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Abstract

Different models of generating random regular graphs have been widely studied, such as the
configuration model, thé-process and thd-star process. We will have a brief overview of
properties of these models. We will also review properties of Markov chains, and the coupling
method, which is usually used to prove the mixing rate of a Markov chain. In this essay, we study
a new algorithm, called pegging, to generate randemagular graphs. We prove that the number

of triangles has a limiting Poisson distribution, and estimate the rate at which it approaches its
limiting distribution. The method we used is similar to the coupling method, but we will first
extend the coupling lemma, so that we can measure the total variation distance between two
random processes, instead of two copies of a same Markov chain. Therefore the case we study
here is quite different from that we usually see in Markov chains. We conjecture this result also
holds fork-cycle for any fixedk, and more precisely, the numbenetycles, wher&= 34,5, ...

are asymptotically independent Poisson random variables.
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Chapter 1

Introduction

Random graphs were first introduced by &sdin his proof of existence of graphs with arbitrarily
large girth and chromatic number. Later on, random regular graphs were introduced and studied
by Bender, Canfield, Bollds, and Wormald. In other areas such as Computer Science, people
especially show interests in generating random graphs, or random regular graphs, with a given

distribution.

Let ¢, 4 denote the probability space of all randoknegular graphs on vertex set, where
ndis even andn| :={1,2,3,--- ,n— 1,n}, with uniform distribution. A crucial question is how
to generate regular graphs fra#h g uniformly. Currently there is no known efficient algorithm
to generate randomi-regular graphs with uniform distribution whehis greater thar®(n'/ 3).

If d= O(n1/3), Mckay and Wormald showed an efficient algorithm, given in [4], which uses
“switching” to eliminate loops and double edges. WIdas a constant, we can apply thenfig-

uration model, also called thpairing model, which was first given by Boll@s [5].

But using the pairing model for generating graphs becomes slow even for cahstaend
is large, because with high probability we will get a multigraph with loops and multiple edges,
so we have to abandon this multigraph and start again. This is repeated until we get a simple
final graph. It can be shown that the probability of getting a singptegular graph from the
pairing model is asymptoticallgxp((1 — d?)/4). Thus the expected number of times we need

to generate graphs until we get a simple final grapéx (d® — 1) /4). It becomes slower and
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slower wherd becomes large. Also, the algorithm in [4], though efficient in some senses, is very
complicated and has never been implemented. So it is worthwhile to turn to other near-uniform
models which generate graphs faster. Quick approaches such dgtbeesd6], and thed-
star-procesg7] do not generatée-regular graphs uniformly, but a.a.s. end up with a final graph

that isd-regular.

One of the direct applications of generating randdegular graphs is to model random
networks. Bourassa and Holt [1] introduced a peer-to-peer network called the SWAN network,
in which clients arrive and leave randomly. They suggested to keep the underlying topology a
randomd-regular graph, which is achieved by usipggging which they call “clothespinning”

(for arriving clients), and its reverse (for clients leaving). We will define this pegging operation
in Chapter 2. They found that this type of random network has good expected connectivity and
other properties. Cooper, Dyer and Greenhill [2, 3] defined a Markov chathregular graphs

with randomized size to model the SWAN network. Each move of the Markov chain is by a
pegging operation or its reverse. They showed that conditional on the size of the network, the

stationary distribution is uniform, and they gave a good estimate for the mixing time of the chain.

The reason that the short cycle distribution attract special interest is th&tiinthe only
possible local structures to appear asymptotically almost surely (a.a.s.) are trees and cycles. For
anySc [n], such that S| is a constant5[S, the subgraph induced by the vertex Seis a tree
a.a.s. The distribution of the numberloetycles in%, 4, wherek = 3,4,5,-- -, is asymptotically
independent Poisson. So a question that arises naturally is what the short cycle distribution is
in the near-uniform models of generatidgegular random graphs. This essay studies the short

cycle distribution in the pegging algorithm.

In Chapter 2, we introduce the different models mentioned above to generate random regular
graphs, and we describe the known results concerning the connectivity and the short cycle distri-
bution. We will define the pegging operation, and the pegging algorithm, which is just repeating
the pegging operation in each step. We will also introduce Markov chains, and some important
parameters and theorems of Markov chains, such as stationary distribution, convergence theo-
rem, and mixing time. We will introduce the coupling lemma, which is a simple but powerful

tool to estimate the mixing time. Then we will give some examples of applying Markov chains
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to sample random structures. In Chapter 3, we study in particular the limiting distribution of the
number of short cycles in randodaregular graphs generated by the pegging algorithm. In order
to do this, we will first extend the coupling lemma to estimate the rate that a random process

goes to its limiting distribution. Results and proofs will also be given in Chapter 3.



Chapter 2

Models of generating random regular

graphs

In this chapter, we will introduce different models of generating random graphs, and compare the
advantages and disadvantages of each model. We will discuss several graph properties in each

model. The one we pay most attention to is the short cycle distribution.

2.1 Uniform models for random graphs

2.1.1 Pairing Model

Let ¥, 4 denote the probability space of all randokmregular graphs on vertices with uniform
distribution, wherend is even. Suppose we want to generate graphs #gm If d is a constant,
we can use the pairing model to sample graphs f#gmu.a.r. The pairing model is described

as follows.

Consider a set aifid points, wherend is even, and partition them intobuckets withd points
in each of them. We take a random matching ofridepoints, and then contract tliepoints in

each bucket into a single vertex. The resulting graphds@gular multigraph om vertices.
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Let &4 denote the probability space of randakregular multigraphs generated by the
pairing model as described above. Every grapfjg corresponds tgd!)" copies in#, 4, So

all simple graphs, namely, graphs without loops and multiple edgeg,ijoccur u.a.r.

The following result gives the probability of a multigraph fra#, 4 being simple.

Theorem 2.1 (Bender and Canfield [12])

_d?
P(Pnd is simplg ~ exp(1 4d ) :

Whend is large, namely, tending to infinity asgoes to infinity, therP(, 4 is simple)
tends to0. Nevertheless, we can still apply the pairing model in such a case. The generated
graph is a.a.s. a multigraph with loops and multiple edges. Then McKay and Wormald [4] used
switchingmethod to eliminate the loops and multiple edges. The switching method is described
as follows. Consider a pair of non-adjacent edga$} and{c,d} in ad-regular graph, then
replacing{a,b} and{c,d} by {a,c} and{b,d}, or by{a,d} and{b,c}, we get anothed-regular
graph. This operation is called “switching”. They showed that the property that the simple
regular graphs are distributed u.a.r. is preserved after the switchings. So they gave a polynomial
time algorithm of generating randodaregular graphs uniformly by applying pairing model and

switching method. They also used the switching method to prove the following theorem.

Theorem 2.2 (McKay [11]). If k = o(n1/3), the number of labelled k-regular graphs on n ver-
ticesis
(nk)!exp((1—k?)/4)
(nk/2)12nk/2

(1+0(1)).

uniformly as n— o with kn even.

McKay and Wormald then used a new type of switching to find the formuld f@ro(nl/z).

Corollary 2.1 (McKay and Wormald [13]) For d = o(n%/?),

—d2 3 2
P(Pngd is simplg = exp<l 4d _ f_zn +0 (%)) .
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We can generaliz®, 4 t0 %, 4, whered = (dy,d», ..., dy) is an n-vector denoting the degree
sequence. Thef#, 4 denotes the uniform probability space of all random graphs with given
degree sequence. We can still apply the pairing model to generate graph@fgorPartition
m= S 'd; points inton buckets, withd; points in each bucket, and take a random matching of
them points. Letd = max{dy,dy, ...,dn}, then similarly we can show th&( &, 4 is simplg >
exp(l‘sz). So the pairing model still works efficiently for constahtespecially wheml is not
large. Since the expected time of generating a simple graph is exponertdfaltte algorithm

will get slow whend gets large. The pairing model is also called toafiguration model

The following two theorems give the short cycle distribution in the uniform probability space

%4, and the pairing model.

Theorem 2.3 (Bollobas [5]) For d fixed, let X= X (i > 1) be the number of cycles of length

i in the random multigraph coming fron#, 4. For fixed k> 1, Xq,..., X are asymptotically

independent Poisson random variables with megns (d;il)'.

Theorem 2.3 explains the following theorem for the short cycle distributiéf in

Theorem 2.4 (Bollobas [5], Wormald [18]).For d fixed, let X= X; n(i > 3) be the number of

cycles of length i in a graph &}, 4. For fixed k> 3, X3,..., X are asymptotically independent

Poisson random variables with meaks= (d;il)'.

To illustrate the use of switching, here we prove a weaker theorem showingtiseasymp-

totically a Poisson random variable for any fixed 3.

Theorem 2.5 For any constants &k fixed, let % = X, n(k > 3) be the number of cycles of length

kinagraphing, 4. Then Xis asymptotically a Poisson random variable with maga- (dgkl)k.

Proof
We first prove that for any fixed integkrthe expected number kfcycles in%, 4 is bounded. We

only need to prove this i, 4, then it is also true fo%, 4, according to Theorem 2.1. Assur§e
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is ak-vertex set, such that tHevertices are placed in a cyclic order, nametyvs, ..., Vk_1, Vo,

we regard each vertex as a bucket which contairspoints. An edge;, Vi1 corresponds to a
matching from a point iw; to a point tovi 1. We call this a pair. Le{p1, p2, ..., pk} be ak-pair,

such that the-th pair matches a point M mogk t0 Vi+1 modk, and every two pairs are disjoint,
namely, no two pairs will share the same point. Clearly, after we contract the points in each
bucket, &-pair in £, 4 corresponds to k-cycle in a multipled-regular graph. LeXp, p,....p, b€

the indicator random variable thép1, po, ..., pc} occurs in the pairing model.So For any given

k pairs in the pairing model, the probability for it to occur(@n— 1 — 2k)!! /(dn— 1)!!, which

is asymptotically(nd) %. So

-k
P(XprZv--v»pk = 1) ~ (nd) .

Let Q(n,k) be the set of alk-pairs in #%,q We need to countQ(n,k) |. We will first count
the number ok-pairs for any givers. First choose one point in each bucket; theredfrevays
to do that, then for each chosen pointinmegk, there argd — 1)" ways to choose its partner
iN Vi41 modk- SO the number ok-pairs in total isd(d — 1)K. There are(}) ways to choose a
k-vertex set, and for eadh-vertex set, there argk — 1)! ways to put it into a cyclic order with
an orientation. Thug,Qnk |= (7) (k—1)!d¥(d — 1)k, Let

N = > Xp1,pa.....pc
{P1.p2,.... P} €Q(NK)

ThenNy is the number ok-cycles in the multiple randowiregular graph produced by the pairing

model. So

E<Nk) = Z XP1,p27-~~7pk
{p17p27"'7pk}eQ(n7k)

~ (D (nd)~kdk(d — 1)K(k— 1)1/2
~ (d—1)k/2k.

So0E(Nk) < . Thus the expected number lotycles in%, 4 is also bounded, for any fixed
k. Let X, be the number dk-cycles in%, 4, and choosev(n) = o(n/2) to be some function df

that goes to infinity slowly as goes to infinity, then
P(X >w(n)) =0(1) for any fixedi. (2.1.2)
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Let % be the set of graphs i#, g with ¢ k-cycles, wherec > 0 is any constant. For any
G € %1, thec+ 1 k-cycles are disjoint with probability — o(1). Choose an edge contained in
a k-cycle, then choose another edge which is neither adjacent to the chosen edge, nor adjacent
to any other edge that is contained in the same cycle as the chosen edge, nor contained in any
k-cycle. Switching these two chosen edges, we cregéketal)-path and a grapl®’ € 4. Then
for all ¢ < w(n), the number of ways to choose an edge containedkitycle isk(c+ 1), and
the number of ways to choose another edg%‘ﬂis O(w(n)). There are two ways to switch these
two chosen edges, so the number of ways to do a switchidky és+ 1)(‘:‘—2n —O(w(n))). On the
other hand, this procedure is reversible. For @y %, choose gk+ 1)-path, such that the end
edges are not contained in akycycles, nor both contained inZk-cycle, and then switch the
end edges of the path. We get a gr&pte %..1. The number of suctk+ 1)-paths we can find
inGis d(d;zl)k” —O(w(n)), a.a.s. since onl®P(w(n)) cycles with length at mostk exist in%.
So

(%|  2k(c+1)(dn/2) — O(w(n))
(%en| — d(d—1)kn/2— O(w(n)

)
R ()

So

IA
VR VR VR
=
N |
e
>
(@]
~
VR
=
+
o
VRN VRN VRN

Forc > w(n), from (2.1.1), we know that

2c>w(n) | Y% | _
2020 | %C |



Now
En
Sieol % |
| % |
(1+0(1) 51D | % |

P(X=0) =

(1+0(1) 5 \%\( /w) (1+0(1))

(1+0(1) ( ) il
o )
For constant > 0,
Ea
P(X, — S Sk N
%=0) = 5= 4]
EA
= P(X¢=0

= exp(— (d ;kl)k +0(1)) <(d ;kl)k +0(1))C/c!.

This provesX, is asymptotically Poisson random variable with mé%gﬂu—k, for any fixed integer
(O |

2.1.2 Pseudograph Model

Sometimes people want to generate graphs from the probability $paceén which each graph
with n vertices andn edges appears with the same probability. &hi’s random pseudograph
model is useful to generate and analyse grapt#,in. It is defined as follows. Given positive
integersn andm, define.# (n,m) to be the set of function$ : [2m| — [n], such that each €
Z (n,m) takes the same probability measure. We can dé&fifre m), the probability space of
pseudograhs, as follows. A random pseudograph correspondingétledG(f), is defined on
the vertex sefn|, to have edge sdtu,v) |u= f(2i—1),v=f(2i): forall1<i<m}. Then

% (n,m) ={G(f), forall f €.#(n,m), where eactf takes the same probability measyre.
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Theorem 2.6 (Chvatal). Simple graphs are equiprobable #i(n,m), and for Ge ¢’ (n,m) and
c=2m/n,

() mi2"

P(G is simple = ~™—_—

n2m

= exp(—c/2—c2/4) +o(1)

where N= (7).

Proof:

Consider.Z (n,m), the set of functions maps frof@m to [n]. Clearly | .Z(n,m) |= n®™.
Consider a simple grapB, with n vertices andn edges. Every such grajih, corresponds to
mi2™ number off € .%(n,m), since there aren! ways to place the order of tha edges, and

for each ordering, there aB" ways to place the order of the end-vertices of each edge. Finally,

N)mi2m
(m%g]n . Let

there are(m) ways to choosen edges from am-vertex graph. S®(G is simple =
N m
K = (m)n;iz . Then sinceN = n(n—1)/2= T (1— 1), andm=cn/2,

n2

(ym2™  [N]p2m

N(N—1)...(N—m+1)2"
- n2m

n’(1—1/n)(n*(1—1/n) —2)(n*(1—1/n) —4)...(n*(1—1/n) —cn+2)
n2m

So

cn/2—-1 1 9
logK = i; log <1_ﬁ_ﬁ>

cn/2—1

-2 o)

= Tnz2 malz YO
2
c C
= ———Z 401
2~z o
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Thus

2
K = exp(—% - CZ +0(1)>
So,P(Gis simple = K = exp(—c¢/2—c?/4) +0(1). 1

2.2 Non-uniform models for random regular graphs

The problem of pairing model is that generating graphs by pairing model becomes slovdwhen
is large. However, for large constamtwe can generate graphs by using near-uniform models,

which is much faster than the pairing model. In this section, we discuss some of them.

2.2.1 d-process

This process applies whekis a constant, and starts froBy = K,,. GivenG, choose u.a.r. a pair
of non-adjacent verticasandv, whose degrees are both less thaand seG; 1 := Gt + {uv}.
The process stops when no such vertex pair exists. The following theorem explains why the

algorithm of generating-regular graphs by using tlteprocess is fast.

Theorem 2.7 (Rucinhski and Wormald [9])For fixed d> 1, in a random d-process, the final

graph is d-regular a.a.s.

Since the final graph id-regular almost surely, we can generate ranabregular graphs by

running a randonal-process.

The following theorem shows the connectivity property of graphs generated in a random

d-process.

Theorem 2.8 (Rucihski and Wormald [9]For fixed d> 3, the final graph is connected a.a.s.
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The analysis ofl-process is complicated. The difficulty is discussed in [6]. Rski and

Wormald gave the following result for short cycle distribution ig-process.

Theorem 2.9 (Rucihski and Wormald [15])n a 2-process, let > 3 be fixed. The number of

I-cycles in G, is asymptotically Poisson. For=+ 3, the mean converges to

o 2
1 / (log(1+X))7dx _ 1, 1 88735349357788830
2 Jo Xe

2.2.2 d-star process

This process is defined whehis a constant, and starts fro8y = K,,. GivenG;, choose u.a.r.
a vertexu with minimum degree irG;, choose u.a.rk = d — d(u) vertices,us, Uy, ..., Ux, which
are non-adjacent to, and with degrees strictly less thdnSetG; 1 := Gt + {uug, utp, ..., Ut }.
The process stops when for somef minimum degree chosen, there are less tharml(u) other

vertices which are non-adjacentupand with degree less thah

We have similar connectivity property of the final graph in a randbstar process as in the

randomd-process.

Theorem 2.10 (Greenhill, Ruadnski and Wormald [10]Jor fixed d> 3, the final graph is con-

nected a.a.s.

Fox fixedd which is large enough, we have the higher connectivity property for the final

graph.

Theorem 2.11 (Greenhill, Ruanski and Wormald [10]For fixed d large enough, the final graph

is d-connected a.a.s.

Robalewska and Wormald showed that the final graph of randistar process id-regular

asymptotically almost surely. For more details, see [7].
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2.2.3 Pegging operation

We define a new algorithm, called tpegging algorithmwhich simply repeats a random opera-
tion we call pegging, to generate randdanegular graphs, whemis a constant. We define the

pegging operation on@regular graph, wherd is even, as follows.

Pegging Operation. InputG,d), Output:G

1: Let ¢ := d/2. choose c non-adjacent edges ifE(G) u.a.r, denoted byE; =
{ugU2,U3Uy, ..., Uxc_1U2c} C E.

2. G := (G\E1) U {u} UEy, where u is a new vertex added inG, and E, =

{uug, U, UL, .. . Ulpc_1, Ulpc}.
3: G:=G. End.

See Figure 2.1 as an example of pegging operationdavithd. The pegging algorithm starts
from ad-regular graphGg, for exampleKq. 1, and repeatedly apply the pegging operations. It
is easy to check that the graph resulting from taking the pegging operations defined above is still
d-regular. Ther; is defined to be the graph resulting frarauccessive pegging operations on

Go, andG; containsn; = ng +t vertices.

Figure 2.1:Pegging operation when ¢ 4

We will present results of our examination of the short cycle distribution of these graphs in
Chapter 3.
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2.3 Sampling random structures

Markov chains are useful to sample random structures. Usually a Markov chain is well designed
such that the states in the chain represents the random structures we want to sample, and the
stationary distribution of the chain is the same as the distribution from which we are going to
sample the random structures. So we will wait until this chain is close to its stationary distribution

and then we can sample the random structures. In this section, we will discuss this method.

2.3.1 Preliminaries for Markov chains

A Markov chainis a random procesgX }i>o, such that the distribution of;; is determined

only by X, the previous step. Formally,
P(Xr1= XX =X, ..., X1 = X1, X0 = X0) = P(X1 1 = XX = %).

Define thetransition probability matrixP as follows. The entrypjj of P is the probability of

going from state to statej in a single step

pij =Pr(Xy=j | Xo=1).

Then then-step transition probabilities are
ol = P = j | Xo = ).
Thusn-step transition probability matrix B™ = PP...P which is an-fold matrix product.

Then-step transition satisfies the Chapman-Kolmogorov equation,

p = Z) piplf for any0 < k < n.

A statej is said to beaccessibldrom state if there exitst > 0, such that
P(X = j[Xo=1)>0

14



A communicating class @ a set of states such that any two stateS are accessible from
each other. A Markov chain is said to veeducibleif its state space is a communicating class.

This means that it is possible to get to any state from any state in an irreducible Markov chain.

A statei has perio if starting from state, any return to statemust occur in some multiple

of k time steps. Formally, the period of a state is defined as

k=gcd{n: P(X,=i|Xo=1i) > 0}.

If k=1, then the state is said to laperiodic otherwise, the state is said to be periodic with

periodk. It can be shown that every state in a communicating class must have the same period.

An irreducible Markov chain is said to le¥godicif its states are aperiodic. A Markov chain
is ergodic if itis irreducible and aperiodic. The vectois a stationary distribution i jcq 71, =1

and satisfiesty = Y. mipij for all j.

Theorem 2.12 (The convergence theorem [16lj)an irreducible Markov chain has a stationary
distribution 17, then this stationary distribution is unique. Moreover, if this Markov chain is also

ergodic, therP'(i, j) — m(j) ast— o, foralli,j € Q.

Consider a random walk on a finite gra@h= (V,E), where the walk starts at vertey. At
each step, assuming the walk is at positioa, it will go to one of the neighbors of; at step
t + 1, with probabilityl/d(v). The sequencévp,Vvi,Vo,...} is a Markov chain with stationary
distributionri(j) = d(vj)/ | E |. If Gis non-bipartite, then this Markov chain is ergodic, and the

distribution ofv; converges to the stationary distribution.

Also consider the pegging operation defined in section 2.2.3. Let’s start frasregular
graphGg, whered is even, and assume at stepve have graplt;, then we get grapks;. 1 by
taking a pegging operation, or a reverse operation of pegging. The seqencd, Gy, ...} is
a Markov chain. Cooper, Dyer and Greenhill have studies this chain in [2], in which they define
this chain to model the SWAN network. They proved that the distributio@;ptonditional on

certain size of5;, will converges to the uniform distribution.
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The graph sequencdss: }1~0 generated frond processd-star process, and pegging algo-
rithms are also Markov chains, but these Markov chains are a bit special, since no state in the
chain will ever recur once it has occurred. Thus they have no stationary distributions and do not

have a convergence property.

While generating graphs from a Markov chain, people usually wait for enough time till the
current distribution is close to the stationary distribution of the Markov chain. This brings us to

the problem of mixing time.

2.3.2 Mixing time

A finite state ergodic Markov chain has a unique stationary distributiceind the distribution

of the chain at timé converges tar ast tends to infinity, no matter which initial state it starts.
Mixing time refers to the idea of how largeshould be to guarantee that the distribution at time

is approximatelyt. We define the total variation distance to be the distance between the current

distribution of the chain, denoted ag,, and the stationary distributiamto be

drv(ox, m) = R’ICEB({P(Xt €A —m(A}. (2.3.1)

then the mixing time of the chain is defined to be the following functiaf some small positive

constant, where the total variation distance is at most

1(€) = mtin{dTV(oxt, m < ¢}.

Tools for proving mixing rate include conductance and multicommodity flow [20], and the
method of coupling and path coupling [20, 19]. In broader uses of the Markov chain Monte Carlo
method, rigorous justification of simulation results would require a theoretical bound on mixing

time.

We now have a more detailed look at the coupling method, since we will use it in later in

Chapter 3.
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Let M be a Markov chain on a finite state spdee A coupling ofM is a random process

(X, Yt) onQ? such that each o, Y; is marginally a copy oM, namely

> P<(><t+1,Yt+1) =(01,02) | (%, %) = (1, 002)) =PXp=01%=w)  forallapeQ

> P<(><t+1,Yt+1) = (01,02) | (%, ) = (1, wz)) =PM11= 02| % = ap) forall w; € Q
o1

Then Doeblin [14] gave the following powerful coupling lemma.

Lemma 2.1 (Coupling Lemma) Let X, Y; be a coupling foiM such that ¥ has the stationary
distribution . Then if X has distribution p,

drv(pt, M) < P(X # Y).

Proof Let A C Q maximizes in (3.1.1). TheW has stationary distribution &6.

drv(p,m) = PO&eA

17



Chapter 3

Short cycles distribution in random

d-regular graphs generated by pegging

3.1 Main Result

In this chapter, we study the randatrregular graphs produced by the pegging algorithm, for
evend. To present our methods, we focus @e- 4 in particular. The algorithm starts from a
4-regular grapltsg with ng vertices. As the general definition of pegging operation above, at each
step, choose randomly two non-adjacent edges. Delete these two edges, and create a new vertex
and then join this vertex to the four end vertices of the deleted edgds: Smtainsy, = ng+t

vertices an@®n; edges.

LetY; x denote the number dfcycles inG;. For simplicity, we lety; to beY; 3, since we will
first study the distribution of triangles 1B; ast goes to infinity. Then we generalize the analysis

to the distribution of the number &tcycles for any fixek.

Note that initially, the number of triangles might be as bias However, as we will show
later, in such an extreme cade(Y;) will decrease quickly in the early stage of the algorithm.
Our first lemma will show that the expected number of triangles will be bounded above by some

constantC, for large enougIt, which is independent afy, after sufficiently many steps.
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Lemma 3.1 Given constant C, such that C is sufficiently large, there exists 13(ng, Yo,C),

such thate (Y;) <C, forallt > 13.

Lemma 3.2 For any t > r§/3,

E(Yt)=3+0(nt_3/4).

Lemma 3.3 Given sufficiently large constant C, there exigts- T« (o, Yox,C), such thak (Y x) <
C, provided t> 1y, for all k > 3. More precisely, for any > Tlf/s,

k

= (%) = +0(n ).

We will show thaty;  has a limiting distribution, as— e, which is Poisson with meai'izi—g.
Let ot x be the distribution ofY; «, let 7T be any distribution. Then thital variation distance
betweena; x andrtis defined as

drv (Gik, 77) :chr{l‘fj({o}{at,k(At) — (A} (3.1.1)

A similar definition of total variation distance is

drv (O =2 Y | o) -1
xeNTU{0}

The standard definition of the mixing timee) in Markov chain with probability spac@
has been given in Chapter 2. But the random pro¢¥gs-o is not a Markov chain, since the
distribution ofY; depends not only;_1, but in fact on the underlying grapB;_1. However,
we can defingpseudo-mixing timeuite similarly to measure how fast the distributionYpf is
getting close to its limiting distributiorg, if 5 exists. We define the pseudo-mixing time of the

sequence ot i }t>o0 to be
(&) =min{T >0: dyy (G, %) <& forallt>T}. (3.1.2)

Note that the asterisk omandr is just to distinguish them from the usual stationary distribution

and mixing time.
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We can prove that, asgoes to0, the pseudo-mixing time is at mod{1/¢). More specifi-
cally, we get the following theorem. Currently, we have only proved results for triangles, but we
conjecture the following two theorems hold for any fixeds well. The theorems are written in

a general form.

Theorem 3.1 For k= 3,
. o Mg
_ oMk
tIlmmPr (Yik=c)=e K

k
wherepy = 52

The pseudo-mixing time satisfigs(e) = O (¢71).

This result can be extended to randaokmegular graphs generated by pegging operations,
whered is any even integer. Lef; 4 be the number of triangles, anglq x be the number of

k-cycles inG;, whereG; is a randond-regular graph generated by pegging operations.

Theorem 3.2 Let G be a random d-regular graph generated by pegging operations. Given suf-

ficiently large constant C, there existgx = Ta.k (Mo, Yo,ax,C), such tha€ (Y qx) < C, provided

t > 14, for all k > 3. More precisely, for any rlf/3,

_1\k _ _1\2
£ (g = G @D o (.

For k = 3, the limiting distribution of ¥ « is derived similarly as follows

i o Mk (-1 (d-1)?
lim P (Y gk =c) = e Hok—= wherepq k = e

The pseudo-mixing time satisfigg, (¢) <O (™).

We can extend coupling lemma to measure the total variation distance between two distribu-

tions on two different Markov chains, or even two different random processes.

Let {X }t>0 and{Y; }+>0 be two random processes defined on the same sample Qpaared
the sameo-field in each step. Then a coupling of X }+>0 and{Y; }+>o0 is a random process

(%, Y;) onQ? such that
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5 P( 0 %01) = (02,0) | 0% Y) = (@n,0) | =P(Xa =0 =) forall e
[¢p)
> P((XH—LYH—l) = (01,02) [ (%, %t) = (o, wz)) =P(Yy1=02|Yi=wp)  forallw €
01

We derive this following extended coupling lemma.

Lemma 3.4 (Extended Coupling Lemma) {X }i>0 and {Y; }+>0 are two random processes in
the same probability spac®;. Let oy, + and gy, denote the distribution ofpand ¥ in step t

respectively, and lef(X;, ;) }t>o0 be a coupling. Then

drv(ox,t,0v,t) < P(X #Y1).

The proof is almost the same as that of the coupling lemma.
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3.2 Proofs

Proof of Lemma 3.1

Our analysis is now based on the underlying gréplat stept + 1. We need to choose two
non-adjacent edgess ande, to do a pegging operation. Thereis; choices fore;, and2n, — 7
choices forep, which are non-adjacent ®. So the ways to choose an ordered geir, e;) is
2n; (2ny — 7). So the total number of ways to do a pegging operation attstepis

_ (2 —7)

N
2

n (2 — 7). (3.2.1)

Consider creating a new triangle. Given an ed@éG; not in a triangle, a new triangle is created
containingeif and only if we peg two edgesandy both adjacent te, but incident with different
end-points of. SinceG; is 4-regular, the number of ways to choasandy is precisely9. So
the expected number of new triangles created should be at9ézst— 3Y;) /N whereN is the

number of ways to do the pegging operation. An@n; /N is obvious an upper bound.

To destroy a triangle, one edge is in the triangle, and ther2mare7 choices for another edge
to be pegged. So for each triangleGp, the probability for it to be destroyed &2n; —7) /N,
and thus the expected number of existing triangles being destrog@¥d &y — 7) /N = 3Y; /.

It follows that, the expected value %f, 1 —Y;, givenG, satisfies

18 3Y; 9 18 3Y;
- < — < - 2.
Thus
9-3Y; 1+Y;
E (=% | Gr) = = = O( ntzt) (3.2.3)
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By taking expectation of both sides of (3.2.2) we get

18 3E (%)
EMM+1—Y) < -
M1 =¥) = o5
3 9+a
< —ZEM)+—
Nt Nt
for somea = O(1/np), and for allt > 0.
Iteratively,
3 9+a
EM%) < (1——)E(Ytl) .

VAN
m
S
—]7
BN
7 N
H
|
S|lw
N———
+
MT T
Lo;
S|+
Q
I—T
+ [SN
[
N
H
|
Slw
|w N——

IN

t—1 3 9 )t,l t—1 1
Yoexp| — ) — | +(9+a exp| — -
0 i; N ( i;) P =LA

Yoexp(—3(logn; —logngp))
t—1

+(9+a) Z; (exp(lognt —logni 1) nil)

IN

1=
t—1 1 n3
1 Noa

— <%)3Y0+(9+a)i;ni =5

Since®™t ! < B — 14 0(1/ng), s0(9+a) B < 9+ a’, for somea’ = O(1/ny).

No—+i
So
3 rt—1
n 9+ a
E(M) < (—0) Yo+ - Z)n?
M e <
3 !
< [=) Y (3 _
- (nt) R (S(nt i
3 / 3
No 9+a No
< — 1] Y 1—-( =
- (nt) T3 ( (m))
3 /
< (@) Yo 9+a'
Nt

The first term tends to 0 ds— oo.
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So, asC sufficiently large E (Y;) will be bounded above bg, for all t > 13, wherets depends

only onng, Yo, andC. 1

Proof of Lemma 3.2

From (3.2.2),
18 Y 9 18 M
——11 <EMi1—Y 1Y) < - —.
Y; > O0forallt > 0.
Then for somex; = O(1/ny,)
9 3Y;
EMia—Y Y < M 2N forait >t
N Nt
By taking expectation of both sides,
9+a1 _E(M)
E(Yii1—Y) < -3 :
Yr1—Y) < o o
Iteratively, we obtain
3 9+ a1
EY) < (1—-— JE(Y-
M) < ( nt1> (¥-1) Ne—1
t—1 3 t—1 t—-1 3 1
< EMY)expl =Y = | +(94+a1) S exp| — -
° i:zto N i:zto j_|z+1 nj J N
M 3 t—1 3
< E(Yy) (—0) +(9+a1) H (Niya—mv)
Nt =Tt
3 /=1
M, 9+a
< E(W) (—) Y
g nt i=tg
3 /
M 9+a
< E(Y) | = 1

for somea; = O(1/ny,).
Similarly we can also get the lower bound from (3.2.2), such that
3 I
9+
E00) 2 E%) (72 ) + 25

24



for someB; = O(1/ny,).

So, we obtain ,
E(Y) = 3+E(Y) (%) +0(1/ny).

By Lemma 3.1E (Y;) < C for some sulfficiently large consta@t wheret > 13 = 13 (o, Yp,C).

So for anytg > 13, E(Y,) <C.

Thus we get

3
E(Yt):3—|-0(1/nto)+0<(%) ) forallt > to > a.

Chooseay, = nt3/4, then Lemma 3.2 follows.
Proof of Lemma 3.3
39 Mg\ 3
We prove thaE (Y; k) = 252 + Ok (1/ny,) 4+ Ok <W> forallt >ty > 1y

Itis true fork =3, from Lemma 3.2. Assume it is also true of all integers smaller Khaamely,

for any integei < k, there exists consta®, andB;, depending only on, such that

The number ok-paths inG; starting from a fixed vertex is at most4- 3<"1, so the number of
k-paths inG; is at mos#- 3k‘1nt/2. There arez!‘zlYt,i cycles of size at modtin G;. So delete
an edge in each of those cycles. We need to delete atzfii_oleu edges, each edges contributes
to at mosk3*~1 k— cycles SoG; contains at least- 3 n; /2— k315K, Y ; differentk-paths.
There are two ways to createkacycle. The first one is to choose the two end edgeslepath

and do the pegging operation. The probability to do that is at most
k-1
(o))
2 L

Cak—1n _ ak—1ck .
2.3 In, k32 Yici Vi (1+o(1)).
2§ i

and at least
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The other way is to do pegging on two non-adjacent edges such that one of them is contained
ina(k—1)-cycle. The probability to do this ik —1)Y; k1 (20t —7) /N = (k— 1) Yy k_1/m. Let
Z; i denote the number of nel— cyclesfrom G; to G ; created is
2.3 In —k31vk v 1 (k—1)Y;x_1
> i=1 1) (1-1—0(—)) p—— et
&) = 2r¢ Ny My
3t 1 (k—1) Y1
E(Z < —14+0( =) |+ —F—.
(@l&) = = ( (nt)) n

E (Zt7k

So,
£z > 2.3 I — k3«1 (ig E(%i) +E (Yx)) <1+ o (1>) L (k=D imkl)
k-1 B
E(Zy) < 2.23n1 (1+o (%)) L k=) i(Ynkl) |
By induction, 3
E (Y1) = gk(kl__j + Arﬁ: +Bi 1 (%) . (3.2.4)

Similar to the case of triangles, the expected numbér-otyclesdestroyed ikY; /r.

Then

E (Yer1k) — E (Vi) = % (“ © (%)) = ﬁ:t’k) + 2 im’“) . (325)

By induction,E (Y; x_1) < C providedt > 13 (no, Yox—1,C). Similarly as the proofin Lemma 3.1,
E (Y;«) will be bounded above b, after some constant time. So, there exigts T (No, Yok, C),

such thak& (YLk) < C for large enough consta@t providedt > 1. Choosdg > 1.
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By induction, for allt > to, and for somex, = O(1/ny,), ap = O(1/ny,),

E) < E<Yt07k>.t—1<l_n£i)+itit(1)((k—1) (Yknil) 43k 1+or|<-t|_._|1 (l_n_kj>)

1=tg

IA
m
3
o
=

1
< E(Yok) <—O +R<3k_l+ak

3k—l 91 t—1 1 Ak 1 Bk—lnt t—1

+(k-1)(1—aj ( — 5§ nkl k=1, 0 nk—4)
( )( k) 2(k_1) ntki=zt0 I k 0 Izto I k Izto I
k

1

< E(Yik) (—O) +R<3k 1+0!k) (1- O’k ( )
k=1

k-1 1 gt g —2
(35 o ()
0

Thus there exists constafit, andBy, depending only oR, such that

g1, F1_9 A 3
< =
E (Yt,k) < k3 ok +— g + Bk nt

-T2 (3) (7))

3
Similarly, we can derive the lower bound B&Y; ) > 352 + O (%) + Ok (( > >

Choosey, = nt3/4, then Lemma 3.3 follows.l
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Proof of Theorem 3.1
For simplicity, we first consider the caselof 3.

A pegging operation can create or destroy at most six triangles in one stepGsireé-
regular. In some cases, pegging creates more than one new triangle, and will also destroys some

existing triangles.

We first show that increasing or decreasing the number of triangles by aPleashe step,

is of probabilityO (1/n2).

Figure 3.1 shows a case that if we do pegging operation on the two dashed edges, then two
new triangles will be created and an existing triangle will be destroyed. So the number of trian-

gles increase only by 1.

Figure 3.1:two new triangles created, one existing triangle deleted

Figure 3.2 shows a case in which three new triangles will be created and two existing triangles
will be deleted, if a pegging operation is done on the two dashed edges. So the number of

triangles still increases only by 1.

Figure 3.2:three new triangles created, two existing triangles deleted
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The only way to create two triangles without destroying other triangles is that the four end-

vertices joined by the two chosen non-adjancent edges form a 4-cycle as shown in Figure 3.3.

Figure 3.3:two new triangles created

By Lemma 3.3, we can choogesmall enough, and leg = O(1/¢). So, for allt > to, the

expected number d¢cycles is bounded above by some large enough constant.

The expected number of ways to choose two non-adjacent edges both contaidedyicie

is at mosLE (Y 4), so the probability of pegging this way is at m@& (Y; 4) / (2nt2), and hence,
O(1/r).

It is easy to check that the probability of creatirngangles, wher@ <i <6, is even smaller.
Since creating more thadtriangles also requires the occurrencedafycles, whose expected
number is bounded by constant. So the probability of increagify 2 is at mole(l/ntz).
This implies that the probability of increasiiygby more than 2 i© (1/ntz).

We now show that the existence of two triangles sharing an common edge as shown in Fig-
ure 3.4 is of probability at mosD (1/n;). For convenience, we call this structutg. LetY’;
denote the number &3 in G;. The expected number @ being destroyed in one step is
5Y{"3(2nt —7) /N = 5Y"3/nt. The only way to create @; by pegging is shown in Figure 3.5,
where the two dashed edges, both of which are adjacent to one of the trianGlesreépegged.

So the expected number @ created in one step is at mds?; /N = (6Y;/n¢) (1+0O(1/n)).
So

*
M3

E(Yi13—Y53]Y3) <—=(1+0 =) |——=.
(s =¥ %) < 28 (1+0( 1)) =0



Figure 3.4.C5

Figure 3.5:a pegging to create aC

By taking expectation of both sides,

v -0 < 00 (110 1)) - £ L)

SinceE(Y;) = O(1), for allt > 1.

5 C
E(Wa) < (1- = )E(W 19)+ 5 for some constar€.

-1 1
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So

5 t—1 1 t—-1 5
E(YS) < E(Y5)+CS = (1——)
) = () eveaey 2 1T, (-
> 1 N >
< E (Y C 5| —
< ( t03)+ 2 niz ( n )

<

VAN
O —~ —~ —~ —

TRPlE 2P 2P 2P

PlPr T N~ ~_
o1
m
S
<
9*
w
SN—"
+
o1
MT
=
>
-

Then we obtairk (Ytj‘3> =0(1/m).

This can be easily extendedEc(Yt’jk> =0(1/ry), for allk > 3, ast sufficiently large, where
C denotes the structure that tvkecycles share one and only one edge, Wdenotes the

number ofCy in Gt.

There are also only two ways to destroy two triangles in one step. Namely, to select an edge
for pegging that is contained in two triangles, or choose two non-adjacent edges in two different
triangles. In the first case, the expected number of ways to do this is a Gﬁg) 2 —7) =
O(1). In the second case, it is at mdstY;)? = O(1). So the probability that the number of
triangles decrease by 2@&(1/n?).

The probability of creating a triangle and destroying another triangle in one step is also small.
The only way to achieve that is the case shown in Figure 3.6. Here, first choose the dashed edge
that is contained in a triangle, and any grey edge. So one triangle is deleted, and one of the edges
that is adjacent to the dashed edge will be contained in a new triangle. For each edge in a triangle,
there are at most 14 grey edges to choose. Thus, there are al#8&(Y;) such expected
pegging operations. So the probability of this occuringlig- 3- E(Y;)/2n?) (14+O(1/ny)), and
henceO (1/né).

LetL; be the event that the number of triangles decreasesothe next step, anR; be the

event that the number of triangles increases iythe next step. Then
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Figure 3.6:0ne new triangle created, one existing triangle deleted

Then we obtain

6
PMi=j) = PM=1]) (1_.Z(P<|—i =] +PR[Y= J)))

6
3 POC=] ) (PRI%=i-)

6
+.ZLP(Yt:j+i)(P(Li Y =j+1)) (3.2.6)

From (3.2.2), we know that the expected number of triangles crea®@this- £1(G;), and
the expected number of triangles destroye8¥ign; + £2(Gt), whereg; (G;) andey (Gt ) are error
terms depends 0B which is of orderO((1+Y;)/nZ). As shown in Figure 3.6, the probability
to create and destroy triangles in a single steP(icl + Y;) /n?). So

6 3Y; 1+Y
P(Li|Yy) = —+0O

6 9 1+Y;
_;up(amﬁw( ).

Let¥ be anyo-field such that/ C o(Y;). Itis also obvious that

6 3V 1+Y
iP(Li | Y,9) =2 +0
> P %) = (ntz)
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6

3 PR m,g):%+o(1?‘). (3.2.7)

By previous arguments, we also know that

P(Li)= > PLi[%=])P(*t=))=0
jeZw t t (

) forall2<i<6

1
n?
1
PR)=Y PR Yz'PYz'zO(—) forall2<i<6
()j;\‘(hl)(t ) 2

Pl = 5 PlLa %= P0= )= 20 5)
i€
B . . _3E(Yt) i
PR = 3 PR Y= PO 1) = +o() (3.28)

Now we define another random process to be a random walk on the nonnegative integers. We
define the behavior of the random walk as following:

(

% — L with probability 3%, /n;

Xi+1= 94 X with probability1 — 3%/, — 9/ry (3.2.9)

X + 1 with probability 9/n.
\

Let Po(u) denote Poisson distribution with mepn We show that the Markov chaif¥; }i>o0
has a stationary distribution &9(3).

AssumeX; has Poisson distribution with me&nthen

i
P(X=i)= e3i3—| foralli € Nt U{0}
PXi1=1) = Y PX=i)Pj
ieNFTU{0}
3-1 9 3l 9 3j 3+l 3(j+1)
—3 —3 —3
(J=Dtm J!( Mt nt) (J+D8

43

v

ThusPo(3) is invariant, and by definition it is the stationary distribution.
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Let X; has its stationary distribution at step We apply the coupling method ¥ andY;.
Now we define another random walk on the nonnegative integers to be a cgy}efh. We
still name it{Y; }t>o0, which is now a random walk on integers, though it has exactly the same

behavior as the original one. Formally, for any intefjet i < 6,

PV =Y+i) = P(R|Y)
PM+1=Y—i) = P(Li[Y).

Now X; andY; are defined on the same probability space, thus we can set up the joint distribution
of (%,Y:). Assume we havéX:,Y;) at stept, we set the transition probability shown in the
following tables. For example, the entry of the intersection of the second row and second column
in Table 3.2, and Table 3.3 shows the probability ¥t 1,Y;+1) takes the value ofX — 1,Y; —

i), forany2 <i <6.

Table 1.Y; # X,
Y—i(2<i<6)| Y-1 | Y% | %+l |Y+i(2<i<6)
X —1 0 0 3% /1y 0 0
X P(Li | Yt) PLi[Y) | P |PRIN) P(R [ Y)
X +1 0 0 9/ny 0 0

wherep = 1—9/m —3%/m — 7.1 (P(Li | o) + P(R | Yp)).

Let Z; be the number of triangles created3n as we defined in the proof of Lemma 3.3. vt

be the number of triangles destroyeddn From 3.2.2, we know

9 1 3Y; 1
E(z | Gy svo(@),awa)sﬁ‘w(@).

By taking expectation of both sides, and conditional on the valig, of

9 1 3Y; (1)
EZIY)<~4+0( =) EM|G)<2+0( = ).
(Zt’t)_n[ (nt2> (t| t) N ntz
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As shown in Figure 3.6, triangles created and destroyed in a single step is of prol@pjtg?).

Thus, 52 1iP(Li | ) = F +O((1+Y)/nf), and 3P 1iP(R | ¥) = 3 +O((1+¥)/m?).

So for someay(Yt) = O((1+%)/nf), be(%) = O((1+¥)/nf), P(L1 | ¥) < 3%/ne + b (W), and
P(RL|Y) < 9/rx +a(¥). Then itis easy to choose(Y;) > 0, b (%) > 0, &(¥) > 0, &(%) > O,
such thathy (Y) = O((1+%)/md), &%) = O((1+%)/md), P(L1 | %) = 3%/m + by — b (W),
P(Ry | Y) =9/ + & — & (V).

The we define the following joint distribution according to the cgse X;.

Table 2:Y; = X
Y. —i (2<i<6) Y —1 Y, Y+1 | Yi+i(2<i<6)
X —1 0 3% /n — b (Y) | (%) 0 0
X, P(Li | %) b (%) p &(Y) P(R | %)
X +1 0 0 a() | 9/m—a(n) 0

wherep =1-9/n — 3% /i — &(Y) — b (%) — 325 (P(Li | %) + P(R | Yo)).
We can check that the marginal satisfies (3.2.9) and (3.2.6).

Let
D =| Y% —X | (3.2.10)

If Y; > X, from Table 1 we get

3% e o vy 9
E(Dy1— Dt | X, %St > X) < W—P<L1|Yt>)+i;|P(L.|Yt)>+i;|P<R|Yt) o

& 5. 9 o<,
= PO+ 3 PR Y 25 P )

Taking expectation of both sides, and applying (3.2.7), by Tower Property, we obtain
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E(D1— D[ % >X%) = E(E(Dpi1—Dt|%,%St¥ >X) % > X)
BE(X | Yt >X) 3EM|Y>X) O(1+E(Yt\Yt>Xt)>
Ny a Ny * n?

+2_iE(iP(Li 1Y > X))

6
ISR C e B

2 3 2E(P(L Y > X))

If Y; < X, from Table 1 we get

3 6
E(Dy1— Dt | X, Y SstY < X) < ‘lt*Zl'P Li | %) — (R1|Yt)+§2|P(F¢|Yt>+—

9
= ——+Z|P (Li | Y%) — ZlP(R. 1Y)+ — +2%|P (R|Y)
Taking expectation of both sides, and applying (3.2.7), by Tower Property, we obtain
E(Dty1—Dt |t <X) = E(E(Dty1—Dt| X, Y,st.Y <X) | ¥ < X)

~3E(X% !n\tft <X%) +3E(Yt In\tft < %) +O<1+E(Ytn\tzvt <xt))

IN

6
+25 E(P(R 1% < X))

3 1+E(Y | Y 5
= _EE(Dt‘Yt<Xt)+O< * (tn|tzt>><t))+2i;E(|P(Ri|Yt<xt))-

If Y; = X, thenD; = 0, from Table 2 we get

E(Di+1- Dt | X, % SEY, = X)
_ 6
= Bt<Yt>+bt<Yt>+ét<%>+5t<%>+_§2<iP<Li %) +iP(R | %)

6
_ % —P(Ly | %) + 2B (%) +%— P(RI¥) +28(%) + 3 (P(L ) +1P(R %))

6 6
_ %+zbt(w>+ft+2at<%> 3 (PLLIY)+PRY)) + 5 (L) +1P(R ).

Taking expectation of both sides, and applying (3.2.7) and (3.2.8), by Tower Property, we get
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E(Dty1—Dt | Yi = %)

= E(E(Dtr1—Dt |V, X, stV =X) [t =X)

B 6
_3E(Y In\[(t =X) +%_i;(P(L1 | % =Y)+P(Ry | X = %)) +O(1/nd)

6
+_%(iP(Li | Yt =X)+iP(R | Y = X))

_ 6
_ O(1+E(Ytr]|tZ)<t_Yt>>+iZZ(iP(Li Iy =X)+iP(R |t =X)).

Since for all2 <i <6,

E(P(Li | Yy =X))
3Pl =X=)PM=X=])
- SiP=X=])
_ (iPLIM=X%=1) (3P =%=)))
- SiPM=X=1j)
= YPLiIY%=X=]j)
|
= YPLi|Y%=])
J

Similarly, we can show that

E(P(R |Yt = X))

o
o

o
°
o

) EPL Y% <X))

Y

)
)

i g

E(P(R | % < X)) ),E<P<Li -

).

i = W [ == A

E(P(R [ Y > X))

3 1+EM | X =Y
E(Diy1—Di [ Yi=X) = ——E(Dt|xt—_Yt)+o( M1 t>>

3 1+EMY | Y > %
E(Dt+1 Dt|Yt>><t) = __E(DtlYt>><t) O( (t|2t> ))

3 1+EY | Y > %
E(Dt11—Dt [t <X) = ——HE(DtIYt<Xt)+O< (tn|2t> ))
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E(Dt11—Dt) = E(Dty1—Dt [ % <Y)P(X <%)+E(Dty1—Dt [ X =W)PX =})
+E (D11 —D¢ | X% > V) PO > V)
3 3
= —EE(Dt|Xt<Yt)P(Xt<Yt)—EE(Dt|Xt:Yt)P(Xt:Yt)

—%E(Dt X >Y)P(X > Y)+O (”nEtz(Yt))

= —%E(Dt) +0 (%) :

E(Diy1) = (1— %) E(Dy)+0 (%) .

SinceE (Y;) < C for some constar@, for allt > tg

E(Dyy1) < (1— %) E (D)) +%

for some positive constaidt, where{ depends only on the value Gf
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Iteratively,

t1 3 1 3 1
=y = (HK“&))E(D‘OWE“( o) 7
3 3 1 t-1 3\ 1
+(1-—)(1-— ) 5+t 1-2) =
Z( ntl)( N 2) nt 3 Z| |t:|+1( )nto
coven( 55 1) v pen( 5 3,0)
< o) X + ex —
t P |—zton' |zto| P J%—lnj
< E(Dy)exp(—3(logn —logny)) +Z§12e><p 3(logn; —logni1))
Itol
% .t nH—l)3
< E(Dto)(nt> +leton|2( o
S Z t—1

E (Dro) (%) +Wi;0(ni)
< (%)3(C—3)+%(t—to)( +t+‘;—1)

()9 X

Let

£
w

(C-3) <

IN ';|
N ™

2R
N ™

By Lemma 3.4, we obtain

drv (03, Po(3)) < P(Y#X) <E(Dy)
(%)3@_3) e (3.2.11)
n n

IN

We only need to choodg > max{ 13, 74}, such that the expected number of triangles4xggcles

are bounded. Sdy is a constant. Let
drv (03, Po(3)) < ¢
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We obtain
" () =0(1/¢).

Proof of Theorem 3.2

Let G; be a randond-regular graph generated by pegging operations, for edvefhenG;
containsn; = np +t vertices, andin /2 edges. Them, the number of ways to do a pegging
operation, is asymptoticallﬁ)jorl‘/zz). There are two ways to creaté&aycle. One is to choose the
two end edges of k-path, and othed /2 — 2 non-adjacent edges, and do the pegging. The other
way is to choose an edge contained ifka 1)-cycle, and othed /2 — 1 non-adjacent edges, and

do the pegging.

In the first case, the numberlofaths inG; is asymptoticallyd(d — 1)%1n; /2. So the number

of ways to do pegging is asymptotically

dd-1n /[ § ) d(d— D Tn(dn/2)9/%2
2 (d 2) - 2(d/2—2)!

2

In the second case, the number of ways to do pegging is asymptotically

an - d/2-1
(k=1)Yik-1d (d ? 1) . 1)“(7;_/12@5(11?!/2)

2

The way to destroy an existingcycle is to choose an edge contained kagycle, and another
d/2— 1 non-adjacent edges, and do the pegging. So the number of ways to destroy an existing

k-cycle is asymptotically

( B ) _ K¥ka(dn /292
~1 d/2=1nr

So, we obtain the expected value¥pf x g — Yt k d

E(Yis1kd — Yokd | Yikad)
d(d— D) I (dn/2)¥272 (k= D)¥ik 1a(dn/2Y% T K¥xa(dn/2)921
2(d/2—2)IN (d/2—1)IN (d/2—1)IN
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Take the expectation of both sides

E(Yi+1kd — Yikd)
d(d — 1)* 'y (dn/2)9/2-2 L (k= DEMic1.4)(d n/2)%% 1 KE(Yka)(dn/2)%21

2(d/2—2)IN (d/2— DN (d/2—1)IN
(dn/2)%2 2dn (d —1)k2 N (k=DE(Vik-1d) kE(Yt,k,d))
(d/2—2)IN 2 d—2 d—2
_ d- 2( (d—1)k? N (K—DE(Mik-14) kE(Yt,k,d))
N 2 d-2 d-2
_ ([d-2(d-p*t N (k—=DE(Vik-1d) KE(Yika)
2y N N
E(%24) =0.

Note this recursive function is exactly the same as (3.2.5) but the first term. So reproducing the

proof of Lemma 3.2 and 3.3, we obtain

£ (Yag) = VO o (nti) o (<%)>

for sufficiently largeto which is depends only om, Yok ¢, andC.

We derive the same mixing rate as stated in Theorem 3.1. The proof and method used is precisely

the same. Then Theorem 3.2 follovs.
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3.3 More discussion abouk-cycles

We see in the previous section that in the random proce$%:§f-o, whereY; is the number

of triangles in stefd, we coupled{Y; }i>o to {X}t>0, such that the transition with probability
O(1/n?) is omitted. Thosed(1/n?) error terms accumulates in each step, and will contributes
O(1/rny) to E(Dy) whent goes to infinity. SofY; }t>0 and{X }t>o will have the same limiting

distribution.

We investigate an attempt to apply the same method to couple two sequences of vectors
{3, Y4, Ye5, -, Yk =0 and{X 3, % 4, % 5, - - - , Xk Jt>0 for anyk > 3, such that the transitions
in the {X 3,% .4, %5, -, X k}t>0 are obtained from those in the 3,Y:.4, Y5, -+, Yik}t>0 by
omitting all transitions with probabilitYD(1/n?) and adjusting the rest to compensate. The two
random processes would have the same limiting distribution. We did not carry this out com-
pletely. It is too complicated to list all cases when we couple the two vectors, so we are looking

for a more general way to describe this argument.

We can define the following random walk

(Ket1,3, X414, Ko 1k)

( (X3, %4, % + 1, X ) with probability 3= /ny, for all 3 <i < k.

=9 (X3 %4, X — L X 41+ 1+, X k) with probabilityiXy i /ng, forall 3 <i <k—1.
\ (Xe,3, %45+ s Xt k—1, Xt k — 1) with probability kX /.

Start{X; 3, % 4, % 5, , Xt k}t>0 With independent Poissontat 0, with meanguz, ta, - - - , H,
wherep; = 3'2—79 for all 3 <i < k. Now we show by induction thaf; 3, X 4, X% 5, , X  are in-
dependent Poisson for alB> 0. Assuming they are independent Poisson at somettimé, we

have

k k
PG3=X3,Xa =% Xk =) = exp(— ng) _rL“—'.

42



and

P(X4+13= X3,Xt+14 = X4, K41k = Xk)

k 3| 1
( Z——Z ) = X3, X,4 = X4, , Xe k = Xk)

k 3| 1
+Z Xez=Xa,, -, Xei=X—1- Xxk=X)
(% +1
+23 i )P(Xt,3=X3,,"',Xt.,i:Xi+1,xt,i+1=Xi+1—1,-~,Xt,kZXk)
i=
(Xk+1)

P(X3=X3,, "+, X k—1 = Xk—1, Xt k = X+ 1)

ol

k u—il(l— k 3-1 K Ky X| 3i- 1+k71 U xi+1i(xi+1)+ L k(xk+1)>
|

L Ly Lo SXi+lpgn ne o+l oy

w1 g1 04 K 2i. 3' Iy ko (3i—9_)(i+1)xi+1 3k—9
o (37 g 3557 R )
= exp —: i ik ( ng + IXIZgIsuljgl : 9)+3X3>
= exp —: Hi : ;—')?

= P()(t73 = X37)<t,4 = X4, 7XI,|( - Xk)‘

So the limiting distribution of{><t73,><t,4,xt75,--- , %t k}t>0 is independent Poisson with means

U3, Ua, -+ , Uk, Wherep; = 2| 9 for all 3< i < k. By applying the extended coupling Method
in Lemma 3.4, we expect to g&(D; k) = O(1/rnt), which goes td ast goes to infinity, so

Vi3, .4, i 5, - -, Ytk have limiting distribution of independent Poisson random variables.
We will present an example to coufl&;, Ya) and (X3, X4). DefineDy 4 := (1/3) | ;3 — X% 3 |
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+(1/4) | t,a— X4 |. The following tables shows an attempt at coupliig Y2) and(Xz, Xsa). But

the data shown in the table are not exactly what will happen in the coupling procedure because
the random walk ofYs,Ys) depends on the graph. So we are “cheating” here. The data shown
there is what we would obtain if we calculate the expectatioD«qf 4, where the expectation

is averaging over alfY; 3,Y; 4), conditional on each case. For a rigorous proof one would have

to do some careful accounting as was done for the case of triangles. Also we only give the main

terms there. Every term would have some error tern®(af/n?).

case 1Y; 3 < Xz andY; 4 < X 4.

Yz +1Yia) | (Y3, Yia) | (M3—1Ya+1) | (M3 Yat+l) | (MaYa—1)
(Xe,3+1,%.4) 9/ny
(%3, %.4) 9/ p 3Vt 3/Mk 27/ny A 4/
(X3—1,%4+1) 3,3/t
(X3, Xa+1) 27/,
(%3, %4—1) 4%.4/ M
case 2Y; 3= Xz andY; 4 < X 4.
(Vs +1Yia) | (Y3, Yia) | (M3—1Ya+1) | (MaYat+l) | (MaYa—1)
(Xe,3+1,%.4) 9/ny
(%3, %.4) p 27/ny A a/M
(X3—1%4+1) 3Yi3/Mt
(X3, Xa+1) 27/,
(%3, %4—1) 4%.4/ M

case 3Y; 3 < Xz andY; 4 = X 4.
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(Yi3+1,Ya) (V1,3,Yt.4) M3—1LYa+1) | (M3, Yea+1) | (i3, Yra—1)
(Xe3+1,%.4) 9/ny
(%3, %.4) p
(X3—1%4+1) 3(X3—Y,3)/Mt 3Y;,3/M
(X3, %4+ 1) 27/ny
(X3, %,4—1) 4.4/
case 4Y; 3 = Xz andY; 4 = X 4.
Y3+LYa) | (M3, Yea) | M3—1.Yia+1) | (Vi3,Yea+1) | (Vi3 Yia—1)
(Xe3+1,%.4) 9/
(%3, %t.4) p
(X3—1,%4+1) 3Yt.3/Mt
(X3, %4+1) 27/
(X3, %,4—1) A4/

We are expecting to get the following inequalities for each cases,

E(Dt114]| (%3, Yt,4), (X3, %,4),St.Y; 3 < X3, Y14 < X 4)

B 3(%3-M3) (1 1\ 4Xka—-Ma)l 2
— Dy 22 (20 2+o(/m)
< Da— 2 +0(1/nd)
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E(Dt11.4

=Dt 4—

(M3, Y.4), (X3, %.4),St. Y 3= X3, Y14 < X 4)

4 —Ya)l
e 9% o/mp)
4D

< Dpa——* +0(1/nd)

E(Dt+14 | (Y3, Y.a), (%3, %t.4),St. Y3 < X3, Yi.4 =Xt 4)
3(X3—Y%3) (1 1

—r- 202 (202 o)

E(Dty14] V.3, Ya), (%3, %.4),5t. Y3 = X 3,14 = X% .4) = O(1/n?)

So we would get

3
E(Dt+1,4) < (1— ﬂ) Dt74+0(1/nt2).

Similarly, defineDy  := K 5(1/i) | %ii — X |, we expect to get the following by extended
coupling method

E(Dt+17k | (Yt,37Yt,4)7 Ty ()<t7k7)(t,k)as't'Yt,3 = )(I,3a e aYt,ifl = xt,iflaYLi < )<t7i7
Yeitr = Xt s Yok = Xek)

|
< (1— m) Dtk + O(l/ntz)

< (1— %) Dex+O(1/nd).

E(Dt11k) < <1— %) Dk +O(1/1f).
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So Theorem 3.1, and Theorem 3.2 would follow for any fikedind more precisely, the
random variable¥; 3,Y; 4,.. ., Y; k would be asymptotically independent Poisson. But it becomes
complicate to construct the coupling for the two vectors, since there will be lots of cases to
discuss. We are looking for a more general way to derive it. Due to time restrictions, we will

leave it as future work.
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Chapter 4

Conclusion

In this essay, we briefly discussed several commonly used models to generate random regular
graphs. We studied the pegging algorithm, the application of which is to model the SWAN
network. In Chapter 3, we presented our result of short cycle distribution in the raddom
regular graphs generated by the pegging algorithm. We derived the expected nuiabgclek

for any fixedk, and we proved that the number of triangles is asymptotically a Poisson random
variable. We also presented our conjecture that the set of random vai¥agléise number of
k-cycles, wheré > 3is in some finite integer sétC N, are asymptotically independent Poisson

ast goes to infinity. Finally we discussed the difficulties we met when we were searching for a

rigorous proof of the conjecture by coupling two sequences of random variables.
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