C. Fragouli and E. Soljanin. Network coding fundamentals, volume 2. Now Publishers
Inc., Hanover, MA, USA, 2007. 18

[23] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin. Secure network coding over the
integers. In PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
142–160. Springer-Verlag, 2010. 3, 4, 23, 38, 44, 46, 48, 52, 53

[24] C. Gkantsidis and P. Rodriguez. Cooperative security for network coding file distribu-
tion. In IEEE INFOCOM 2006. 25th Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 1–13, 2006.

[25] C. Gkantsidis and R. Rodriguez. Network coding for large scale content distribu-
tion. In IEEE INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, pages 2235–2245, 2005. see http://dx.doi.org/10.

1109/INFCOM.2005.1498511. 18

[26] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing, 17:281–308, 1988. 13

[27] K. Han, T. Ho, R. Koetter, M. Médard, and F. Zhao. On network coding for security.
In IEEE Military Communications Conference MILCOM 2007, pages 1–6, Oct. 2007.
41

[28] T. Ho and D. Lun. Network Coding: An Introduction. Cambridge University Press,
2008. 15, 16, 18, 19, 20

[29] R. Johnson, D. Molnar, D Song, and D Wagner. Homomorphic signature schemes.
In Topics in Cryptology: CT-RSA 2002, volume 2271 of Lecture Notes in Computer
Science, pages 204–245. Springer Berlin/Heidelberg, 2002. 27, 28

[30] A. Joux. A one round protocol for tripartite Diffie-Hellman. In ANTS-IV, volume 1838
of Lecture Notes in Computer Science, pages 385–393, London, UK, 2000. Springer-
Verlag. 12

[31] A. Joux and K. Nguyen. Separating decision Diffie-Hellman from Diffie-Hellman in
cryptographic groups. In Journal of Cryptology 16 (2003), pages 239–247, 2003. 10

[32] R. Koetter and M. Médard. An algebraic approach to network coding. IEEE/ACM
Transactions on Networking, 11:782–795, 2001. 20

56

http://dx.doi.org/10.1109/INFCOM.2005.1498511
http://dx.doi.org/10.1109/INFCOM.2005.1498511

[33] M. Krohn, M. Freedman, and D. Mazieres. On-the-fly verification of rateless erasure
codes for efficient content distribution. In IEEE Symposium on Security and Privacy,
pages 226–240, 9–12 May 2004. 3, 24, 26, 34

[34] Q. Li, D. Chiu, and J. Lui. On the practical and security issues of batch content
distribution via network coding. In ICNP, pages 158–167, 2006.

[35] S. Li, R. Yeung, and N. Cai. Linear network coding. In IEEE Transactions on
Information Theory, volume 49, pages 371–381, 2003. 20, 21

[36] P. Maymounkov. Online codes. Technical Report 2002-833, New York University, see
http://pdos.csail.mit.edu/~petar/papers/maymounkov-online.pdf. 24

[37] A. Menezes, P. Oorschot, and S. Vanstone. Handbook of Applied Cryptography. CRC
Press, Inc., 1996. 5, 6, 12, 37

[38] C. Ran, G. Oded, and H. Shai. The random oracle methodology, revisited. J. ACM,
51(4):557–594, 2004.

[39] R. Rivest. Two new signature schemes. 2000. Presented at Cambridge seminar,
see http://www.cl.cam.ac.uk/Research/Security/seminars/2000/rivest-tss.

pdf. 23, 27

[40] R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. In Foundations of Secure Computation, pages 169–177. Academic Press, 1978.
23

[41] Y. Wang. Insecure “provable secure network coding”. Cryptology ePrint Archive,
Report 2010/060, 2010. see http://eprint.iacr.org/. 51

[42] M. Yang and W. Yan. Fast signature scheme for network coding. In
Distributed Computing and Algorithms for Bussiness Engineering and Sciences
(DCABES), 2009. see http://dcabes.meeting.whut.edu.cn/DCABES2009/Files/

presentation/Mingxi$%$20Yang.ppt.

[43] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan. An efficient signature-based scheme for
securing network coding against pollution attacks. In INFOCOM 2008. 27th Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceedings
IEEE, pages 1409–1417, 2008. 37

[44] R. Yueng and Z. Zhang. Distributed source coding for satellite communications. IEEE
Transactions on Information Theory, 45:1111 – 1120, 1999. 15

57

http://pdos.csail.mit.edu/~petar/papers/maymounkov-online.pdf
http://www.cl.cam.ac.uk/Research/Security/seminars/2000/rivest-tss.pdf
http://www.cl.cam.ac.uk/Research/Security/seminars/2000/rivest-tss.pdf
http://eprint.iacr.org/
http://dcabes.meeting.whut.edu.cn/DCABES2009/Files/presentation/Mingxi$%$20Yang.ppt
http://dcabes.meeting.whut.edu.cn/DCABES2009/Files/presentation/Mingxi$%$20Yang.ppt

[45] A. Yun, J. Cheon, and Y. Kim. On homomorphic signatures for network coding. IEEE
Transactions on Computers, 2009. 3, 4, 23, 37, 40, 48, 49, 52

[46] F. Zhao, T. Kalker, M. Medard, and K. Han. Signatures for content distribution with
network coding. In IEEE International Symposium on Information Theory ISIT 2007,
pages 556–560, 24–29 June 2007. 3, 4, 10, 11, 23, 40, 42, 44, 46, 49, 50, 52

58

	Introduction
	Network Coding
	Homomorphic Signatures for Network Coding
	This Work
	Outline

	Preliminaries
	Finite Fields
	Elliptic Curves
	Bilinear Groups and Bilinear Maps
	Security Assumptions
	Discrete-Logarithm (DL) and Diffie-Hellman (DH) Problems
	Elliptic Curve DL Problem and Bilinear DH Problem

	Definitions of Digital Signatures

	Introduction to Network Coding Theory
	Basic Concepts of Network Coding
	What is Network Coding?
	Where is Network Coding Used?

	Benefits of Network Coding
	Throughput
	Robustness

	Linear Network Coding
	Encoding
	Decoding

	Network Security

	Related Signature Schemes for Network Coding
	Krohn et al.'s Homomorphic Hashing Schemes for Rateless Erasure Codes
	Definitions of Homomorphic Signatures
	Definitions of Homomorphic Signatures for Network Coding

	Boneh et al.'s Signatures on a Linear Subspace for Network Coding
	A Homomorphic Network Coding Signature Scheme S2 with Random Oracles
	A Network Coding Signature Scheme S1 without Random Oracles

	Charles et al.'s Signatures for Network Coding
	RSA-Based Homomorphic Signature Schemes for Network Coding
	Yun et al.'s signature scheme
	Gennaro et al.'s signature scheme

	Zhao et al.'s Signatures for Network Coding
	The Signature Scheme
	The Security Analysis of the Signature Scheme

	Discussion and Comparison

	Attacks on Signature Schemes for Network Coding
	A Weakness of the Homomorphic Property
	An Attack on Yun et al.'s RSA-based Signature Scheme
	Attacks on Zhao et al.'s Signature Scheme
	Attack 1
	Attack 2

	Conclusion and Future Work
	Conclusion
	Future Work

	References

