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Abstract

Different models of generating random regular graphs have been widely studied, such as the

configuration model, thed-process and thed-star process. We will have a brief overview of

properties of these models. We will also review properties of Markov chains, and the coupling

method, which is usually used to prove the mixing rate of a Markov chain. In this essay, we study

a new algorithm, called pegging, to generate randomd-regular graphs. We prove that the number

of triangles has a limiting Poisson distribution, and estimate the rate at which it approaches its

limiting distribution. The method we used is similar to the coupling method, but we will first

extend the coupling lemma, so that we can measure the total variation distance between two

random processes, instead of two copies of a same Markov chain. Therefore the case we study

here is quite different from that we usually see in Markov chains. We conjecture this result also

holds fork-cycle for any fixedk, and more precisely, the number ofk-cycles, wherek= 3,4,5, . . .

are asymptotically independent Poisson random variables.

i



Acknowledgements

I would like to express my deep thanks to my supervisor, Nick Wormald. Without his support

and guidance, I could not finish this essay. I would also like to thank my reader, Bruce Richmond,

for his comments and careful reading of the draft.

Thanks to the professors, colleagues, and friends in the Department of Combinatorics and

Optimization at the University of Waterloo.

Thanks to my parents for their love and everlasting encouragement.

ii



Contents

1 Introduction 1

2 Models of generating random regular graphs 4

2.1 Uniform models for random graphs . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Pairing Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.2 Pseudograph Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Non-uniform models for random regular graphs . . . . . . . . . . . . . . . . . . 11

2.2.1 d-process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 d-star process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Pegging operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Sampling random structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Preliminaries for Markov chains . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Mixing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Short cycles distribution in random d-regular graphs generated by pegging 18

3.1 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iii



3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 More discussion aboutk-cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Conclusion 48

iv



List of Figures

2.1 Pegging operation when d= 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 two new triangles created, one existing triangle deleted. . . . . . . . . . . . . . 28

3.2 three new triangles created, two existing triangles deleted. . . . . . . . . . . . . 28

3.3 two new triangles created. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 C∗3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 a pegging to create a C∗3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 one new triangle created, one existing triangle deleted. . . . . . . . . . . . . . 32

v



Chapter 1

Introduction

Random graphs were first introduced by Erdős, in his proof of existence of graphs with arbitrarily

large girth and chromatic number. Later on, random regular graphs were introduced and studied

by Bender, Canfield, Bollob́as, and Wormald. In other areas such as Computer Science, people

especially show interests in generating random graphs, or random regular graphs, with a given

distribution.

Let Gn,d denote the probability space of all randomd-regular graphs on vertex set[n], where

nd is even and[n] := {1,2,3, · · · ,n−1,n}, with uniform distribution. A crucial question is how

to generate regular graphs fromGn,d uniformly. Currently there is no known efficient algorithm

to generate randomd-regular graphs with uniform distribution whend is greater thanO(n1/3).

If d = O(n1/3), Mckay and Wormald showed an efficient algorithm, given in [4], which uses

“switching” to eliminate loops and double edges. Whend is a constant, we can apply theconfig-

urationmodel, also called thepairing model, which was first given by Bollobás [5].

But using the pairing model for generating graphs becomes slow even for constantd whend

is large, because with high probability we will get a multigraph with loops and multiple edges,

so we have to abandon this multigraph and start again. This is repeated until we get a simple

final graph. It can be shown that the probability of getting a simpled-regular graph from the

pairing model is asymptoticallyexp((1−d2)/4). Thus the expected number of times we need

to generate graphs until we get a simple final graph isexp((d2−1)/4). It becomes slower and
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slower whend becomes large. Also, the algorithm in [4], though efficient in some senses, is very

complicated and has never been implemented. So it is worthwhile to turn to other near-uniform

models which generate graphs faster. Quick approaches such as thed-process[6], and thed-

star-process[7] do not generated-regular graphs uniformly, but a.a.s. end up with a final graph

that isd-regular.

One of the direct applications of generating randomd-regular graphs is to model random

networks. Bourassa and Holt [1] introduced a peer-to-peer network called the SWAN network,

in which clients arrive and leave randomly. They suggested to keep the underlying topology a

randomd-regular graph, which is achieved by usingpegging, which they call “clothespinning”

(for arriving clients), and its reverse (for clients leaving). We will define this pegging operation

in Chapter 2. They found that this type of random network has good expected connectivity and

other properties. Cooper, Dyer and Greenhill [2, 3] defined a Markov chain ond-regular graphs

with randomized size to model the SWAN network. Each move of the Markov chain is by a

pegging operation or its reverse. They showed that conditional on the size of the network, the

stationary distribution is uniform, and they gave a good estimate for the mixing time of the chain.

The reason that the short cycle distribution attract special interest is that inGn,d, the only

possible local structures to appear asymptotically almost surely (a.a.s.) are trees and cycles. For

anyS⊂ [n], such that| S| is a constant,G[S], the subgraph induced by the vertex setS, is a tree

a.a.s. The distribution of the number ofk-cycles inGn,d, wherek = 3,4,5, · · · , is asymptotically

independent Poisson. So a question that arises naturally is what the short cycle distribution is

in the near-uniform models of generatingd-regular random graphs. This essay studies the short

cycle distribution in the pegging algorithm.

In Chapter 2, we introduce the different models mentioned above to generate random regular

graphs, and we describe the known results concerning the connectivity and the short cycle distri-

bution. We will define the pegging operation, and the pegging algorithm, which is just repeating

the pegging operation in each step. We will also introduce Markov chains, and some important

parameters and theorems of Markov chains, such as stationary distribution, convergence theo-

rem, and mixing time. We will introduce the coupling lemma, which is a simple but powerful

tool to estimate the mixing time. Then we will give some examples of applying Markov chains
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to sample random structures. In Chapter 3, we study in particular the limiting distribution of the

number of short cycles in randomd-regular graphs generated by the pegging algorithm. In order

to do this, we will first extend the coupling lemma to estimate the rate that a random process

goes to its limiting distribution. Results and proofs will also be given in Chapter 3.
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Chapter 2

Models of generating random regular

graphs

In this chapter, we will introduce different models of generating random graphs, and compare the

advantages and disadvantages of each model. We will discuss several graph properties in each

model. The one we pay most attention to is the short cycle distribution.

2.1 Uniform models for random graphs

2.1.1 Pairing Model

Let Gn,d denote the probability space of all randomd-regular graphs onn vertices with uniform

distribution, wherend is even. Suppose we want to generate graphs fromGn,d. If d is a constant,

we can use the pairing model to sample graphs fromGn,d u.a.r. The pairing model is described

as follows.

Consider a set ofnd points, wherend is even, and partition them inton buckets withd points

in each of them. We take a random matching of thend points, and then contract thed points in

each bucket into a single vertex. The resulting graph is ad-regular multigraph onn vertices.
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Let Pn,d denote the probability space of randomd-regular multigraphs generated by the

pairing model as described above. Every graph inGn,d corresponds to(d!)n copies inPn,d, So

all simple graphs, namely, graphs without loops and multiple edges, inPn,d occur u.a.r.

The following result gives the probability of a multigraph fromPn,d being simple.

Theorem 2.1 (Bender and Canfield [12])

P(Pn,d is simple)∼ exp

(
1−d2

4

)
.

When d is large, namely, tending to infinity asn goes to infinity, thenP(Pn,d is simple)

tends to0. Nevertheless, we can still apply the pairing model in such a case. The generated

graph is a.a.s. a multigraph with loops and multiple edges. Then McKay and Wormald [4] used

switchingmethod to eliminate the loops and multiple edges. The switching method is described

as follows. Consider a pair of non-adjacent edges{a,b} and{c,d} in a d-regular graph, then

replacing{a,b} and{c,d} by {a,c} and{b,d}, or by{a,d} and{b,c}, we get anotherd-regular

graph. This operation is called “switching”. They showed that the property that the simpled-

regular graphs are distributed u.a.r. is preserved after the switchings. So they gave a polynomial

time algorithm of generating randomd-regular graphs uniformly by applying pairing model and

switching method. They also used the switching method to prove the following theorem.

Theorem 2.2 (McKay [11]). If k = o(n1/3), the number of labelled k-regular graphs on n ver-

tices is
(nk)!exp((1−k2)/4)

(nk/2)!2nk/2
(1+o(1)).

uniformly as n→ ∞ with kn even.

McKay and Wormald then used a new type of switching to find the formula ford = o(n1/2).

Corollary 2.1 (McKay and Wormald [13]). For d = o(n1/2),

P(Pn,d is simple) = exp

(
1−d2

4
− d3

12n
+O

(
d2

n

))
.
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We can generalizeGn,d to Gn,d, whered = (d1,d2, . . . ,dn) is an n-vector denoting the degree

sequence. ThenGn,d denotes the uniform probability space of all random graphs with given

degree sequence. We can still apply the pairing model to generate graphs fromGn,d. Partition

m= ∑n
i di points inton buckets, withdi points in each bucket, and take a random matching of

them points. Letd = max{d1,d2, . . . ,dn}, then similarly we can show thatP(Pn,d is simple)≥
exp

(
1−d2

4

)
. So the pairing model still works efficiently for constantd, especially whend is not

large. Since the expected time of generating a simple graph is exponential tod2, the algorithm

will get slow whend gets large. The pairing model is also called theconfiguration model.

The following two theorems give the short cycle distribution in the uniform probability space

Gn,d, and the pairing model.

Theorem 2.3 (Bollobás [5]).For d fixed, let Xi = Xi,n(i ≥ 1) be the number of cycles of length

i in the random multigraph coming fromPn,d. For fixed k≥ 1, X1, ...,Xk are asymptotically

independent Poisson random variables with meansλi = (d−1)i

2i .

Theorem 2.3 explains the following theorem for the short cycle distribution inGn,d.

Theorem 2.4 (Bollobás [5], Wormald [18]).For d fixed, let Xi = Xi,n(i ≥ 3) be the number of

cycles of length i in a graph inGn,d. For fixed k≥ 3, X3, ...,Xk are asymptotically independent

Poisson random variables with meansλi = (d−1)i

2i .

To illustrate the use of switching, here we prove a weaker theorem showing thatXk is asymp-

totically a Poisson random variable for any fixedk≥ 3.

Theorem 2.5 For any constants d,k fixed, let Xk = Xk,n(k≥ 3) be the number of cycles of length

k in a graph inGn,d. Then Xk is asymptotically a Poisson random variable with meanλk = (d−1)k

2k .

Proof

We first prove that for any fixed integerk, the expected number ofk-cycles inGn,d is bounded. We

only need to prove this inPn,d, then it is also true forGn,d, according to Theorem 2.1. AssumeS
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is ak-vertex set, such that thek vertices are placed in a cyclic order, namely,v0,v1, . . . ,vk−1,v0,

we regard each vertexvi as a bucket which containsd points. An edgevi ,vi+1 corresponds to a

matching from a point invi to a point tovi+1. We call this a pair. Let{p1, p2, . . . , pk} be ak-pair,

such that thei-th pair matches a point invi modk to vi+1 modk, and every two pairs are disjoint,

namely, no two pairs will share the same point. Clearly, after we contract the points in each

bucket, ak-pair inPn,d corresponds to ak-cycle in a multipled-regular graph. LetXp1,p2,...,pk be

the indicator random variable that{p1, p2, . . . , pk} occurs in the pairing model.So For any given

k pairs in the pairing model, the probability for it to occur is(dn−1−2k)!!/(dn−1)!! , which

is asymptotically(nd)−k. So

P(Xp1,p2,...,pk = 1)∼ (nd)−k.

Let Q(n,k) be the set of allk-pairs inPn,d We need to count| Q(n,k) |. We will first count

the number ofk-pairs for any givenS. First choose one point in each bucket; there aredk ways

to do that, then for each chosen point invi modk, there are(d−1)k ways to choose its partner

in vi+1 modk. So the number ofk-pairs in total isdk(d−1)k. There are
(n

k

)
ways to choose a

k-vertex set, and for eachk -vertex set, there are(k−1)! ways to put it into a cyclic order with

an orientation. Thus,|Qn,k |=
(n

k

)
(k−1)!dk(d−1)k. Let

Nk = ∑
{p1,p2,...,pk}∈Q(n,k)

Xp1,p2,...,pk.

ThenNk is the number ofk-cycles in the multiple randomd-regular graph produced by the pairing

model. So

E(Nk) = ∑
{p1,p2,...,pk}∈Q(n,k)

Xp1,p2,...,pk

∼
(

n
k

)
(nd)−kdk(d−1)k(k−1)!/2

∼ (d−1)k/2k.

SoE(Nk) < ∞. Thus the expected number ofk-cycles inGn,d is also bounded, for any fixed

k. Let Xk be the number ofk-cycles inGn,d, and choosew(n) = o(n1/2) to be some function ofn

that goes to infinity slowly asn goes to infinity, then

P(Xi > w(n)) = o(1) for any fixedi. (2.1.1)
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Let Gc be the set of graphs inGn,d with c k-cycles, wherec≥ 0 is any constant. For any

G∈ Gc+1, thec+1 k-cycles are disjoint with probability1−o(1). Choose an edge contained in

a k-cycle, then choose another edge which is neither adjacent to the chosen edge, nor adjacent

to any other edge that is contained in the same cycle as the chosen edge, nor contained in any

k-cycle. Switching these two chosen edges, we create a(k+1)-path and a graphG′ ∈ Gc. Then

for all c≤ w(n), the number of ways to choose an edge contained in ak-cycle isk(c+ 1), and

the number of ways to choose another edge isdn
2 −O(w(n)). There are two ways to switch these

two chosen edges, so the number of ways to do a switching is2k(c+1)(dn
2 −O(w(n))). On the

other hand, this procedure is reversible. For anyG∈ Gc, choose a(k+1)-path, such that the end

edges are not contained in anyk-cycles, nor both contained in a2k-cycle, and then switch the

end edges of the path. We get a graphG′ ∈ Gc+1. The number of such(k+1)-paths we can find

in G is d(d−1)kn
2 −O(w(n)), a.a.s. since onlyO(w(n)) cycles with length at most2k exist inGc.

So

| Gc |
| Gc+1 | =

2k(c+1)(dn/2)−O(w(n))
d(d−1)kn/2−O(w(n))

=
2k(c+1)
(d−1)k

(
1+O

(
w(n)

n

))
.

So

| Gc |
| G0 | =

c−1

∏
j=0

(
(d−1)k

2k( j +1)

(
1+O

(
w(n)

n

)))

=

((
(d−1)k

2k

)c

/c!

)(
1+O

(
w(n)

n

))c

≤
((

(d−1)k

2k

)c

/c!

)(
1+O

(
w(n)

n

))w(n)

=

((
(d−1)k

2k

)c

/c!

)
exp

(
O

(
w(n)2

n

))

=

((
(d−1)k

2k

)c

/c!

)
(1+o(1)).

Forc > w(n), from ( 2.1.1), we know that

∑c>w(n) | Gc |
∑c≥0 | Gc | = o(1).
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Now

P(Xk = 0) =
| G0 |

∑∞
i=0 | Gi |

=
| G0 |

(1+o(1))∑w(n)
i=0 | Gi |

=
| G0 |

(1+o(1))∑w(n)
i=0 | G0 |

((
(d−1)k

2k

)i
/i!

)
(1+o(1))

=
1

(1+o(1))∑∞
i=0

(
(d−1)k

2k

)i
/i!

= exp

(
−(d−1)k

2k
+o(1)

)
.

For constantc > 0,

P(Xk = c) =
| Gc |

∑∞
i=0 | Gi |

= P(Xk = 0)
| Gc |
| G0 |

= exp

(
−(d−1)k

2k
+o(1)

)(
(d−1)k

2k
+o(1)

)c

/c!.

This provesXk is asymptotically Poisson random variable with mean(d−1)k

2k , for any fixed integer

k.

2.1.2 Pseudograph Model

Sometimes people want to generate graphs from the probability spaceGn,m, in which each graph

with n vertices andm edges appears with the same probability. Chvátal’s random pseudograph

model is useful to generate and analyse graphs inGn,m. It is defined as follows. Given positive

integersn andm, defineF (n,m) to be the set of functionsf : [2m] → [n], such that eachf ∈
F (n,m) takes the same probability measure. We can defineC (n,m), the probability space of

pseudograhs, as follows. A random pseudograph corresponding tof , calledG( f ), is defined on

the vertex set[n], to have edge set{(u,v) | u = f (2i−1),v = f (2i) : for all 1≤ i ≤m}. Then

C (n,m) = {G( f ), for all f ∈F (n,m), where eachf takes the same probability measure.}
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Theorem 2.6 (Chvátal). Simple graphs are equiprobable inC (n,m), and for G∈ C (n,m) and

c = 2m/n,

P(G is simple) =

(N
m

)
m!2m

n2m = exp(−c/2−c2/4)+o(1)

where N=
(n

2

)
.

Proof:

ConsiderF (n,m), the set of functions maps from[2m] to [n]. Clearly | F (n,m) |= n2m.

Consider a simple graphG, with n vertices andm edges. Every such graphG, corresponds to

m!2m number of f ∈ F (n,m), since there arem! ways to place the order of them edges, and

for each ordering, there are2m ways to place the order of the end-vertices of each edge. Finally,

there are
(N

m

)
ways to choosemedges from ann-vertex graph. SoP(G is simple) = (N

m)m!2m

n2m . Let

K = (N
m)m!2m

n2m . Then sinceN = n(n−1)/2 = n2

2 (1− 1
n), andm= cn/2,

K =

(N
m

)
m!2m

n2m =
[N]m2m

n2m

=
N(N−1) . . .(N−m+1)2m

n2m

=
n2(1−1/n)(n2(1−1/n)−2)(n2(1−1/n)−4) . . .(n2(1−1/n)−cn+2)

n2m

=
cn/2−1

∏
i=0

(
1− 1

n
− 2i

n2

)
.

So

logK =
cn/2−1

∑
i=0

log

(
1− 1

n
− 2i

n2

)

=
cn/2−1

∑
i=0

−
(

1
n

+
2i
n2 +O(

1
n2)

)

= −1
n

cn
2
− 2

n2

cn
4

(cn
2
−1

)
+O(

1
n
)

= −c
2
− c2

4
+o(1).
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Thus

K = exp

(
−c

2
− c2

4
+o(1)

)

= exp

(
−c

2
− c2

4

)
(1+o(1)).

So,P(G is simple) = K = exp(−c/2−c2/4)+o(1).

2.2 Non-uniform models for random regular graphs

The problem of pairing model is that generating graphs by pairing model becomes slow whend

is large. However, for large constantd, we can generate graphs by using near-uniform models,

which is much faster than the pairing model. In this section, we discuss some of them.

2.2.1 d-process

This process applies whend is a constant, and starts fromG0 = Kn. GivenGt , choose u.a.r. a pair

of non-adjacent verticesu andv, whose degrees are both less thand, and setGt+1 := Gt +{uv}.
The process stops when no such vertex pair exists. The following theorem explains why the

algorithm of generatingd-regular graphs by using thed-process is fast.

Theorem 2.7 (Ruciński and Wormald [9])For fixed d≥ 1, in a random d-process, the final

graph is d-regular a.a.s.

Since the final graph isd-regular almost surely, we can generate randomd-regular graphs by

running a randomd-process.

The following theorem shows the connectivity property of graphs generated in a random

d-process.

Theorem 2.8 (Ruciński and Wormald [9])For fixed d≥ 3, the final graph is connected a.a.s.
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The analysis ofd-process is complicated. The difficulty is discussed in [6]. Ruciński and

Wormald gave the following result for short cycle distribution in a2-process.

Theorem 2.9 (Ruciński and Wormald [15])In a 2-process, let l≥ 3 be fixed. The number of

l-cycles in Gn is asymptotically Poisson. For l= 3, the mean converges to

1
2

∫ ∞

0

(log(1+x))2dx
xex ≈ 0.188735349357788830.

2.2.2 d-star process

This process is defined whend is a constant, and starts fromG0 = Kn. GivenGt , choose u.a.r.

a vertexu with minimum degree inGt , choose u.a.r.k = d−d(u) vertices,u1,u2, ...,uk, which

are non-adjacent tou, and with degrees strictly less thand. SetGt+1 := Gt +{uu1,uu2, ...,uuk}.
The process stops when for someu of minimum degree chosen, there are less thand−d(u) other

vertices which are non-adjacent tou, and with degree less thand.

We have similar connectivity property of the final graph in a randomd-star process as in the

randomd-process.

Theorem 2.10 (Greenhill, Rucínski and Wormald [10])For fixed d≥ 3, the final graph is con-

nected a.a.s.

Fox fixedd which is large enough, we have the higher connectivity property for the final

graph.

Theorem 2.11 (Greenhill, Rucínski and Wormald [10])For fixed d large enough, the final graph

is d-connected a.a.s.

Robalewska and Wormald showed that the final graph of randomd-star process isd-regular

asymptotically almost surely. For more details, see [7].
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2.2.3 Pegging operation

We define a new algorithm, called thepegging algorithm, which simply repeats a random opera-

tion we call pegging, to generate randomd-regular graphs, whered is a constant. We define the

pegging operation on ad-regular graph, whered is even, as follows.

Pegging Operation. Input:(G,d), Output:G̃

1: Let c := d/2. choose c non-adjacent edges inE (G) u.a.r., denoted byE1 =

{u1u2,u3u4, . . . ,u2c−1u2c} ⊂ E.

2: G := (G\E1) ∪ {u} ∪ E2, where u is a new vertex added inG, and E2 =

{uu1,uu2,uu3, . . .uu2c−1,uu2c}.
3: G̃ := G. End.

See Figure 2.1 as an example of pegging operation withd = 4. The pegging algorithm starts

from ad-regular graphG0, for example,Kd+1, and repeatedly apply the pegging operations. It

is easy to check that the graph resulting from taking the pegging operations defined above is still

d-regular. ThenGt is defined to be the graph resulting fromt successive pegging operations on

G0, andGt containsnt = n0 + t vertices.

u

Figure 2.1:Pegging operation when d= 4

We will present results of our examination of the short cycle distribution of these graphs in

Chapter 3.
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2.3 Sampling random structures

Markov chains are useful to sample random structures. Usually a Markov chain is well designed

such that the states in the chain represents the random structures we want to sample, and the

stationary distribution of the chain is the same as the distribution from which we are going to

sample the random structures. So we will wait until this chain is close to its stationary distribution

and then we can sample the random structures. In this section, we will discuss this method.

2.3.1 Preliminaries for Markov chains

A Markov chainis a random process{Xt}t≥0, such that the distribution ofXt+1 is determined

only byXt , the previous step. Formally,

P(Xt+1 = x|Xt = xt , . . . ,X1 = x1,X0 = x0) = P(Xt+1 = x|Xt = xt).

Define thetransition probability matrixP as follows. The entrypi j of P is the probability of

going from statei to statej in a single step

pi j = Pr(X1 = j | X0 = i).

Then then-step transition probabilities are

p(n)
i j = P(Xn = j | X0 = i).

Thusn-step transition probability matrix isP(n) = PP. . .P which is an-fold matrix product.

Then-step transition satisfies the Chapman-Kolmogorov equation,

p(n)
i j = ∑

r∈Ω
p(k)

ir p(n−k)
r j for any0 < k < n.

A state j is said to beaccessiblefrom statei if there exitst ≥ 0, such that

P(Xt = j|X0 = i) > 0.
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A communicating class Cis a set of states such that any two states inC are accessible from

each other. A Markov chain is said to beirreducible if its state space is a communicating class.

This means that it is possible to get to any state from any state in an irreducible Markov chain.

A statei has periodk if starting from statei, any return to statei must occur in some multiple

of k time steps. Formally, the period of a state is defined as

k = gcd{n : P(Xn = i|X0 = i) > 0}.

If k = 1, then the state is said to beaperiodic; otherwise, the state is said to be periodic with

periodk. It can be shown that every state in a communicating class must have the same period.

An irreducible Markov chain is said to beergodicif its states are aperiodic. A Markov chain

is ergodic if it is irreducible and aperiodic. The vectorπ is a stationary distribution if∑ j∈Ω π j = 1

and satisfiesπ j = ∑i∈Ω πi pi j for all j.

Theorem 2.12 (The convergence theorem [16]).If an irreducible Markov chain has a stationary

distributionπ, then this stationary distribution is unique. Moreover, if this Markov chain is also

ergodic, thenPt(i, j)→ π( j) as t→ ∞, for all i , j ∈Ω .

Consider a random walk on a finite graphG = (V,E), where the walk starts at vertexv0. At

each stept, assuming the walk is at positionvt , it will go to one of the neighbors ofvt at step

t +1, with probability1/d(vt). The sequence{v0,v1,v2, . . .} is a Markov chain with stationary

distributionπ( j) = d(v j)/ | E |. If G is non-bipartite, then this Markov chain is ergodic, and the

distribution ofvt converges to the stationary distribution.

Also consider the pegging operation defined in section 2.2.3. Let’s start from ad-regular

graphG0, whered is even, and assume at stept, we have graphGt , then we get graphGt+1 by

taking a pegging operation, or a reverse operation of pegging. The sequence{G0,G1,G2, . . .} is

a Markov chain. Cooper, Dyer and Greenhill have studies this chain in [2], in which they define

this chain to model the SWAN network. They proved that the distribution ofGt , conditional on

certain size ofGt , will converges to the uniform distribution.
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The graph sequences{Gt}t≥0 generated fromd process,d-star process, and pegging algo-

rithms are also Markov chains, but these Markov chains are a bit special, since no state in the

chain will ever recur once it has occurred. Thus they have no stationary distributions and do not

have a convergence property.

While generating graphs from a Markov chain, people usually wait for enough time till the

current distribution is close to the stationary distribution of the Markov chain. This brings us to

the problem of mixing time.

2.3.2 Mixing time

A finite state ergodic Markov chain has a unique stationary distributionπ, and the distribution

of the chain at timet converges toπ ast tends to infinity, no matter which initial state it starts.

Mixing time refers to the idea of how larget should be to guarantee that the distribution at timet

is approximatelyπ. We define the total variation distance to be the distance between the current

distribution of the chain, denoted asσXt , and the stationary distributionπ to be

dTV(σXt ,π) = max
A⊂Ω

{P(Xt ∈ A)−π(A)}. (2.3.1)

then the mixing time of the chain is defined to be the following functionτ of some small positive

constantε, where the total variation distance is at mostτ.

τ(ε) = min
t
{dTV(σXt ,π)≤ ε}.

Tools for proving mixing rate include conductance and multicommodity flow [20], and the

method of coupling and path coupling [20, 19]. In broader uses of the Markov chain Monte Carlo

method, rigorous justification of simulation results would require a theoretical bound on mixing

time.

We now have a more detailed look at the coupling method, since we will use it in later in

Chapter 3.

16



Let M be a Markov chain on a finite state spaceΩ. A coupling ofM is a random process

(Xt ,Yt) on Ω2 such that each ofXt , Yt is marginally a copy ofM, namely

∑
σ2

P
(

(Xt+1,Yt+1) = (σ1,σ2) | (Xt ,Yt) = (ω1,ω2)
)

= P(Xt+1 = σ1 |Xt = ω1) for all ω2 ∈Ω

∑
σ1

P
(

(Xt+1,Yt+1) = (σ1,σ2) | (Xt ,Yt) = (ω1,ω2)
)

= P(Yt+1 = σ2 |Yt = ω2) for all ω1 ∈Ω

Then Doeblin [14] gave the following powerful coupling lemma.

Lemma 2.1 (Coupling Lemma) Let Xt , Yt be a coupling forM such that Y0 has the stationary

distributionπ. Then if Xt has distribution pt ,

dTV(pt ,π)≤ P(Xt 6= Yt).

Proof Let At ⊂Ω maximizes in (3.1.1). ThenYt has stationary distribution asY0.

dTV(pt ,π) = P(Xt ∈ At)−P(Yt ∈ At)

≤ P(Xt ∈ At)−P(Xt = Yt ∧Xt ∈ At)

= P(Xt ∈ At)+P(Xt 6= Yt ∨Xt /∈ At)−1

≤ P(Xt ∈ At)+P(Xt 6= Yt)+P(Xt /∈ At)−1

= P(Xt 6= Yt).
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Chapter 3

Short cycles distribution in random

d-regular graphs generated by pegging

3.1 Main Result

In this chapter, we study the randomd-regular graphs produced by the pegging algorithm, for

evend. To present our methods, we focus ond = 4 in particular. The algorithm starts from a

4-regular graphG0 with n0 vertices. As the general definition of pegging operation above, at each

step, choose randomly two non-adjacent edges. Delete these two edges, and create a new vertex

and then join this vertex to the four end vertices of the deleted edges. SoGt containsnt = n0 + t

vertices and2nt edges.

Let Yt,k denote the number ofk-cycles inGt . For simplicity, we letYt to beYt,3, since we will

first study the distribution of triangles inGt ast goes to infinity. Then we generalize the analysis

to the distribution of the number ofk-cycles for any fixedk.

Note that initially, the number of triangles might be as big as2n0. However, as we will show

later, in such an extreme case,E (Yt) will decrease quickly in the early stage of the algorithm.

Our first lemma will show that the expected number of triangles will be bounded above by some

constantC, for large enoughC, which is independent ofn0, after sufficiently many steps.
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Lemma 3.1 Given constant C, such that C is sufficiently large, there existsτ3 = τ3(n0,Y0,C),

such thatE(Yt)≤C, for all t ≥ τ3.

Lemma 3.2 For any t> τ4/3
3 ,

E(Yt) = 3+O
(

n−3/4
t

)
.

Lemma 3.3 Given sufficiently large constant C, there existsτk = τk
(
n0,Y0,k,C

)
, such thatE

(
Yt,k

)
<

C, provided t> τk, for all k≥ 3. More precisely, for any t≥ τ4/3
k ,

E
(
Yt,k

)
=

3k−9
2k

+O
(

n−3/4
t

)
.

We will show thatYt,k has a limiting distribution, ast →∞, which is Poisson with mean3
k−9
2k .

Let σt,k be the distribution ofYt,k, let π be any distribution. Then thetotal variation distance

betweenσt,k andπ is defined as

dTV
(
σt,k,π

)
= max

At⊂N+∪{0}
{

σt,k(At)−π(At)
}

. (3.1.1)

A similar definition of total variation distance is

dTV
(
σt,k,π

)
=

1
2 ∑

x∈N+∪{0}
| σt,k(x)−π(x) | .

The standard definition of the mixing timeτ (ε) in Markov chain with probability spaceΩ

has been given in Chapter 2. But the random process{Yt}t≥0 is not a Markov chain, since the

distribution ofYt depends not onlyYt−1, but in fact on the underlying graphGt−1. However,

we can definepseudo-mixing timequite similarly to measure how fast the distribution ofYt,k is

getting close to its limiting distributionπ∗k , if π∗k exists. We define the pseudo-mixing time of the

sequence{σt,k}t≥0 to be

τ∗ (ε) = min{T ≥ 0 : dTV
(
σt,k,π∗k

)≤ ε for all t ≥ T }. (3.1.2)

Note that the asterisk onπ andτ is just to distinguish them from the usual stationary distribution

and mixing time.
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We can prove that, asε goes to0, the pseudo-mixing time is at mostO(1/ε). More specifi-

cally, we get the following theorem. Currently, we have only proved results for triangles, but we

conjecture the following two theorems hold for any fixedk as well. The theorems are written in

a general form.

Theorem 3.1 For k = 3,

lim
t→∞

Pr
(
Yt,k = c

)
= e−µk

µc
k

c!
.

whereµk = 3k−9
2k .

The pseudo-mixing time satisfiesτ∗k (ε) = O
(
ε−1

)
.

This result can be extended to randomd-regular graphs generated by pegging operations,

whered is any even integer. LetYt,d be the number of triangles, andYt,d,k be the number of

k-cycles inGt , whereGt is a randomd-regular graph generated by pegging operations.

Theorem 3.2 Let Gt be a random d-regular graph generated by pegging operations. Given suf-

ficiently large constant C, there existsτd,k = τd,k
(
n0,Y0,d,k,C

)
, such thatE

(
Yt,d,k

)
< C, provided

t > τd,k, for all k≥ 3. More precisely, for any t≥ τ4/3
k ,

E
(
Yt,d,k

)
=

(d−1)k− (d−1)2

2k
+O

(
n−3/4

t

)
.

For k = 3, the limiting distribution of Yt,d,k is derived similarly as follows

lim
t→∞

P
(
Yt,d,k = c

)
= e−µd,k

µc
d,k

c!
whereµd,k = (d−1)k−(d−1)2

2k .

The pseudo-mixing time satisfiesτ∗d,k (ε)≤O
(
ε−1

)
.

We can extend coupling lemma to measure the total variation distance between two distribu-

tions on two different Markov chains, or even two different random processes.

Let {Xt}t≥0 and{Yt}t≥0 be two random processes defined on the same sample spaceΩt , and

the sameσ -field in each stept. Then a coupling of{Xt}t≥0 and{Yt}t≥0 is a random process

(Xt ,Yt) on Ω2
t such that
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∑
σ2

P
(

(Xt+1,Yt+1)= (σ1,σ2) | (Xt ,Yt)= (ω1,ω2)
)

= P(Xt+1 = σ1 |Xt = ω1) for all ω2 ∈Ωt

∑
σ1

P
(

(Xt+1,Yt+1) = (σ1,σ2) | (Xt ,Yt) = (ω1,ω2)
)

= P(Yt+1 = σ2 |Yt = ω2) for all ω1 ∈Ωt

We derive this following extended coupling lemma.

Lemma 3.4 (Extended Coupling Lemma){Xt}t≥0 and{Yt}t≥0 are two random processes in

the same probability spaceΩt . Let σX, t and σY, t denote the distribution of Xt and Yt in step t

respectively, and let{(Xt ,Yt)}t≥0 be a coupling. Then

dTV(σX, t ,σY, t)≤ P(Xt 6= Yt).

The proof is almost the same as that of the coupling lemma.
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3.2 Proofs

Proof of Lemma 3.1

Our analysis is now based on the underlying graphGt at stept +1. We need to choose two

non-adjacent edgese1 ande2 to do a pegging operation. There is2nt choices fore1, and2nt −7

choices fore2, which are non-adjacent toe1. So the ways to choose an ordered pair(e1,e2) is

2nt (2nt −7). So the total number of ways to do a pegging operation at stept +1 is

N =
2nt (2nt −7)

2
= nt (2nt −7) . (3.2.1)

Consider creating a new triangle. Given an edgeeof Gt not in a triangle, a new triangle is created

containinge if and only if we peg two edgesx andy both adjacent toe, but incident with different

end-points ofe. SinceGt is 4-regular, the number of ways to choosex andy is precisely9. So

the expected number of new triangles created should be at least9(2nt −3Yt)/N whereN is the

number of ways to do the pegging operation. And9·2nt/N is obvious an upper bound.

To destroy a triangle, one edge is in the triangle, and there are2nt−7 choices for another edge

to be pegged. So for each triangle inGt , the probability for it to be destroyed is3(2nt −7)/N,

and thus the expected number of existing triangles being destroyed is3Yt (2nt −7)/N = 3Yt/nt .

It follows that, the expected value ofYt+1−Yt , givenGt , satisfies

18
2nt −7

− 3Yt

nt

(
1+

9
2nt −7

)
≤ E(Yt+1−Yt |Gt)≤ 18

2nt −7
− 3Yt

nt
. (3.2.2)

Thus

E(Yt+1−Yt |Gt) =
9−3Yt

nt
+O

(
1+Yt

n2
t

)
. (3.2.3)
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By taking expectation of both sides of (3.2.2) we get

E(Yt+1−Yt) ≤ 18
2nt −7

− 3E(Yt)
nt

≤ − 3
nt

E(Yt)+
9+α

nt

for someα = O(1/n0), and for allt ≥ 0.

Iteratively,

E(Yt) ≤
(

1− 3
nt−1

)
E(Yt−1)+

9+α
nt−1

≤ E(Y0)
t−1

∏
i=0

(
1− 3

ni

)
+

t−1

∑
i=0

9+α
ni

t−1

∏
j=i+1

(
1− 3

n j

)

≤ Y0exp

(
−

t−1

∑
i=0

3
ni

)
+(9+α)

t−1

∑
i=0

exp

(
−

t−1

∑
j=i+1

3
n j

)
1
ni

≤ Y0exp(−3(lognt − logn0))

+(9+α)
t−1

∑
i=0

(
exp(lognt − logni+1)

1
ni

)

=
(

n0

nt

)3

Y0 +(9+α)
t−1

∑
i=0

1
ni

n3
i+1

n3
t

.

Sincen0+i+1
n0+i < β = 1+O(1/n0), so(9+α)β < 9+α ′, for someα ′ = O(1/n0).

So

E(Yt) ≤
(

n0

nt

)3

Y0 +
9+α ′

n3
t

t−1

∑
i=0

n2
i

≤
(

n0

nt

)3

Y0 +
9+α ′

n3
t

(
1
3

(
n3

t −n3
0

))

≤
(

n0

nt

)3

Y0 +
9+α ′

3

(
1−

(
n0

nt

)3
)

≤
(

n0

nt

)3

Y0 +
9+α ′

3
.

The first term tends to 0 ast → ∞.
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So, asC sufficiently large,E(Yt) will be bounded above byC, for all t ≥ τ3, whereτ3 depends

only onn0, Y0, andC.

Proof of Lemma 3.2

From (3.2.2),

18
2nt −7

− 3Yt

nt

(
1+

9
2nt −7

)
≤ E(Yt+1−Yt |Yt)≤ 18

2nt −7
− 3Yt

nt
.

Yt ≥ 0 for all t ≥ 0.

Then for someα1 = O(1/nt0)

E(Yt+1−Yt |Yt)≤ 9+α1

nt
− 3Yt

nt
for all t > t0.

By taking expectation of both sides,

E(Yt+1−Yt)≤ 9+α1

nt
−3

E(Yt)
nt

.

Iteratively, we obtain

E(Yt) ≤
(

1− 3
nt−1

)
E(Yt−1)+

9+α1

nt−1

≤ E(Yt0)exp

(
−

t−1

∑
i=t0

3
ni

)
+(9+α1)

t−1

∑
i=t0

exp

(
−

t−1

∑
j=i+1

3
n j

)
1
ni

≤ E(Yt0)
(

nt0

nt

)3

+(9+α1)
t−1

∑
i=t0

(ni+1−nt)
3

≤ E(Yt0)
(

nt0

nt

)3

+
9+α ′1

n3
t

t−1

∑
i=t0

n2
i

≤ E(Yt0)
(

nt0

nt

)3

+
9+α ′1

3

for someα ′1 = O(1/nt0).

Similarly we can also get the lower bound from (3.2.2), such that

E(Yt)≥ E(Yt0)
(

nt0

nt

)3

+
9+β ′1

3
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for someβ ′1 = O(1/nt0).

So, we obtain

E(Yt) = 3+E(Yt0)
(

nt0

nt

)3

+O(1/nt0) .

By Lemma 3.1,E(Yt) < C for some sufficiently large constantC, wheret ≥ τ3 = τ3(n0,Y0,C).

So for anyt0≥ τ3, E(Yt0) < C.

Thus we get

E(Yt) = 3+O(1/nt0)+O

((
nt0

nt

)3
)

for all t ≥ t0≥ τ3.

Choosent0 = n3/4
t , then Lemma 3.2 follows.

Proof of Lemma 3.3

We prove thatE
(
Yt,k

)
= 3k−9

2k +Ok (1/nt0)+Ok

((
nt0
nt

)3
)

for all t ≥ t0≥ τk.

It is true fork = 3, from Lemma 3.2. Assume it is also true of all integers smaller thank, namely,

for any integeri < k, there exists constantAi , andBi , depending only oni, such that

E(Yt,i)≤ 3i−9
2i

+
Ai

nt0
+Bi

(
nt0

nt

)3

.

The number ofk-paths inGt starting from a fixed vertexv is at most4 ·3k−1, so the number of

k-paths inGt is at most4 ·3k−1nt/2. There are∑k
i=1Yt,i cycles of size at mostk in Gt . So delete

an edge in each of those cycles. We need to delete at most∑k
i=1Yt,i edges, each edges contributes

to at mostk3k−1 k−cycles. SoGt contains at least4·3k−1nt/2−k3k−1∑k
i=1Yt,i differentk-paths.

There are two ways to create ak-cycle. The first one is to choose the two end edges of ak-path

and do the pegging operation. The probability to do that is at most

2·3k−1

2nt

(
1+O

(
1
nt

))

and at least
2·3k−1nt −k3k−1∑k

i=1Yt,i

2n2
t

(
1+O

(
1
nt

))
.
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The other way is to do pegging on two non-adjacent edges such that one of them is contained

in a (k−1)-cycle. The probability to do this is(k−1)Yt,k−1(2nt −7)/N = (k−1)Yt,k−1/nt . Let

Zt,k denote the number of newk−cyclesfrom Gt to Gt+1 created is

E
(
Zt,k |Gt

) ≥ 2·3k−1nt −k3k−1∑k
i=1Yt,i

2n2
t

(
1+O

(
1
nt

))
+

(k−1)Yt,k−1

nt

E
(
Zt,k |Gt

) ≤ 3k−1

nt

(
1+O

(
1
nt

))
+

(k−1)Yt,k−1

nt
.

So,

E
(
Zt,k

) ≥
2·3k−1nt −k3k−1

(
∑k−1

i=1 E(Yt,i)+E
(
Yt,k

))

2n2
t

(
1+O

(
1
nt

))
+

(k−1)E
(
Yt,k−1

)

nt

E
(
Zt,k

) ≤ 2·3k−1

2nt

(
1+O

(
1
nt

))
+

(k−1)E
(
Yt,k−1

)

nt
.

By induction,

E
(
Yt,k−1

)
=

3k−1−9
2(k−1)

+
Ak−1

nt0
+Bk−1

(
nt0

nt

)3

. (3.2.4)

Similar to the case of triangles, the expected number ofk−cyclesdestroyed iskYt,k/nt .

Then

E
(
Yt+1,k

)−E
(
Yt,k

)
=

3k−1

nt

(
1+O

(
E(Yt,k)

nt

))
− kE

(
Yt,k

)

nt
+

(k−1)E
(
Yt,k−1

)

nt
. (3.2.5)

By induction,E
(
Yt,k−1

)
<C providedt ≥ τ3

(
n0,Y0,k−1,C

)
. Similarly as the proof in Lemma 3.1,

E
(
Yt,k

)
will be bounded above byC, after some constant time. So, there existsτk = τk

(
n0,Y0,k,C

)
,

such thatE
(
Yt,k

)
< C for large enough constantC, providedt > τk. Chooset0≥ τk.
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By induction, for allt ≥ t0, and for someαk = O(1/nt0), α ′k = O(1/nt0),

E
(
Yt,k

) ≤ E
(
Yt0,k

) t−1

∏
i=t0

(
1− k

ni

)
+

t−1

∑
i=t0

(
(k−1)E

(
Yi,k−1

)
+3k−1 +αk

ni

t−1

∏
j=i+1

(
1− k

n j

))

≤ E
(
Yt0,k

)(
nt0

nt

)k

+
1
k

(
3k−1 +αk

)

+(k−1)
t−1

∑
i=t0

(
1
ni

(
ni+1

nt

)k
(

3k−1−9
2(k−1)

+Ak−1
1

nt0
+Bk−1

(
nt0

ni

)3
))

≤ E
(
Yt0,k

)(
nt0

nt

)k

+
1
k

(
3k−1 +αk

)

+(k−1)
(
1−α ′k

)(
3k−1−9
2(k−1)

1

nk
t

t−1

∑
i=t0

nk−1
i +

1

nk
t

Ak−1

nt0

t−1

∑
i=t0

nk−1
i +

Bk−1nt0

nk
t

t−1

∑
i=t0

nk−4
i

)

≤ E
(
Yt0,k

)(
nt0

nt

)k

+
1
k

(
3k−1 +αk

)
+(1−α ′k)

3k−1−9
2k

(
1−

(
nt0

nt

)k
)

+(1−α ′k)

(
k−1

k
Ak−1

(
1

nt0
− nk−1

t0

nk
t

))
+(1−α ′k)

k−1
k−3

Bk−1

(
nt0

n3
t
− nk

t0−2

nk
t

)

Thus there exists constantAk, andBk, depending only onk, such that

E
(
Yt,k

) ≤ 1
k

3k−1 +
3k−1−9

2k
+

Ak

nt0
+Bk

(
nt0

nt

)3

=
3k−9

2k
+Ok

(
1

nt0

)
+Ok

((
nt0

nt

)3
)

.

Similarly, we can derive the lower bound asE(Yt,k)≥ 3k−9
2k +Ok

(
1

nt0

)
+Ok

((
nt0
nt

)3
)

.

Choosent0 = n3/4
t , then Lemma 3.3 follows.
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Proof of Theorem 3.1

For simplicity, we first consider the case ofk = 3.

A pegging operation can create or destroy at most six triangles in one step, sinceGt is 4-

regular. In some cases, pegging creates more than one new triangle, and will also destroys some

existing triangles.

We first show that increasing or decreasing the number of triangles by at least2 in one step,

is of probabilityO
(
1/n2

t

)
.

Figure 3.1 shows a case that if we do pegging operation on the two dashed edges, then two

new triangles will be created and an existing triangle will be destroyed. So the number of trian-

gles increase only by 1.

Figure 3.1:two new triangles created, one existing triangle deleted

Figure 3.2 shows a case in which three new triangles will be created and two existing triangles

will be deleted, if a pegging operation is done on the two dashed edges. So the number of

triangles still increases only by 1.

Figure 3.2:three new triangles created, two existing triangles deleted
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The only way to create two triangles without destroying other triangles is that the four end-

vertices joined by the two chosen non-adjancent edges form a 4-cycle as shown in Figure 3.3.

Figure 3.3:two new triangles created

By Lemma 3.3, we can chooseε small enough, and lett0 = O(1/ε). So, for allt ≥ t0, the

expected number ofk-cycles is bounded above by some large enough constant.

The expected number of ways to choose two non-adjacent edges both contained in a4-cycle

is at most2E(Yt,4), so the probability of pegging this way is at most2E(Yt,4)/
(
2n2

t

)
, and hence,

O
(
1/n2

t

)
.

It is easy to check that the probability of creatingi triangles, where3≤ i ≤ 6, is even smaller.

Since creating more than2 triangles also requires the occurrence of4-cycles, whose expected

number is bounded by constant. So the probability of increasingYt by 2 is at mostO
(
1/n2

t

)
.

This implies that the probability of increasingYt by more than 2 isO
(
1/n2

t

)
.

We now show that the existence of two triangles sharing an common edge as shown in Fig-

ure 3.4 is of probability at mostO(1/nt). For convenience, we call this structureC∗3. Let Y∗t,3
denote the number ofC∗3 in Gt . The expected number ofC∗3 being destroyed in one step is

5Y∗t,3(2nt −7)/N = 5Y∗t,3/nt . The only way to create aC∗3 by pegging is shown in Figure 3.5,

where the two dashed edges, both of which are adjacent to one of the triangles inGt are pegged.

So the expected number ofC∗3 created in one step is at most12Yt/N =
(
6Yt/n2

t

)
(1+O(1/nt)).

So

E
(
Y∗t+1,3−Y∗t,3 |Y∗t,3

)≤ 6Yt

n2
t

(
1+O

(
1
nt

))
− 5Y∗t,3

nt
.
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Figure 3.4:C∗3

Figure 3.5:a pegging to create a C∗3

By taking expectation of both sides,

E
(
Y∗t+1,3

)−E
(
Y∗t,3

)≤ 6E(Yt)
n2

t

(
1+O

(
1
nt

))
−

5E
(
Y∗t,3

)

nt
.

SinceE(Yt) = O(1), for all t ≥ τ3.

E(Y∗t,3)≤ (1− 5
nt−1

)E(Y∗t−1,3)+
C

n2
t−1

for some constantC.
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So

E
(
Y∗t,3

) ≤
(

nt0

nt

)5

E
(
Y∗t0,3

)
+C

t−1

∑
i=t0

1

n2
i

t−1

∏
j=i+1

(
1− 5

n j

)

≤
(

nt0

nt

)5

E
(
Y∗t0,3

)
+C

t−1

∑
i=t0

1

n2
i

(
ni+1

nt

)5

≤
(

nt0

nt

)5

E
(
Y∗t0,3

)
+

2C

n5
t

t−1

∑
i=t0

n3
i

≤
(

nt0

nt

)5

E
(
Y∗t0,3

)
+

2C
nt

= O

(
1
nt

)

Then we obtainE
(
Y∗t,3

)
= O(1/nt).

This can be easily extended toE
(
Y∗t,k

)
= O(1/nt), for all k≥ 3, ast sufficiently large, where

C∗k denotes the structure that twok-cycles share one and only one edge, andY∗t,k denotes the

number ofC∗k in Gt .

There are also only two ways to destroy two triangles in one step. Namely, to select an edge

for pegging that is contained in two triangles, or choose two non-adjacent edges in two different

triangles. In the first case, the expected number of ways to do this is at mostE
(
Y∗t,3

)
(2nt −7) =

O(1). In the second case, it is at mostE(Yt)
2 = O(1). So the probability that the number of

triangles decrease by 2 isO
(
1/n2

t

)
.

The probability of creating a triangle and destroying another triangle in one step is also small.

The only way to achieve that is the case shown in Figure 3.6. Here, first choose the dashed edge

that is contained in a triangle, and any grey edge. So one triangle is deleted, and one of the edges

that is adjacent to the dashed edge will be contained in a new triangle. For each edge in a triangle,

there are at most 14 grey edges to choose. Thus, there are at most14· 3E(Yt) such expected

pegging operations. So the probability of this occuring is
(
14·3·E(Yt)/2n2

t

)
(1+O(1/nt)), and

henceO
(
1/n2

t

)
.

Let Li be the event that the number of triangles decreases byi in the next step, andRi be the

event that the number of triangles increases byi in the next step. Then
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Figure 3.6:one new triangle created, one existing triangle deleted

Then we obtain

P(Yt+1 = j) = P(Yt = j)

(
1−

6

∑
i=1

(P(Li |Yt = j)+P(Ri |Yt = j))

)

+
6

∑
i=1

P(Yt = j− i)(P(Ri |Yt = j− i))

+
6

∑
i=1

P(Yt = j + i)(P(Li |Yt = j + i)) (3.2.6)

From (3.2.2), we know that the expected number of triangles created is9/nt + ε1(Gt), and

the expected number of triangles destroyed is3Yt/nt +ε2(Gt), whereε1(Gt) andε2(Gt) are error

terms depends onGt which is of orderO((1+Yt)/n2
t ). As shown in Figure 3.6, the probability

to create and destroy triangles in a single step isO((1+Yt)/n2
t ). So

6

∑
i=1

iP(Li |Yt) =
3Yt

nt
+O

(
1+Yt

n2
t

)

6

∑
i=1

iP(Ri |Yt) =
9
nt

+O

(
1+Yt

n2
t

)
.

Let G be anyσ -field such thatG ⊆ σ(Yt). It is also obvious that

6

∑
i=1

iP(Li |Yt ,G ) =
3Yt

nt
+O

(
1+Yt

n2
t

)
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6

∑
i=1

iP(Ri |Yt ,G ) =
9
nt

+O

(
1+Yt

n2
t

)
. (3.2.7)

By previous arguments, we also know that

P(Li) = ∑
j∈N

P(Li |Yt = j)P(Yt = j) = O

(
1

n2
t

)
for all 2≤ i ≤ 6

P(Ri) = ∑
j∈N

P(Ri |Yt = j)P(Yt = j) = O

(
1

n2
t

)
for all 2≤ i ≤ 6

P(L1) = ∑
j∈N

P(L1 |Yt = j)P(Yt = j) =
9
nt

+O

(
1

n2
t

)

P(R1) = ∑
j∈N

P(R1 |Yt = j)P(Yt = j) =
3E(Yt)

nt
+O

(
1

n2
t

)
(3.2.8)

Now we define another random process to be a random walk on the nonnegative integers. We

define the behavior of the random walk as following:

Xt+1 =





Xt −1 with probability3Xt/nt

Xt with probability1−3Xt/nt −9/nt

Xt +1 with probability9/nt .

(3.2.9)

Let Po(µ) denote Poisson distribution with meanµ. We show that the Markov chain{Xt}t≥0

has a stationary distribution asPo(3).

AssumeXt has Poisson distribution with mean3, then

P(Xt = i) = e−33i

i!
for all i ∈ N+∪{0}

P(Xt+1 = j) = ∑
i∈N+∪{0}

P(Xt = i)Pi j

= e−3 3 j−1

( j−1)!
9
nt

+e−33 j

j!

(
1− 9

nt
− 3 j

nt

)
+e−3 3 j+1

( j +1)!
3( j +1)

nt

= e−33 j

j!
.

ThusPo(3) is invariant, and by definition it is the stationary distribution.
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Let Xt has its stationary distribution at stept0. We apply the coupling method toXt andYt .

Now we define another random walk on the nonnegative integers to be a copy of{Yt}t≥0. We

still name it{Yt}t≥0, which is now a random walk on integers, though it has exactly the same

behavior as the original one. Formally, for any integer1≤ i ≤ 6,

P(Yt+1 = Yt + i) = P(Ri |Yt)

P(Yt+1 = Yt − i) = P(Li |Yt).

Now Xt andYt are defined on the same probability space, thus we can set up the joint distribution

of (Xt ,Yt). Assume we have(Xt ,Yt) at stept, we set the transition probability shown in the

following tables. For example, the entry of the intersection of the second row and second column

in Table 3.2, and Table 3.3 shows the probability that(Xt+1,Yt+1) takes the value of(Xt−1,Yt−
i), for any2≤ i ≤ 6.

Table 1:Yt 6= Xt

Yt − i (2≤ i ≤ 6) Yt −1 Yt Yt +1 Yt + i (2≤ i ≤ 6)

Xt −1 0 0 3Xt/nt 0 0

Xt P(Li |Yt) P(L1 |Yt) p P(R1 |Yt) P(Ri |Yt)

Xt +1 0 0 9/nt 0 0

wherep = 1−9/nt −3Xt/nt −∑6
i=1(P(Li |Yt)+P(Ri |Yt)).

Let Zt be the number of triangles created inGt , as we defined in the proof of Lemma 3.3. LetMt

be the number of triangles destroyed inGt . From 3.2.2, we know

E(Zt |Gt)≤ 9
nt

+O

(
1

n2
t

)
,E(Mt |Gt)≤ 3Yt

nt
+O

(
1

n2
t

)
.

By taking expectation of both sides, and conditional on the value ofYt ,

E(Zt |Yt)≤ 9
nt

+O

(
1

n2
t

)
,E(Mt |Gt)≤ 3Yt

nt
+O

(
1

n2
t

)
.
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As shown in Figure 3.6, triangles created and destroyed in a single step is of probabilityO(Yt/n2
t ).

Thus,∑6
i=1 iP(Li |Yt) = 3Yt

nt
+O((1+Yt)/n2

t ), and∑6
i=1 iP(Ri |Yt) = 9

nt
+O((1+Yt)/n2

t ).

So for someat(Yt) = O((1+Yt)/n2
t ), bt(Yt) = O((1+Yt)/n2

t ), P(L1 |Yt) ≤ 3Yt/nt +bt(Yt), and

P(R1 |Yt)≤ 9/nt +at(Yt). Then it is easy to choosêbt(Yt) > 0, b̄t(Yt) > 0, ât(Yt) > 0, āt(Yt) > 0,

such thatb̂t(Yt) = O((1+Yt)/n2
t ), ât(Yt) = O((1+Yt)/n2

t ), P(L1 | Yt) = 3Yt/nt + b̂t − b̄t(Yt),

P(R1 |Yt) = 9/nt + ât − āt(Yt).

The we define the following joint distribution according to the caseYt = Xt .

Table 2:Yt = Xt

Yt − i (2≤ i ≤ 6) Yt −1 Yt Yt +1 Yt + i (2≤ i ≤ 6)

Xt −1 0 3Yt/nt − b̄t(Yt) b̄t(Yt) 0 0

Xt P(Li |Yt) b̂t(Yt) p ât(Yt) P(Ri |Yt)

Xt +1 0 0 āt(Yt) 9/nt − āt(Yt) 0

wherep = 1−9/nt −3Yt/nt − ât(Yt)− b̂t(Yt)−∑6
i=2(P(Li |Yt)+P(Ri |Yt)).

We can check that the marginal satisfies (3.2.9) and (3.2.6).

Let

Dt =|Yt −Xt | (3.2.10)

If Yt > Xt , from Table 1 we get

E(Dt+1−Dt | Xt ,Yt ,s.t.Yt > Xt) ≤ 3Xt

nt
−P(L1 |Yt))+

6

∑
i=2

iP(Li |Yt))+
6

∑
i=1

iP(Ri |Yt)− 9
nt

=
3Xt

nt
−

6

∑
i=1

iP(Li |Yt))+
6

∑
i=1

iP(Ri |Yt)− 9
nt

+2
6

∑
i=2

iP(Li |Yt))

Taking expectation of both sides, and applying (3.2.7), by Tower Property, we obtain
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E(Dt+1−Dt |Yt > Xt) = E(E(Dt+1−Dt | Xt ,Yt ,s.t.Yt > Xt) |Yt > Xt)

≤ 3E(Xt |Yt > Xt)
nt

− 3E(Yt |Yt > Xt)
nt

+O

(
1+E(Yt |Yt > Xt)

n2
t

)

+2
6

∑
i=2

E(iP(Li |Yt > Xt)))

= − 3
nt

E(Dt |Yt > Xt)+O

(
1+E(Yt |Yt > Xt)

n2
t

)
+

6

∑
i=2

2E(iP(Li |Yt > Xt))).

If Yt < Xt , from Table 1 we get

E(Dt+1−Dt | Xt ,Yt ,s.t.Yt < Xt) ≤ −3Xt

nt
+

6

∑
i=1

iP(Li |Yt)−P(R1 |Yt)+
6

∑
i=2

iP(Ri |Yt)+
9
nt

= −3Xt

nt
+

6

∑
i=1

iP(Li |Yt)−
6

∑
i=1

iP(Ri |Yt)+
9
nt

+2
6

∑
i=2

iP(Ri |Yt)

Taking expectation of both sides, and applying (3.2.7), by Tower Property, we obtain

E(Dt+1−Dt |Yt < Xt) = E(E(Dt+1−Dt | Xt ,Yt ,s.t.Yt < Xt) |Yt < Xt)

≤ −3E(Xt |Yt < Xt)
nt

+
3E(Yt |Yt < Xt)

nt
+O

(
1+E(Yt |Yt < Xt)

n2
t

)

+2
6

∑
i=2

E(iP(Ri |Yt < Xt))

= − 3
nt

E(Dt |Yt < Xt)+O

(
1+E(Yt |Yt > Xt)

n2
t

)
+2

6

∑
i=2

E(iP(Ri |Yt < Xt)).

If Yt = Xt , thenDt = 0, from Table 2 we get

E(Dt+1−Dt | Xt ,Yt ,s.t.Yt = Xt)

= b̂t(Yt)+ b̄t(Yt)+ ât(Yt)+ āt(Yt)+
6

∑
i=2

(iP(Li |Yt)+ iP(Ri |Yt))

=
3Yt

nt
−P(L1 |Yt)+2b̂t(Yt)+

9
nt
−P(R1 |Yt)+2ât(Yt)+

6

∑
i=2

(iP(Li |Yt)+ iP(Ri |Yt))

=
3Yt

nt
+2b̂t(Yt)+

9
nt

+2ât(Yt)−
6

∑
i=1

(P(L1 |Yt)+P(R1 |Yt))+
6

∑
i=2

(iP(Li |Yt)+ iP(Ri |Yt)).

Taking expectation of both sides, and applying (3.2.7) and (3.2.8), by Tower Property, we get
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E(Dt+1−Dt |Yt = Xt)

= E(E(Dt+1−Dt |Yt ,Xt ,s.t.Yt = Xt) |Yt = Xt)

=
3E(Yt |Yt = Xt)

nt
+

9
nt
−

6

∑
i=1

(P(L1 | Xt = Yt)+P(R1 | Xt = Yt))+O(1/n2
t )

+
6

∑
i=2

(iP(Li |Yt = Xt)+ iP(Ri |Yt = Xt))

= O

(
1+E(Yt | Xt = Yt)

n2
t

)
+

6

∑
i=2

(iP(Li |Yt = Xt)+ iP(Ri |Yt = Xt)).

Since for all2≤ i ≤ 6,

E(P(Li |Yt = Xt))

=
∑ j P(Li |Yt = Xt = j)P(Yt = Xt = j)

∑ j P(Yt = Xt = j)

≤
(
∑ j P(Li |Yt = Xt = j)

)(
∑ j P(Yt = Xt = j)

)

∑ j P(Yt = Xt = j)

= ∑
j

P(Li |Yt = Xt = j)

= ∑
j

P(Li |Yt = j)

= O

(
1

n2
t

)

Similarly, we can show that

E(P(Ri |Yt = Xt)) = O

(
1

n2
t

)
,E(P(Li |Yt < Xt)) = O

(
1

n2
t

)
,

E(P(Ri |Yt < Xt)) = O

(
1

n2
t

)
,E(P(Li |Yt > Xt)) = O

(
1

n2
t

)
,

E(P(Ri |Yt > Xt)) = O

(
1

n2
t

)
.

So

E(Dt+1−Dt |Yt = Xt) = − 3
nt

E(Dt | Xt = Yt)+O

(
1+E(Yt | Xt = Yt)

n2
t

)

E(Dt+1−Dt |Yt > Xt) = − 3
nt

E(Dt |Yt > Xt)+O

(
1+E(Yt |Yt > Xt)

n2
t

)

E(Dt+1−Dt |Yt < Xt) = − 3
nt

E(Dt |Yt < Xt)+O

(
1+E(Yt |Yt > Xt)

n2
t

)
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E(Dt+1−Dt) = E(Dt+1−Dt | Xt < Yt)P(Xt < Yt)+E(Dt+1−Dt | Xt = Yt)P(Xt = Yt)

+E(Dt+1−Dt | Xt > Yt)P(Xt > Yt)

= − 3
nt

E(Dt | Xt < Yt)P(Xt < Yt)− 3
nt

E(Dt | Xt = Yt)P(Xt = Yt)

− 3
nt

E(Dt | Xt > Yt)P(Xt > Yt)+O

(
1+E(Yt)

n2
t

)

= − 3
nt

E(Dt)+O

(
1

n2
t

)
.

E(Dt+1) =
(

1− 3
nt

)
E(Dt)+O

(
1

n2
t

)
.

SinceE(Yt) < C for some constantC, for all t ≥ t0

E(Dt+1)≤
(

1− 3
nt

)
E(Dt)+

ζ
n2

t

for some positive constantζ , whereζ depends only on the value ofC.
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Iteratively,

E(Dt) ≤
(

t−1

∏
i=t0

(
1− 3

ni

))
E(Dt0)+ζ

1

n2
t−1

+ζ
(

1− 3
nt−1

)
1

n2
t−2

+ζ
(

1− 3
nt−1

)(
1− 3

nt−2

)
1

n2
t−3

+ ...+ζ
t−1

∏
i=t0+1

(
1− 3

ni

)
1

n2
t0

≤ E(Dt0)exp

(
−3

t−1

∑
i=t0

1
ni

)
+ζ

t−1

∑
i=t0

1

n2
i

exp

(
−3

t−1

∑
j=i+1

1
n j

)

≤ E(Dt0)exp(−3(lognt − lognt0))+ζ
t−1

∑
i=t0

1

n2
i

exp(−3(lognt − logni+1))

≤ E(Dt0)
(

nt0

nt

)3

+ζ
t−1

∑
i=t0

1

n2
i

(
ni+1

nt

)3

≤ E(Dt0)
(

nt0

nt

)3

+
2ζ

(nt)
3

t−1

∑
i=t0

(ni)

≤
(

nt0

nt

)3

(C−3)+
2ζ

(nt)
3 (t− t0)

(
n0 +

t + t0−1
2

)

≤
(

nt0

nt

)3

(C−3)+
2ζ
nt

.

Let
(

nt0

nt

)3

(C−3)≤ ε
2

2ζ
nt
≤ ε

2
.

By Lemma 3.4, we obtain

dTV (σt,3,Po(3)) ≤ P(Yt 6= Xt)≤ E(Dt)

≤
(

nt0

nt

)3

(C−3)+
2ζ
nt

. (3.2.11)

We only need to chooset0 > max{τ3,τ4}, such that the expected number of triangles and4-cycles

are bounded. So,t0 is a constant. Let

dTV (σt,3,Po(3)) < ε
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We obtain

τ∗ (ε) = O(1/ε) .

Proof of Theorem 3.2

Let Gt be a randomd-regular graph generated by pegging operations, for evend. ThenGt

containsnt = n0 + t vertices, anddnt/2 edges. ThenN, the number of ways to do a pegging

operation, is asymptotically
(dnt/2

d/2

)
. There are two ways to create ak-cycle. One is to choose the

two end edges of ak-path, and otherd/2−2 non-adjacent edges, and do the pegging. The other

way is to choose an edge contained in a(k−1)-cycle, and otherd/2−1 non-adjacent edges, and

do the pegging.

In the first case, the number ofk-paths inGt is asymptoticallyd(d−1)k−1nt/2. So the number

of ways to do pegging is asymptotically

d(d−1)k−1nt

2

( dn
2

d
2−2

)
∼ d(d−1)k−1nt(dnt/2)d/2−2

2(d/2−2)!
.

In the second case, the number of ways to do pegging is asymptotically

(k−1)Yt,k−1,d

( dnt
2

d
2−1

)
∼ (k−1)Yt,k−1,d(dnt/2)d/2−1

(d/2−1)!
.

The way to destroy an existingk-cycle is to choose an edge contained in ak-cycle, and another

d/2−1 non-adjacent edges, and do the pegging. So the number of ways to destroy an existing

k-cycle is asymptotically

kYt,k,d

( dnt
2

d
2−1

)
∼ kYt,k,d(dnt/2)d/2−1

(d/2−1)!
.

So, we obtain the expected value ofYt+1,k,d−Yt,k,d

E(Yt+1,k,d−Yt,k,d |Yt,k,d)

=
d(d−1)k−1nt(dn/2)d/2−2

2(d/2−2)!N
+

(k−1)Yt,k−1,d(dnt/2)d/2−1

(d/2−1)!N
− kYt,k,d(dnt/2)d/2−1

(d/2−1)!N
.
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Take the expectation of both sides

E(Yt+1,k,d−Yt,k,d)

∼ d(d−1)k−1nt(dn/2)d/2−2

2(d/2−2)!N
+

(k−1)E(Yt,k−1,d)(dnt/2)d/2−1

(d/2−1)!N
− kE(Yt,k,d)(dnt/2)d/2−1

(d/2−1)!N

=
(dnt/2)d/2−2dnt

(d/2−2)!N
(
(d−1)k−1

2
+

(k−1)E(Yt,k−1,d)
d−2

− kE(Yt,k,d)
d−2

)

∼ d−2
nt

(
(d−1)k−1

2
+

(k−1)E(Yt,k−1,d)
d−2

− kE(Yt,k,d)
d−2

)

=
(d−2)(d−1)k−1

2nt
+

(k−1)E(Yt,k−1,d)
nt

− kE(Yt,k,d)
nt

E(Yt,2,d) = 0.

Note this recursive function is exactly the same as (3.2.5) but the first term. So reproducing the

proof of Lemma 3.2 and 3.3, we obtain

E
(
Yt,k,d

)
=

(d−1)k− (d−1)2

2k
+O

(
1

nt0

)
+O

((
nt0

nt

)3
)

for sufficiently larget0 which is depends only onn0, Y0,k,d, andC.

We derive the same mixing rate as stated in Theorem 3.1. The proof and method used is precisely

the same. Then Theorem 3.2 follows.
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3.3 More discussion aboutk-cycles

We see in the previous section that in the random process of{Yt}t≥0, whereYt is the number

of triangles in stept, we coupled{Yt}t≥0 to {Xt}t≥0, such that the transition with probability

O(1/n2
t ) is omitted. ThoseO(1/n2

t ) error terms accumulates in each step, and will contributes

O(1/nt) to E(Dt) whent goes to infinity. So{Yt}t≥0 and{Xt}t≥0 will have the same limiting

distribution.

We investigate an attempt to apply the same method to couple two sequences of vectors

{Yt,3,Yt,4,Yt,5, · · · ,Yt,k}t≥0 and{Xt,3,Xt,4,Xt,5, · · · ,Xt,k}t≥0 for anyk≥ 3, such that the transitions

in the {Xt,3,Xt,4,Xt,5, · · · ,Xt,k}t≥0 are obtained from those in the{Yt,3,Yt,4,Yt,5, · · · ,Yt,k}t≥0 by

omitting all transitions with probabilityO(1/n2) and adjusting the rest to compensate. The two

random processes would have the same limiting distribution. We did not carry this out com-

pletely. It is too complicated to list all cases when we couple the two vectors, so we are looking

for a more general way to describe this argument.

We can define the following random walk

(Xt+1,3,Xt+1,4, · · · ,Xt+1,k)

=





(Xt,3,Xt,4, · · · ,Xt,i +1, · · · ,Xt,k) with probability3i−1/nt , for all 3≤ i ≤ k.

(Xt,3,Xt,4, · · · ,Xt,i−1,Xt,i+1 +1· · · ,Xt,k)with probability iXt,i/nt , for all 3≤ i ≤ k−1.

(Xt,3,Xt,4, · · · ,Xt,k−1,Xt,k−1) with probabilitykXt,k/nt .

Start{Xt,3,Xt,4,Xt,5, · · · ,Xt,k}t≥0 with independent Poisson att = 0, with meansµ3,µ4, · · · ,µk,

whereµi = 3i−9
2i , for all 3≤ i ≤ k. Now we show by induction thatXt,3,Xt,4,Xt,5, · · · ,Xt,k are in-

dependent Poisson for allt ≥ 0. Assuming they are independent Poisson at some timet ≥ 0, we

have

P(Xt,3 = x3,Xt,4 = x4, · · · ,Xt,k = xk) = exp

(
−

k

∑
i=3

µi

)
k

∏
i=3

µxi
i

xi !
.
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and

P(Xt+1,3 = x3,Xt+1,4 = x4, · · · ,Xt+1,k = xk)

=

(
1−

k

∑
i=3

3i−1

nt
−

k

∑
i=3

kxk

nt

)
P(Xt,3 = x3,Xt,4 = x4, · · · ,Xt,k = xk)

+
k

∑
i=3

3i−1

nt
P(Xt,3 = x3, , · · · ,Xt,i = xi−1, · · · ,Xt,k = xk)

+
k−1

∑
i=3

i(xi +1)
nt

P(Xt,3 = x3, , · · · ,Xt,i = xi +1,Xt,i+1 = xi+1−1, · · · ,Xt,k = xk)

+
k(xk +1)

nt
P(Xt,3 = x3, , · · · ,Xt,k−1 = xk−1,Xt,k = xk +1)

= exp

(
−

k

∑
i=3

µi

)

k

∏
i=3

µxi
i

xi !

(
1−

k

∑
i=3

3i−1

nt
−

k

∑
i=3

kxk

nt
+

k

∑
i=3

xi

µi

3i−1

nt
+

k−1

∑
i=3

µi

xi +1
xi+1

µi+1

i(xi +1)
nt

+
µk

xk +1
k(xk +1)

nt

)

= exp

(
−

k

∑
i=3

µi

)

k

∏
i=3

µxi
i

xi !
1
nt

(
nt −

k

∑
i=3

3i−1−
k

∑
i=3

kxk +
k

∑
i=3

2i ·3i−1xi

3i−9
+

k−1

∑
i=3

(3i−9)(i +1)xi+1

3i+1−9
+

3k−9
2

)

= exp

(
−

k

∑
i=3

µi

)
k

∏
i=3

µxi
i

xi !
1
nt

(
nt − 3k−9

2
−

k

∑
i=3

kxk +
k

∑
i=4

2i ·3i−1xi +(3i−1−9)ixi

3i−9
+3x3 +

3k−9
2

)

= exp

(
−

k

∑
i=3

µi

)
k

∏
i=3

µxi
i

xi !
1
nt

(
nt −

k

∑
i=3

kxk +
k

∑
i=4

ixi(2·3i−1 +3i−1−9)
3i−9

+3x3

)

= exp

(
−

k

∑
i=3

µi

)
k

∏
i=3

µxi
i

xi !

= P(Xt,3 = x3,Xt,4 = x4, · · · ,Xt,k = xk).

So the limiting distribution of{Xt,3,Xt,4,Xt,5, · · · ,Xt,k}t≥0 is independent Poisson with means

µ3,µ4, · · · ,µk, whereµi = 3i−9
2i , for all 3≤ i ≤ k. By applying the extended coupling Method

in Lemma 3.4, we expect to getE(Dt,k) = O(1/nt), which goes to0 as t goes to infinity, so

Yt,3,Yt,4,Yt,5, · · · ,Yt,k have limiting distribution of independent Poisson random variables.

We will present an example to couple(Y3,Y4) and(X3,X4). DefineDt,4 := (1/3) |Yt,3−Xt,3 |
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+(1/4) |Yt,4−Xt,4 |. The following tables shows an attempt at coupling(Y3,Y4) and(X3,X4). But

the data shown in the table are not exactly what will happen in the coupling procedure because

the random walk of(Y3,Y4) depends on the graph. So we are “cheating” here. The data shown

there is what we would obtain if we calculate the expectation ofDt+1,4, where the expectation

is averaging over all(Yt,3,Yt,4), conditional on each case. For a rigorous proof one would have

to do some careful accounting as was done for the case of triangles. Also we only give the main

terms there. Every term would have some error terms ofO(1/n2
t ).

case 1:Yt,3 < Xt,3 andYt,4 < Xt,4.

(Yt,3 +1,Yt,4) (Yt,3,Yt,4) (Yt,3−1,Yt,4 +1) (Yt,3,Yt,4 +1) (Yt,3,Yt,4−1)

(Xt,3 +1,Xt,4) 9/nt

(Xt,3,Xt,4) 9/nt p 3Yt,3/nt 27/nt 4Yt,4/nt

(Xt,3−1,Xt,4 +1) 3Xt,3/nt

(Xt,3,Xt,4 +1) 27/nt

(Xt,3,Xt,4−1) 4Xt,4/nt

case 2:Yt,3 = Xt,3 andYt,4 < Xt,4.

(Yt,3 +1,Yt,4) (Yt,3,Yt,4) (Yt,3−1,Yt,4 +1) (Yt,3,Yt,4 +1) (Yt,3,Yt,4−1)

(Xt,3 +1,Xt,4) 9/nt

(Xt,3,Xt,4) p 27/nt 4Yt,4/nt

(Xt,3−1,Xt,4 +1) 3Yt,3/nt

(Xt,3,Xt,4 +1) 27/nt

(Xt,3,Xt,4−1) 4Xt,4/nt

case 3:Yt,3 < Xt,3 andYt,4 = Xt,4.
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(Yt,3 +1,Yt,4) (Yt,3,Yt,4) (Yt,3−1,Yt,4 +1) (Yt,3,Yt,4 +1) (Yt,3,Yt,4−1)

(Xt,3 +1,Xt,4) 9/nt

(Xt,3,Xt,4) p

(Xt,3−1,Xt,4 +1) 3(Xt,3−Yt,3)/nt 3Yt,3/nt

(Xt,3,Xt,4 +1) 27/nt

(Xt,3,Xt,4−1) 4Yt,4/nt

case 4:Yt,3 = Xt,3 andYt,4 = Xt,4.

(Yt,3 +1,Yt,4) (Yt,3,Yt,4) (Yt,3−1,Yt,4 +1) (Yt,3,Yt,4 +1) (Yt,3,Yt,4−1)

(Xt,3 +1,Xt,4) 9/nt

(Xt,3,Xt,4) p

(Xt,3−1,Xt,4 +1) 3Yt,3/nt

(Xt,3,Xt,4 +1) 27/nt

(Xt,3,Xt,4−1) 4Yt,4/nt

We are expecting to get the following inequalities for each cases,

E(Dt+1,4 | (Yt,3,Yt,4),(Xt,3,Xt,4),s.t.Yt,3 < Xt,3,Yt,4 < Xt,4)

= Dt,4−
3(Xt,3−Yt,3)

nt

(
1
3
− 1

4

)
− 4(Xt,4−Yt,4)

nt

1
4

+O(1/n2
t )

≤ Dt,4−
3Dt,4

4nt
+O(1/n2

t )
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E(Dt+1,4 | (Yt,3,Yt,4),(Xt,3,Xt,4),s.t.Yt,3 = Xt,3,Yt,4 < Xt,4)

= Dt,4−
4(Xt,4−Yt,4)

nt

1
4

+O(1/n2
t )

≤ Dt,4−
4Dt,4

nt
+O(1/n2

t )

E(Dt+1,4 | (Yt,3,Yt,4),(Xt,3,Xt,4),s.t.Yt,3 < Xt,3,Yt,4 = Xt,4)

= Dt,4−
3(Xt,3−Yt,3)

nt

(
1
3
− 1

4

)
+O(1/n2

t )

≤ Dt,4−
3Dt,4

4nt
+O(1/n2

t )

E(Dt+1,4 | (Yt,3,Yt,4),(Xt,3,Xt,4),s.t.Yt,3 = Xt,3,Yt,4 = Xt,4) = O(1/n2
t )

So we would get

E(Dt+1,4)≤
(

1− 3
4nt

)
Dt,4 +O(1/n2

t ).

Similarly, defineDt,k := ∑k
i=3(1/i) |Yt,i −Xt,i |, we expect to get the following by extended

coupling method

E(Dt+1,k | (Yt,3,Yt,4), · · · ,(Xt,k,Xt,k),s.t.Yt,3 = Xt,3, · · · ,Yt,i−1 = Xt,i−1,Yt,i < Xt,i ,

Yt,i+1 = Xt,i+1, · · · ,Yt,k = Xt,k)

≤
(

1− i
(i +1)nt

)
Dt,k +O(1/n2

t )

≤
(

1− 3
4nt

)
Dt,k +O(1/n2

t ).

E(Dt+1,k)≤
(

1− 3
4nt

)
Dt,k +O(1/n2

t ).
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So Theorem 3.1, and Theorem 3.2 would follow for any fixedk, and more precisely, the

random variablesYt,3,Yt,4, . . . ,Yt,k would be asymptotically independent Poisson. But it becomes

complicate to construct the coupling for the two vectors, since there will be lots of cases to

discuss. We are looking for a more general way to derive it. Due to time restrictions, we will

leave it as future work.
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Chapter 4

Conclusion

In this essay, we briefly discussed several commonly used models to generate random regular

graphs. We studied the pegging algorithm, the application of which is to model the SWAN

network. In Chapter 3, we presented our result of short cycle distribution in the randomd-

regular graphs generated by the pegging algorithm. We derived the expected number ofk-cycles

for any fixedk, and we proved that the number of triangles is asymptotically a Poisson random

variable. We also presented our conjecture that the set of random variablesYt,k, the number of

k-cycles, wherek≥ 3 is in some finite integer setI ⊂N, are asymptotically independent Poisson

ast goes to infinity. Finally we discussed the difficulties we met when we were searching for a

rigorous proof of the conjecture by coupling two sequences of random variables.
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