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Instructions

Answer any five out of the following seven questions. Each question carries 10 marks. Partial answers get
appropriate credit.

You may be able to answer parts of a question independently of the previous parts, or by assuming them.

The questions vary in how long they may take to answer, in novelty as well as difficulty. They are ordered
according to topic. You may find it useful to pick out your favorite three or four questions as a first pass.

Please clearly label which parts of your writing constitute the answer to each question. If desired, scratch
work that you do not consider to be part of your answer can be put in clearly labelled boxes (rather than
being crossed out or erased). At the end of the exam, if you have attempted more than five questions,
please indicate at the beginning of you exam which five should be graded. However, you should turn in all
your work:

Question 1. Universality of Hadamard and /8 gates

The Hadamard gate is the one-qubit gate H acting as |0) %(]O) +11)), |1} = 7%(!0) ~|1)), and the
/8 gate is the one-qubit gate T acting as |0) = |0), |1) — ei™/4|1).

If we use the gate V' to approximate the gate U, the error in the approximation is defined as max|qy) [|(U -
VI)l)|| (where || - || denotes the Euclidean length, i.e., the 2-norm, of a vector).

Let Ao = (ng,ny,n;) be a real unit vector. Let R;(6) := cos(6/2)I — i8in(0/2)(ng X +nyY +n,Z), where
I,X,Y,Z are qubit Pauli matrices. We call R;(6) a rotation by angle € about the axis 7.

(2) [2 marks] Show how to perform some rotation by an angle that is an irrational multiple of w. You can
use the fact that the solution 7 to the equation cos(rm) = cos?(n/8) is irrational. -

(b) [6 marks] Use the H and T gates to approximate some rotation by a given angle o about any axis of
your choice, with error at most €. Describe the method, verify that the error is at most ¢ in the worst case,
and derive the required number of uses of H and T in terms of .

(c) [2 marks] Show how to use the H and the T gates to approximate an arbitrary rotation with error at
most €. Again, provide bounds on the number of uses of H and 7. You can use the fact that any rotation
can be expressed as R4 (61) R (62) R (03) for some real 01,2,3 if 7, 7 are not parallel.

Question 2. Quantum sampling

Suppose you are given a quantum black box specifying a probability distribution as follows: on input
7 € {1,...,n}, the black box computes p; € [0,1], where Z;.‘:lpj = 1. You would like to prepare the
quantum state |p) == >_7_, \/Bjl7)-



(a) [6 marks] Show that |p) can be prepared using O(y/7) quantum queries. (Hint: You could begin by
explaining how to prepare the state ﬁ > 5= (/P7l3) @ 10) + /T = psl7) @ [1)) using only two queries.)

(b) [4 marks] Explain why Q(./n) queries are necessary to prepare |p) in general. (You may refer to any
well-known quantum lower bound in your explanation.)

Question 3. Counting stabilizer codes

(a) [3 marks] Suppose we have a stabilizer S on n qubits with » generators. Ignoring overall phase, how
many Pauli operators are there that commute with every element in S but are not in S? (In other words,
what is the size of N(S)\S7?)

(b) [2 marks] Suppose we want an ordered sequence My, - - - , M, of independent commuting Pauli operators.
How many ways are there to do this (again ignoring overall phase)?

(c) [2 marks] Suppose we have a stabilizer S on n qubits with 7 generators. How many ways are there to
pick an ordered set of generators My, -+, M,.?

(d) [3 marks] Using parts (b) and (c), give a closed-form expression for the number of stabilizer codes on
n qubits with 7 generators. (Hint: One mark of this part will be given for correct handling of the overall
phases.)

Question 4. Impossibility of quantum bit commitment

Consider a bipartite quantum state i) = 2 in=1 @kl g) k) in C*@C™, where {|z)}4=1,. » is an orthonormal
basis for C".

(a) [2 marks] Show that i) = >3 Bilni)ps) for some nonnegative real numbers B; and orthonormal bases
{|77m>}a::],..4,n and {;Mmﬂ'az:l,..‘,n in C™

(b) [2 marks] Show that if |11), |1hs) in C™ ® C™ satisfy Try|th) (11| = Try|1a) (1he, then [1) = U @ Iihs)
for some unitary U.

(c) [5 marks] In a bit commitment protocol (BC), Alice holds an input bit a which is unknown to Bob.
"The protocol consists of two phases, the commit phase and the reveal phase, each possibly consisting of
multiple rounds of communication. At the end of the commit phase, Bob has.a state that may depend
on a. In the reveal phase, Alice sends Bob a bit b, and engages in a protocol to convince him that a = b.
BC is said to be concealing if Bob has no information about a before the reveal phase, and binding if
Alice cannot convince Bob to accept b # a at the end of the reveal phase. Prove that BC cannot be both
perfectly concealing and perfectly binding.

(d) [ mark] What happens if BC is nearly, but not perfectly, concealing?

Question 5. BPP vs. BQP

(a) [2 marks] Define the complexity classes BPP and BQP.
(b) [4 marks] Prove that BPP C BQP.

(¢) [4 marks] Give an oracle relative to which BPP # BQP.



Question 6. From query complexity to communication complexity

(a) [7 marks] Suppose there is a t-query quantum algorithm for computing the function f : {0,1}"* — {0,1}.
Now suppose that Alice has an input z € {0,1}" and Bob has an input ¥ € {0,1}". They wish to
compute a function g : {0,1}" x {0,1}" — {0,1} obtained by first performing some binary operation
h: {0,1} x {0,1} — {0,1} to their inputs = and y bitwise, producing an n-bit string whose ith bit is
h(zi,y;), and then applying f to that string. Show that they can compute f by exchanging O(tlogn)
qubits.

(b) [3 marks] Suppose Alice and Bob each have a calendar with n possible time slots, and they would like
to find a time slot when they are both free for a meeting. Using the result of part (a), give an upper bound
on the number of qubits they must exchange.

Question 7. Communication through an erasure channel

Consider the erasure channel that transmits one qubit (spanned by 10), |1)) from a sender, Alice, to a
receiver, Bob. Bob receives the qubit state perfectly with probability 1 —e, and receives an erasure symbol
|2) orthogonal to |0) and |1) with probability e < 0.5.

Suppose Alice wants to send one qubit to Bob, and she has access to 5 uses of the erasure channel.
They have the ability to perfectly apply arbitrary local operations. What is the maximum probability for
successful transmission of the qubit in each of the following two scenarios?

(a) [5 marks] No additional resources are available.

(b) [5 marks] Before and after the 5 uses of the erasure channel, Alice can send an unlimited amount of
classical data to Bob for free and vice versa.

In each case, describe in detail the method for achieving the maximum probability (proof of the correctness
of the method is not needed) and explain briefly why the probability of success cannot be higher.






