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Instructions

Answer any five out of the following six questions. Each question carries 10 marks.

Question 1. Phase estimation.

Suppose there is a family of quantum circuits C(j, U), that implement the controlled-UJ operation, where U
is a unitary operation on m qubits. Let |¢) be an eigenvector of U with eigenvalue exp(27if), 8 € [0,1).

1.

2.

[3 marks] Describe an efficient quantum algorithm that computes an n-bit approximation to 8, with
probability at least 3/4, using the circuits C(-,-) as subroutines.

[2 marks] What is the complexity of your algorithm in terms of the number of single and two-qubit
gates, and the number of calls to C(-,-)?

3. [5 marks] Prove the correctness of your algorithm.

Question 2. Lower bounds via polynomials.
Let X = X1 Xo... Xy denote an N-bit binary string, N = 2™. Consider a quantum oracle Ox that maps

13)16) — [7}|b @ X5)

where j € {1,2,...,N} and b e {0,1}.
Consider a quantum circuit that acts on n + 1 + d qubits, all initialized to |0), that uses Ox a total of T
times (i.e., makes T queries).

1.

[4 marks] Prove that the amplitude of any basis state in the final state of the qubits is a multi-linear
polynomial of degree at most 7" in the variables X1, Xo,..., XN

[1 mark] Prove that the probability of measuring the first qubit and obtaining a 1 is a real multilinear
polynomial of degree at most 27" in the variables X1, Xa,..., Xn.

(1 mark] Let F' be a function mapping {0,1}" to {0,1}. What lower bound do parts (1) and (2)
of this question imply for the query complexity of computing F(X1, X2,...,Xn) exactly (ie., with
probability 1)7

. The OR function, is defined as

OR(X1,X2,...,Xn) = X1iVXaV---VXn;

it is equal to 1 iff at least one of its N boolean inputs is 1.
[2 marks] Find a multilinear polynomial that represents the OR function, lLe., equals the OR function

on all points in {0,1}".



5. [2 marks] Prove a linear lower bound for the query complexity of computing OR(X1, Xg,..., X N)
with probability 1.

Question 3. BB84 and provably insecure error rates

Suppose Alice and Bob can communicate over a quantum channel. The quantum channel is noiseless in
the absence of eavesdropping, a condition that cannot be guaranteed. They can also communicate over a
classical channel which may be tapped, but not disturbed.

1. [3 marks] Describe the standard BB84 scheme (sans error-correction and privacy amplification).
Clearly explain the test for eavesdropping.

2. [5 marks] Define an observable “error rate” e for your test for eavesdropping. State a numerical value
€thres Such that if € > egnres then Alice and Bob cannot establish any secure key. Explain why.

3. [2 marks] The key rate is the number of bits of raw key generated per qubit sent. Suppose that Alice
and Bob both use the computational basis with probability 1 — e, in order to achieve a key rate close
to 1. Could € be chosen to be 10~ while still guaranteeing qualitatively the same security as in the
BB84 scheme? How small may ¢ be for a non-trivial level of security?

Question 4. Communication complexity.

1. Suppose Alice is given a bit-string z € {0, 1}", unknown to Bob. Consider a one-message quantum
protocol in which Alice encodes z into a (possibly mixed) quantum state p, over m qubits, and sends
this to Bob. Suppose that Bob can measure the received state p; and determine x with probability 1.

[5 marks] Prove from first principles that m > n, i.e., Alice necessarily sends at least n qubits to Bob.

2. The set intersection function SIL, : {0,1}" x {0,1}" — {0,1} is defined as

(mi A yi)-

<=

SIn(:E: y) =

Il

i=1

Suppose there is a one-message quantum protocol for computing the set intersection of two arbitrary
n-bit inputs z,y given to Alice and Bob, respectively. Further, suppose that in this protocol Alice
sends a quantum state p, over m qubits (the lone message) to Bob, who can then compute the function
exactly, i.e., with probability 1.

{5 marks] Explain how Bob can modify his computation so that he caun learn Alice’s input z [rom pq.

What non-trivial lower bound for m does this imply?

Question 5. CSS codes and Fault Tolerant Clifford group operations

Let I,X,Y,Z denote the 1-qubit Pauli operators. Let C C Z%"”l be a [2n — 1,n,d] classical linear binary
error correcting code. (C encodes n bits into (2n — 1) bits and has distance d.) Denote the generator
matrix for C and C+ by G and G+ respectively; the row-space of the generator matrix equals the code.



1. [3 marks] We would like to construct a quantum CSS code @ based on C by taking both the X- and
Z-generators of the stabilizer S of Q to be the rows of G+. What are the conditions on C and C+
for this construction to be valid? What are the parameters k and d, for the resulting [[2n — 1, k, d,]]
quantum code Q7
[1 marks] For the above quantum code, explain why the logical operators X and Z on an encoded
qubit can be chosen to be X®2n—1 z®n-1
3. Recall that a fault tolerant operation acting on several code blocks takes one error in any input code
block to at most one error in each output code block. Recall also that the Clifford group is generated
by the CNOT, the Hadamard gate and the phase gate P = diag(1,1) = v/Z. Suppose C* is doubly
even (i.e. each element has hamming weight divisible by 4).
[6 marks] Describe how you may implement any Clifford group generator fault tolerantly on encoded
qubits. .
Hint: The Clifford group is the normalizer of the Pauli group, thus the action of each Clifford element
on the quantum code can be determined by its action on the Pauli group.

o

Question 6. Quantum circuits and universality.
Let I, X, Y, Z denote the 1-qubit Pauli operators. Let S; denote the set of all 1-qubit gates.

1. [3 marks] Explain why S, together with e~15%®Z (on any chosen pair of qubits) is universal. (You
can quote known universal sets of gates from the text book.)

2. [3 marks] By using the Taylor series expansion of e *4®2t and the fact XX = I and the anticommu-
tivity of X and Z, show that Vt, (I ® X) e"4®%t (] @ X)) = ¢+t12®2¢,

3. [4 marks 4 2 extra points] For 3 qubits, let G=2Q 2@ +I®Z®Z+Z®I® Z. Given the set
of gates S = {e“iGt}t U 51 show how to apply CZ for any selected pair of qubits. (Thus the set of
gates S is universal.)






