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Instructions

Answer any five out of the following seven questions. They are each worth 10 marks.

Questions

1. Quantum cryptography: Impossibility of Bit Commitment

Bit-commitment is a cryptographic protocol between two parties Alice, and Bob. The input to the
protocol is a bit a € {0,1} which is held by Alice, and is not known to Bob. The protocol consists of
two phases: the commitment phase, and the reveal phase, each possibly consisting of multiple rounds.
At the end of the commitment phase, Bob has a state that depends upon a. In the reveal phase,
Alice sends Bob a bit b, and engages in a protocol to convince him that she had earlier committed
to the bit b.

In ideal bit commitment, we require that the protocol satisfy two properties:
o (sealing) Bob should not be able to get any information about the bit ¢ during the commitment

phase.
e (binding) During the reveal phase, Alice should not be able to convince Bob (with non-zero

probability) that she committed to a value b different from @, the one she had initially.
(a) Formalize the sealing and the binding requirements in terms of quantum protocols.

(b) Prove that we cannot achieve the two requirements above simultaneously, even for quantum
protocols.

In other words, show that ideal quantum bit commitment is impossible.

2. Universality: one qubit gates
Let Ry denote rotation of a single qubit by angle 8, and P, denote the phase shift gate:

cosf  sinf 10
R = (—sin@ cos9> Po = (O eiC‘)'
(a) Show that (up to global phase) any one-qubit (unitary) gate can be decomposed into the
form PgRyFy for some real values o, 3,0.
(b) Give a finite set of one-qubit gates that generate a dense subset of SU(2) and prove that it does
S0.
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3. Lower bounds: Polynomial method

Let X = X1Xs... Xy denote an N-bit binary string, N = 2". Consider a quantum oracle Ox that
maps

l916) — b X;)
where j € {1,2,...,N} and b € {0, 1}.

Consider a quantum circuit on n + 1+ d qubits, all initialized to [0}, that uses Ox a total of T' times.

(a) Prove that the final amplitude of any basis state is a multi-linear polynomial of degree at most
T in the variables X1, Xa,..., Xyn.

(b) Prove that the probability of measuring the first qubit and obtaining a 1 is a real multilinear
polynomial of degree at most 27 in the variables Xy, Xo,..., Xn.

(c) Find a multilinear polynomial that represents the PARITY function, where
PARITY (X1, X2,...,Xn) = X106 X208 - & XN

(Hint: Note that (—~1)%/ =1 — 2X; for X; € {0,1}, so it suffices to find an expression in terms
of (=1)%.)

(d) Let F be a function mapping {0, 1}V to {0,1}. What lower bound do parts (a) and (b) of this
question imply for the query complexity of computing F(X1, Xa,...,Xn)?

(e) Prove a tight lower bound for the query complexity of PARITY (X1, Xa,..., Xy). Prove the
tightness by finding an algorithm that achieves the lower bound.

#P

4. Quantum complexity theory: BQP C P
#P is the complexity class of non-negative integer valued function on {0, 1}* corresponding to lan-
guages in the class NP. A function f : {0,1}" + Z is said to be in #P if there is a polynomial time
non-deterministic Turing machine M such that for every z, f(z) equals the number of accepting
paths in the computation of M on input z.

The goal of this question will be to show that BQP C P#P. You may follow the steps below, or give
an alternative proof. For the steps below, descriptions will suffice; no formal proofs are required.

(a) Explain why we may assume that all the gates in a quantum circuit are real unitary (ie.,
orthogonal linear transformations).

(b) Explain why we may assume that there is exactly one accepting computational basis state in a
BQP computation.

(c) Show that we may approximate the transition amplitudes in all the gates by fractions of the
form a/27, where T is polynomial in the size of the circuit, such that the acceptance probability of
the resulting circuit changes by o(1).

(d) Note that with the above modifications, the acceptance probability of a BQP computation may
be approximated as (a — b)2/2?7. Using these simplifications, show that BQP C P#F,
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5. Quantum error correction : Sufficient conditions
An error in a single qubit is an unknown completely positive trace preserving map on that qubit.
(This is equivalent to a unitary operator on that qubit together with some number of fresh qubits
initialised to |0).)
(a) Prove that for single qubit quantum error correction to be possible, it suffices to be able to detect
and correct a unitary set of errors such as {1, o, oy, 0,}. Generalize this property to multiple-qubits
errors.

(b) Describe sufficient conditions for a discrete set of single qubit errors (such as the Pauli errors
given in part (a)) acting on a subspace C of C%" to be correctible.

(c) In CSS coding, a further property of Pauli errors is used: the duality of bit and phase errors.
What is this duality? How is this duality reflected in the CSS construction? (You need only describe
the properties of CSS coding that result from the said duality. A definition of CSS codes is not
required.)

6. Quantum searching and communication complexity
With the same notation as in Question 3 above, assume that exactly one of the N bits X is 1.

(a) Describe an O(v/N) query quantum algorithm for the search problem. Le., given the oracle Oy,
your algorithm should invoke the oracle at most O(v/N ) times, and should locate, with probability
at least 2/3, an ¢ € {1,2,..., N} such that X; = 1.

(b) Analyze the algorithm you described in part (a).

(c) Suppose that two parties, Alice and Bob, are given an N-bit string each (U, V, respectively).
Describe a quantum communication protocol between them, with sublinear communication, for com-
puting the Set Disjointness function: DISJ(U,V) = ivzl(Ui AV;). What is the communication
complexity of your protocol?

7. Quantum algorithms : Eigenvalue Estimation and Order Finding

Let IV be a large integer, and let a € {2, 3,..., N — 2} be relatively prime to N. Consider the unitary
operator U, that maps |z) to |ax), where az is defined as multiplication modulo N.

(a) Decompose |1} as a superposition of eigenvectors of U,. Describe explicitly the eigenvectors
used.

(b) Suppose you are given one eigenvector |¥) of U,. Give an algorithm to approximate its eigenvalue
with n bits of precision with high probability. I.e., your algorithm should ocutput a value that
will, with high probability, be within 51-,; of the corresponding eigenvalue.

(c) Explain how to efficiently (probabilistically) find the order of @ modulo N. (You may cite results
about continued fractions without giving details of the continued fractions algorithm).
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