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Instructions

Answer any five out of the following six questions. Each question carries 10 marks. Partial anwsers
get appropriate credit. You may be able to answer parts of a question assuming the earlier parts, or
independent of them.

Question 1. Quantum circuits and universality.

1.

o

[2 marks] Explain what it means for a set of unitary operators over two qubits (i.e., in L(C? ® C?))
to be universal.

. [5 marks] A two-level unitary operator on n qubits is a unitary operator whose restriction to the space

spanned by all but two classical basis states is the identity. Show how we can implement any given
two-level unitary operator by a quantum circuit consisting of CNOT and single qubit gates, possibly
using up to O(n) ancillary qubits.

(You may assume that every single qubit unitary operator can be decomposed as AXBXC, up to an
overall phase, where A, B, C are single qubit unitary operators such that ABC =1, and X is the NOT
operator.)

[3 marks| Explain how any unitary matrix in L(C?) can be decomposed into a product of two-level
unitary matrices.

Question 2. Quantum lower bounds.
Consider a quantum query algorithm that has access to a black box that performs the transformation
li,3,2) = |4, ® 34, 2), for i € {1,..., N}, j € {0,1}, and z arbitrary. Besides queries to the black box, the
algorithm is allowed to perform arbitrary unitary transformations that do not depend on z1,...,zN.

1.

[3 marks] Prove that after the algorithm has performed ¢ queries its state can be written as [¢)) =
zi,j’z @ j2(T1,- .., TN)|E, 5, 2), with @i j2(%1,..-,TN) being polynomials in Z1,...,zN of degree at
most £.

. [5 marks] Show that any ezact quantum algorithm that computes OR(z1, ... ,zn) (Le., a quantum

algorithm for which the answer obtained by measuring its final state is always equal to OR(z1,...,zN))
uses at least N queries. (Note: do not confuse N with Q(N).)

[2 marks] Consider a following generalization of the query model to functions with multivalued
variables z1,...,Zy € {1,...,M}. We represent the basis states as [|,7,k) with ¢ € {1,..., N},
j € {1,...,M} and k being arbitrary. In one query, the black box performs the transformation
|5,7,k) = |i, (j + z;) mod M, k). Prove that, after ¢ queries, the algorithm’s state can be written as
[y = 3 ik @i (Y11, - - - yNM)|E, Gy ), With o (Y11, - - ., Yy being polynomials of degree at most
t in variables y;; defined by y;; = 1 if f(¢) = j and y;; = 0 otherwise.



Question 3. Quantum error correction.

A CSS code is a quantum code defined using two classical linear codes Oy C C7. Suppose that C; and
Cy are classical [n, k1] and [n, k2] codes and C) ard (C)* both correct ¢ errors. We can then define a

quantum code as follows. Let

1
o+ o) = o > lz+y).
yeCe

We define a CSS code as the subspace spanned by |z + Ca) for all z € Cf.

1. [6 marks] Show that this code can correct up to ¢ bit flip (i.e., X) and ¢ phase flip (i.e., Z) errors.

2. [4 marks] Restrict to the case when k; = ko +1. Let |0) = |z+Cs) for some z € C3 and |I) = |2/ +Cy)
for some z’ ¢ Co. Consider a 2n qubit system, with the first n qubits carrying a superposition of 0)
and |1) and the second 7 qubits carrying another superposition of |0) and |I). We perform a CNOT
gate on the first and the (n + 1) qubit, a CNOT gate on the 2°¢ and the (n + 2)™¢ qubit and so on.
Prove that this results in a logical CNOT operation, i.e., a CNOT being performed on the encoded

subspace spanned by [2) ® |7), 4,7 € {0,1}.

Question 4. Communication complexity.
1. [5 marks] Consider the “tribes function” T, over n? Boolean variables, defined as

Tn(z) = /\?=1 [V;;lzz]] s

where z € {0, 1}"2.

Suppose Alice is given a bit-string z € {0, 1}”2, and Bob is given another bit-string y € {0, 1}"2.
Describe a bounded-error quantum communication protocol, with non-trivial communication cost
(i.e., cost o(n?)), for computing Tn(z A y), where z Ay is the string z of bit-wise AND of the two
strings: zj; = %;; A yi;. What is the complexity of your protocol?

2. [5 marks] The Equality function EQ,, : {0,1}" x {0,1}" — {0,1} is defined as
EQ,(z,y) = Aia(2i=1y)-

Suppose there is a one-message quantum protocol, with error at most ¢ for determining the equality
of two arbitrary n-bit inputs 7,y given to Alice and Bob, respectively. If the message has m qubits,
show that there exist 2m-qubit pure states |1;) such that |(¥g|¥y)| < 24/€ for all y # .

Question 5. Impossibility results in quantum cryptography.

1. [3 marks] A startup company QWave is selling a system for quantum bit commitment. The system
works as follows:



(a) To commit a bit a, Alice generates a uniformly random bit z € {0, 1}, prepares the state
|0) a=z=0

1) a=0,z=1

S0+ 51 a=1laz=0

%IO)——%H) a=z=1

!'I/Jaa:> =

and sends it to Bob. Bob stores the state for future verification.

(b) To reveal, Alice reveals both a and z. Bob verifies that Alice has not cheated by measuring the
stored state in a basis consisting of |¢4,) and the orthogonal state. He accepts if the result is
[Yaz)-

Describe an attack that makes this system insecure.

2. [7 marks] Oblivious transfer is a cryptographic primitive with two parties, sender and recesver. The
sender has with two bits 2o and z; and the receiver has a bit ¢. The goal is that the receiver learns z;
but not z1_;, and the sender gets no information about the value of i. A quantum protocol is perfectly
sender secure if, for any strategy of the sender, the sender has no information about ¢ at the end of
the protocol. Prove that in any perfectly sender-secure protocol, there is a strategy for the receiver
that allows receiver to learn the values of both zg and z;.

Question 6. Discrete Logarithms.
Consider the multiplicative group Zy, where p is a prime. Let the element g be a generator of the group.
In the Discrete Logarithm problem, the input is an element z = gF € Zy (where k is unknown) and the
task is to determine & (mod p — 1).

1. [2 marks] Consider the following superposition over group elements:
p—2

1 I
. = 1
Id}J ) \/FT gw ]g >7 ( )
where w is a primitive (p — 1)-th root of unity. Show that this is an eigenvector of the unitary operator
defined by

Ua i ly) = lay),
where a € Z;,. Find the corresponding eigenvalue.
2. [4 marks] Suppose you are given the group element z = g* (k unknown), j € Z%_;, and the super-
position |t;) in Eq. (1) as input. Using part (1) above, show how you can efficiently construct the
superposition

1 22

—iky
=T ; w5},
3. [2 marks] Assuming that you can perform the quantum Fourier transform over Zyp1 efficiently, describe
how you may construct the state |¢;) (in Eq. (1)) above efficiently, for some j € Zs_;.

4. [2 marks] Describe an efficient quantum algorithm based on the above to compute Discrete Logarithms.
State its time and space complexity in terms of the the complexity of the quantum Fourier transform

over Zp_1.







