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Abstract

Routing problems are some of the oldest and most extensively studied combinatorial
optimization problems. Many of these routing problems are hard and hence are unlikely
to admit polynomial time solutions (barring resolution of the massive P? = NP ques-
tion). This has led to an extensive study of their approximability. The two main types
of algorithmic techniques in the literature use structural ideas based on decomposition of
minimum spanning trees and set-covering based LP formulations. In this essay, we survey
the use of these techniques while focusing on routing problems modeled as graph-covering
problems. k-tree cover and Rooted Tree cover (introduced by Arkin et al. and Even et al.
respectively) are discussed in greater detail. We later consider a new generalization of the
two problems (coined Budgeted Tree Cover) and give a natural 5-approximation algorithm
for the problem. As the algorithm given is a direct generalization of older techniques, we
believe that it should be easy to achieve a better approximation guarantee. We discuss a
paper by Khani and Salavatipour to describe some new ideas that could lead to a better
algorithm for Budgeted Tree Cover.
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Chapter 1

Introduction

Since it’s proposal by Dantzig and Ramser in 1959 [7], the VEHICLE ROUTING PROBLEM
(VRP) and it’s variants have been widely studied. At a high level, one can look at the
problem as a generalization of the famous TRAVELING SALESMAN PROBLEM (TSP). An
instance of the vehicle routing problem is defined by a set of locations to be serviced by
one or more vehicles that are all located a starting depot. The goal is to find the best (for
example: cheapest or shortest) possible way such that each location is visited exactly once
by one of the vehicles. It is not hard to see that vehicle routing problems have a variety
of direct applications in the industry. One very obvious application is designing delivery
routes for logistics giants like FedEx or UPS where timely and cost-efficient delivery of
goods is paramount. Another not so obvious but well studied application is that of assigning
cranes to containers at a port loading dock. The developments on vehicle routing have
occured on two main fronts: Approzimation algorithms (See Section 1.5) which provide a
guarantee on the cost of your solution regardless of the instance size and various heuristics
from the field of Operations Research where the performance often depends on the size of
the given instance. This essay aims to provide a detailed survey of widely used techniques
for designing approximation algorithms for VRP. Treating these real world problems as
optimization problems calls for a mathematical model encompassing all the intricacies of
a given problem.

1.1 A Mathematical Model for Routing

When routing a set of vehicles in order to perform a certain task, we measure their per-
formance based on a predetermined parameter. This parameter could be the amount of
time taken to reach their destination or the total cost of gas used by all vehicles combined.
Regardless of the measure, we can always look at the problem via the lens of optimization.
An optimization problem is a set of instances and an associated set of constraints that
determine a set of feasible solutions for each instance. Thus for any input, one gives a



concise description of an acceptable (feasible) solution is. The performance of a solution is
measured by an objective function defined on the set of solutions that maps each solution
to the reals.Thus one needs to find a solution that optimizes this objective function. Rout-
ing problems are usually minimization problems where the objective is to find a feasible
solution while minimizing the cost over all feasible solutions.

A very simple measure of cost is the total distance travelled by all vehicles combined.
Another closely related notion is the total time taken. The objective can be made slightly
more complex by trying to minimize the maximum time taken by any of the vehicles.
The real world instances are even more complex since we have to take into account the
individual carrying capacities and speeds of vehicles. There might also be time-windows
associated that dictate exactly when the deliveries are to be made or constraints limiting
how far a vehicle is allowed to travel based on it’s fuel capacity. A very clean way of
incorportating most of these details is to use Graph Theory to model the problems.

1.2 Graph Theory Essentials

All of the algorithms in this essay (and most in literature) model routing problems using
graphs. This is because the central idea behind the definition of a graph is that of points
and connectivity. A graph G is given by a pair (V, E') of sets. V is the set of vertices of the
graph and F C {u,v : Yu,v € V'} is called the set of edges that connects certain vertices
in G. For a graph H we will use V(H) to denote the vertex set of H and E(H) to denote
the edge set. For an edge e = {u, v}, we call u and v the end-points of e and we say that
u and v are adjacent.

If all possible edges in a graph are present, then the graph is said to be complete. For
a vertex v, N(v) = {u € V : {u,v} € E} is called the neighbourhood of v. The set of
edges connecting v to it’s neighbours is denoted by d(v). For any subset U of the vertices,
we can generalize the notion of a neighbourhood by defining U’s neighbourhood N(U) be
the union of neighbourhoods of each of the vertices in U i.e.N(U) = U,epN(u). An edge
e is said to be incident to a vertex v if e belongs to d(v). Note that d(v) is also called the
cut of v. The cut 6(U) of a subset U of vertices can be defined as the set of edges with
exactly one end-point in U. An incidence matrix is a simple way of representing a graph
for computational purposes (See Section 1.2.1 for an application). So given G = (V| E)
where V' = {1,2,--- ,n} and E = {1,2,--- ,m}, the incidence matrix of G is a matrix
A € {0,1}™*" such that Afi,j] = 1, if edge 7 is incident to vertex j and 0 otherwise.

Two vertices u and v in V' are said to be connected if there is a sequence of edges (a
path) in the graph such that one can follow this sequence to get from u to v. If every pair
of vertices in a graph is connected, then the graph is called a connected graph. A cycle is
a path that starts and ends at the same vertex. A cycle is called Hamiltonian if it visits
all the vertices in the corresponding graph. A graph is called a tree if it is connected and
has no cycles. A spanning tree is a tree that contains all the vertices of a graph. A forest



Figure 1.1: The complete graph on 5 vertices. Let all the edges on the outer face have
length one and all the inner edges have weight two. The red edges form a spanning tree
(weight 6) while the green ones form a minimum spanning tree (weight 4)

is defined as a collection of one or more trees. Thus a forest can be thought of as a set of
trees or a possibly disconnected graph where each connected component is a tree.

A weighted graph G = (V| E) is one where we associate weights with the edges of the
graph using a function w : £ — R. One can then define a minimum spanning tree as the
spanning tree with the least weight over all possible spanning trees of G. Throughout this
essay, we will use weight or length of a set of edges to refer to the sum of all the edges in
the set. Note that using weighted graphs to model routing problems is natural since the
edge lengths then can be used to represent the distance between the two end-points (read
locations). It makes sense to assume that traveling from point A to point B directly does
not take more time than going from A to another point C and then to point B. Also, in
a real world situation we can always go from any location to any other. The previous two
observations bring us to the idea of a metric completion. So given a graph G = (V, FE)
with edge lengths [ : ' — R, we can add in any missing edges to create a complete graph
by simply adding the edge and setting the length of the new edge to be the shortest path
distance (for instance) between the two end-points in G. Thus when we say we are in a
metric, the underlying graph can be assumed to be complete. So given a complete graph
G = (V, E) we say that [ is a metric if it satisfies the following conditions:

e [(u,v) =0 if and only if u = v, I(u,v) > 0 otherwise,
e [(u,v) =l(v,u) (i.e. the function is symmetric), and

e For any u,v,w € V, l(u,v) + (v, w) > l(u,w) (I satisfies the triangle inequality).

Note that all of these conditions are satisfied when we use the shortest path metric.




A very important infinite family of graphs is that of bipartite graphs. A graph G =
(T UR, E) is said to be bipartite where 7" and R are sets such that no edge in E has both
end-points in either 7" or R. Bipartite graphs lend themselves well to various applications
in both routing and assignment problems which are two important classes of combinatorial
problems (See Schrijver’s [32] for more information on these classes of problems). Assign-
ment problems involve two or more kinds of objects where we want to “match” one type
of object to another. This brings us to matchings in graphs. Matching theory by itself
is a vast field of study but we will only touch upon areas that are directly useful in the
algorithms discussed later in this write-up.

1.2.1 Matchings

Consider a graph G = (V,E) and a function [ : E — N that assigns weights to the
edges of the graph. A subset M of the edges is then called a matching if no vertex is
incident to more than one edge from M. For a subset U of the vertices, we say that a
M is U-saturating if every vertex in U is incident with one edge in M. A matching is
called perfect if it saturates the entire vertex set. The objective of the MINIMUM-WEIGHT
PERFECT MATCHING problem is to find a matching M C E that minimizes ) ., [(e)
over all perfect matchings M. For a subset U of the vertices we call the cut D = §(U)
an odd-cut if U has an odd number of vertices. Using a simple parity argument one can
see that any perfect matching M has at least one edge from every odd-cut. The problem
of finding a min-weight perfect matching can be formulated as an integer program (IP).
As integer linear programs are fundamental to representing optimization problems, a very
short discussion on integer programs is included in the Appendix (See Appendix A).

Given the graph G = (V| E), let C be the set of all odd-cuts where the associated vertex
set is not a singleton. The problem of finding a min-weight perfect matching in G can then
be formulated as the following ILP:

min Z lexe (P)

st z(6(v)) =1 forallveV
z(D) > 1 for all cuts D € C
z. € {0,1} foralle e E

Let (P) denote the above program. Here z is a characteristic vector of a matching
ie. z, = 1 if edge e is included in the matching and 0 otherwise. The first constraint
ensures that every vertex has exactly one incident edge in any solution for (P). The
second constraint deals with odd-cuts with corresponding to subsets in C and ensures that
any feasible solution to (P) has at least one edge from every odd-cut. As (P) is an integer
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program x is only allowed to take on integer values there by enforcing that an edge e is
either in the solution or not (so z. cannot take on fractional values). (Such a program is
also called a 0, 1-integer program). Since a feasible solution to (P) satisfies these contraints,
one can check that each feasible solution corresponds to a perfect matching in G. Edmonds’
fundamental theorem showed that the optimal value of the linear programming relaxation
(See Appendix A) of (P) is the weight of a minimum-weight perfect matching [10]. Note
that we use the linear programming relaxation of (P) since solving 0, 1-integer programs
is NP-Hard [24] (See Section 1.5 for a definition of NP-Hardness).

The problem of finding minimum-weight matching in a bipartite graph can also be
solved optimally by solving a linear program. Consider a bipartite G = (V, E) with edge
lengths [ : E — R and incidence matrix A.

min Z lee (P

st. A-z=1forallveV
z. € {0,1}for alle € F

Here 1 is an |V|-dimensional vector of all 1’s. A matrix M € Z"*™ is called totally
unimodular if every square sub-matrix of M has determinant —1, 0 or 1. Note that the
incidence matrix of any bipartite graph is totally unimodular [9]. Thus the incidence
matrix A in P’ is totally unimodular and every extreme point of the polyhedron {Az = 1}
is integral [6]. One can prove that AT is also totally unimodular and this implies that
the integrality holds for the corresponding dual polyhedron as well. Birkhoff showed that
the optimal solution to (P) corresponds to a minimum-weight perfect matching in G
[6] and the stronger statement that the optimal value of the (P’) gives us the weight of a
minimum-weight perfect matching. An important theorem that characterizes the existence
of a matching in a bipartite graph is Hall’s theorem. We state it here without proof:

Theorem 1.2.1. Let U, W be a bipartition of a bipartite graph G = (V, E) then a U-
saturating matching exists if and only if VX C U, |[N(X)| > |X|.

This concludes our of graph theory basics. For a vehicle routing problem modeled as
a graph, assigning routes for vehicles corresponds to “covering” a graph with a particular
class of graphs. This will tie in to the three main problems that form the meat of this
essay. Now that we have the model in place, we can move to the central topic of this essay
— Routing problems.

1.3 The Traveling Salesman Problem

A discussion on Vehicle Routing Problem (VRP) would be incomplete without talking
about the more basic (though in no way any easier) Traveling Salesman Problem (TSP).
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It is one of the oldest and extensively studied problems in combinatorial optimization.
The exact origins of the problem seem to be unclear (See Schrijver’s study [32] for an
exposition on the origins of TSP). For a comprehensive discussion of the problem in it’s
full glory I refer the reader to William Cook’s work [5]. An instance of TSP consists of
an undirected, edge-weighted, connected graph and any Hamiltonian cycle in the graph is
a feasible solution (unless stated otherwise, assume that we are working with connected
graphs). The objective is then to find a Hamiltonian cycle of minimum edge weight. We
can think of the vertices of the graph as cities and the weight of an edge as the cost of
traveling between the cities corresponding to the end-points of the edge. The name of the
problem stems from the idea that we can think of a salesman trying to organize a tour
over all the cities while minimizing the total cost incurred.

We will see later (See Section 1.5) why the one of the most studied variants is when
the edge lengths of the graph form a metric. For any given G = (V| E) we can construct
the shortest-path metric completion G* = (V, E*) of G by adding any missing edges and
assigning each new edge a weight equivalent to the length of the shortest path in G’ between
the end-points. Thus we can always assume that the underlying graph in any TSP instance
is always a complete graph. Now for a complete graph on n vertices, there are n!/2
Hamiltonian cycles (and hence, n!/2 feasible solutions!). This suggests that one may not
be able to solve the problem efficiently simply by enumerating the feasible solutions. If this
was not complicated enough, one can add different constraints and modify the problem to
incorporate highly complex real world scenarios. This brings us squarely to vehicle routing
problems.

1.4 The Vehicle Routing Problem

Getting from TSP to VRP is quite easy. All you need to do is replace the salesman with
one or more of your favorite vehicles. Thus an instance of VRP consists of an undirected,
edge-weighted graph and a fleet of vehicles. A feasible solution to the problem corresponds
to a set of cycles (as routes for the vehicles) such that the union of the vertices contained
in the cycles is the whole vertex set. Formally, we have a complete graph G = (V| F) with
edge lengths given by [ : E — N that form a metric and a fleet of k vehicles. A feasible
solution is a set {Cy,Cy,--- ,Cy} of cycles of G such that U;<;<xV(C;) = V. Based on
the variant under consideration, objective functions differ. One possible objective could be
to minimize the total length of all tours i.e. to minimize ;> ... [(e). Another widely
considered objective is to minimize the length of the longest cycle in the solution (also
called the makespan of the solution) i.e. minimize mawx; ) ... I(e).

VRP was introduced by Dantzig and Ramser in 1959 [7] as the Truck Dispatching
problem with the objective of minimizing the total length of all the tours. The real-world
analogy can be described by considering a set of cities and a fleet of vehicles. Each city
is to be serviced by one vehicle. Though TSP has several applications, vehicle routing
problem was introduced as a wider, more encompassing basis for several variants that



can be constructed by adding the corresponding constraints. Some of these variants are
covered in the following part of this essay. However, the field is extensive and for a more
comprehensive discussion I would like to refer the reader to Toth and Vigo’s work [34].

1.4.1 Capacitated Vehicle Routing

One natural constraint to take into consideration is that fact that vehicles have finite
capacities. One of the first papers to investigate multiple variants of vehicle routing and
traveling salesman problems was by Haimovich and Rinnooy-Kan [23]. They discussed a
variant of vehicle routing called Capacitated Vehicle Routing Problem (CVRP). CVRP is
a natural variant where the depot has an infinite supply of some resource, the vehicles can
carry a fixed amount of the resource at a time. If we require each vehicle to make exactly
one trip then the problem can be formulated as follows: Consider a graph G = (V, FE)
and lengths [ : E — R, that form a metric. Say you have a fleet of k vehicles each with
capacity D. A feasible solution to CVRP is a set of cycles {C},Cy, -+ ,Cy} such that
[(C;) < D for all i.

A further intricacy can be introduced into the problem by observing that a vehicle may
carry multiple items (not necessarily identical) and that each city might have a different
demand associated with each item. In this case we modify the above definition by asso-
ciating a demand function d : V' — R where m is the number of types of items and the
modified capacity constraint ) . d(v) < D for all i where the capacity D is a vector in
R™.

Another interesting idea is that of split deliveries. For a real world example one may
think of trucks delivering dirt and cement to construction sites. Here the constraint is
to meet the demand of each location regardless of the number of vehicles that contribute
to meeting this demand. Let the contribution of a vehicle j at location v be a;,; € R™.
A feasible solution then is a set of cycles {C1,Cy, -+ ,Cy} that satisfies the additional
constraint ), ., a;; = d(v) so that all demands are satisfied.

Previously we discussed how TSP and VRP are closely related. CVRP reduces to
TSP in the absence of capacity constraints and when we have a single vehicle. Haimovich
and Rinnooy-Kan et al. [23] showed that the best known approximation algorithm for
CVRP achieves a guarantee of p 4+ 1, where p is the best known approximation for TSP.
When the objective is to minimize the makespan of the tours and all vehicles are identical,
Frederickson et al. showed that a simple tour-splitting heuristic (See Section 2.1) acheives a
3-approximation [13]. When the vehicles have different speeds (called Heterogenous CVRP)
Gortz et al. give a constant factor approximation based on the tour-splitting heuristic of
[13] and a 2-approximation for scheduling on unrelated machines by Shmoys and Tardos

[33].



1.4.2 Vehicle Routing with Time Windows

Observe that there can be natural situations where a delivery made to a location has to
be within a certain time window (for example receiving your gifts before you leave for the
holidays). This introduces the variant of vehicle routing referred to as Vehicle Routing
with Time Windows (VRP-TW). In this case we associate a time with each edge that
represents the amount of time needed to travel between the end-points and with vertex an
interval. Then the objective is to nd a minimum cost set of routes for the vehicles so that
we visit every location while ensuring that we visit the location within the assigned time
windows. The problem was first considered by Desrochers et al. in 1988 [3].

1.4.3 Routing problems as Covering problems

Each of the vehicle routing variants discussed above involve finding a set of cycles such
that every vertex in the graph is in one of the cycles. Consider an infinite class of graphs
H (for example: trees, cycles, paths). A H cover of a graph G = (V| E) is a set { H;}; such
that U;V (H;) = V. We then say that {H,}; covers G.

The makespan of a cover is defined to be the total edge-length of the longest graph in
the cover i.e. maxyeyl(H) where [ is the length function. Each graph in the cover can be
thought of as a route for a vehicle. We must note that this change in terminology is highly
effective in capturing the versatility of routing problems since it allows feasible solutions
which are not restricted to being sets of cycles unlike the previously discussed problems.

An important problem considered in this essay (See Chapters 2 and 4) is that of tree-
covers. Given a graph G = (V, E), a tree cover is a set {T;}; of trees such that {T;}; covers
G. We first mention the k-TREE COVER problem.

Definition 1.4.1. The k-TREE COVER (KTC) problem consists of a graph G = (V, E),
a metric [ : F — N and a given parameter k£ € N. A feasible solution to the problem is a
set of at most k trees T = {11, Ts,--- ,T}} such that U;V(T;) = V. The objective of the
problem is to find a tree cover of size at most while minimizing the makespan.

The problem was introduced by Arkin, Hassin and Levin and they provide a 4-approximation
for the problem [1]. They study a variety of vehicle routing problems. In each case, a prob-
lem instance consists of a graph G = (V, E) and edge lengths [ : E — R.. The length
of a subgraph H of G is denoted by I[(H)(= >_.cpr l(€)). One variant is the MINIMUM
TREE COVER problem. Here a problem instance satisfies the additional constraints that
the edge lengths follow the triangle inequality and includes an addition parameter A > 0
in the input. A feasible solution is a set of trees T = {T;}; such that U;V(T;) = V and
[(T;) < A for every tree T;. The objective is to minimize the cardinality of the cover T.
Thus the MINIMUM TREE COVER problem is the dual problem to KTC. Arkin et al. pro-
vide a 3-approximation for the problem. Khani and Salavatipour improve this to 2.5 in

[25].



Figure 1.2: A Rooted Tree Cover for the complete graph on 6 vertices. The blue and
red vertex constitute the set of roots and the corresponding coloured edges form the trees.
Thus we have a cover of size 2.

ROOTED TREE COVER (RTC) is a variant of the k~-TREE COVER problem introduced
by Even et al. is [11].

Definition 1.4.2. Given a complete graph G = (V, F), a metric [ : E — N and a set
R C V, we call a set of tree, vertex pairs {(7j, ;) }; an R-rooted tree cover if the trees cover
G and every tree T; is rooted at a vertex in R. As in k-Tree Cover, the objective is to find
a rooted tree cover for G while minimizing the makespan.

Note that for both KTC and RTC, the trees in the solution are edge-disjoint but not
vertex-disjoint (See Lemma 3.1.1). Additionally, for two trees T; and 7} in a solution for
RTC, the root of T; may be contained in 7 but they may not have the same root. Even
et al. provide 4-approximation algorithms for both KTC and RTC. See Sections 3.1 and
3.2 for a detailed discussion of the two problems.

We also introduce a generalized tree cover problem called BUDGETED TREE COVER
(BTC). Here the problem instance is a graph with metric edge-lengths and weights on the
vertices. The goal is to find a tree cover where the trees are each rooted a vertex such that
the total weight of roots does not exceed a given budget.

Definition 1.4.3. Consider a complete graph G = (V, E) with a edge lengths [ : £ — N
(where [ is a metric), weights w : V' — N and a budget K € N. A feasible solution
to the problem is a set of tree, root pairs (called a cover ) T = {(T},7;)}; such that
> rerw(ri) < K. In the Budgeted Tree Cover (BTC) problem, we want to find a feasible
solution to the problem while minimizing the makespan.

A closely related problem is k-MST. The setting remains the same as KTC so we have
a graph G = (V, F) and metric edge lengths [ : E — N. The objective is to find a subset




of at least k vertices of a G whose Minimum Spanning Tree has least weight among all
subsets of at least k vertices. The state of the art for k-MST is a 2-approximation by Garg
[16]. Tt is primal-dual algorithm based on the work of Goemans and Williamson [17] that
looks at k-MST from a set-covering perspective. More on this in Chapter 2. Note that a
Minimum set cover instance consists of a groundset S, a family of subsets of S and a cost
function ¢ : 25 — R,. A feasible solution is a set of subsets from the given family so that
every element of S belongs to some set in our solution. The objective is to find a minimum
cost feasible solution.

1.5 Hardness of Routing Problems

Given a problem 7 and an algorithm A that solves the problem, we call A efficient if the
time taken by A to produce a solution to any instance of 7 is bounded by a polynomial
in the size of m. One notion of size is the length of the string that encodes 7. In an ideal
world, we would have an efficient algorithm for any problem that we come across. However,
that is not the case. Though it is in no way trivial to prove this, it is not too hard to
intuit. In Section 1.3 we stated that a feasible solution to TSP is any Hamiltonian cycle
in the given graph. We also pointed out that for a given graph on n vertices there can be
up to n!/2 Hamiltonian cycles. Thus if we checked even a fraction of the feasible solutions
to minimize the cost, the time taken would be exponential (and hence not efficient) in n.
Clearly, this would not make for a very fast algorithm. This brings us to a discussion of
computational complexity of problems.

A decision problem is any yes-or-no question on a (possibly infinite) set of inputs (also
called instances). For example, given an integer z, the question “Is z odd?” is a decision
problem. We call an instance a yes-instance if the answer for it’s given decision problem
is “yes” — in our example, all the integers that are not divisible by two are yes-instances.
One of the most important and most natural questions to ask is whether or not one can
answer a decision problem efficiently (which is another decision problem). The complexity
class P is the set of all decision problems for which an efficient algorithm exists.

P’s counterpart (in no way a complement) is the set NP which the set of decision
problems for which a solution can be verified in polynomial time. A verifier is an algorithm
that takes a candidate solution and a problem instance as input and outputs a yes if the
solution is feasible for the problem. Note that the running time of the verifier has to be
polynomial in the size of the instance and not the certificate. For example given a graph
and a cycle, we can decide whether the cycle is Hamiltonian in time polynomial in the size
of the graph. We just traverse the cycle and see if every vertex is contained in the cycle.
However, there is no known polynomial time algorithm that can decide whether or not a
given graph contains a Hamiltonian cycle. Thus HAMILTONIAN CYCLE (HC) belongs to
NP.

If two problems belong to NP, a natural question to ask is if one of them is more difficult
than the other. A problem A € NP is NP-complete if it is “at least as hard as” any other
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problem B € NP. We say that A is at least as hard as B if there is a polynomial time
reduction from B to A. A polynomial time reduction from B to A that if we had a deciding
algorithm for A then we could use it to solve B. Thus a polynomial time algorithm for any
one NP-complete problem would imply a polynomial time decider for every NP-complete
problem. We will now try to convey the difference between decision and optimization.

1.5.1 Decision and Optimization

All the problems considered in the above section are decision problems and the routing
problems discussed are optimization problems. Consider an minimization problem M. We
can construct a related decision problem M’ where given an instance of M, we want to
decide if it has a solution of cost less than some parameter k. Note that we can then
solve M’ using an algorithm for M (by the definition of minimization). So we can see that
the decision problem is no harder than the corresponding optimization problem. This also
brings us to the class fo NP-hard problems. We say that a problem A is NP-hard if there
exists an NP-complete problem B such that there polynomial time reduction from B to A.
Note that NP-hard problems are not restricted to be decision problems. Thus it is fair to
say that an optimization problem is NP-hard.

The satisfiability problem k-SAT asks whether we can satisfy all the constraints (each a
disjunction of k variables) in a given collection. This was the first problem that was proven
to be NP-complete (by Stephen Cook and Leonid Levin in arguably the most important
paper in theoretical computer science) [2]. Thus by definition of NP-completeness if there
existed a polynomial time algorithm for k-SAT, we would have P = NP. This is the P
versus NP problem and is the biggest unsolved problem in theoretical computer science.

The next section mentions results from the literature that establish the hardness of
some vehicle routing variants discussed above. Also, regardless of whether or not P = NP
we need a way to route vehicles as efficiently as possible. One way around this is to give
up on achieving optimality. Approximation algorithms do just that.

Definition 1.5.1. Approximation algorithm: Consider an optimization problem M and
let Opt be the value of the optimal solution. If M is a maximization problem then an
a-approximation algorithm always returns a solution of value at least Opt/a. If M is
a minimization problem, the an a-approximation algorithm always returns a solution of
value at least aOpt.

Here « is called the approximation ratio and is always at least 1. Note that the approx-
imation ratio is the worst-case measure of the performance of an approximation algorithm.
Obviously, it would be ideal to find the best possible approximation algorithm for any given
problem. This would give us a lower bound on the approximation ratio. This brings us to
a discussion of the hardness of approximation of optimization problems. In particular, we
will focus on the Traveling Salesman and Vehicle Routing problems.
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1.5.2 Hardness of Approximation of TSP and VRP

Earlier in this dicussion, we noted that we can think of TSP as a special case of VRP 1.4.
The following is known for TSP [35]:

Theorem 1.5.2. For any polynomial time computable function a(n) (where n is the size
of the given TSP instance), TSP cannot be approzimated within a factor of a(n), unless
P = NP.

Such problems are said to be hard to approximate. Note that this strong impossibility
result is true when we look at TSP in it’s most general form. However, if we restrict our-
selves to Metric TSP (when the distances between the points obey the triangle inequality),
the problem is no longer hard to approximate. In fact, an approximation factor of 3/2
can be acheived [35]. The hardness of approximating general TSP is the reason that the
routing problems considered in this essay are based in a metric.

1.6 Outline

In the next chaper we will discuss certain variants of VRP in greater detail and touch upon
the techniques that are used across the literature for solving these variants both combina-
torial and LP-based set-cover like techniques. Chapter 3 forms the technical heart of the
paper by talking about finding tree covers of graphs (See Section 1.4.3 for the defintion
of a tree cover) and the work by Even et al. Chapter 4 is about our 5-approximation for
a new generalization of tree covering. The last chapter (Chapter 5) attempts to present
some ideas for further work based on the 2011 paper by Khani and Salavatipour [25] and
a few of our own ideas for further work.
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Chapter 2

Approximation Algorithms for
Vehicle Routing and certain variants

We now survey the two main types of techniques used for approximating solutions to
VRP and it’s variants. We bifurcate techniques into two main categories based on the
lens one uses to examine the problem. The first category consists of algorithms based
on constructing minimum spanning trees and splitting them to create routes for each
individual vehicle. The second category is based on set covering techniques and primal
dual algorithms.

2.1 Tour-splitting techniques

We start off with describing approximation algorithms for Metric TSP. A problem instance
consists of a graph G = (V, F) and edge lengths [ : E — N that form a metric. The
objective is to find a minimum cost Hamiltonian cycle in the graph. If the objective was
to find some feasible cover, it could be achieved in polynomial time by constructing a
minimum spanning tree. However, this does not give us a tour that visits every vertex
exactly once. We then need to convert this tree into a cycle. Since we are in a metric, the
algorithm uses the triangle inequality to great effect. Thus given two edges (u, v) and (v, w)
we can always introduce a new edge (u,w) as long as {(u,w) < l(u,v) + l(v,w) (i.e. the
triangle inequality holds). This idea of introducing a new edge is known as short-cutting
since the new edge introduced is no longer than the shortest path between u and w. Given
a minimum spanning tree T' of G, double every edge in the tree to get a graph where every
vertex has even degree (better known as an Eulerian graph). Then, start traversing the
tree from an arbitrary vertex and construct a tour by short-cutting every time we revisit
have to a vertex. It is not too hard to see that this algorithm gives a 2-approximation for
the problem [35]. The most important observation is that every edge in 7" is doubled and
short-cutting can not lead to increase in cost.
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2.1.1 Christofides’ algorithm

Christofides’ algorithm for the Metric Traveling Salesman Problem is a surprisingly easy
to understand 3/2-approximation algorithm that is yet to be improved upon. It uses the
important fact that in order to construct an Eulerian graph covering GG, we only need to
take care of vertices with odd degree. Thus Christofides’ algorithm constructs a perfect
matching on the odd-degree vertices of T" and adds it to T". It can be proven that this perfect
matching has cost no more than Opt/2. Thus we get a 3/2-approximation algorithm for
Metric TSP. This algorithm is also tight. This means that there are instances of Metric TSP
such that you can do no better than a 3/2-approximation using Christofides’ algorithm.

2.1.2 From tour to tours

The main difference between VRP and TSP is that we now want to construct a set of tours
instead of a single tour. In a k-Vehicle Routing Problem (k-VRP) instance, a feasible so-
lution is a set of k cycles {C;}¥ ; such that |J; V(C;) = V. The objective is to minimize
the makespan of the cover. Intuitively, the idea of tour-splitting is to start with an Eu-
lerian tour as constructed before and then break into k pieces of equal length. This idea
was introduced by Frederickson, Hecht and Kim in [13] and they gave a 3-approximation
algorithm for the problem of designing a solution to vehicle routing with %k vehicles. This
technique of tour-splitting is an elegant and powerful tool for designing solutions to vehicle
routing problems. We will see tour-splitting based algorithms by Even et al. again in the
next chapter.

2.1.3 Tours for non-identical vehicles

Another variation can be introduced to k-VRP by considering the real world idea that
not all vehicles are identical. The length of a tour is then measured in terms of time
ie. @ where s is the speed of the vehicle assigned to the tour described by cycle C.
A problem instance of Heterogeneous Vehicle Routing (HetVRP) consists of a graph G
with a special depot vertex r whose edge lengths form a metric and a set of k£ vehicles with
different speeds. The objective is to find a set of tours (each containing r) covering G while
minimizing the makespan. Thus when assigning a vehicle to a tour in an effort to minimize
the makespan, one has to take care that a slow vehicle maybe not need to be assigned to
a long route and a faster one to a short route since we could swap this assignment and

acheive a smaller makespan.

This introduces a new aspect which is an important combinatorial optimization problem
- assignment. An assignment problem instance consists of two types of objects. Each object
of one type has a (not-necessarily strict) ordering associated with every object of the other
type. The objective is to “match” the objects to each other such that every object is
matched to it’s most preferred choice.
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2.1.4 Vehicle Routing with Capacities

Gortz et al. consider HetVRP in [21] and provide a constant factor approximation for the
problem. A closely related problem that they also consider is Het CVRP (Heterogeneous
Capacitated VRP) when all vehicles have a fixed capacity. The problem and the objective
remains the same and they introduce a fixed capacity @ for each vehicle. Haimovich and
Rinnooy-Kan showed that a p-approximation for HetVRP gives a p + 1 approximation for
HetCVRP [23].

Hence, Gortz et al. focus on constructing an approximation for HetVRP. There are
three main components of the algorithm. The first is to binary search for the optimal
makespan. Assuming that they can find an upper bound M on the optimal makespan,
they determine, for each vehicle, the vertices that the vehicle can visit in time M. The
aspect of time and matching is taken care of using a result on scheduling on unrelated
parallel machines by Lenstra et al. [29]. (The scheduling problem is that of distributing a
set of jobs over a set of machines while minimizing the maximum completion time). The
second part of the algorithm involves the construction of a special spanning tree (called
a Level-Prim tree) rooted at r where the vertices are arranged in levels based on their
distance from r. Finally, the Level-Prim tree is decomposed into a set of subtrees which
are used by the first part as jobs to be scheduled on machines. As said before, their
algorithm achieves an constant factor approximation.

2.2 Set-Covering based techniques

We discussed in Section 1.4.3 how routing problems could be perceived as covering prob-
lems. The most general (and in a way eponymous) example of a covering problem is
MINIMUM-WEIGHT SET COVER. A problem instance of MINIMUM-WEIGHT SET COVER
consists of a groundset £ = {e;}]_,, aset S = {S;}L, of subsets of F' and a cost function
¢ : 2% — R that assigns costs to each of the subsets in S. A feasible solution is a cover
F C S such that each element of E is in some element of F. An optimal solution is a
feasible solution that minimizes the total cost of the elements in F. The set cover problem
is NP-hard and we discuss approximation algorithms for the problem in this section. The
goal is to introduce a the primal-dual method of designing approximation algorithms.

Now let ; be an indicator variable such that x; = 1 if the set .S} is in our cover and 0
otherwise. Since we want every element e; of E' to be covered, it follows that we must pick
at least one set containing e;. This gives us the constraint that every feasible solution has to
satisfy > jieies,; L > 1. Based on this we can write down the following linear programming
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relaxation which models the set-cover problem:
m
min Z T;c; (P)
j=1

s.t. Z z; >1foralie{l,2 - n}

j:eiESJ-

z; > Ofor all j € {1,2,--- ,m}

The dual (D) for the above LP (P) is as follows:
max Y (D)
i=1

s.t. Z y; < cjforall j € {1,2,--- ,m}

i:e,LESj
x; >0 forallie{l,2--- ,n}

Here we can think of each y; as a price that element e; has to pay in order to be
covered. The constraint in (D) dictates that in feasible dual solution, the total price paid
by the elements in a given set S is no more than the cost of the set as given by ¢;. One
way to solve the problem would be to solve (P) to get a fractional optimal solution and
then “round” the solution to obtain a solution to the set cover problem [30]. Another
approach would be to solve the dual and then round the optimal dual solution. Then
weak duality (See Appendix A) gives a solution to the set cover problem. Both of these
approaches require solving a linear program and give an a-approximation algorithm for
the set-covering problem where « is the maximum number of sets in which any element
appears. This approximation guarantee can be matched by the primal-dual method which
actually does not require us to solve an LP.

2.2.1 The Primal-Dual Method for Set Cover

The central idea of a general primal-dual algorithm is to start with a dual feasible solution
which is then modified to increase the value of the dual objective function till we have the
maximum possible number of tight dual constraints (i.e. constraints that hold with equal-
ity). Primal-dual optimization algorithms exist for several linear programming problems,
network-flow problems and many problems related to vehicle routing (k-MST, shortest s-¢
path to mention two).

For the set covering problem, the algorithm starts with setting each dual variable y; to 0
implicitly. Note that this gives us a feasible dual solution. The algorithm is best visualized
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as growing a region (think of a ball of radius y; growing as we increment y;) around each
dual variable till the dual constraint corresponding to some set .S; becomes tight. The first
time this would happen is when the regions corresponding to the elements in the cheapest
set(s) (among all sets in S) touch each other. The set S; is then added to the cover and the
dual variables corresponding to each element in S is then frozen i.e. for each element e;
in S5, we are not allowed to increment the corresponding dual variable y; any more. Note
that more than one constraint can become tight at the same time. However every time we
add a set to the cover, we are covering at least one new element. Thus this growing step
is repeated at most n times where n is the number of elements in E.

To formalize this idea, consider a snapshot of the algorithm and the corresponding
solution y to (D). Let F be the set {S; : Dieies; Yi < ¢} of sets such that their

corresponding constraints are tight in y. If F forms a cover (in other words, a feasible
solution for the primal) then we are done. If not, then it means that there exists an element
e; that is not in any of the sets in F . So we can increase the corresponding dual variable
y; (there by also improving the value of our dual solution) by some positive amount so
that the constraint for a cheapest set Si containing e; becomes tight. Thus we can add S
to F while maintaining the feasibility of the dual solution. As mentioned in the previous
paragraph, this process will be repeated at most n times since we cover at least one new
element each time we add a set to our cover. We now discuss primal-dual algorithms for
Prize-collecting Steiner Tree problem and then tie it in with approximation algorithms for
the k-MST problem.

2.2.2 Prize-Collecting Steiner Tree

Recall that a minimum spanning tree of a graph is the cheapest tree that contains all the
vertices of the graph. Now consider a graph G = (V, E) with non-negative costs on the
edges given by ¢ : E — Rs(. The set of vertices is partitioned into the set 1" of terminals
and the non-terminals (also called Steiner vertices) V' \ T. A feasible solution (called a
Steiner tree) is a tree that spans all the terminals. The objective is to find a minimum cost
Steiner tree i.e. a tree spanning the terminals with least possible total edge-cost. Each of
the terminals can be thought of as a location that we need to visit and each Steiner vertex
represents a depot that we can set up for vehicles. So a solution to the Minimum-cost
Steiner Tree problem gives tells us which depots we need to set up so that we are covering
each of the terminals in the cheapest possible way while ensuring that each location is
connected to some depot.

The PriZE COLLECTING STEINER TREE (PCST) problem introduces a penalty m; (the
prize) on each terminal vertex ¢ and then any Steiner tree gives us a feasible solution to
PCST. An optimal solution to PCST is now a tree T that maximizes the weights of the
terminals covered by T' (in other words minimizes the penalty incurred due to the vertices
not in our solution) and achieves the lowest possible edge-cost. Formally the objective is
to minimize Y v 7y Ce + D, e\ v (r) Tw Over all feasible solutions T' to the problem. One
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can extend the vehicle routing analogy here since the penalties now represent the profit
to be made by serving a location. Thus an optimal prize-collecting Steiner tree connects
the set of locations such that the profit is maximized while minimizing the total cost of
connecting these locations.

Goemans and Williamson gave a general primal-dual algorithm which attains a 2-
approximation for PCST [17]. They considered a rooted version of the problem where a
root r is prespecified. This is without loss of generality since the algorithm can be run once
for each vertex. We present a sketch of the algorithm based on the discussion by Blum
et al. [1]. Say we are given a graph G = (V| E) with edge costs ¢ : E — R, a root r
and penalties m : T" — R>( on the terminals. Then the linear programming relaxation for
PCST is as follows:

min erce + Z(l — 2y) Ty (P—PC)
j=1

vr
s.t. erzzvforallUES;rgéS
e€8(S)
Te >0 foralle e E
Zy >0 forallveV

The corresponding dual linear program is:

max > s (D — PC)
S:irgS
st Y ys<c ec€E
S:e€d(S)
Sys<Y mforall T CVirg T
ScT veT

ys >0 forall SCV;ré¢sS

Here yg is an indicator variable denoting whether or not a subset S of vertices is covered by
the solution. The algorithm proceeds in two phases. The first phase is the growth phase.
Intially all subsets S are set to be active. In each step, ys’s are uniformly increased for
all active components by some ¢ > 0. If an edge constraint goes tight then add the edge
to our forest F'. If a set constraint for some set S becomes tight, freeze the corresponding
dual variable and set the component to be inactive. When a set S is made inactive, every
vertex in S is labeled with all of the elements in S. The second phase is the pruning phase
where all inessential edges from F' are removed while maintaing primal feasibility.

This algorithm was used by Blum et al. [1] to give a constant factor algorithm for the
k-MST problem. A k-MST instance consists of a graph G with non-negative weights on
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the edges and a given integer k. A feasible solution is a tree spanning k vertices. The
objective is to find a feasible solution minimizing total edge cost. The problem was shown

to be NP-hard by Ravi et al. [31] and independently by Fischetti et al. [12] and also
by Zelikovsky and Lozevanu [37]. Blum et al. ’s algorithm was improved in a series of
papers by Garg [15], Arora and Karakostas [3] and Garg [10] to 3, 2 + € and finally to

2 respectively. Each of the algorithms were mainly primal-dual algorithms and then the
results strengthened via careful implementation.
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Chapter 3

Tree Covers of Graphs

Tour-splitting (Section 2.1) describes how one can easily convert a tree into a cycle (in
a metric setting) and hence, a tour by short-cutting. This chapter focuses two of the
problems from a paper by Even et al. [I1]. The problems of k-tree cover and Rooted Tree
Cover are examined in full detail and then the ideas are extended to solve Budgeted Tree
Cover.

3.1 Algorithm for k-Tree Cover

Let us review the k-Tree Cover problem. A problem instance consists of a given complete
graph G = (V, E) with edge-lengths [ : E — N (where [ is a metric) and a parameter
k € N. A feasible solution is a tree cover T of G, where |T| < k. The objective is to find
a tree cover while minimizing the makespan of the cover.

Consider the case when the optimal makespan is equivalent to the length of a minimum
spanning tree of G. If we knew this was the case, we could return any minimum spanning
tree as a cover (as k has to be at least one). We can generalize this by saying that if we
know the optimal makespan to be an « fraction of the length of the minimum spanning
tree, then ideally the solution would be to construct a minimum spanning tree and break
it up into « pieces “carefully” (See Lemma 3.1.1). This solution would be feasible as well
since given our assumption for the optimal makespan, k£ can be no smaller than an «
fraction of the length of a minimum spanning tree of G.

The first part of Even et al. ’s algorithm is to guess a value B for the makespan and
remove all edges e from G such that I(e) > B (possibly disconnecting the graph in the
process). Since these edges are more expensive than the makespan, they will not be a part
of any feasible solution with makespan B. Hence, this edge removal does no damage. In
the next step, find a minimum spanning tree for each connected component of the graph.
Now that we have our minimum spanning trees for each component, we try to decompose
them into smaller pieces based on our guess for the makespan. Intuitively, the process can
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be explained as follows. One can think of the decomposition procedure as traversing each
minimum spanning tree while keeping track of the total edge-length traversed. Once this
length reaches a certain limit, we disconnect the traversed area (which is a subtree of the
minimum spanning tree) from the tree by removing the next edge. Since we will binary
search for the optimal makespan, at a given point we are at most a factor of 2 away from
the optimal. Since the furthest point in a optimal solution is B away, doubling the edges
to get a tour gives a lower bound of 2B on the length of the tree. We will first look at each
of the individual ideas in detail and then tie them together to form the algorithm. We will
also see that their algorithm gives us a 4approximation for the makespan.

3.1.1 Edge-decomposition of Trees

In their algorithm, Even et al. take a large tree and break it up into smaller subtrees such
that the total edge length of each resulting subtree is within the range [2B,4B) where B
is the current guess for makespan. This helps ensure that the makespan of the constructed
cover is not too large. The following lemma by Khani and Salavatipour [25] gives a general
algorithm to decompose a tree based on a given parameter 5. It was proven implicitly in
earlier work by Even et al. [11].

Lemma 3.1.1. [Khani and Salavatipour [25]]Given a tree T with weight [(T') (sum of the
weights of the edges in T ) and a parameter > 0 such that all the edges of T have weight
at most 3, we can edge-decompose T into trees {T,}*_, with k < maz(|"%22|,1) such that

B
W(T;) <28 for each 1 <i < k.

Proof. For any vertex v € V(T') let vy, - - - , v, be v’s children connected via edges ey, - - - , €.
Let T' = W_ T, (for a,b € [p]) be a subtree rooted at v. Then, splitting away T from T
is defined to be the the following procedure: Designate T' as a new part and remove all
edges of T' from T. Now, T only contains vertices that are still connected to the root of
T. Note that we only delete the edges of T, thus T and 7" are edge-disjoint but not vertex
disjoint.

Root the tree T" at an arbitrary vertex r € V(T'). For every vertex v € V', denote by T,
the subtree rooted at v. Consider an edge e = (u,v) where u is the parent of v in 7. Use
T, to denote the subtree that contains the vertex u, the tree T, and the edge e. A tree T’
is called medium if [(T) € [3,20), heavy if [(T) > 43 and light otherwise.

Note that we can always split away a medium tree and put it in the decomposition.
So assume all the subtrees of T' are either heavy or light. Suppose T, is a heavy subtree
whose children are connected to v by edges ey, es, - - - such that all subtrees 7,,,T.,,--- are
light. Let 7 be the smallest index such that 7" = U;ZIT ¢; has weight at least 8. Thus T
is a medium subtree by construction. Then split away 7 from T and repeat the process
until there is no heavy subtree of T'. This process is used repeatedly to“split” away trees
till the weight of the remaining part of the tree is less than (.
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If [(T) < 28 then do not split away any tree since it is already a light or medium
weight tree and the lemma holds trivially. Suppose the split trees are T, ..., T}, with k > 2
and ((T;) € [B,20) for 1 < ¢ < k. The only tree that may have weight less than f is
Ty. We need to show that k < L%J For this, note that when Ty _; is split away, the
weight of the remaining tree is at least 23 (otherwise we would only have k — 1 trees in
our decomposition). Hence, the average weight of all trees in the decomposition is at least
[ which proves that k& cannot be greater than L%J O]

Based on the above lemma, we can write down the following subroutine for edge decom-
position. Algorithm Edge-decompose will be used as a subroutine later in the algorithms
for Rooted Tree Cover (See Section 3.2) and Budgeted Tree Cover (See Section 3.2).

Algorithm 1 Edge-decompose(7, 5) - Returns a set of k subtrees 7 = {T;}; such that

W(T;) <2f foreach 1 <i <k and k < ma:v(L%J, 1)

1. if I(T) < 2/ then

2 Return 7 = {T'}

3: end if

4: Initialization: Root T' at an arbitrary vertex r € V(T'). T « ()

5: while There exists a heavy subtree of T" do

6 Find a heavy subtree T, such that all it’s children subtrees T¢,,T.,,- - - are light.
7 i < smallest index such that 7" = U;:1 T, has weight at least .
8 Remove all edges of T from 7T

9 T=TU{T}

10: end while

11: Return 7.

Algorithm Edge-decompose splits away medium trees till there are no heavy trees left. It
is possible that we have one light tree left over after we split away all medium weight trees.
So the set T returned by this algorithm is of the form S U L where L is a set containing
at most one light tree. Edge-decompose will be used again for the algorithms for Rooted
Tree Cover (See Section 3.2) and Budgeted Tree Cover (See Section 3.2). Since the edge
decomposition procedure remains the same, we only change the value of the parameter (8
as required. Now that we know how the trees can be decomposed, we need a way to guess
the optimal makespan. For ease of explanation, we will assume that we have an upper
bound on the optimal makespan and state the algorithm by Even et al. Once we have
proven that the algorithm works under this assumption, we will see how to circumvent it.

3.1.2 What if we knew the optimal makespan?

For now, assume that we have an upper bound B on the optimal makespan B*. Hence,
B > B*. As we will be guessing values for B, Lemma 3.1.2 can be used to verify if B is
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actually an upper bound on the optimal makespan. Given G = (V| E), k and B > B*,
Even et al. do the following:

Algorithm 2 Construct k-TreeCover(G, k, B) - Compute a k-tree cover of G with cost at
most 45
1: Remove all edges of length > B. Let {C;}; be the connected components of the graph
formed after deleting heavy edges.
2: for all 7 do
3: M; < minimum spanning tree of Cj.
{Si}; < medium trees from Algorithm Edge-decompose(M;, 2B) and {L;}; < any
leftover light trees. (See Lemma 3.1.1)
5: end for
: Return{S’}; ; U {L;}; as the tree cover.

>

(=2

We now step through Algorithm Construct k-TreeCover. Since no tree is allowed to be
of length more than B, remove all edges e such that [(e) > B. Then, compute a minimum
spanning tree M; for each connected component of the graph resulting from Step 1. For
the fourth step, use Algorithm Edge-decompose (Algorithm 3.1.1) with 8 = 2B to obtain
the required decomposition. Let us try to see how many trees we are using to cover each
component C;. Use k; to denote the number of trees T; in the output of Algorithm Construct
k-TreeCover such that V(T;) NV (M;) # 0. Since we are splitting away trees of size at least
2B, the number of trees obtained is L%J +1. Note that we are yet to see why the number
of trees thus obtained is no larger than k. Lemma 3.1.2 shows that it is indeed that case.

Let B* denote the makespan of an optimal k-Tree cover of G. Consider T* = {1}, T5,--- , T} },
an optimal k-Tree cover solution. Note that since B > B*, T* does not use any edges of
weight greater than B. Let k* be the number of trees from 7™ covering the component C;.
Then Even et al. prove the following:

Lemma 3.1.2. If B > B*, then k; + 1 < k*.

Proof. Proof. Let T7,T5,--- T} be the trees from an optimal solution covering G; . We

can connect these kf components together to form a single component using £} edges.

Since the components were formed by deleting edges of weight > B, each connecting edge

that we add costs at most B. Hence, we obtain: Zf;l TF)+ (kf —1)- B > 1(M;). Since
I

each tree in the optimal solution has edge weight at most B, we get k} > =5~ + 5. Since

k; = L%J < l%i), the lemma follows. u

Lemma 3.1.2 shows that Algorithm Construct k-TreeCover succeeds when B > B*. Note
that the contrapositive of the above lemma immediately gives us the following:

Corollary 3.1.3. If > .(k; +1) > k*, B < B*.
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The optimal makespan is not actually known beforehand and hence, we need to know
how to circumvent this difficulty. The TreeCover algorithm binary searches for the optimal
makespan and starts off with a low guess B. Using Lemma 3.1.2 it first verifies if the guess
is sufficiently large. If not, it doubles the guess and repeats till the premise of Lemma 3.1.2
holds. It then uses Algorithm Edge-decompose as a subroutine, to construct the tree cover.
Even et al. ’s algorithm for k-tree cover is presented below.

Algorithm 3 TreeCover(G, k, B) - Compute a k-tree cover of G with cost at most 4B
1: Remove all edges of length greater than B. Let {C;}; be the connected components of
the graph formed after deleting heavy edges.
2: for all 7 do

3: M; < minimum spanning tree of Cj.
: ; 5 |-
5: if > .(k; +1) > k then
6: Print: “B is too low”.
7: Return: TreeCover(G, k,2B)
8: end if
9: T < AlgorithmEdge-decompose(M;, 2B)
10: {Si}; < {T € T such that I(T) > 2B} and {L;}; gets any leftover light trees.

11: end for

Lemma 3.1.4. When successful, Algorithm TreeCover returns a k-Tree cover for G with
makespan at most 4B.

The length of each of the subtrees returned by the decomposition is in the range
[2B,4B). So Algorithm TreeCover guarantees a 4-approximation to k-TreeCover. Notice
that the approximation guarantee is given in terms of our estimate B and not the optimal
makespan B*. Thus, the quality of our algorithm hinges on how well B approximates B*.
We now show that given any € > 0 we can find a B such that B = B* +e.

Theorem 3.1.5. For every €, there is a (4 + €) approximation algorithm for k-Tree cover
that runs in time polynomial in the size of G and log(%).

Proof. Let n = |V|. We need to find a (4 + ¢)-approximation algorithm for minimum
tree cover that runs in time polynomial in the size of the graph and in log(%). Let [, <
Iy < --- <1, be the edge weights sorted in non-decreasing order. Now it is clear that
B* < n-l, as [, is the length of the longest edge and n is the number of vertices. If
Algorithm TreeCover reports B* < B = [,,, then the total weight of all edges of weight less
than l;”—; is less than e- B*. Since these edges are not sufficient, we can contract these edges
and only use edges of weight at least enl—;" Binary searching in the range [€ - [,,,/n?, 1 - I,,]
can be done in polynomial time.

If Algorithm TreeCover does not fail with B = [,,, , then let ¢ be an index such that
(i) it reports B < B* for B = [;, and (ii) finds a tree cover of cost 4B for B = I; + 1.
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Here, we can conclude that B* € (I;,4l; + 1]. Binary searching in the range (;,[; + 1] is
polynomial if llf < % If it is not the case, then to maintain polynomial running time,
we run the algorithm with B = [' where [ = ”?2 - 1;. If the algorithm finds a tree cover of
makespan at most 4/, then binary searching within the range [;, 1] is strongly polynomial.
Else, TreeCover returns “B is too low” in which case we contract all edges of weight less
than [; + 1 and consider only edges of weight at most 4 - [; + 1 i.e. edges with weights in
the range [w; + 1,4 - w; + 1]. Note that binary searching in this range is again, strongly
polynomial. O]

Combining Lemmata 3.1.1 and 3.1.3 with this, we have proved that we get a (4 + €)-
approximation. If the edge weights are polynomial, we get a 4-approximation.

This completes our discussion of Even et al. ’s result for k-Tree covers. In the same
paper [11], Even et al. looked at Rooted Tree Cover (See Definition 1.4.2). This is the
other important algorithm on which our result for Budgeted Tree Cover hinges.

3.2 Rooted Tree Cover

Recall that given a complete graph G = (V, E), a metric [ : E — N and a set R C V, we
call a set of trees {7;};, an R-Rooted Tree Cover (See Definition 1.4.2) if the trees cover V
and every tree T; is rooted at some vertex in R. The objective is to find a rooted tree cover
for G while minimizing the makespan of the cover. Even et al. provide a 4-approximation
for RTC [11]. We proceed just like we did in the previous section. The first part of the
algorithm uses Edge-decompose (Algorithm 3.1.1) to construct a tree cover for G. The
second part takes care of rooting each tree in the cover.

This rooting condition introduces a new facet of assignment to the problem. Say the
optimal makespan was B* > 0. Consider a tree of edge weight B* — € (for some small
e > 0) that we want to add to the optimal cover. Then for the solution to remain feasible,
the assigned root can be no farther than e from the tree. Similarly, for a very small tree
(say of total weight €), the root can be as far as B* — e. This problem is solved using
bipartite matching techniques (discussed in Section 1.2.1) where we try to match trees to
roots that are not too far away.

3.2.1 Edge decomposition to construct covers

In the Rooted Tree Cover problem, the distance between a tree and it’s corresponding
root also contributes to the makespan of a solution to RTC. Hence, this time the input
parameter ( for Edge-decompose will be exactly our guess for the makespan unlike KTC
where it was twice the guess. Thus given a tree T" and a guess B for the makespan, we run
Edge-decompose(T’, B) to get a set of trees covering T" such that the length of each tree in
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the cover is in the range (B, 2B]. Based on the proof of Lemma 3.1.1 the following lemma

holds.

Lemma 3.2.1. Given a tree T with weight [(T) and an upper bound B > 0 on the weight
of every edge e € E(T), we can edge decompose T into trees {T;} such that [(T;) < B and
(T,) € [B,2B), Vi =

The main difference is the definition of light, medium and heavy trees. A tree T is
called medium if [(T') € [B,2B), light if [(T) < B and heavy otherwise. We then split
away medium weight trees just as we did previously till there are no heavy subtrees left.
Thus for each tree we obtain a cover consisting of at most one light subtree and one or
more medium subtrees.

3.2.2 Assigning Roots to Trees

Consider an instance of Rooted Tree Cover as defined in Section 1.4.2. Let 7 = {T;}; be a
set of trees returned by Algorithm Edge-decompose(7;, B). Define the distance between a
tree T € T and a vertex v € V(T') to be d(u,v) where d(u,v) is the length of the shortest
path between v and v. B is a given parameter such that a tree maybe rooted at a vertex
only if they are at most B away. To assign a root from some R C V to each tree in T,
we construct a bipartite graph H = (7 U R, ') where T contains a vertex for each 7' € T
and R. Put an edge (of unit cost) between a tree ' € T and a vertex r € R if the distance
between T" and r is at most B. Thus the problem of assigning roots to trees is equivalent
to finding a 7T-saturating matching. So we set up and solve the matching LP P’ for H
(see Section 1.2.1). The above discussion gives an algorithm that takes in a set of trees
and a set of candidate roots and assigns roots to trees. AssignRoots(7, R, B) presents the
discussion in the form of an algorithm.

Algorithm 4 AssignRoots(7, R, B) - Returns a set of root-tree pairs {(7;,r;)}; such that
d(T;,r;) < B for all i.
1: Construct a bipartite graph H = (T UR, E) where T contains a vertex for each T € T
2: Add edges of unit cost between every tree-root pair 7' € T and r € R if the distance
between T and r is at most B.
3: Find a minimum cost 7-saturating matching M in H. (If no such matching exists
M D)
4: ReturnM.

Even et al. prove that when B is at least the makespan of an optimal solution for Rooted
Tree Cover, the matching LP P’ has a feasible solution. The integrality of the matching
polytope for bipartite graphs then implies that we can find a 7 -saturating matching and
hence, the desired assignment of roots to trees. More formally: Let B* denote the makespan
of an optimal R-rooted tree cover of GG as before. Then, given a decomposition where {sz}”
are the medium weight subtrees, the following is true:
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Lemma 3.2.2. If B > B*, then there exists a matching in the bipartite graph H that
matches every subtree in {S;};; to some root in R.

Proof. To show the existence of a matching, we use Hall’s Theorem (See Theorem 1.2.1).
Thus we need to show that for any subset S of T, the set of neighbors N(S) is at least as
large as §. On a high level, the idea is to show that given any fixed optimal solution, we
can cover all the trees obtained in our decomposition using only the roots from the optimal
solution. This would clearly give us a feasible solution. We will do the proof in two parts:

Part 1: Fix an optimal solution 7* = {T*}¥_, with roots R* = {r;}; C R. Consider
now a subset S of trees from 7 . By construction, every tree S € S satisfies [(S) €
[B,2B). Let T*(S) be the set of trees from the optimal solution that cover vertices in S
Le. T(S)={T* € T*:3S € S such that SNT* # 0}. If any tree T* (rooted at a vertex
r) from the optimal solution intersects a tree S from S, then the distance between r and
S is at most B* and by assumption, at most B. Hence, there is an edge between r and S
in our bipartite graph H. This implies that |[N(S)| > |T7*(S)|. Thus, if we can prove that
|T*(S)| > |S|, we are done. We will prove this as follows:

Part 2: Since T*(S) is a subset of the fixed optimal solution, every tree from S is con-
nected to some root from the optimal solution via a tree from 7*(S). By our construction,
every edge in the trees in {S;} is also an edge from some minimum spanning tree. We
construct a new graph M’ by deleting all edges of S from the minimum spanning tree and
adding the edges from 7*(S). In Part 1 we established that each tree is connected to a
root via the edges of 7*(S). Thus every vertex in M  is connected to some root r in R*.
So if we identify all the roots to a single vertex, then the subgraph obtained is connected.
Since this is a connected subgraph spanning all the non-root vertices, the total edge-weight
is at least the edge-weight of the minimum spanning tree. Hence, (M) > I(M) where M
is the minimum cost tree spanning the non-root vertices.

Let [(T*(S)) denote } r.cr-(s) {(T7) and I(S) denote » g5 I(S). Then, (M) > 1(M)
implies [(7*(S)) > I(S). Note that this is simply because T7*(S) and S were constructed by
decomposing M and M respectively. Observe that the total length I(T*(S)) < B*|T*(S)|.
Therefore, B*|T*(S)| > I(T*(S)) > I(S) > B - |S|. Now, since B > B*, it follows that
T(S) =S|

Parts 1 and 2 prove |[N(S)| > |T*(S)| and |T*(S)| > |S| respectively. Hence, we have
IN(S)| = |S]. O

Following is the algorithm given by Even et al. for the Rooted Tree Cover problem.
It takes the graph G, the set of roots R and a guess B for the makespan as input and,
outputs an R-Rooted Tree Cover for G. Note that we are again assuming that we can
obtain a guess B > B* where B* denotes the makespan of an optimal solution for Rooted
Tree Cover.

Steps 1 through 3 of the algorithm are self-explanatory. For step 4, we use Lemma 3.2.1
and thus successfully decompose each of the trees into subtrees of edge length at most 2B5.
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Algorithm 5 RootedTreeCover(G, R, B) - Compute a Rooted tree cover of G with cost at
most 45
1: Initialization: T < ()
2: Remove all edges of length greater than B. Let {C;}; be the connected components of
the graph formed after deleting heavy edges.
3: M < minimum spanning tree of graph obtained from G by contracting roots in R to
a single node.

4: for all i do

5: Let {T;}; be the set of trees formed by uncontracting R.
6: T < T |JAlgorithmEdge-decompose(M;, B)

7: M « AssignRoots(T, R, B)

8:  if M == 0 then

9: Print: “B is too low”.

10: Return: RootedTreeCover(G, R,2B)

11: end if

12: end for

13: Return: M

In Step 6, we set up a bipartite matching problem and use it’s solution to find a root r € R
for every tree. The existence of a solution to this matching problem is guaranteed by our
assumption B > B* and Lemma 3.1.2.Just as before, Algorithm RootedTreeCover can be
modified to reach a correct estimate for the makespan. We start with a low value for B.
If the LP set up in Step 6 is not feasible, we return “Algorithm failed because B < B*”.
(See Lemma 3.2.2) In this case, we double our guess B for the makespan and try again. .
Otherwise, we continue and return the decomposition found by the algorithm. It is now
easy to see that this algorithm returns a 4-approximation for k-Tree Cover. This is because
the length of each of the subtrees returned by the decomposition is in the range [B,2B).
Hence, the following lemma holds:

Lemma 3.2.3. When Algorithm Rooted-Tree-Cover is successful, it finds an R-rooted tree
cover of cost at most 4B.

Proof. By construction, each tree in the cover given by the algorithm has a distinct root in
R and all the nodes are covered (i.e. each node belongs to at least one tree). The weight
of each tree used in the matching problem lies in the range [B,2B). The distance of the
roots assigned to the trees is at most B. Finally, the weight of each of the light trees is no
more than B and there is at most one light tree attached to a medium tree. Thus, no tree
in our cover has an edge weight greater than 4B. O]

Note that if the edge weights are not polynomial, we can again use an approach identical
to Theorem 3.1.5 to obtain a (4 + €)-approximation. We state it formally here:

Theorem 3.2.4. For every e > 0, there is a (44 €)-approxzimation algorithm for the Rooted
Tree Cover that runs in time polynomial in the size of G and log(%).
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Now that we have seen the two algorithms that our result is based on, we move on to
Budgeted Tree Cover. In the following chapter, we present a 5-approximation algorithm
for the problem. As stated before, the algorithm combines ideas from both the k-Tree
Cover and Rooted Tree Cover problems.
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Chapter 4

Budgeted Tree Cover

Let us look back at the k-Tree Cover problem. Instead of thinking that we have a parameter
k that limits the number of trees, k can be thought of as a budget. Then we pay a unit
cost for rooting each tree in a cover and we are not allowed to exceed the budget. Hence,
we will not be able to use more than £ trees in our cover. We generalize this to a version
where rooting costs are non-uniform.

This generalization can be tied back to the Nurse Station Location problem. The
Nurse Station Location problem consists of a set of possible locations to be set up as nurse
stations. There is a cost associated with setting up a nurse station at a given location.
The goal is to find a set of locations so as to set up these stations as cheaply as possible
while ensuring that each patient is visited by some nurse. We can think of each of the
patient locations and possible nurse locations as vertices in a graph. The distances between
different locations form the edge weights, the cost of setting up a station at a given location
gives us weights on the vertices of the graph and the budget forms the final parameter. A
feasible solution is a set of rooted trees that cover all the vertices of the graph. A rooted
tree can be converted into a route for the nurse by shortcutting (See Section 2.1) and the
root of the tree represents the location of a nurse’s station. More traditionally, one can
think of a vehicle routing problem where we pay non-uniform costs for the vehicles and are
given a fixed budget. A feasible solution is an assignment of vehicles to routes such that
the total cost of our vehicles does not exceed the budget. An optimal solution is a feasible
solution with the least makespan.

An instance of the problem consists of a complete graph G = (V, E') with a edge lengths
[ : E — N (where [ is a metric), weights w : V' — N and a budget K € N. A feasible
solution to the problem is a set of tree, root pairs (called a cover ) T = {(T;,r;)}; such
that the total weights of the roots does not exceed K. In the Budgeted Tree Cover (BTC)
problem, we want to find a feasible solution to the problem while minimizing the makespan.

Definition 4.0.5. Budgeted Tree Cover:(BTC) Consider a complete graph G = (V, E)
with a edge lengths [ : E — N (where [ is a metric), weights w : V' — N and a budget
K € N. A feasible solution to the problem is a set of tree, root pairs (called a cover )
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T = {(Ti,ri)}i such that ) pw(r;) < K. The objective is to find a feasible solution to
the problem while minimizing the makespan.

4.1 The Algorithm’s Components

We mimic Even et al.’s strategy [11]. We guess a value B for the makespan and remove
all edges e from G such that I(e) > B (possibly disconnecting the graph in the process).
We then find a minimum spanning tree for each connected component of the graph. Each
spanning tree is then decomposed into trees of total edge length between 2B and 4B
using Algorithm AlgorithmEdge-decompose(M;,2B). A root is assigned to each of the trees
obtained from the decompostion by solving a certain bipartite matching problem. We
will first look at each of the individual ideas in detail and then tie them together to
form the algorithm for our problem. We will also prove that the algorithm gives us an
5-approximation for the problem.

4.1.1 Edge-decomposition of Trees

We first delete all the heavy edges. Now it is possible that the graph is disconnected. The
minimum spanning tree M; for each component is then decomposed into smaller subtrees
using Algorithm AlgorithmEdge-decompose(M;, B) where the parameter /3 is set to B (which
is our guess for the makespan). Trees obtained from the decomposition are categorized into
light, medium and heavy based on their edge-length. A tree T is light if [(T) < 2B, medium
if (T) € [2B,4B) and heavy otherwise.

4.1.2 Assigning Roots to Trees

BTC requires each tree in the cover to be rooted. The algorithm initally breaks up the
graph into trees and later assigns a root to each tree in the cover. The previous section
covered the decomposition procedure that builds the trees. In this section we will see how
the roots are assigned. On a high level, this is done by constructing a bipartite graph and
computing a particular type minimum cost matching in the graph.

Consider a BTC instance as defined in Section 1.4.3. Let T = {T;}; be a set of trees
obtained by the edge-decomposition procedure from Lemma 3.1.1. As before, the distance
between a tree 7' € T and a vertex v € V is defined as min,cy(rd(u,v). Say we are
given a parameter B such that a tree maybe rooted at a vertex only if they are at most
B away. The assignment procedure is very similar to Algorithm AssignRoots (Algorithm
4.1.2). We make a change in the construction of the bipartite graph. When adding an
edge between a root r and a tree T', the edge is assigned a cost equivalent to the weight of
r. The Algorithm AssignWeightedRoots details this construction.
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Algorithm 6 AssignWeightedRoots(7, K, B) - Returns a set of root-tree pairs {(7;,7;)}:
such that d(7;,7;) < B foralliand ) ,r; < K
1: Initialize: T < 0
2: Construct a bipartite graph H = (T U R, E') where T contains a vertex for each T' € T
3: Add edges between every tree-root pair 7' € 7 and r € R if the distance between T’
and r is at most B.
for all vertices r € R do
if e € §(r) then
Assign e the cost w(r).
end if
end for
Find a minimum cost 7-saturating matching M in H. (If no such matching exists
M )
10: if ..\ > K then
11: Return “Algorithm failed: B < B*”.
12: end if
13: T < T U{(T;,7;)}; where T; and r; are the matched pairs of vertices.
14: Return T

4.1.3 What if we knew the optimal makespan?

For now, assume that we have a guess B for the optimal makespan B* such that B > B*.
We will see how we may obtain such a value for B in Section 4.2. So given a guess B > B*,
we do the following:

Since no tree is allowed to be of length more than B, we first remove all edges e
such that [(e) > B. We then compute a minimum spanning tree M; for each connected
component of the graph resulting from Step 1. For the decomposition, we use Algorithm
Edge-decompose with 2B as the parameter and that gives us the required decomposition.
The assignment of roots to trees is done by using Algorithm AssignWeightedRoots. Note
that only the trees of medium edge-length participate in the matching subroutine. Hence,
for each light component L;, we look for a medium weight subtree .S; with root s such that
V(L;) NV(S;) # 0 and assign s to be the root of L; . This works because in an optimal
solution, a root r will cover exactly one of these light components. To see why, observe
that the light components were formed by the removal of edges of length greater than
the optimal makespan B*. Thus if a tree from the optimal solution covers two different
light components, the total edge length of the tree needs to be > B* which is not possible
since the optimal makespan is B*. Another important observation that follows from the
same reasoning is that for any light tree L, it’s assigned root r from the optimal solution
belongs to V' (L). This is because other components are at least B* away and thus cannot
be covered by 7.

However, we still need to prove that given a guess B > B* for the makespan, there
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Algorithm 7 ConstructBudgetedTreeCover(G, K, B) - Compute a tree cover of G with
makespan at most 4B and total cost of roots at most K
1: Remove all edges of length > B. Let {C;}; be the connected components of the graph
formed after deleting heavy edges.

2: for all 7 do

3: M; < minimum spanning tree of Cj.

4: {Si}i; < medium trees from Algorithm Edge-decompose(M;, 2B) and {L;}; +— any
leftover light trees. (See Lemma 3.1.1)

5: end for

6: T < AssignWeightedRoots({S’} ;, K, B)

7. for all light trees in {L;}; do

8: Find medium weight subtree S; with root s; such that V(L;) NV (.S;) # 0.

9: Assign s; to be the root of L;.

10: end for
11: T <— TU {(LZ, Sz)}z

12: Return 7 as the tree cover.

exists a feasible assignment of roots to trees. Recall that the matching procedure involves
constructing a bipartite graph H = (T U R, E) as described in Section 4.1.2. Thus, we
need to prove the following lemma:

Lemma 4.1.1. If B > B*, then there exists a T -saturating matching in H such that
Y orer Wy < K where R C R is the subset of R saturated by the matching.

Proof. Fix an optimal solution 7* = {T;}%_| with roots R* = {r’}; . Let R = R\ R*.
Delete all the vertices of R" from H to form the graph H. Since the remaning vertices from
R are exactly the vertices from R*, we know that ) _p. f, < K. Thus, if we can show
the existence of a T saturating matching that only uses roots from R*, we are done. By
Hall’s condition, all we need to show is that for any subset S of 7 , the set of neighbours
N(S) is at least as large as S.

Consider now a subset S of trees from 7 . Define 7%(S) to be the set of trees from
the optimal solution that cover the vertices in S i.e. T*(S) = {T € T : 35 € S such that
V(S)NV(T) # 0}. We claim that |[N(S)| > |T*(S)|. (Proven as Claim 4.1.2)

Thus to prove |[N(S)| > |S], we just need to show that |7*(S)| > |S]|.

Let |S| = k and |T*(S)| = [. For brevity, we assume that the graph did not get
disconnected on the removal of edges with weight > B. The argument generalizes even if
the graph is disconnected as we can just apply this procedure to each connected component.
Let U be the set of all the edges from T*(S) as defined above. By way of contradiction,
assume that | < k. Use M ST to denote the minimum spanning tree constructed in Step
2 of Algorithm BudgetedTreeCover. Call two trees T; and T} “close” if they are connected
by an edge from the minimum spanning tree M ST i.e. if Ju € T; and v € T} such that
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(u,v) € E(MST). Then build a new graph H that spans S as follows: Add all the edges
and vertices from {T;}/_;. Then, while there exist T}, T that are close but not in the
same component of [, add the cheapest connecting edge between 7 and 7). The maximum
edge cost for H now is < IB + (I1)B < 2kB since we assumed [ < k. Thus, the total
edge-length of H is less than the total edge-length of S.

We now claim that each tree T of S lies in a connected component of H. (see Claim
4.1.4).

Claim 4.1.2. Let H be a bipartite graph constructed as described in Algorithm AssignWeightedRoots.
For any U C V(H), define N(U) to be the neighbours of U. Given any S C T and an
optimal cover T*, |N(S)| > |T*(S)| where T*(S) is the set {T € T : 3S € S} such that
V(S)NV(T) # 0.

(Proved later). Assuming the above claim, construct a new graph H by removing all
the edges of U from the minimum spanning tree M ST and adding in the edges from H.
Note that ) ., = w(MST) = pw(e) = w(MST) = > .y w(e) + > ..y w(e). Thus,
we have a graph spanning all the vertices of the graph that weighs less than the minimum
spanning tree. So if we can prove that this graph is connected, we have a contradiction.

We know all pairs of vertices (u, v) such that {u, v} is an edge in the minimum spanning
tree are connected. Thus we only need to worry about the pairs of vertices (u,v) such that
the path P,, between them is of the form w, wy, - - - ,w,, v where wy, - -- ,w, € V(S5). Since
these vertices are neighbours of each other in M ST , they lie in the same component of
H (by our claim). Thus each of wy,--- ,w, belong to the same connected component. We
only removed edges from U ie. edges in T*(S), the edges (u,w;) and (wp,,v) are from
the minimum spanning tree. Thus, H is still connected since we have not removed any
edges from H. So, we have a graph spanning all the vertices such that the edge weight
is less than that of the minimum spanning tree. However, this is a contradiction to the
minimality of the minimum spanning tree. Hence, |7*(S)| > |S|. O

Thus, there exists an assignment of trees to optimal roots and the lemma holds.

Note that if the graph gets disconnected upon removal of edges with length > B, we
can repeat the same argument for the minimum spanning tree of each component.

We now prove the claims that we made in our proof of the lemma above.

Claim 4.1.3. (4.1.2) Let H be a bipartite graph constructed as described in Section 4.1.2.
For any U C V(H), define N(U) to be the neighbours of U. Given any S C T and an
optimal cover T*, |[N(S)| > |T*(S)| where T*(S) is the set {T' € T : 3S € S} such that
V(S)NV(T) #0.

Proof. Every tree S € S satisfies w(S) € [2B,4B). If any tree T (rooted at a vertex r
(from the optimal solution) intersects a tree S € S, then the distance between r and S is
at most the length of the optimal makespan which is < B. Hence, there is an edge between
r and T (by construction of H). This implies that |N(S)| > |T*(S)|. O
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Claim 4.1.4. Let S be a subset of trees. Fach tree T € S lies in a connected component
of H.

Proof. By way of contradiction, assume there are vertices u and a neighbour v € N(u)
such that u and v are in different components of H. But since v and v are neighbours,
the two trees they belong to are close. Thus there is a path between u and v in H by our
construction of H. Thus u and v belong to the same component of H. O

4.2 Algorithm and Approximation Guarantee

The detailed algorithm is presented as Algorithm BudgetedTreeCover. The following is a
high level overview. Start off with a low initial guess B for the makespan. Use Lemma
3.1.1 to break the graph up into a set of trees. Run the subroutine from Section 3.1.3 to
try and assign roots to each of the resulting trees. If the algorithm returns a matching,
declare that the algorithm succeeded and output the set of rooted trees returned by the
algorithm as the solution. If not, declare that the algorithm failed, set B < 2B and repeat
Subroutine 4.1.3 with the new guess. We repeat this procedure till a feasible matching is
returned. We can obtain a value for B that is arbitrarily close to B* (i.e.B = B* 4 ¢ for
any given € > 0) using the techniques used by Even et al. in Theorem 3 of [11].

Algorithm 8 BudgetedTreeCover(G, K, B) - Compute a tree cover of G with cost at most

4B and total cost of roots at most K
1: Remove all edges of length greater than B. Let {C;}; be the connected components of
the graph formed after deleting heavy edges.

2: for all 7 do

3: M; < minimum spanning tree of Cj.

4: T < AlgorithmEdge-decompose(;, 2B)

5: {Si}iy < (T,7) from T such that [(T) € [B,2B) and {L;}; < any leftover light
trees. (See Lemma 3.1.1)

6: end for

7: M « AssignRoots({S5} ;, K, B)

8: if M == () then

9: Print: “B is too low”.

10: Return: BudgetedTreeCover(G, K, 2B)
11: end if
12: Return: M

The following section proves the approximation guarantee of our algorithm. We will
assume that the value of B in the following section is arbitrarily close to the optimum.
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4.2.1 Proving the approximation guarantee

Theorem 4.2.1. Algorithm BudgetedTreeCover produces a tree cover of graph G = (V, E)
of makespan at most (54 €) times the optimal (for any € > 0)that runs in time polynomial
in the size of G and log($)

Proof. The weight of each subtree created by the decomposition procedure is in the range
[2B,4B) and by construction of our bipartite graph H, each root is at most a distance of B
away from the tree. Finally, for the each of the leftover light trees L, the root is contained
inside the vertex set of L and hence, the distance between the tree and root is 0.

Thus the makespan of our cover is < 4B 4+ B = 5B. Since B = B* + ¢, we get that the
makespan is 5(B* + €). Thus we get a (5 + €)-approximation. O

This finishes our discussion of our algorithm for the Budgeted Tree Cover problem. It
can be seen from the discussion that this algorithm is a very basic and direct generalization
Algorithm k-TreeCover (Section 3.1)and Algorithm RootedTreeCover (Section3.2) Hence, it
is not surprising that the approximation ratio is worse-off than the two we saw before
- in particular, we have a 5-approximation (instead of 4 like Rooted Tree Cover). The
next chapter discusses a recent result of Khani and Salavatipour [25] that provides a 3-
approximation for k-Tree Cover. The goal is to try and present certain ideas that might
help improve the approximation guarantee for BTC.
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Chapter 5

Ideas for future work

This chapter focuses mainly on an idea for improving upon the 5-approximation algorithm
for BTC. The second half of the chapter talks about other open problems to investigate.

5.1 A better algorithm for BTC?

The work of Khani and Salavatipour improves upon algorithm for k-tree cover by Even et al.
and algorithm for minimum tree cover by (See Section 1.4.3). Khani and Salvatipour give
a 3-approximation algorithm for KTC and a 2.5-approximation algorithm for MINIMUM
TREE COVER [20] (They refer to the problem as Bounded Tree Cover). We will focus on
the k-tree cover problem in an effort to find ways to improve the approximation guarantee
for BTC. In the algorithms by Even et al. [l1] and Arkin et al. [!] the first step is to
remove all edges of weight more than our guess for the makespan. The main idea of Khani
and Salavatipour is to filter the edges more aggresively. So the algorithm deletes any edges
of weight more than B/2 where B is the current guess for the makespan. On a high level
the idea is to later introduce only some of these deleted edges later if need be. Since we
have deleted some of these heavy edges that were included in Even et al. ’s algorithm, the
constructed cover has a lower makespan.

5.1.1 A high level overview

Recall that an instance of KTC consists of a graph G = (V, E) with lengths [ : £ — N
that form a metric. A feasible solution to the problem is a tree cover of G with no more
than k trees. The objective is to find a feasible solution with minimum makespan. Just as
algorithms by Even et al. , the algorithm by Khani and Salavatipour binary searches for
the optimal makespan. Let the optimal makespan be B*. Then assuming that we have an
upper bound B on the makespan, we delete all edges from G that have length more than
B/2. This possibly disconnects the graph into serveral components {C;};. Define the tree
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length of a component C; to be the length of the minimum spanning tree of C;. They call
a component light if it’s tree length is less than B, medium if the length is in the range
[%, 3B) and heavy otherwise.

For every light component C;, they do one of three things: Construct a minimum
spanning tree of C; and include it in our cover or connect C; to another light component
C; with an edge of length at most B and then add a minimum cost tree spanning both
C; and C} to the cover or connect it to a heavy component and decompose the resulting
new graph (using AlgorithmEdge-decompose and Lemma 3.1.1) into medium subtrees and
add them to the cover. Based on this, we can see that none of the trees in our cover have
edge-length longer than 3B8. Thus we only need to ensure that there are no more than
k trees. The proof relies on using a fixed optimal solution and showing that each tree in
the constructed set can be covered by some tree in the optimal solution. As the optimal
solution has no more than k trees, this would prove that the solution is feasible and a
3-approximation.

5.1.2 Aggresive filtering for Budgeted Tree Cover?

The natural question to ask is whether filtering more aggressively can help the approxima-
tion guarantee for Budgeted Tree Cover. Given an upper bound B on the optimal makespan
B*, Algorithm BudgetedTreeCover starts with deleting all edges with length more than B.
The main lemma proving the correctness of the algorithm is Lemma 4.1.1. The lemma’s
proof hinges upon using an optimal solution and showing that every tree in our constructed
cover can be covered by trees from the fixed optimal solution. Thus if a tree T* from the
optimal solution covers some tree 7" in the constructed solution then 7™ does not cover any
other trees. Intuitively, this one condition helps us prove that each tree in the constructed
solution can be covered by some root in the optimal solution. This is because every other
component is at least B* away (by construction). If we could cover more than one tree
using one optimal root, then we would have extra roots from the optimal solution to prove
|T*(S)| > |S| where S is a subset of our constructed cover and 7*(S) is the set of trees
from the optimal solution covering S.

Thus if we were filtering aggressively and deleting any edges of length more than B/2,
then the distance between two components is at least > B/2. So in a cover with makespan
B an optimal root could cover two components, each at a distance of B/2. Thus we can now
use a single root to cover “half” of a heavy component. The main idea for improving the
approximation guarantee is to alter Algorithm AssignWeightedRoots such when assigning
roots, we can try to cover a heavy component using two roots.

5.1.3 Altering the root assignment process

First we review Algorithm AssignWeightedRoots. Let 7 be the set of trees returned by
Algorithm Edge-decompose(7;,2B). The distance between a tree T € T and a vertex
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v € V(T) is defined as before. To assign a root from some R C V to each tree in T, we
construct a bipartite graph H = (7 U R, E)) where T contains a vertex for each T" € T
and R. Put an edge of cost w(r) between a tree T € T and a vertex r € R if the distance
between T and r is at most B. The assignment is then done by finding a minimum cost
T -saturating matching with edge cost at most K.

The above process is then altered as follows: 7T is obtained from by Algorithm Edge-
decompose(7;,2B). Construct a hypergraph H = (T U R, E, U Ea). Here Ea is a set of
hyperedges {r,s, T} for r,s € R and T' € T such that the distance between r and T" and s
and T is at most B, E, is a set {r,T} for r € R and T' € T where the distance between r
and T is at most B. Then one needs to find a hypergraph matching F' C E of cost at most
K such that every vertex T in T has at most two edges from F' incident with it and every
vertex r in R is incident with at most one edge. There are several questions to be answered:
Firstly, can this hypergraph problem be solved? If yes, then given a decomposition can we
find a hypergraph matching with edge-cost no more than the optimal makespan? Finally,
does this approach actually give an improvement on the approximation guarantee?

5.2 Other avenues to investigate

A closely related problem is that of Bounded Tree Cover. It is a dual problem of the
k-Tree Cover problem. In k tree cover, we limit the number of vertices and minimize the
makespan. In the Bounded Tree Cover problem, the makespan is given as a parameter
and the objective is to minimize the number of trees in the cover. Formally we have a
graph G = (V| F) with non-negative weights ¢ : £ — R and a parameter B > 0. A
feasible solution is a tree-cover of the graph 7 with makespan at most B. The objective
is to find a feasible solution that minimizes the size of 7. Khani and Salavatipour gave a
2.5-approximation algorithm for Bounded Tree cover. They use the procedure for k-Tree
cover and guarantee that the makespan is under B and k is minimized. However, Khani
and Salavatipour do not establish any lower bounds on the approximation ratio and hence,
it would be interesting to see if the ratio can be improved or if any lower bounds can be
proven.

Another interesting avenue is Capacitated Vehicle Routing with Non-Uniform Speeds.
Gortz et al. gave a constant-factor approximation for uniform capacities. However, they
mention that their technique fails when the capacities are not identical. This is because
they sort the locations based on their distance from the depot and then assign vehicles to
locations based on their speeds. Hence, new ideas will be necessary to design a solution
for Heterogeneous-CVRP with non-uniform capacities.

The above discussion only scratches the surface of the possible open questions associated
with routing problems. Several other related problems such as Capacitated Steiner Trees
and Facility Location based problems are open to further investigation and pose very
interesting questions. Vehicle Routing is a highly applicable (and “difficult”) problem and
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new variants still arise in practice. While the mathematics involved in improving current
work is fascinating, coming up with more complex scenarios and tackling them (Stacker-
Crane variants, for example) provides nearly unlimited room for study and exploration.
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Appendix A

A (very) short discussion of Integer
Linear Programs

Linear programming originated in the 1950’s as a way of modelling optimization problems.
A linear program (LP) is the problem of maximizing (or minimizing) a linear objective
function over the set of all vectors satisfying a given set of linear inequalities and equations
[30]. In 1979, Leonid Khachiyan proved that linear programs can be solved in polynomial
time. A linear program is called an integer linear program (ILP) if the variables are only
allowed to take on integer values. A solution to the linear program is an assignment of
integers to the variables such that all the constraints are satisfied. For the purposes of
this essay, it will be enough to restrict ourselves to boolean variables i.e. the variables
can either be set to 0 or to 1. This case is referred to as 0, 1-integer linear programming.
0, 1-integer linear programming was shown to be NP-Hard by Karp and is one of Karp’s
“21 NP-Complete problems” [24].

An 0, 1-integer linear program is canonically written down as the following maximization
problem.

maximize o
st. A-x<b
z € {0,1}

The corresponding linear programming relazation can be obtained by letting the vari-
ables = take on any value between 0 and 1 (thus “relaxing” one of the constraints).

T

maximize cx
st. A-z<b
z >0
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Note that every ILP can be written down in the canonical form because of duality
of linear programs. In this case the original linear program is referred to as the primal
problem and the corresponding program obtained via duality is called the dual. The dual
of the above linear programming relaxation is the following linear program.

minimize by
st. ATy >c
y=>0

The idea is that we have one variable in the dual for each constraint in the primal and
one constraint for each variable in the primal. The most basic implication of duality is
that the dual of a dual is the primal. Another important concept is that of strong duality
which says that if the dual has an optimal solution then so does the primal and that they
both have the same optimal value. A special kind of duality that arises very frequently in
the study of approximation algorithms and in various combinatorial optimization problems
is the relation between covering and packing LPs. The above minimization program is a
typical representation of a covering LP while the dual maximization program is a typical
packing LP. For example, the LP for minimum vertex cover is a minimization program and
dual of the LP gives us a linear program for the maximum independent set problem.
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