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Instructions

Answer any five out of the following six questions. Each question carries 10 marks. Partial answers get
appropriate credit.

You may be able to answer parts of a question independently of the previous parts, or by assuming them.

The questions vary in how long they may take to answer, in novelty as well as difficulty. They are ordered
according to topic. You may find it useful to pick out your favorite three or four questions as a first pass.
If you provide multiple answers, and at least one answer contains a critical mistake, an appropriate penalty
will be given.



Question 1. Errors and approximation in quantum circuits
Recall that for any single-qubit unitary W there exists a sequence of Hadamard and T gates that approx-
imates it to within error . That is,

W — Vi Vi1 ... VA <0 where V; € {H,T}
Recall that the Solovay-Kitaev theorem states that such a sequence exists with m = O(log®(6~1)) for some
constant c.

(a)[4 marks] Suppose we are given an n-qubit quantum circuit
U=UnUp-1...Us

which is a product of M gates {U; }j]‘il each of which is either a two-qubit CNOT gate, or a single-qubit
gate. Suppose we wish to approximate U by a sequence U = UrUr,_1...U; of Hadamard, T , and CNOT
gates such that 3

[U-Ul<e (1)
Using the Solovay-Kitaev theorem, establish an upper bound on L as a function of ¢ and M.

(b)[6 marks] Next consider the quantum computation in which the n-qubit quantum circuit U is applied
to the all-zeros initial state and then the first w qubits are measured. The output is a bit-string x € {0, 1}*
sampled according to the distribution

p(z) = (0" U () (2| @ Ln—w) U]0").

Now suppose we approximate U as described in part (a), so that Eq. (1) holds. Let p be the corresponding
output probability distribution

Bx) = ("0 (|2) (2| ® Ln—w) U]0").

Establish the following upper bound on the total variation distance between p and p:

LS pple) — ()] < 2.

z€{0,1}w

Question 2. Trace norm.

Let L(#H) denote the space of linear operators on the finite dimensional Hilbert space H. The trace norm
of an operator M € L(H) is defined as ||M]|,, := Tr(VMTM).

(a) [3 marks| Prove that |Tr(M)| < ||M]|,,-
(b) [7 marks| Prove that Tr(M) = || M||,, if and only if M is positive semi-definite.

Question 3. The polynomial method.

For z € {0,1}", let |z| denote the Hamming weight of z. Define the function f : {0,1}*" — {0,1}
as f(xz,y) = 1(|z| = |y|), i-e., the function evaluates to 1 iff the strings x,y have the same Hamming
weight.



(a) [5 marks] Construct a real multi-linear polynomial p in 2n variables that represents f, i.e., satis-
fies p(z,y) = f(x,y) for all z,y € {0,1}*".

(b) [5 marks] Suppose there is a real multi-linear polynomial ¢ with degree d approximates f, i.e.,
lg(x,y) — f(z,y)] < 1/3 for all Boolean inputs x,y. Show that there is a real bivariate polynomial r
with degree d such that for any integers u,v € [0,n], we have |r(u,v) — f(z,y)| < 1/3 for any z,y with
Hamming weights u, v, respectively.

Question 4. Quantum sampling

Suppose you are given a quantum black box specifying a probability distribution as follows: on input
j € {1,...,n}, the black box computes p; € [0, 1], where } 3%, p; = 1 (here we assume that each probability
p;j can be represented using finitely many bits). You would like to prepare the quantum state |p) :=

2 =1 v/Pili)-
(a) [6 marks] Show that |p) can be prepared using O(y/n) quantum queries. (Hint: You could begin by
explaining how to prepare the state ﬁ > i=1(y/Pil) @10) + /1 = pjlj) ® 1)) using only two queries.)

(b) [4 marks] Explain why Q(y/n) queries are necessary to prepare |p) in general. (You may refer to any
well-known quantum lower bound in your explanation.)

Question 5. Random stabilizer states

An n-qubit Pauli operator is an operator of the form +P, ® Po®...® P, where each P; € {I,X,Y,Z}. An
n-qubit stabilizer group S is a group not containing —I that is generated by a set of commuting n-qubit
Pauli operators. For any n-qubit stabilizer group S with exactly n independent generators we associate a
stabilizer state denoted |S) which is defined (up to a global phase) by

|S) = P|S)  forall P€S.

(a) [3 marks| Show that

PeS

(b) [1 mark] Suppose that @ is an n-qubit Pauli operator and @ ¢ {I,—I}. Show that there exists an
n-qubit Pauli operator R such that

RQR = —Q.
(c) [3 marks] Suppose S is selected uniformly at random from the set of all n-qubit stabilizer groups with
exactly n independent generators. Show that for any n-qubit Pauli operators R, P we have
Pr[P e S]|=Pr[RPR € S].
(d) [3 marks| Using the results of (a,b,c), show that

I

E[S)S]] = o



Question 6. Key generation.

Suppose Alice (A) and Bob (B) hold n qubits each of a quantum state entangled with Eve (E), and their
joint state is pABF. Let |¢) := (|00) 4 [11))/v/2.

(a) [> marks] Let R € {0,1}" be a uniformly random string. Suppose Alice and Bob measure their n
qubits in the Hadamard basis, and obtain outcomes X,Y € {0,1}", respectively. Let M be the number
of indices 7 with R; = 1 such that the outcomes of the measurement of the ith qubit differ (i.e., X; #Y;).
Let K be the number of indices ¢ such that R; = 0 and the outcomes of their measurement of the i-th
qubit differ. Let e € (0, 1] be a constant. Prove that, with probability exponentially close to 1 (in terms

of n), K is at most M + en:
Pr(K <M+en) > 1-—exp(—0O(n)) .
(b) [5 marks] If the fidelity F(pAB, $®") > 1 — ¢ for some € € [0, 1], prove that
[t S N (O

for some quantum state w and function f such that f — 0 as e — 0.



