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Abstract

The Goldberg-Seymour Conjecture (a proof of which has recently been announced by Chen,
Jing, and Zang) asserts that the chromatic index of a multigraph is closely determined by
either its maximum degree or a certain maximum density parameter. A multigraph’s maxi-
mum degree and maximum density also play a central role in other edge-coloring problems,
such as arboricity and pseudoarboricity. In this essay, we will discuss how techniques similar
to those developed to approach the Goldberg-Seymour Conjecture can be used to study these
seemingly unrelated edge-coloring problems. In the hopes of “interpolating” among these
edge-coloring problems, we also study bounded degree versions of these problems, specifically
when the color classes are bounded degree subgraphs, bounded degree forests, or bounded
degree pseudoforests. We will prove exact results in some cases, and will consider conjectures
similar to the Goldberg-Seymour Conjecture in unknown cases. This will include a conjec-
ture that strengthens the still unsolved Linear Arboricity Conjecture, and we will explain
known results. In the cases that we can prove exact results, we will also prove that the list
coloring versions of these problems are the same as the ordinary versions. Finally, we will
briefly discuss related problems in matroid coloring and star arboricity.
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Chapter 1

Introduction

1.1 Background and motivation

An edge-coloring of a multigraph G is an assignment of colors to the edges of G. Various
interesting edge-coloring problems arise when we restrict what the color classes of the edge-
coloring could look like. The most well-known type of edge-coloring described this way is a
proper edge-coloring, where no two adjacent edges can receive the same color. In this case
the color classes are restricted to being matchings, and the classical problem is to determine
the minimum number of colors necessary to find a proper edge-coloring of a multigraph G,
called the chromatic index of G and denoted by x'(G). But one can ask a similar question
if each color class is required to be some other kind of subgraph than a matching, such as
a forest, a pseudoforest, a subgraph of bounded degree, or a forest of bounded degree. (It
is also common to refer to these as decomposition problems, but it will be beneficial for us
to think of them as edge-coloring.) For some of these questions, an exact and satisfactory
answer is known, while for others getting even close to an exact answer appears quite difficult,
if not NP-hard.

One notable pattern with a lot of answers, bounds, and conjectures on these edge-coloring
problems is their similar dependence on two key parameters of the multigraph in question:
maximum degree and maximum density. (The exact definition of density will vary depending
on context, but in general it refers to the idea of having many edges on relatively few vertices;
the parameter p(G) below is a good example.) Generally, the maximum degree and maximum
density of a multigraph form trivial lower bounds for these edge-coloring problems based on
the restrictions, such as how many edges of a certain color can meet at a vertex, or how many
edges a color classes can have. An interesting phenomenon in many edge-coloring problems
is that these trivial lower bounds are often close to being exact, so there is an intimate
connection between certain edge-colorings and maximum degree or maximum density. In
this essay, we summarize and relate results and conjectures about various edge-coloring
problems that depend closely on maximum degree or maximum density. Because of their
similar-looking bounds, we also look for a way to interpolate among these problems. List



coloring analogues will also be studied. In the process, we search for underlying themes in
the proofs that could aid in a better understanding of edge-coloring in general.

One of the main motivations for this essay is the celebrated Goldberg-Seymour Conjecture
[43, 80] on the chromatic index. For background, there are two easy lower bounds one could
derive on the chromatic index x/(G) of a multigraph G. One is that }'(G) > A(G), where
A(G) denotes the maximum degree of G. The other is that x'(G) > [p(G)] where p(G)
denotes the maximum density parameter

B e(S)
pG) = g max 1S1/2]”

When it comes to simple graphs G, a central theorem of Vizing [90] states that the chromatic
index x'(G) is either A(G) or A(G) + 1. A lot of work has gone into distinguishing these
two chromatic classes, but in general the problem is NP-hard [87]. For simple graphs G, the
maximum density [p(G)] seems to play no role in determining the chromatic index x'(G),
but for more general multigraphs G, it appears to be fundamental. The Goldberg-Seymour
Conjecture asserts that for any multigraph G,

X'(G) < max{A(G) + 1, [p(G)]}-

Thus, the conjecture states that there is a pretty tight relationship between y'(G) and each
of A(G) and [p(G)] separately, in the sense that x'(G) is almost entirely determined by one
of them.

There has been a lot of work devoted to trying to prove the Goldberg-Seymour Conjec-
ture, and a proof has recently been announced in a long and technical paper by Chen, Jing,
and Zang [23], though it awaits verification. We will not look into this proof. Instead, in
Chapter 2 we will explain in detail structural techniques that have been used to get quite
close to the conjecture, specifically the use of Tashkinov trees as developed by Tashkinov
[88]. (The use of this technique is fundamental in the announced proof [23].) We will start by
going over classical results and proofs about edge-coloring multigraphs such as Vizing’s The-
orem [90] that x'(G) < A(G) + u(G), where u(G) denotes the maximum number of parallel
edges in G, and Shannon’s Theorem [82] that x'(G) < 3A(G)/2. The structural techniques
used to prove these results will have a common theme: We will consider a critical multigraph
(where deleting any edge decreases its chromatic index) and a proper edge-coloring of all
but one edge of the multigraph. There must be a reason we cannot color the uncolored
edge with one of the colors, and by studying why, we can build a “critical” subgraph of the
multigraph whose properties let us deduce an upper bound on the chromatic index. This
is the approach used to construct Vizing multi-fans and Kierstead paths to prove Vizing’s
Theorem and Shannon’s Theorem, respectively. These critical subgraphs will be generalized
by Tashkinov trees, which have proven to be much more useful for attacking the Goldberg-
Seymour Conjecture. After giving more background on the Goldberg-Seymour Conjecture,
we will use Tashkinov trees to prove an approximation of the conjecture due independently
to Scheide [77] and to Chen, Yu, and Zang [24]. A maximum Tashkinov tree will induce an
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approximate “dense spot” in the multigraph as asserted by the Conjecture. We will end the
chapter by summarizing known results, without proofs, on proper list edge-colorings where
the goal is to prove the infamous List Coloring Conjecture (see [18]), which states that the
list chromatic index and the chromatic index are equal for any multigraph. The List Coloring
Conjecture is the inspiration for all of the list edge-coloring results we will prove.

The hope about the discussed well-studied proper edge-coloring techniques is that they
could help inform the study of other edge-coloring problems on multigraphs, particularly ones
that seem to depend heavily on the maximum degree or maximum density of the multigraph.
This will be the case in Chapter 3 where we study edge-colorings such that the color classes
are required to be forests rather than matchings. The minimum number of colors needed
to edge-color a multigraph into forests is called the arboricity of the multigraph, and a
famous theorem of Nash-Williams [70] (independently proven by Tutte [89]) states that it is
exactly given by a maximum density parameter which forms a trivial lower bound. We give
a proof of Nash-Williams” Theorem by following the same approach as many proper edge-
coloring proofs: using a maximal forest edge-coloring of a critical multigraph to construct a
“critical” subgraph whose properties give an upper bound for the arboricity. In this case,
the upper bound turns out to match the trivial lower bound. In addition, we can extend
this proof without much difficulty to the list setting and prove a result of Seymour [79] that
list arboricity and arboricity are the same. The proofs in this chapter can be written in the
more general context of matroids, but we stick to the multigraph setting for the purposes of
drawing connections to the chromatic index.

In Chapter 4, we will discuss the related edge-coloring problem where the color classes
of a multigraph are required to be pseudoforests, known as pseudoarboricity. A theorem of
Hakimi [51] states that the pseudoarboricity of a multigraph is given by a maximum density
parameter similar to that of Nash-Williams’ Theorem on arboricity, and we will prove it
along similar lines. This time, though, we will use orientations of multigraphs rather than
edge-colorings directly. This approach has similarities to proper edge-colorings in other
ways, and in addition to proving Hakimi’s Theorem, it will let us quite easily prove that
pseudoarboricity and list pseudoarboricity are the same.

Having discussed each of the Goldberg-Seymour Conjecture, Nash-Williams’ Theorem,
and Hakimi’s Theorem, we wish to understand the vague similarities apparent among them,
both in the statements and in the techniques of their proofs or proof attempts. This motivates
us to look for a sort of “interpolation” among the chromatic index, arboricity, and pseudoar-
boricity. A natural approach that we take in Chapter 5 is bounded degree edge-colorings.
We study edge-colorings where the color classes are subgraphs, forests, or pseudoforests that
have maximum degree at most some specified integer ¢t. In these cases, the vague interplay
between maximum degree and maximum density becomes more transparent. We will prove
exact results in some cases, and in other cases we will give a Goldberg-Seymour-type of con-
jecture on these parameters. First we will prove an exact result on the edge-coloring problem
for subgraphs when the maximum degree ¢ is even, which turns out to be just another way
of writing Petersen’s famous 2-factor theorem (see [67]). Still, the edge-coloring perspective
has some advantages. For one, we will prove the natural list coloring conjecture for this edge-



coloring problem. Moreover, we will observe striking similarities between this parameter and
pseudoarboricity, particularly in the use of multigraph orientations, and these observations
will be generalized when we study bounded degree pseudoarboricity. We will prove an exact
formula for bounded degree pseudoarboricity that resembles the Goldberg-Seymour Conjec-
ture, and we will also prove that the natural list coloring conjecture holds in this setting.
For the case of subgraphs for odd ¢t and bounded degree arboricity for general ¢, it becomes
more difficult to prove exact results, and in some cases it is NP-hard to do so. We will pay
particular attention to the case of bounded degree arboricity when t = 2. In this case, called
linear arboricity, the color classes are required to be linear forests, and the famous Linear
Arboricity Conjecture [3, 4] attempts to give a near-optimal upper bound in terms of the
maximum degree of the multigraph. We strengthen this conjecture by conjecturing that a
Goldberg-Seymour-type upper bound holds, and in the process we connect it to the ordinary
Goldberg-Seymour Conjecture. Finally, we will survey structural results on bounded degree
arboricity that have been used to get close to optimal results in some cases.

We end with two topics that provide a different but related direction of study on edge-
coloring multigraphs. In Chapter 6, we will give a brief overview of coloring problems on
matroids. Everything we proved about arboricity applies more generally to matroids, and it is
worth mentioning these matroid coloring results. Then we will discuss a variation of ordinary
coloring for which there are many open problems. The problem is known as joint coloring,
where given two matroids on the same ground set we want to color the ground set into
the fewest possible monochromatic common independent sets. This problem simultaneously
generalizes both arboricity and proper edge-colorings on bipartite multigraphs, and getting
even good bounds on it has proven difficult. We mention known results and conjectures,
including a version of the list coloring conjecture for matroid joint colorings. In Chapter 7,
we will study another variant of arboricity on multigraphs known as star arboricity. In this
case, the color classes of the edge-coloring are required to be star forests. Star arboricity has
natural lower and upper bounds in terms of ordinary arboricity, but in general it quite hard
to determine. We will survey known results and prove basic upper bounds. We will also
discuss the natural list coloring conjecture for star arboricity, giving some support for it.

We will conclude with a reflection on the various connections observed and conjectured
among the studied edge-coloring problems. Along the way we will discuss possible future
work for this meta-problem of trying to interpolate between maximum degree and maximum
density as bounds for edge-coloring problems.

Although this essay is mainly expository, we give a number of results as well as proofs
of known results that we were unable to find in the literature, namely: in Chapter 3, an
edge-coloring formulation of one proof of Nash-Williams’ Theorem [23| on arboricity and of
Lason’s proof of Seymour’s Theorem [27|on list arboricity; in Chapter 4, the proof of Theorem
on list pseudoarboricity; in Chapter 5, Section 5.1, Theorem |42 on the list analogue of the
degree ¢ chromatic index for even ¢; in Chapter 5, Section 5.2, Proposition [50]on a multigraph
version of an upper bound for degree t arboricity of sparse graphs; and in Chapter 5, Section
5.3, Theorem on a formula for degree t pseudoarboricity and Theorem on its list
analogue.



1.2 Terminology and notation

In this essay, a multigraph will be assumed to be nonempty, finite, undirected, and loopless,
but it is allowed to have parallel edges. Let G = (V, E') be a multigraph, which has a vertex
set V = V(G) and an edge set £ = E(G). We write v(G) = |V(G)| and e(G) = |E(G)|. If
the edge e € E(G) has the vertex v € V(G) as an end-vertex, then e is said to be incident
to v. If two edges are incident to a common vertex, they are said to be adjacent edges.
Similarly, if two vertices have an edge between them, they are said to be adjacent vertices.
For two vertices u,v of G, the set Eg(u,v) denotes the set of all edges in F(G) connecting
u and v.

The degree dg(v) of a vertex v € V(@) is the number of edges in F(G) that are incident
to v. The multiplicity ug(u,v) of two distinct vertices u,v € V(@) is the number of edges
connecting u and v, i.e., ps(u,v) = |Eg(u,v)|. The maximum degree A(G) and the
maximum multiplicity p(G) of G are defined as

A(G) = = .
(@) Urenvayé)dc(v), 1(G) %gelyg@uc(u,v)

A multigraph G is called a simple graph if u(G) = 1, i.e., if there are no parallel edges. A
multigraph is called k-regular if dg(v) = k for all v € V/(G). We have the general identity

2e(G) = Y da(v).

veV(Q)

The average degree of G is d(G) = ﬁ > vev(a) da(v) = 2e(G) /v(G).

A subgraph H of a multigraph G is a multigraph with V(H) C V(G) and E(H) C
E(G). The subgraph H is a spanning subgraph if V(H) = V(G). Given a vertex
subset S C V/(G), the subgraph of G induced by S is G[S] = (S,{e € FE(G) : e €
E¢(u,v) for some u,v € S}). We write e(S) = e(G[S]) and G — S = G[V(G) \ S]. In the
case S = {v}, we let G — v be short for G — {v}. For an edge subset F' C E(G), we write
G—-F=(V(G),E(G)\ F). In the case F' = {e}, we let G — e be short for G — {e}.

An orientation D of a multigraph G is the multigraph G with each edge replaced by an
arc, which is the edge together with a direction from one end-vertex to the other. Then D is
said to be an oriented or directed multigraph. For a vertex v of D, its indegree dj(v)
is the number of incident arcs oriented toward v, and its outdegree d},(v) is the number of
incident arcs oriented away from v. We use the same subgraph notations as in the undirected
case to indicate directed subgraphs of D.

For now, we define the density of a vertex subset S C V(G) to be e(S)/|S], and we
define the maximum density of G to be maxgcy(a),s-0 €(S)/]S]. In general, we will use the
terms “density” and “maximum density” non-rigorously to describe the idea of containing
lots of edges on relatively few vertices. The exact ratio of edges to vertices in the discussed
density parameters will vary depending on the context.
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A multigraph G is said to be k-degenerate if every subgraph of GG has a vertex of degree
at most k. A useful property of degeneracy is that we can define a degeneracy ordering on
V(G). Specifically, we order the vertices of G as vy, v, ..., v,, where fori € {n,n—1,...,1}
we recursively set v; to be a vertex of minimum degree in G — {v;y1,...,v,}. If G is k-
degenerate, then at each step i we remove a vertex of degree at most k, thus removing at
most k edges from G. This implies that ¢(G) < k(v(G) — 1). Every subgraph of G is also
k-degenerate, so in fact e(S) < k(|S|—1) for all S C V(G). Thus, degeneracy provides a way
of insisting that a multigraph be nowhere dense, i.e., a measure of a multigraph’s sparsity.

Finally, an edge-coloring ¢ of a multigraph G is a function from E(G) to some other
set. An element in the codomain set of ¢ is referred to as a color, and if e is an edge of
G, then ¢(e) is said to be the color of the edge e with respect to ¢. A k-edge-coloring
of G is an edge-coloring ¢ of G using colors from the set [k] = {1,...,k}. If ¢ be is edge-
coloring of a multigraph G and « is a color used by ¢ on some edge of GG, we call the set
¢ Ha) = {e € E(G) : ¢(e) = a} a color class of ¢. Since the edges of a color class all have
the same color with respect to ¢, we describe the subgraph they form as monochromatic.



Chapter 2

Proper edge-colorings

We follow the textbook of Stiebitz et al. [86] for the terminology and results of this chapter.
Let G be a multigraph. An edge-coloring ¢ of G is said to be a proper edge-coloring if
no two adjacent edges e, €’ of G receive the same color with respect to ¢, i.e., ¢(e) # ¢(e).
The chromatic index x'(G) of G is the minimum integer k for which there exists a proper
k-edge-coloring of G. This will be the multigraph parameter of focus for this chapter. Note
that \/'(G) < e(G) is finite, since giving each edge of G a different color results in a proper
edge-coloring. By the definition of a proper edge-coloring, a color class of a proper edge-
coloring ¢ is a collection of edges in which no two edges are adjacent. Such a collection of
edges is called a matching. Thus, a proper edge-coloring of G can be viewed as a partition
of E(G) into matchings.

We now prove some preliminary results on the chromatic index x/'(G). If ¢ is a proper
edge-coloring of a multigraph G, the edges incident to a given vertex must all have different
colors. Thus, an easy lower bound for the chromatic index x/(G) is x'(G) > A(G). On the
other hand, we can find an upper bound on x’(G) by using a greedy coloring procedure. We
color the edges of G sequentially in arbitrary order using the colors {1,...,k}, at each step
choosing the smallest color to give to the edge e so that the edge-coloring remains proper (as
a partial edge-coloring). Each of the two end-vertices of e is incident to at most A(G) — 1
edges other than e. Hence, if k = 2A(G) — 1, then there will always be a color to give to e
so that the edge-coloring remains proper. This proves that

A(G) < YV(G) < 2A(G) — 1.

Thus, x'(G) is always within a factor of 2 of A(G). The discussion that follows is a history
of attempts to determine the chromatic index x/(G) as closely as possible, or at least to
improve the greedy upper bound.

The results we will prove will often be about multigraphs that are critical for chromatic
index. For a multigraph G, an edge e € E(G) is said to be a critical edge if x'(G —e) <
X'(G), that is, deleting e from G decreases the chromatic index of G. Necessarily in this
case, X'(G —e) = X'(G) — 1. Thus, if G is a multigraph with a critical edge e, then G — e
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has a proper (x'(G) — 1)-edge-coloring. A multigraph G is said to be critical if each of its
edges is critical. Every multigraph G has a critical subgraph with the same chromatic index,
which can be found by iteratively deleting non-critical edges from G.

Now, let ¢ be a proper edge-coloring of a multigraph GG. As mentioned before, each of
the color classes of ¢ forms a matching. Let a and g be two distinct colors used by ¢.
If we look at the spanning subgraph of G with edge set ¢~!(a) U ¢~1(), we see that its
connected components consist of edges that alternate in the colors o and 3 as we walk along
the component in any direction. In particular, the subgraph has maximum degree 2, and
each of its connected components are either paths or even cycles (which may include the
2-cycle consisting of two parallel edges). In other words, even cycles and paths are the only
connected multigraphs with chromatic index two. These maximal dichromatic connected
components in a proper edge-coloring are often called Kempe chains. If a Kempe chain
with respect to ¢ is a path, we call it simply an («, §)-alternating path with respect to
¢, interpreted to be a maximal such path. Notice that if we flip the colors of the edges in
a Kempe chain C', so that edges of color a become [ and vice versa, then we get another
proper edge-coloring ¢ of G. In this case, we say that ¢’ is obtained from ¢ by switching on
C. Switching on Kempe chains will be a frequent operation in the edge-coloring arguments
that follow. Almost always, the switching will be done on alternating paths.

Finally, we define the notions of present and missing colors. Let ¢ be a proper k-edge-
coloring of a multigraph G. As explained before, we must have k > A(G). For a vertex
v € V(G), we say that a color a € {1,...,k} is present at v if there is some edge incident
to v that is colored a with respect to ¢. Otherwise, we say that the color « is missing at
v. Because all edges incident to v must get different colors with respect to ¢, the number
of colors present at v is dg(v), and the number of colors missing at v is k — dg(v). Observe
that if « is missing at v and § is present at v, then there is an («, 5)-alternating path P
that starts at v and ends at some other vertex. If we switch on P, then we get a proper
edge-coloring ¢’ in which now « is present at v and [ is missing at v. Often we will choose
k large enough so that some or all vertices of G will be missing at least one color.

2.1 Fundamentals of proper edge-colorings

We can start proving better bounds on the chromatic index x’(G). Recall the general lower
X' (G) > A(G) for every multigraph G. A theorem of Konig [64] states that this lower bound
is tight when G is bipartite. We present a proof that illustrates the utility of alternating
paths, a prevalent theme in proper edge-coloring proofs, although it is also common to prove
Konig’s Theorem using Hall’s matching theorem, which is equivalent.

Theorem 1 (Konig). For every bipartite multigraph G, we have x'(G) = A(G).

Proof. Assume not. Let G be a bipartite multigraph with x'(G) = k£ > A(G) + 1. By
possibly deleting edges, we may assume that G has a critical edge eg € Eg(x,y). Let ¢ be a



proper (k — 1)-edge-coloring of G — ey. Since the edge ey is uncolored and k —1 > A(G), the
end-vertices x and y are each missing a color. Say that « is missing at x and that 3 is missing
at y. If @ = 3, then we may give ey the color o and obtain a proper (k — 1)-coloring of G, a
contradiction. Otherwise, o # 5 and ( is present at . Then there is an («, §)-alternating
path P starting at x. Observe that P cannot contain y. If it did, then P starts with £ at
x and ends with « at y, which implies that it has even length, and so P U {ep} is an odd
cycle, which contradicts the hypothesis that GG is bipartite. Thus, we can switch on P to get
a new proper (k — 1)-edge-coloring ¢’ of G — e¢;. Now « is missing at both x and y and so
we may give eg the color a, again a contradiction. O]

On the other hand, if G is an odd cycle, then we have that x'(G) = A(G) +1. A
surprising theorem of Vizing [90] asserts that A(G) and A(G) + 1 are the only two possible
values for x'(G) when G is a simple graph. Thus, the chromatic index of a simple graph is
determined almost entirely by its maximum degree. More generally, Vizing’s theorem states
that x'(G) < A(G) + u(G) for any multigraph G. Let us study its proof.

Let G be a multigraph, let eg € Eg(x,y0) be an edge, and let ¢ be a proper edge-
coloring of G — ey. A Vizing multi-fan at = with respect to ¢ is a sequence F' =
(x,€0,Y0, €1, Y1, - - -, €p,Yp) With p > 1 consisting of distinct edges eg, e1,...,e, € E(G) and
not necessarily distinct vertices yo,y1, ...,y € V(G) that satisfy:

e for each i € {0,1,...,p}, e; € Eg(x,y;);
o for each i € {0,1,...,p}, ¢(e;) is missing at y; for some 0 < j < i.
Viewing F' as a subgraph of G, we let V(F') = {z,v0,y1,...,yp} and E(F) = {eg,e1,...,€p}

(see Figure . The following central result will enable us to use Vizing multi-fans to prove
Vizing’s Theorem.

Figure 2.1: A Vizing multi-fan F'. The parentheses indicate colors missing at the vertex.



Theorem 2. Let G be a multigraph with X' (G) = k > A(G) + 1, let ey be a critical edge of
G, and let ¢ be a proper (k — 1)-edge-coloring of G — eo. If F' = (x,€0,Yo,---,€p,Yp) 1S @
Vizing multi-fan at x with respect to ¢, then

(a) No vertex y; is missing a color in common with x.

(b) If a is missing at x and [ is missing at y; for some 0 < i < p, then there is an
(e, B)-alternating path with end-vertices x and y;.

(¢) No two distinct vertices y; and y; are missing a common color.

Proof. For (a), assume not. Choose ¢ and F' so that both x and y; are missing a common
color o, with ¢ as small as possible. If ¢ = 0, then we can color ¢y with a and get a
contradiction. Otherwise, i > 1 and for the color 5 = ¢(e;) there is an index j < ¢ such
that ( is missing at y;. Recolor e; with «. This new coloring ¢' gives a new multi-fan
(x,€0,Y0,€1,Y1,---,€;,Yy;) at x such that x and y; are both missing 3, which contradicts the
minimality of i.

For (b), assume not. Let ¢ be the smallest index for which the statement is false. By (a),
« is present at y; for each j € {0,1,...,p}. By the minimality of i, the (¢, §)-alternating
path P starting at y; ends at some vertex =’ ¢ {z,yo,...,y;}. Since z cannot be in P,
none of eg,...,e; are in P. Switch on P to get a (k — 1)-edge-coloring ¢’ of G — ey. Then
F'=(z,e0,y0,-..,6;,1;) is a multi-fan at x with respect to ¢’ with a missing at both z and
y;, contradicting (a).

For (c), assume there is a color  missing at two vertices y; and y;. Let a be missing

at . By (b), there is an (o, §)-alternating path with end-vertices « and y;, and an («, 5)-
alternating path with end-vertices x and y;. This is impossible if y; and y; are distinct. [J

Theorem 3. Let G be a multigraph with X' (G) = k > A(G) + 1, let eg € Eg(z,y0) be a
critical edge of G, and let ¢ be a proper (k — 1)-edge-coloring of G — eg. If F' is a mazximal
Vizing multi-fan at x with respect to ¢, then

Y (aly) + pe(z,y) =2+ (k= 1)(o(F) - 1).
yeV (F)\{z}

Proof. Let F' be amaximal Vizing multi-fan at x with respect to ¢. Let X = {¢(e1), ..., d(ep)}
be the set of colors of the edges of F, and let Y be the set of colors missing at one of the

vertices yo, . .., yp. By the definition of a multi-fan, we have X C Y. On the other hand, if

B €Y, then by Theorem (a) [ is present at x, and by the maximality of ' we have § € X.

Thus, X =Y, and in particular |X| = |Y|. On one hand, we have

yeV(F)\{z}
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where the —1 comes from e being uncolored. On the other hand, since the vertices yo, ..., y,
have different missing colors by Theorem [2(c), we have

YVi=1+ > (k=1-de(y)=1+E-DEFE) 1) = > day).
yeV (F)\{z} yeV (F)\{z}
where the extra 1 comes from the fact that the edge eq incident to g is uncolored. Equating

|X| and |Y]|, the result follows. O

The equation in Theorem [3|is often referred to as the fan equation. From it, we easily
derive the classical edge-coloring theorem of Vizing [91] (also discovered by Gupta [49]).

Theorem 4 (Vizing). For every multigraph G, we have X' (G) < A(G)+u(G). In particular,
if G is a simple graph, then X'(G) < A(G) +1

Proof. The multigraph G has a subgraph H with x'(H) = x/(G) = k and a critical edge
eo € Fy(x,y0). Let ¢ be a proper (k— 1)-edge-coloring of H, and let F' be a maximal Vizing
multi-fan at = with respect to ¢. By the fan equation of Theorem [3]

Y (du(y) +pr(r,y) = (k= 1)((F) = 1) + 2.

yeV(F)\{z}
The left-hand side is at most (A(H) 4+ p(H))(v(F) — 1), from which it follows that &k — 1 <
A(H) + p(H). Thus, () = k < AH) + u(H) < AG) + p(G). .

Vizing’s bound is tight for a triangle with p(G) parallel edges on each side, as all the edges
in this graph must have different colors. For this multigraph, we have x'(G) = 3u(G) whereas
A(G) = 2u(G). Thus, if the multiplicity p(G) is unconstrained, the gap between x/(G) and
A(G) can be arbitrarily large, and maximum degree plays a lesser role in determining the
chromatic index. At this point, we will see in the next section, maximum density will play
a bigger role in determining the chromatic index.

Going back to simple graphs G, Vizing’s Theorem [ states that either x'(G) = A(G) or
X' (G) = A(G) + 1. Moreover, the proof can be turned into a polynomial-time algorithm
that finds a proper (A(G) + 1)-edge-coloring for any simple graph G. If x'(G) = A(G), then
G is said to be of class 1. If x/(G) = A(G) + 1, then G is said to be of class 2. Konig's
Theorem (1| states that every bipartite simple graph is of class 1. Odd cycles are of class 2.
However, it is NP-complete to recognize whether an arbitrary simple graph is of class 1 or of
class 2, even for cubic (i.e., 3-regular) graphs [56]. The four-color theorem for planar graphs
is equivalent to the statement that all bridgeless planar cubic graphs are of class 1 [87]. This
provides a good indication of the general difficulty of determining whether x'(G) = A(G) or
X'(G) = A(G) +1 for simple graphs G. For multigraphs G' with x'(G) > A(G) + 2, however,
the story appears to be different, as we will observe in the next section. For the remainder
of this section, we review further background on multigraph edge-coloring that is essential
for what is forthcoming.
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Let G be a multigraph, let ey € Eg(yo,y1) be an edge, and let ¢ be a proper edge-coloring
of G—ep. A Kierstead path with respect to ¢ is a sequence P = (yo, €0, Y1, €1, - - -, €p—1,Yp)
with p > 1 consisting of distinct vertices yo, y1,...,y, € V(G) and edges eg,e1,...,e,-1 €
E(G) that satisfy:

e for each i € {0,1,....,p— 1}, e; € Eq(yi, Yit1);

e foreach i € {1,2,...,p — 1}, ¢(e;) is missing at y; for some 0 < j < 4.

Viewed as a subgraph, a Kierstead path is indeed a path (see Figure . The following
result was discovered by Kierstead [60].

Theorem 5 (Kierstead). Let G be a multigraph with X' (G) = k > A(G) + 1, let ey €
Ec(yo,y1) be a critical edge of G, and let ¢ be a proper (k — 1)-edge-coloring of G — eq. If
P = (yo,€0,Y1,€1,--.,€p—1,Yp) 15 a Kierstead path with respect to ¢ and dg(y;) < k —2 for
each j € {2,...,p}, then the vertices of P are all missing different colors.

Proof. Suppose not. Let P = (yo, €0, y1,€1,...,€p—1,Yp) be a counterexample of minimum
length among all (k — 1)-edge-colorings ¢ of G —eq. Clearly p > 2, since if p = 1 then gy and
¥, are missing a common color « and we can give eg the color «, thus giving a contradiction.
Because ¢ is uncolored, each of 3y and y; has at least one missing color. Moreover, each of
Yo, ..., Yp also has at least k — 1 — dg(y;) > 1 missing colors by the degree condition.

Observe that P = (yo,e0,Y1,€1,.-.,€p—2,Yp—1) is a Kierstead path with respect to ¢
that satisfies the degree condition dg(y;) < k — 2, so by the minimality of P, the vertices
Yo, Y1, - - -, Yp—1 have distinct missing colors. Thus, there is a maximal index ¢ = ind(¢) such
that y; and y, have a common missing color. Choose a minimal counterexample (P, ¢) such
that ¢ = ind(¢) is maximum. The claim is that i = p — 1.

Assume that ¢ < p — 1. Let a be a color missing at both y; and y,. Since every vertex
in P is missing at least one color, let 8 be a color missing at y;41. Since y;11 € V(P'),
we have o« # [, « is present at y;,.1, [ is present at y;, and both a and [ are present
at y; for j € {0,1,...,¢ — 1}. This implies that ¢(e;) ¢ {o, 8} for j € {1,...,i}, as
otherwise by the definition of a Kierstead path one of a or 8 would be missing at y; for
some j € {0,1,...,i—1}. Further, there is an («a, §)-alternating path @ starting at y;,; and
ending at some other vertex v. Let ¢’ be the edge-coloring obtained by switching on Q. If
v = y;, then P is a Kierstead path with respect to ¢’ with o missing at both y;1 and y,,.
Hence (P, ¢') is a minimal counterexample with ind(¢’) > ind(¢), contradicting the choice

Yo Y1 o Y2 o Y3 a Ya s Ys
®-------- e ° 3 ] o

(o) (1), (a2) (a3) () () (ag) P

Figure 2.2: A Kierstead path P.
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of (P,¢). If v # y;, then P" = (yo, €0, Y1, €1, - -, €, Yir1) is a Kierstead path with respect to
¢', and « is missing at both y; and y;41. Since v(P”) < v(P), this makes (P”,¢’) a smaller
counterexample than (P, ¢), again a contradiction.

By the claim, there is a color o missing at both y,_; and y,. For the color 5 = ¢(e,_1),
there exists an index j < p—1 such that 3 is missing at y;. Recolor e,_; with «. This results

in an edge-coloring ¢’ of G — e such that P' = (yo, €0, Y1, €1, ..., €p—2,Yp—1) is a Kierstead
path with respect to ¢', and § is missing at both y; and y,_;. Since v(FP’) < v(P), this
contradicts the minimality of P, and the proof is complete. ]

Kierstead’s Theorem [5| can be used to reprove Vizing’s Theorem 4| that x'(G) < A(G) +
1(G). This is done by deriving an equation analogous to the fan equation of Theorem .

Theorem 6. Let G be a multigraph with x'(G) = k > A(G) + 2, let eg € Eq(yo, 1)
be a critical edge of G, and let ¢ be a proper (k — 1)-edge-coloring of G — eg. If P =
(Yo, €0, Y1, €15 - - -, €p—1,Yp) 15 @ mazimal Kierstead path with respect to ¢, then

[y

3

(da(yi) + pp (i yp)) =2+ (K = 1)(v(P) — 1),

I
o

i

where pp(y;,yp) denotes the number of edges between y; and y, whose color is missing at
some vertex of P.

Proof. Let P = (Yo, €0, Y1, €1,---,€p—1,Yp) be a maximal Kierstead path with respect to ¢.
Note that dg(y;) < A(G) < k — 2 for each j € {2,...,p}. By Kierstead’s Theorem 5]
all of the vertices yo,y1,...,y, are missing different colors. In particular, for each color
missing at one of yo,y1,...,Yy,—1, there is an edge of that color incident to y,. Since P is
maximal, each of these edges must be between ¥, and one of yo, y1, ..., yp—1. The number of
these edges is Zf;ol tp(Yi, Yp), while the number of colors missing at one of yo, 1, ..., yp—1 is
2+ f;ol (k—1—dg(y;)), where the extra 2 comes from ey being uncolored. Equating these

two values, the result follows. O

Proving Vizing’s Theorem [4] that x'(G) < A(G) + u(G) from Theorem [f] is basically the
same argument as done with the fan equation of Theorem 3} in short, if X'(G) > A(G)+u(G),
then the equation in Theorem [6] will be violated. In another direction, Kierstead’s Theorem
can be used to prove the following theorem of Goldberg [42]. The odd girth ¢,(G) of a
multigraph G is the length of a shortest odd cycle in G, taken to be oo if G is bipartite.

Theorem 7 (Goldberg). For every multigraph G, we have

A(G) — 2

X/(G) S A(G) + 1+ m
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Proof. 1t X'(G) < A(G) + 1, we are done. Thus, assume that x'(G) = k > A(G) + 2. Let
H be a subgraph of G with x'(H) = x/(G) and a critical edge eqg € Ey(yo,y1). Note that
9o(H) > ¢,(G). Let ¢ be a proper (k — 1)-edge-coloring of H. Then every vertex of H is
missing at least one color with respect to ¢. Let o be missing at yg and [ be missing at
y1- We have o # [, since otherwise we could give ey the color o and get a contradiction.
Let @ be the (o, 5)-alternating path starting at y;. If @) does not end at yy, switch on
(@ to get o missing at y;, and color ¢y with o to get a contradiction. Thus, ) ends at
yo. This implies that Q U {eg} is an odd cycle, so v(Q) > ¢o(H) > ¢,(G). Observe that
P = (yo,e0, Q@ —{yo}) is a Kierstead path, since each colored edge of P is colored either « or
5, and these two colors are missing at either yq or y;. By Kierstead’s theorem, the vertices of
P are all missing different colors. Thus, the number of colors missing at one of the vertices
of Pis 2437 v g)(k—1—du(y)), and this is at most k£ — 1. Hence,

E=1>2+ Y (k—1—du(y) >2+0(Q)(k—1—A(H)) > 2+ g,(G)(k — 1 - A(G))
yev(Q)

Solving this inequality for £k = x/(G) gives the required inequality. ]
Note that we could have written the above proof’s original inequality as

Z doly) = 2+ (k= 1)((Q) — 1)

yev(Q

to make it look similar to Theorem [3| and Theorem [0 Now, because the odd girth g, of any
multigraph is at least 3, Goldberg’s Theorem [7| implies the following result of Shannon [82].

Theorem 8 (Shannon). For every multigraph G, we have x'(G) < 3A(G)/2.

Historically, Shannon proved his result first, then Goldberg proved his, and finally Kier-
stead proved his. Like Vizing’s bound, Shannon’s upper bound is tight for some multigraphs.
For A(G) even, take G to be the triangle with A(G)/2 parallel edges on each side. This
multigraph has 3A(G)/2 edges, and all the edges must get different colors. For A(G) odd,
take G to be the triangle with (A(G) — 1)/2 parallel edges on two sides, and (A(G) +1)/2
parallel edges on the other side. In this case we have (3A(G) — 1)/2 = [3A(G)/2] edges
that must get different colors. We call these dense multigraphs Shannon triangles.

We can summarize the classical bounds on the chromatic index as

go(G) -1

There are many other similar bounds that involve other parameters of the multigraph G.

X'(G) < min {A(G) +u(G), AG) +1+ M} .

We give some final remarks on the common theme with these edge-coloring proofs. We
are studying maximal colorings of critical multigraphs. By taking sufficiently many colors, we
may assume that every vertex is missing at least one color. With there being one uncolored
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edge, there are restrictions on how the colored edges can be distributed around that uncolored
edge. From these restrictions, we can find some kind of subgraph like a Vizing multi-fan or
a Kierstead path that points to why the uncolored edge cannot be colored. With some work
that may involve certain switches on alternating paths, we can prove that no two vertices in
our subgraph can have a common missing color. Taking our subgraph to be maximal, we find
that it induces many distinct edges or colors based on the number of colors missing at the
vertices in the subgraph. Using estimates on these number of edges, we find an upper bound
on the number of colors required for the subgraph, and thus on the number of colors required
to color the entire multigraph. This sort of theme will continue when we discuss Tashkinov
trees, as well as when we turn to variations of proper edge-colorings such as arboricity.

2.2 The Goldberg-Seymour Conjecture

Let G be a multigraph. Consider a proper k-edge-coloring of G. For any vertex subset
S CV(G), |S] > 2, each color class in G[S] has size at most ||S]/2] since it is a matching.

Thus, at least h 5] /)2 J colors are needed to properly color G[S], and by extension G. Defining

4S) ey = max o(S),

p(S) = m’ SCV(G),|S|>2

we see that every multigraph G satisfies

X(G) = [p(G)]

This is a maximum density lower bound for x/(G), in contrast to the maximum degree lower

bound x'(G) > A(G).

We note that when v(G) > 3, the maximum in p(G) is achievable by a set S of odd
cardinality. Specifically, suppose that the maximum is achieved by a set S C V(G) with
even cardinality. If |S| = 2, then p(G) = p(S) = e(5), and letting v € V(G) \ S we have
that the set S’ = .S U {v} of odd cardinality satisfies p(S’) = e(S")/[|5|/2] > e(S) = p(G).
If |S| > 4, then let v be a vertex of minimum degree in G[S] and let S” = S\ {v}. Then
ders)(v) < 2e(S5)/]5], and thus

2(8') _ 26(S) = 2darg(v) _ 2¢(S)

S’ > = p(S) = p(G).
S EA
This demonstrates that
B 2e(5)
p(G)_ SCV(G |S|_1
15]>3 odd

Note that x'(K;,) = n whereas p(K;,) = 2 whenever n > 2. Thus, the gap between
X'(G) and [p(G)] can be arbitrarily large, just as it was with A(G). This is particularly the

15



case of simple graphs like K, with high maximum degree and low density. However, the
situation seems to be different when we look at multigraphs G with x'(G) > A(G) + 2. For
such multigraphs, it appears that maximum density [p(G)| plays a bigger role in determining
the chromatic index number x/(G). For example, if G is the triangle with u(G) edges on
each side, where we saw that A(G) = 2u(G) and x/(G) = 3u(G) are quite far apart, then
we have that x'(G) = [p(G)]. These kinds of observations led Goldberg [43] and Seymour
[80] independently to formulate a famous conjecture.

Conjecture 9 (Goldberg-Seymour). For every multigraph G, we have
X' (G) < max{A(G) + 1, [p(G)1}.

In other words, the Goldberg-Seymour Conjecture states that if x'(G) > A(G) + 1, then
X' (G) = [p(G)]. Thus, if a multigraph G requires x'(G) > A(G) + 1 colors in a proper
edge-coloring, then it must have a vertex subset S whose induced subgraph G[S] is so dense
that it trivially requires x'(G) colors in a proper edge-coloring. This set S induces a “dense
spot”. Hence, if the conjecture is true, then x’(G) is either closely determined by maximum
degree A(G), or completely determined by maximum density [p(G)].

The Goldberg-Seymour Conjecture [9) may have recently been proven in a long technical
paper by Chen, Jing, and Zang [23], though it currently awaits verification. We will not
describe this proof. Instead, in the next section we will prove a weakening of the conjecture
using a tool that is central to this long paper as well as other attempted proofs in that
direction, namely Tashkinov trees. For multigraphs G with p(G) > A(G), Kahn [59] proved
the asymptotic bound x'(G) < (14 o(1))[p(G)]|. This was improved by Plantholt [75] to

logs /[ p(G)]
[p(G)]

In addition, Goldberg in the same paper of his conjecture [43] formulated a sharp version of
the Goldberg-Seymour Conjecture for multigraphs G with p(G) < A(G) — 1.

¥6) < (14 ) foten.

Conjecture 10. For every multigraph G, if p(G) < A(G) — 1 then X'(G) = A(G).

The Goldberg-Seymour Conjecture [9] has a close connection to fractional edge-colorings.
A fractional edge-coloring w of a multigraph G is an assignment of a nonnegative weight
wy to each matching M of G, in such a way that for every edge e € E(G) we have
> Mieem War = 1, where the sum is over matchings M. The fractional chromatic in-
dex x"(G) of G is the minimum of ), wy taken over all fractional edge-colorings w of
G. If ¢ is a proper edge-coloring of G using x/(G) colors, then we get a fractional edge-
coloring of G' by setting wy, = 1 if M is a color class of ¢, and wy; = 0 otherwise. In this
case, y ., wy = X'(G). On the other hand, at every vertex v of G any two edges incident
to v cannot lie in one matching M, and so in a fractional edge-coloring w of G we have
Do WM = D X eems WM = Doy 1 = de(v), where e ~ v means that e is incident
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to v. Thus, we have demonstrated the following bounds on the fractional chromatic index:

A(G) <X™(G) < X(G).

Using Edmonds’ matching polytope theorem [25], Seymour [81] and Stahl [84] proved the
following formula for the fractional chromatic index:

X" (G) = max{A(G), p(G)}.
This implies that the Goldberg-Seymour Conjecture can be rewritten as
X (G) < max{A(G) + 1, [X"(G) 1},

and this would imply that [x*(G)] < X'(G) < [x*(G)] + 1. Because of the connection to
Edmonds’ matching polytope theorem, the fractional chromatic index x*(G) can be com-
puted in polynomial time. Thus, the truth of the Goldberg-Seymour Conjecture [9] would
imply that if x'(G) > A(G) + 1, then x/(G) can be computed in polynomial time. This
means that the only difficulty in determining x/(G) is to distinguish between the two cases
X' (G) = A(G) and X'(G) = A(G) + 1, which we mentioned is an NP-complete problem.

Finally, let us prove a proposition that is relevant for trying to prove the Goldberg-
Seymour Conjecture[d] a result that we will also use to prove a weakening of the conjecture in
the next section. Recall that an important idea which made Vizing multi-fans and Kierstead
paths useful for proving upper bounds on the chromatic index is that all the vertices in these
subgraphs are missing different colors (see Theorem [2| and Theorem [5). For a multigraph G
and a partial proper edge-coloring ¢ of GG, we call a vertex subset S C V(G) elementary
with respect to ¢ if no two vertices in S have a common missing color. Let 0g(S) denote
the set of edges with exactly one end-vertex in S. We say that S is closed with respect to
¢ if for every colored edge f € 0¢(S) the color ¢(f) is present at every vertex in S. Finally,
we say that S is strongly closed with respect to ¢ if S is closed with respect to ¢ and
o(f) # o(f") for any two distinct colored edges f, f' € dg(S). Vertex sets that are both
elementary and strongly closed are closely connected to the Goldberg-Seymour Conjecture
9], as the following proposition indicates.

Proposition 11. Let G be a critical multigraph with x'(G) = k > A(G) + 1. Then the
following are equivalent.
(a) X'(G) = [p(G)].

(b) For every edge e € E(G) and proper (k — 1)-edge-coloring ¢ of G — e, the set V(G) is
elementary with respect to ¢.

(¢) There is an edge e € E(G) and a proper (k — 1)-edge-coloring ¢ of G — e such that
V(G) 1s elementary with respect to ¢.

(d) There is an edge e € E(G), a proper (k — 1)-edge-coloring ¢ of G — e, and a set
S C V(G) containing both end-vertices of e that is both elementary and strongly closed
with respect to ¢.

17



Proof. To show that (a) implies (b), assume that x'(G) = k = [p(G)]. Since G is critical,
every subgraph H of G satisfies [p(H)] < X'(H) < X'(G) = [p(G)]. Thus, the maximum in
p(G) is uniquely achieved by the set V(G). By a previous remark, v(G) must be odd. And
by the formula for p(G), we have that 2e(G) > (k—1)(v(G) — 1). Now let e € E(G) be any
edge, and let ¢ be a proper (k — 1)-edge-coloring of G — e. The claim is that no two vertices
in V(G) have a common missing color with respect to ¢. By the bound on 2e(G) above, the
size of the multiset of colors missing at the vertices in V(G) is

24+ Y (k—1-dg(v)) =2+ (k—1)v(G) — 2¢(G)
veV(Q)
=14+k+ (k—1)w(G) —1) - 2¢(G)
<1+k.

Because v(G) is odd and the vertices at which a given color is present come in pairs, every
color is missing at an odd number of vertices of G. In particular, the size of the multiset
above is at least k. If one of the colors was missing at more than one vertex, then this would
be at least k + 1, which contradicts the upper bound above. Thus, V(G) is elementary with
respect to ¢.

Clearly (b) implies (c). By taking S = V(G), we see that (c) implies (d). Finally, to
show that (d) implies (a), let e, ¢, and S be as given. We show that G[S] is a desired dense
spot in G that shows that x'(G) = [p(G)]. Clearly |S| > 2. Because e is uncolored, the set
of colors missing at one of the vertices in S is nonempty. Consider any such missing color a.
Since S is elementary with respect to ¢, the color « is missing at exactly one vertex. This
implies that |S| is odd, and that [|S|/2] edges of G[S] have color a. Next, consider any
color f present at every vertex in S (if one exists). Since S is strongly closed, at most one
edge in 0g(S) has color 8. And because |S| is odd, exactly one edge in dg(.S) has color §.
Thus again ||S]/2] edges of G[S] have color 5. This proves that e(S) =1+ (k —1)[|S|/2],
where the extra 1 comes from the uncolored edge e. Since |S| > 2, it follows that

R A
(p(GﬂsuG)—ksHS,ﬂﬁ(l HSV2J)<p<S>+1Sp<G>+1.

Therefore, ¥'(G) = [p(G)] and the maximum in p(G) is achieved by the set S. O

As was the case with previous edge-coloring proofs, to prove the Goldberg-Seymour
Conjecture[9]it suffices to prove it for all critical multigraphs G. From this fact and the proof
of Proposition |11}, we can see that the following conjecture is equivalent to the Goldberg-
Seymour Conjecture.

Conjecture 12 (Critical Multigraph Conjecture). Every critical multigraph G with x'(G) =
k> A(G) + 2 has an odd number of vertices and satisfies

2e(G) =24 (k—1)(v(G) —1).
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For trying to prove the Goldberg-Seymour Conjecture[J|for critical multigraphs G, Propo-
sition [11] tells us that if we have an edge e € F(G) and a maximal proper edge-coloring ¢ of
G — e, then it suffices for us to find a vertex subset S C V(G) of G that is both elementary
and strongly closed with respect to ¢. Unfortunately, finding such a set S in general appears
quite difficult. Even though the properties of S of being both elementary and strongly closed
do impose great restrictions on the distribution of colors in G[S], they do not by themselves
make it easy to find such a set S in a general multigraph G. Both maximal Vizing multi-fans
and maximal Kierstead paths are elementary, but they may not even be closed. In the next
section, we will define the notion of a Tashkinov tree, which when maximal will turn out
to be both elementary and closed, though not necessarily strongly closed. Still, it will be
enough to prove a weakening of the Goldberg-Seymour Conjecture [J

2.3 Tashkinov trees

Here, we define the notion of a Tashkinov tree and use it to prove a weakening of the
Goldberg-Seymour Conjecture [9] This very important notion was introduced by Tashkinov
[88] to give an alternative proof to a result of Nishizek and Kashiwagi [72] that supports the
Goldberg-Seymour Conjecture. Since then, the methods of Tashkinov have been refined and
used by various authors to prove other partial results on the Conjecture. The weakening we
will prove is due independently to Scheide [77] and to Chen, Yu, and Zang [24]. As usual,
we follow the textbook [86] for terminology and results. The terms “elementary”, “closed”,
and “strongly closed” from the previous section will often be employed here.

Let G be a multigraph, let ey € Eg(yo,y1) be an edge, and let ¢ be a proper edge-coloring
of G —ep. A Tashkinov tree with respect to ¢ is a sequence T' = (yo, €9, Y1, €1, - - -, €p—1, Yp)
consisting of distinct vertices yy,...,y, € V(G) and distinct edges ey, ...,e,—1 € E(G) that
satisfy:

e foreach i€ {0,1,...,p— 1}, ¢; € E(y;, yi+1) for some j < i;
e foreach i € {1,...,p— 1}, ¢(e;) is missing at y; for some 0 < j < 1.

As a subgraph of GG, a Tashkinov tree has the structure of a tree as the name implies (see
Figure 2.3). Every Vizing multi-fan with respect to ¢ is a Tashkinov tree if all of its vertices

Y10 Ys Y9 Y4 Ys
A o l0u)

: o 5y2O‘4 o ysao o Yy
77777777 . 0 1 2
() (ao) (1) (a2), (a3) () T

Figure 2.3: A Tashkinov tree T
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are distinct. In addition, every Kierstead path is a Tashkinov tree. Thus, Tashkinov trees
are simultaneous generalizations of Vizing multi-fans and Kierstead paths. The following
theorem of Tashkinov [88] generalizes Theorem [2] and Theorem [}] Note that we assume
X' (G) > A(G)+2 so that every vertex in a proper edge-coloring is missing at least one color.

Theorem 13 (Tashkinov). Let G be a multigraph with X' (G) = k > A(G)+2, let ey € E(G)
be a critical edge, and let ¢ be a proper (k — 1)-edge-coloring of ¢. If T is a Tashkinov tree
with respect to ¢, then V(T') is elementary with respect to ¢ (i.e., all the vertices of T are
missing different colors).

The proof of Tashkinov’s Theorem is somewhat long and technical, but requires no new
ideas (see [86]). Like the proof of Kierstead’s Theorem [f] it is a proof by minimal counterex-
ample. This time, we choose a counterexample that, among all choices of e, ¢, T', minimizes
the index j such that the sequence (y;,ej,...,e,-1,y,) forms a path. Following this, we
choose a counterexample that minimizes the number of vertices of T'. The case 7 = 0 is Kier-
stead’s Theorem ], and the proofs for other cases of j are complicated case-by-case arguments
involving many different switches on alternating paths, toward the goal of contradicting the
minimality. The complexity of the proof portrays the potential difficulty of simply proving
that some vertex set is just elementary, let alone both elementary and strongly closed.

Taking for granted Tashkinov’s Theorem , we can prove that the vertex set V(T')
of a maximal Tashkinov tree 7' (with respect to a maximal proper coloring of a critical
multigraph) has many of the properties we desire from a set S that maximizes p(G) in the
Goldberg-Seymour Conjecture @ (as suggested by Proposition . For convenience, if T is
a Tashkinov tree and y is a vertex of T', let T'y denote the Tashkinov tree T" up to the vertex
y in its sequence. Also, d¢(T") will be short for d¢(V (T")), which again is the set of all edges
of G with exactly one end-vertex in V(7).

Proposition 14. Let G be a multigraph with X' (G) = k > A(G) + 2, let e € E(G) be
a critical edge, and let ¢ be a proper (k — 1)-edge-coloring of G — ey. Further, let T be
a mazimal Tashkinov tree with respect to ¢, and let T" = (yo,eo,Y1,€1,---,€p—1,Yp) be an
arbitrary Tashkinov tree with respect to ¢. Then

(a) V(T) is elementary and closed with respect to ¢;

(b) v(T) > 3 is odd;

(¢c) V(T") C V(T);

(d) There is a Tashkinov tree T with respect to ¢ such that V(T) = V(T) and Typ =T

Proof. Write T' = (w0, fo, 1, f1,- -, fq—1,24), where fy = eq.

For (a), we have that V(T') is elementary with respect to ¢ by Tashkinov’s Theorem [13|
To see that V(T) is closed, let f € 0g(T) and let = be the end-vertex of f not in V(7).
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If ¢(f) is missing at some vertex in V(T'), then 77 = (o, fo, 1, f1,.- ., fy—1, %, f, ) is a
larger Tashkinov tree that contains 7', which contradicts the maximality of 7. Hence, V(T)
is closed with respect to ¢.

For (b), let a be a color missing at zo. Because V(T') is elementary, « is present at every
other vertex in V(T'). Further, because V(7T') is closed and « is present at every vertex in
V(T) \ {xo}, every edge with color « that is incident to a vertex in V(7') must be between
two vertices in V(T'). Hence, there are (v(T') —1)/2 edges with color « in G[V(T')], and v(T")
is odd. Since necessarily v(T) > 2, we also get that v(T") > 3.

For (c), suppose that V(T") € V(T). Since yo,y; € V(T), there exists an 7 > 1 such
that yo,...,y; € V(T) and y;41 ¢ V(T'). Since e; € Eq(y;, yi+1) for some j < i and ¢(e;) is
missing at y, for some ¢ < i, we have that 7" = (o, fo, 21, f1,-- ., fy—1,Tq, €i, Yit1) is a larger
Tashkinov tree containing 7', contradicting the maximality of T'.

For (d), since T’ is a Tashkinov tree, there is a maximal Tashkinov tree T with respect
to ¢ for which Ty, = T". Then (c) implies that V(7") C V(T'). On the other hand, taking T
to be the maximal Tashkinov tree and 7" to be the arbitrary Tashkinov tree with respect to

¢, (c) also implies that V(T') C V(T'). Hence, V(T) = V(7). O

From the proof of Proposition (a), we see that a Tashkinov tree with respect to ¢ is
maximal if and only if its vertex set is closed with respect to ¢. Part (c) implies that the
vertex set S of a maximal Tashkinov tree with respect to ¢ is uniquely determined, not
dependent on the particular structure of 7. In other words, all maximal Tashkinov trees
with respect to ¢ have the same vertex set. What makes Tashkinov trees flexible to work
with here is that we can so easily append an extra edge to a Tashkinov tree so long as its
color is missing at some previous vertex and one of its end-vertices is not in the tree. This
sort of ease can be contrasted with Vizing multi-fans and Kierstead paths, where we are
required to maintain the structure of a multi-fan or path.

From the proof of Proposition (b), we see that for every color o missing at some vertex
of a maximal Tashkinov tree T, there are (v(7') — 1)/2 edges of color v in G[V(T')]. This
indicates that G[V(T)] is quite dense, as we desire. Similar to our calculations with Vizing
multi-fans and Kierstead paths, we can derive the following inequality on the number of
edges induced by S = V(T):

e(S) > 1+ (2 +3 (k—1- dG(y))) . ’5‘2— !

yes

From this we can derive the upper bound

p(S) —2

X(G) =k < AG) +1+ =5

The problem is that we do not yet know what is |S| = v(T") or how large it can be, only that
it is odd and at least 3 by Proposition [L4|(b). Thus, we now turn our attention to bounding
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the number of vertices of maximal Tashkinov trees, or rather of mazimum Tashkinov trees,
where we take into account all possible choices of edges ey and proper (y'(G) — 1)-edge-
colorings ¢ of G — e¢y. We will need two lemmas. For terminology, we say that a color « is
used on a Tashkinov tree T if it is the color of some edge of T', and otherwise we say that
« is unused on 7.

Lemma 15. Let G be a multigraph with X' (G) = k > A(G) + 2, let eq € E(G) be a critical
edge, and let ¢ be a proper (k — 1)-edge-coloring of G — eg. Further, let T be a mazimal
Tashkinov tree with respect to ¢, and let T = (yo,e0,y1,€1,-..,€p-1,Yp) be an arbitrary
Tashkinov tree with respect to ¢. Suppose that the color a is missing at y; and the color 3 is
missing at y;, where 1 <i < j <p. Then a # [3, there is an (o, 3)-alternating path P with
end-vertices y; and y;, and V(P) C V(T). Moreover, if o is unused on T'y; and ¢' is the
coloring obtained from ¢ by switching on P, then T' is a Tashkinov tree with respect to ¢'.

Proof. By Proposition [14, V(T') is elementary and closed with respect to ¢, and V(1”) C
V(T'). Thus, y; is the only vertex of 7" missing «, and y; is the only vertex of 7" missing f3.
In particular, o # . Let P be the («, §)-alternating path starting at y;. It ends at some
other vertex v. Since V(T') is closed, there is no edge in dg(T") colored « or B. Thus, every
edge of P lies in G[V(T')], and so V(P) C V(T). Since either o or f must be missing at
the end-vertex v of P, we deduce that v = y;. Now, let ¢’ be the coloring obtained from ¢
by switching on P. Under ¢, y; and y; exchange the missing colors a and 3, and all other
missing colors in V' (T") stay the same. Since ( is missing at y; with respect to ¢ and V(71”) is
elementary with respect to ¢, we have that 3 is unused on 7"y, with respect to ¢. Since by
hypothesis « is also unused on 7"y; with respect to ¢, we get that both a and /8 are unused
on T"y; with respect to ¢’. We deduce that 7" is a Tashkinov tree with respect to ¢'. ]

Lemma 16. Let G be a multigraph with X' (G) = k > A(G) + 2, let eg € E(G) be a critical
edge, and let ¢ be a proper (k—1)-edge-coloring of G—ey. Then there is a maximal Tashkinov
tree T' with respect to ¢ such that at most (v(T) — 1)/2 colors are used on T.

Proof. Let T' be any maximal Tashkinov tree with respect to ¢. By Proposition (b),
v(T") = 2¢+1 for some integer £ > 1. To obtain 7', we inductively construct, fori =1,... ¢,
a Tashkinov tree Ty; = (yo, €0, Y1, €1, - - -, €21, Y2;) With respect to ¢, such that at most i
colors are used on 7. First, since v(T") > 3, we can let T, = T3, noting that exactly one
color is used on Tj. Assume we have constructed T»; = (vo, €0, Y1, €1, - - -, €2i_1, Y2;) for some
1 <4< {¢—1. Since v(Ty;) < v(T"), by Proposition (d) there is a maximal Tashkinov
tree T with respect to ¢ such that V(T) = V(T") and Tys; = Ty;. Hence, there is an edge
f € 0a(Ts;) such that ¢(f) is missing at some vertex in V(Ty;). Let x be the end-vertex of f
not in 7y;. Then 7" = (T, f, x) is a Tashkinov tree with v(7") = 2i+2. Since ¢ > 1, there is
a color a used on Ty;. Because V(1) is elementary with respect to ¢ by Theorem [13] there
is a unique vertex v € V(T") at which « is missing. Since there are v(T") — 2 = 2i colored
edges in T, which is even, there is an edge f' € dg(T") such that ¢(f’) = «. Hence, letting
2’ be the end-vertex of f’ not in V(T"), we see that To; o = (To;, f,x, f',2') is a Tashkinov
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tree with respect to ¢ such that at most ¢ + 1 colors are used on T5;,9. This completes the
inductive construction. [

Now we can prove bounds on the number of vertices of a maximum Tashkinov tree.
For a critical multigraph G, define its Tashkinov order ¢(G) to be the maximum size of
a Tashkinov tree in G among all possible choices of critical edges ey € F(G) and proper
(X' (G) — 1)-edge-colorings ¢ of G —eq. We refer to all Tashkinov trees in G with size t(G) as
maximum Tashkinov trees. Also, for a color v and arbitrary Tashkinov tree T" with respect
to a maximal proper edge-coloring ¢, let Og o (T") denote the set of edges in Jg(T") that are
colored a with respect to ¢.

Theorem 17. Let G be a critical multigraph with x'(G) = A(G) + k for some k > 2, and
with X'(G) > [p(G)]. Then

A(G) -3

.
K1 T

2%+ 1< HG) <

Proof. Let ey € E(G) be any edge, and let T' = (yo, €0, Y1, €1, - - -, €p—1,Yp) be a maximum
Tashkinov tree in G, with respect to some (x'(G) — 1)-edge-coloring ¢ of G — eq. By Propo-
sition [14[(b), v(T) > 3 is odd. Assume that x'(G) > [p(G)].

By Tashkinov’s Theorem [13] V(') is elementary with respect to ¢. Since x'(G) > [p(G)],
by Proposition , V(T) is not strongly closed with respect to ¢. In other words, there is
a color a found on at least two edges in 0g(7), a so-called defective color. We can write
this as |0g.o(T)| > 2. Note that « is present at every vertex in V(T), since otherwise it is
missing at some vertex in V(7T') and dg o(T') # (), which implies that 7" is not closed and thus
not maximal with respect to ¢, a contradiction. This further implies that a is unused on
T. Next, we observe that there are at least v(7T") + 2 colors missing at some vertex in V(7')
since every vertex is missing at least one color and V(T') is elementary. Also observe that
there are exactly v(7') — 2 colored edges of T'. Hence, there are at least four colors that are
both missing at some vertex in V(7') and unused on T, so-called free colors. Let [ be such
a color. Since V(T) is elementary, there is exactly one vertex u at which /3 is missing. Note
that |0g.o(T)| > 3 is odd because v(T") is odd and the edges colored « form a matching, and
that dg 3(T) = 0 because f is missing at v € V(T') and T is maximal.

Since [ is missing at v € V(T') and « is present at every vertex in V(T'), there is an
(o, B)-alternating path P starting at u. We show that 0 (1) = E(P) N 0g(T'). Because
Jc.5(T) = 0 and the edges of P are colored only « or , it suffices to show that dg (T C
E(P). Suppose this is false. Let € € 0g4(T) \ E(P), and let ¢’ be the coloring obtained
from ¢ by switching on P. Since a and [ are unused on 7" with respect to ¢, we have that
T is a Tashkinov tree with respect to ¢'. But since ¢’ ¢ E(P), we have that ¢ € dg(T) is
still colored a;, i.e., lies in Og(T"), and now « is missing at w € V(T"). This implies that T
is not closed and thus not maximal with respect to ¢’, contradicting T being a maximum
Tashkinov tree in G.
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Now, the path P ends at some vertex v in V(G) \ V(T because |0g.(T)| > 3 is odd
and 0g(T) = 0. Walking along P from u to v, there is a last vertex vy of P that lies in
V(T). The claim is that all the colors missing at vy are used on T'. Suppose not. Let v be
missing at vy and unused on 7T'. Because 0g (1) = E(P) N Jg(T) and |0g.«(T)| > 3, we see
that P exits V(T) at least twice. This implies that vy # u. Since /5 is unused on 7" but is
present at vy, we have g # ~. By Lemma , there is a (3, 7)-alternating path P; whose
end-vertices are u and vy, and we have V(P;) C V(T). Let ¢; be the coloring obtained from
¢ be switching on P;. By Lemma (15 7" is a Tashkinov tree with respect to ¢;. Note that
each of «, 8,7 is still unused on T with respect to ¢;. Now [ is missing at vy, and so the
(e, B)-alternating path P, with respect to ¢; that ends at v only starts at vy. In particular,
all of the vertices of P after vy lie outside of T'. Let ¢ be the coloring obtained from ¢; by
switching on P,. Then T is also a Tashkinov tree with respect to ¢5. But now « is missing
at vy and still Og o(T") # 0. Thus, T' is not maximal with respect to ¢, and this contradicts
T being a maximum Tashkinov tree in G.

Using the proven claim, let us show that at least k colors are used on T' with respect to
¢. If we have vy € {yo,y1}, then at least x'(G) — dg(vo) > A(G) + k — de(vg) > k colors are
missing at vg, so by the previous claim at least & colors are used on 7. Otherwise, if vy = y;
for some j € {2,...,p}, then at least x'(G) — 1 —dg(vy) > k — 1 colors are missing at vy, so
at least k — 1 colors are used on 7. And since ¢(e;_1) is present at vy and used on T, again
we find there to be at least k colors are used on 7T'.

Now we can prove the lower bound on ¢(G). By Lemma [I6] there exists a maximum
Tashkinov tree 7" with respect to ¢ on which at most (v(7”) — 1)/2 colors are used. Since
by the third claim at least k& colors are used on T’ we get that (v(7”) — 1)/2 > k. Thus,

t(G)=v(T") > 2k + 1.

The proof of the upper bound on ¢(G) is a standard missing colors argument. Since V' (T')
is elementary with respect to ¢ by Tashkinov’s Theorem the number of colors missing at
one of the vertices in V(7' is

Recall that the defective color « is present at every vertex in V(7). Thus, at most x'(G) — 2
colors are missing at one of the vertices in V(T'), and this implies that 2 4+ (k — 1)v(T) <
X'(G) —2=A(G) + k — 2. It follows that

AG)+k—4  AG)-3
kE—1 k=1

1(G) = v(T) < 41,

as required. N
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Finally we can prove the promised weakening of the Goldberg-Seymour Conjecture [9 due
to Scheide [77] and to Chen, Yu, and Zang [24].

Theorem 18. For every multigraph G with A(G) > 3, we have

A(G) -3

X'(G) < max {A(G) +1+  [p(G)] } :

Proof. Asusual, G has a critical subgraph H with x'(H) = x'(G). If either x'(H) < A(H)+1
or X'(H) = [p(H)], then the above bounds follow. Assume then that x'(H) = A(H) + k
for some k > 2, and that x'(H) > [p(H)]. Then necessarily A(H) > 3, and Theorem
applies to give us that

A(H) -3

2k +1<t(H) <
k+1<t(H)< ]

+ 1.

We obtain the quadratic inequality k% — k — (A(H) — 3)/2 < 0 in k, which we can solve as

k§%<1+\/2A(H)—5>§1+ %gu %.

Therefore, /(G) = A(G) +k < A(G) + 1+ /292, -

The bound proven by Scheide and by Chen, Yu, and Zang is actually slightly better than
the one just presented, namely

Y(G) < max {A(G) S 10(6)] } .

This can be obtained by reducing the upper bound on ¢(G) in Theorem (17 by two. Our
proof of Theorem |17 simply used the fact that V(T') is elementary by Tashkinov’s Theorem
[13] together with the helpful observation that the defective color « is present at every vertex
in V(7). But in fact we could have shown that a set slightly larger than V(T) is elementary,
namely V(T') U {vy,v2}, where v; and v are the first two vertices of the («, §)-alternating
path P starting from wu that lie outside of V(T'). Proving that this larger set is elementary
takes a couple more path-switching arguments, but the ideas are the same (see [80]).

2.4 Proper list edge-colorings

In this section, we give a brief overview of list edge-colorings of multigraphs. List colorings
will be a frequent variation of the ordinary coloring problems that we will discuss later. Let
G be a multigraph and let C be a universe, or palette, of colors (often taken to be {1,...,n}
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for some n > 1). A list assignment for F(G) is a function L : E(G) — P(C), where P(C)
is the power set of C. That is, L assigns a list of distinct colors from C to every edge of G.
For an integer £ > 1, a k-list assignment for F(G) is a list assignment L for E(G) such
that |L(e)| = k for each edge e € E(G), i.e., every list has size k. For a list assignment L
for F(G), an L-coloring of G is an edge-coloring ¢ of G such that ¢(e) € L(e) for each
e € E(G). An L-coloring of G is said to be a proper L-coloring if it is proper as an
ordinary edge-coloring of GG, that is, if each of its color classes forms a matching.

The list chromatic index x(G) of G is the minimum integer k such that for every k-list
assignment L for F(G), there is a proper L-coloring ¢ of G. Observe that if L(e) = {1,...,k}
for each edge e € E(G), then a proper L-coloring corresponds to a proper k-edge-coloring of
G. In particular, if £ = x/(G) then G will have a proper L-coloring, whereas if k£ < y/(G) —1
then it will not. This implies that x,(G) > x'(G) > A(G). On the other hand, it is easy
to see that the greedy upper bound on x'(G) also works for x;(G), which gives us that
W(G) < 2A(G) - 1.

The notion of a list coloring of a graph was introduced independently by Vizing [90] and
by Erdds, Rubin, and Taylor [31], although in the vertex-coloring setting. In the context of
vertex-coloring, the vertex-chromatic number and its list coloring analogue can be arbitrarily
far apart independently of one another, particularly if the maximum degree is allowed to grow
without bound. This is true even in bipartite graphs. In contrast, as seen above, the list
chromatic index is always within a factor of two of the chromatic index. But in general, it
is thought that one can do much better than the greedy upper bound. A famous conjecture
states that the chromatic index and list chromatic index are always equal.

Conjecture 19 (List Coloring Conjecture). For every multigraph G, we have x;,(G) = X' (G).

The List Coloring Conjecture was suggested independently by various authors including
Vizing, Albertson, Collins, Tucker, and Gupta, and it first appeared in print in a paper
of Bollobds and Harris [I§]. In a surprisingly simple proof somewhat later on, Galvin [3§]
proved the conjecture for all bipartite multigraphs. This also confirmed the special case
that x}(K,,) = n, which was conjectured by Dinitz before the notion of a list coloring was
defined (see [31]).

Theorem 20 (Galvin). For every bipartite multigraph G, we have x;(G) = x'(G) = A(G).

Galvin’s proof of Theorem [20]is a clever combination of two seemingly unrelated theorems
that are independently easy to prove, one about list coloring vertices in directed graphs with
kernels (see [I3]) and the other being the stable matching theorem for bipartite graphs
(see [37]). Unfortunately, Galvin’s proof is quite particular to bipartite multigraphs, and
it is difficult to extend to more general classes of multigraphs. In addition to bipartite
multigraphs, the List Coloring Conjecture has been proven for complete graphs on an
odd number of vertices [50], for cubic bridgeless planar simple graphs [13], and for regular
class-1 planar multigraphs [29]. Additionally, using probabilistic methods, Kahn [58] proved
that the conjecture holds asymptotically, that is, x;(G) = (1 4+ o(1))X'(G) as A(G) — oc.
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The conjecture is still very much open, even for complete graphs on an even number of
vertices.

Let us comment that the mentioned proofs of partial results on the List Coloring Conjec-
ture (19| look quite different from proofs about ordinary edge-colorings discussed in previous
sections. The list coloring proofs often involve studying various polynomials corresponding
to certain edge-colorings or orientations, and then relying on a combinatorial nullstellensatz
result of Alon and Tarsi [13]. Otherwise, the proofs involve being lucky that the structure
of the multigraph enables a subtle but straightforward list coloring procedure, as is the case
with Galvin’s Theorem [20, Or the colorings are probabilistic, as is the case with Kahn’s
theorem. The problem with ordinary edge-coloring proofs from previous sections is that they
all, at some step, involve switching on an alternating path. Because the colors in the lists
can vary across different edges, analogues of alternating paths (or merely subgraphs that are
easy to recolor) in the list coloring setting are difficult to construct. On the other hand, this
problem will not arise when we study arboricity in the list coloring setting.

27



Chapter 3

Arboricity and list arboricity

3.1 Arboricity

Perhaps the most famous edge-coloring parameter determined by maximum density is ar-
boricity. For a multigraph G, its arboricity a(G) is the minimum number of colors needed
to partition the edges of G into monochromatic forests. Since every edge is itself a forest, we
have that a(G) < e(G) and so a(G) is finite. Arboricity was introduced by Nash-Williams
[70], who proved that it is completely determined by a maximum density parameter, specif-

ically,
e(S)
= max .
scv(a)ls>2 | |S] — 1

a(@)

This result was also independently discovered by Tutte [89]. It is easy to see that a(G) >
[e(S)/(]S| —1)] for all S C V(G): in an edge-coloring of G into a(G) forests, each color
class induces a forest on vertex set S, and each of them has at most |S| — 1 edges, so
e(S) < a(G)(|S| —1). Noting that a(G) is an integer, we get the stated lower bound. Nash-
Williams states that this trivial lower bound is in fact attained for some S C V(G). That is,
the reason that a multigraph G has arboricity a(G) is because of the existence of a “dense
spot” that trivially requires a(G) colors to be partitioned into monochromatic forests.

Nash-Williams’ theorem is a special case of powerful theorems in the more general context
of matroids (see [73]). However, we seek an intuitive proof of the theorem specifically for
multigraphs, one that also provides structural information about the asserted dense spot.
We give a proof similar to one by Chen, Matsumoto, Wang, Z. Zhang, and J. Zhang [22],
and the recoloring procedure we will use was also described by Gabow and Westermann
[36] in the more general matroid sum setting. Our proof can in fact be phrased entirely in
terms of matroids, but we stick to the multigraph setting (i.e., the special case of graphic
matroids). For the purpose of drawing connections, we will write the proof in the same style
as many proofs about the chromatic index: we start with a critical multigraph as well as
an edge-coloring of it minus one edge, and we find a desired dense spot by studying and
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exploiting the distribution of colors around the uncolored edge. Unlike the chromatic index,
in this arboricity setting we get an exact result.

In this section, we say that a multigraph G is critical if deleting any edge of G decreases
its arboricity a(G). We will refer to an edge-coloring into monochromatic forests as a forest
edge-coloring of G. Now we can define a critical structure that will form the desired dense
spot in GG. Let G be a multigraph, let ey be an edge of G, and let ¢ be an edge-coloring of
G — ey into monochromatic forests. An arboretum A with respect to ¢ is a subgraph of G
defined recursively as follows:

e The subgraph consisting only of the uncolored edge eq is an arboretum.

e If A is an arboretum, e is an edge of A, and P is a monochromatic path with respect
to ¢ between the two end-vertices of e, then AU P is an arboretum.

The motivation for this definition is that at each step we add a monochromatic path that
prevents us from coloring the uncolored edge. We now prove structural results about arboreta
in critical multigraphs, which will lead to a proof of Nash-Williams’ Theorem.

Proposition 21. Let G be a critical multigraph with arboricity a(G) = k, let eq be an edge
of G, and let ¢ be a (k — 1)-coloring of the edges of G — ey into monochromatic forests.
If A is an arboretum with respect to ¢, then for every edge e of A and color « there is an
a-monochromatic path with respect to ¢ in G between the two end-vertices of e.

Proof. We use induction on the number of edges of A. If e(A) = 1, then ey is the only
edge in A. For any color a there must be a monochromatic path of color o connecting the
end-vertices of ey, for otherwise we can give ey the color v and this would contradict the
arboricity of G. Now suppose e(A) > 1, and assume the result holds for all arboreta with
fewer edges than A. Let e € E(A) be an edge, and let o be any color. If e = ¢ then the same
argument in the base case shows that there is an a-monochromatic path connecting the end-
vertices of e. Assume e has some color 5. If & = 3, then trivially there is a monochromatic
path of color av connecting the end-vertices of e. Assume « # (3. Suppose for contradiction
that there is no a-monochromatic path connecting the end-vertices of e. By the recursive
construction of A, there is a sub-arboretum A’ in A such that e ¢ E(A’) but also an edge
¢/ € E(A") and a S-monochromatic path P in G connecting the two end-vertices of €/, such
that e € E(P) and AU P C A. Since there is no a-monochromatic path connecting the two
end-vertices of e, we may change the color of e to a to obtain a new good edge-coloring ¢’
of G — eg. Then A’ is still an arboretum with respect to ¢’ because ¢’ = ¢ when restricted
to A’. Moreover, A’ has fewer edges than A, so by the induction hypothesis, ¢’ has a (-
monochromatic path P’ with respect to ¢’ that connects its two end-vertices. Note that
P’ # P because P’ is f-monochromatic with respect to ¢’ while e € E(P) is colored a with
respect to ¢'. Also note that P’ is S-monochromatic with respect to ¢. But then P U P’
contains a S-monochromatic cycle with respect to ¢, contradicting the assumption that ¢ is
a coloring into monochromatic forests. This finishes the induction. O]
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Proposition 22. Let G be a critical multigraph with arboricity a(G) = k, let eq be an edge
of G, and let ¢ be a (k—1)-coloring of the edges of G — ey into monochromatic forests. Then
a mazximal arboretum A with respect to ¢ is the union of k—1 monochromatic spanning trees
on V(A) in each color, plus the uncolored edge ey. In particular,

e(A) =1+ (k—1)(v(A) — 1),

Proof. By definition every arboretum is connected and all of its color classes induce forests.
Let A be a maximal arboretum with respect to ¢. We show that each color class « restricted
to A induces a connected subgraph, so that it is a spanning tree. Let T be a spanning tree
of A. By Proposition 21} for any edge e € E(T) there is a monochromatic path P(e) in G
of color a connecting the two end-vertices of e. Since A is maximal, P(e) C A. Thus, the
a-monochromatic graph UecpryP(€) is a spanning subgraph of A, and it is easy to see that
it is connected. Therefore, the color class « restricted to A is connected.

The formula for the number of edges e(A) comes from noting that each of the £ — 1
monochromatic spanning trees of A has v(A) — 1 edges. O

Theorem 23 (Nash-Williams). For every multigraph G, we have

e(S) 1 |

Q) —
(@) ng%%?\{sgz {|5| -1

Proof. The fact that a(G) > [e(S)/(]S| — 1)] for all S C V(G) was proven at the beginning
of this section. We prove that equality is achieved for some subset S C V(G). Let H be a
critical subgraph of G with a(H) = a(G) = k. Let eq be any edge of H, let ¢ be a (k — 1)-
edge-coloring of H — ¢y into monochromatic forests, and let A be a maximal arboretum with
respect to ¢. We show that we can take S = V(A). Clearly |S| > 2. By Proposition 22 we
have e(A) = 14 (k—1)(v(A) — 1). Note that A is an induced subgraph of H because it is a
union of edge-disjoint spanning trees in each color (plus the uncolored edge). Thus,

W(G) = k = % + (1 = U<A>1_ 1) _ |§|(*i)1 + (1 _ |S|1_ 1) .

Hence,
e(5) e(S)
< 1.
S=1 <a(G) < |S|—1+
It follows that a(G) = [e(S)/(|S] — 1)] as required. O

Thus we have shown that a maximal arboretum A with respect to a maximal partial
coloring of critical subgraph of G is a desired dense spot that determines the arboricity
a(G), in accordance with Nash-Williams’ theorem. It is fortunate that a maximal arboretum
determines the exact value of the arboricity the way it does. When it comes to the chromatic
index, maximal Vizing multi-fans, Kierstead paths, and Tashkinov trees are all similar critical
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structures, but the upper bounds on the chromatic index that they provide are generally not
tight. The matroid aspects implicit in the arboricity results above makes arboricity quite
special. Notice that arboricity places no restrictions on what the color classes should look like
locally at a vertex, only on how big the color classes can be, so it makes sense that maximum
degree does not play a role in determining arboricity. Soon we will study restricted versions
of arboricity whose parameters will have greater dependency on maximum degree.

3.2 List arboricity

Analogous to list edge-colorings into matchings, we may define a list edge-coloring version
of arboricity. In this context, if G is a multigraph and L is a list assignment for E(G),
then a forest L-coloring of GG is an edge-coloring ¢ of G such that ¢(e) € L(e) for all
e € E(G), and such that each color class with respect to ¢ forms a forest. From this,
we define the list arboricity a,(G) of G to be the minimum integer k such that G has a
forest L-coloring for any k-list assignment L for E(G) (where all the lists have size k). We
easily see that a,(G) < e(G), so that a,(G) is finite. Similar to the list chromatic index,
for any multigraph G we have a,(G) > a(G). In a short matroid-style proof, Seymour [79)]
showed that in fact ay(G) = a(G). Thus, the natural arboricity analogue of the List Coloring
Conjecture (19 holds. The nice thing is that we can prove this result using the exact same
approach employed in the ordinary arboricity case, with only a little more work. Again,
everything in this section can be phrased entirely in terms of matroids, but the focus will be
on multigraphs.

As before, we say that a multigraph G is critical if deleting any edge of G decreases
its list arboricity ay(G). By definition, for every critical multigraph G with list arboricity
a¢(G) = k, there is a (k — 1)-list assignment L such that G has no forest L-coloring but G —e
does have a forest L-coloring, for any e € F(G). We call such an assignment L a critical list
assignment for F(G). Thus, for any critical list assignment L for G and edge e € E(G),
there is always a forest L-coloring of G — e. Note that we may take any list assignment L to
have color palette {1,...,n} for some n > 1, without loss of generality. We now define the
analogue of an arboretum in the list coloring setting.

Let G be a multigraph, let L be a k-list assignment for F(G) for some k > 1, let ¢y be
an edge of GG, and let ¢ be a forest L-coloring of G — e if one exists. A list arboretum A
with respect to ¢ is a subgraph of G defined recursively as follows:

e The subgraph consisting only of the uncolored edge ¢ is a list arboretum.

e If A is a list arboretum, e is an edge of A, « is a color in L(e), and P is an a-
monochromatic path with respect to ¢ between the two end-vertices of e, then AU P
is a list arboretum.

The following structural result on list arboreta is analogous to Proposition 21} with a nearly
identical proof.
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Proposition 24. Let G be a critical multigraph with list arboricity a,(G) = k, let L be a
critical list assignment for E(G), let ey be an edge of G, and let ¢ be a forest L-coloring
of G —ey. If A is a list arboretum with respect to ¢, then for every edge e € E(A) and
color a € L(e) there is an a-monochromatic path with respect to ¢ in G between the two
end-vertices of e.

An analogue of Proposition [22| for maximal list arboreta is the following. It can be viewed
as a special case of the matroid union theorem (see [28, [73]).

Proposition 25. Let G be a critical multigraph with list arboricity a,(G) = k, let L be a
critical list assignment for E(G) from the color palette {1,...,n}, let eq be an edge of G,
and let ¢ be a forest L-coloring of G — eq. Further, let A be a maximal list arboretum with
respect to ¢. For i € {1,...,n}, define the subgraphs C; = (V(A),{e € E(A) : ¢(e) = i}),
Q:=(V(A),{e€ E(A):i€ L(e)}). Then for eachi € {1,...,n}, C; is a maximal spanning
forest of Q;. In particular,

e(4) = 1+ (0(4) = (4),

where ¢;(A) is the number of connected components in Q;.

Proof. Fix an i € {1,...,n}. Note that C; is a spanning forest of @); because ¢ is a forest
L-coloring of A. To show that C; is a maximal forest in @);, let F' be any maximal spanning
forest in @;. Then for each edge e € E(F') we have i € L(e). By Proposition [24] there is an
i-monochromatic path P(e) with respect to ¢ in G' (so that P(e) C C;) that connects the
two end-vertices of e. Since A is maximal, P(e) C ;. Thus, the i-monochromatic graph
Ueer(r)P(€) is a maximal forest in @;, and therefore Cj is a maximal spanning forest of @);.

The formula for the number of edges e(A) comes from noting that {eg}, E(Cy), ..., E(C,)
is a partition of F(A), and that each C; has v(A) — ¢;(A) edges because it is a maximal
spanning forest of Q);. O

We prove the result of Seymour [79] that a,(G) = a(G) using Proposition [25| and an idea
of Lasoni [66]. This proof requires the additional fact that the rank function of a graphic
matroid is submodular (see [73]), which we state in more graph theory terms as follows. For
a multigraph G, we define its rank function r to be a function on its spanning subgraphs H
given by r(H) = v(G) — ¢(H), where ¢(H) is the number of connected components in H.
Equivalently, r(H) is the number of edges in a maximal spanning forest of H.

Lemma 26. Let r be the rank function of a multigraph G. Then r is a submodular function;
that is, for all spanning subgraphs X, Y C G we have

r(XUY)+r(XNY)<rX)+rY).
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Proof. We first establish the following (equivalent) fact: (%) for all spanning subgraphs
X'CY' ' CGandedgese € E(G)\ E(Y') we have r(X'U{e}) —r(X') > r(Y'U{e}) —r(Y’).
For our multigraph rank function, this inequality can be rewritten as ¢(X') — c(X'U{e}) >
c(Y') — (YU {e}). Both the left-hand and right-hand side of this rewritten inequality is
either 0 or 1. If the right-hand side is 0, the inequality trivially holds. If the right-hand
side is 1, then e must connect two separate components in Y’. Since X’ C Y”’, e must also
connect two separate components in X', so the left-hand side is 1. Thus, (x) always holds.

If X C Y, then the asserted submodularity inequality trivially holds as an equality.
Suppose that E(X —Y) = {e1,...,en} # 0. Because X NY C Y, we may use (x) to derive
the following series of inequalities:

r(XNnY)u{e}) —r(XNY)>r(YU{e}) —rY),
r((XNY)u{epel}) —r(XNY)U{e}) >r(Y U{e,ea}) —r(Y U{er}),

r(XNnY)u{ey,...,ent) —r(XNY)U{er,...,em-1})
>r(YU{e,...epn}t) —r(YU{er,...,em_1}).

Adding the inequalities together, we derive that

r(XNY)U{er,...,en}) = (X NY) > r(Y U{er,...en}) —r(Y),
r(XNY)u(X\Y)) —r(XNnY)2rY UX\Y))—r(Y),
r(X)—r(XNY)>r(XUY)-—r),

and therefore r(X UY) +r(X NY) <r(X)+r). O

~—

Theorem 27 (Seymour). For every multigraph G, we have

e(S) w |

B ng%%?\{sgz [|S| -1

CL[(G) = (I(G)

Proof (Lasori). Note that the multigraph G has a subgraph H that is critical for list arboric-
ity with a,(H) = a;(G) = k. Let L be a critical list assignment for E(H) from the color
palette {1,...,n} (without loss of generality), let ey be an edge of H, and let ¢ be a forest
L-coloring of H — ey. By Proposition [25] there is a maximal list arboretum A in H with

() = 1+ (0(4) = (4),

edges, where ¢;(A) is the number of components in the graph Q; = {e € E(A) : i € L(e)}.
Note that v(A) — ¢;(A) = r(Q;) is the rank of the spanning subgraph ); with respect to
the rank function r of the multigraph A. Using the fact that r is submodular by Lemma
[26] we prove that among all list assignments L for E(H) satisfying L(e) C {1,...,n} and
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|L(e)] = k—1for all e € E(H) (not just critical list assignments), the right-hand side of the
above formula for e(A) is minimized by the uniform list assignment Ly(e) = {1,...,k — 1}
for all e € E(G). That is, we show that for any list assignment L,

14 (k—1)(v(A) —1) <1+ Zr(Q»,

so that in particular this holds for the critical list assignment L we started with.

The proof is by induction on e(Qg) +...+e(@Qy). If e(Qx)+...+e(Q,) =0, then L = Ly
and the result clearly holds. Suppose that e(Qg)+...+e(Q,) > 1. Then there exists an edge
e; € E(A) and colors i € {1,...,k— 1}, j € {k,...,n} such that i ¢ L(ey) and j € L(eq).
Define a new list assignment L’ for E(G) by setting the list color classes to be Q; = Q; UQ);,
Q; = QiNQj, and Q,, = Qp, for all m € {1,...,n} \ {i,j}. In other words, to get L'
from L, we replace the color j by the color ¢ in every list that contains 7 but not . By the
submodularity of the rank function r, we have r(Q;) + r(Q}) < r(Q;) + r(Q;). Moreover,

r(Q,) = r(Qm) forallm € {1,...,n}\{i,j}. Since e(Q})+...+e(Q)) < e(Qr)+...+e(@n),
by the induction hypothesis and submodularity we have

Lt (k= ()~ 1) €1+ 3@ <143 r(@)

This finishes the induction.

Returning to the critical list assignment L, we have demonstrated that
e(A) =14 (v(A) = ¢;(A) > 1+ (k- 1)(v(A) — 1).
i=1

Similar to the calculations in the proof of Theorem we may rearrange to find that

w(G) =k < L)(Z()—AH < a(G).

Since a,(G) > a(G), it follows that a,(G) = a(G) = [e(A)/(v(A) — 1)], and that moreover
the maximum of [e(S)/(]S]| — 1)] is attained at S = V(A). O

One reason that the proof of Proposition transfers so easily to the list setting as
Proposition [24]is that the proof involves recoloring only a single edge. Compare this with all
the proofs presented regarding the chromatic index, which often involve switching along an
alternating path in addition to recoloring an edge. This is despite the fact that the equations
in Theorem [3] Theorem [6] Proposition 22| and Proposition 29| look so similar. Changing the
color of one edge works nicely in the list setting, but switching on alternating paths does
not. It would be interesting to explore what makes certain “exchange properties”, such as
switching on alternating paths, translate to the list color setting better or worse than other
exchange properties.
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Now, Lason in [66] actually proved a slightly stronger result than Theorem that
ay(G) = a(@). Instead of every list having the same size k, he allows the list size to vary
across the edges. For a multigraph G, let ¢ : E(G) — N be a lists size function, a function
that determines the size of a list at a particular edge of G. We call a list assignment L for
E(G) an (-list assignment if |L(e)| = {(e) for all e € E(G). We say that G is critical for
lists size function ¢ if there is some ¢-list assignment L for which G has no forest L-coloring,
but that for every such assignment L and edge e € E(G), G —e does have a forest L-coloring.
In this case, we call L a critical /-list assignment.

Let G be a multigraph, let £ be a lists size function for E(G), let L be an ¢-list assignment
for E(G), let eg be an edge of G, and let ¢ be a forest L-coloring of G — ey if one exists. We
define a list arboretum A with respect to ¢ in exactly the same way we did when ¢ was a
constant function.

The following propositions hold for the same reasons that Proposition [24] and Proposition
28] hold.

Proposition 28. Let G be a multigraph that is critical for the lists size function ¢, let L be
a critical (-list assignment for E(G), let ey be an edge of G, and let ¢ be a proper L-coloring
of G —ey. If A is a list arboretum with respect to ¢, then for every edge e € E(A) and
color a € L(e) there is an a-monochromatic path with respect to ¢ in G between the two
end-vertices of e.

Proposition 29. Let G be a multigraph that is critical for the lists size function £, let L be
a critical £-list assignment for E(G) from the color palette {1,...,n}, let eq be an edge of G,
and let ¢ be a forest L-coloring of G — eq. Further, let A be a maximal list arboretum with
respect to ¢. Fori € {1,...,n}, define the subgraphs C; = (V(A),{e € E(A) : ¢(e) = i}),
Q:=(V(A),{e€ E(A) :ie L(e)}). Then for eachi € {1,...,n}, C; is a mazimal spanning
forest of Q;. In particular,

e(4) = 1+ 3 (0(4) = (4),

where ¢;(A) is the number of connected components in Q;.

With minor modifications, Lasoni’s proof of Theorem can be adapted to prove the
following theorem [66].

Theorem 30 (Lason). For every multigraph G and lists size function { : E(G) — N, the
following statements are equivalent:

(1) G has a forest L-coloring for the (-list assignment L(e) = {1,...,l(e)}, e € E(G);

(2) G has a forest L-coloring for any (-list assignment L.
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Proof. Clearly (2) implies (1). To show that (1) implies (2), suppose that there is an ¢-list
assignment L such that G does not have a forest L-coloring. Then G has a subgraph H that
is critical for the lists size function ¢. Let L be a critical ¢-list assignment for F(H) from
the color palette {1,...,n} (without loss of generality), let ey be an edge of G’, and let ¢ be
a forest L-coloring of H — ey. By Proposition H has a maximal list arboretum A with
respect to ¢ with

edges, where ¢;(A) is the number of components in Q; = (V(A),{e € E(A) :i € L(e)}).

The claim again is that among all list assignments L for F(H) that satisfy L(e) C
{1,...,n} and |L(e)| = £(e) for all e € E(H) (not just critical list assignments), the right-
hand side of the above equality is minimized by the assignment Lo(e) = {1,...,¢(e)} for
all e € E(H). The proof of this claim is exactly the same color-switching/submodularity
argument in the proof of Theorem [27] which still works because after each step of the
induction, the size of the list at an edge e is still £(e). This shows that

e(4) > 1+ Z(U(A) — ci(A)),

where ¢;(A) is the number of components in Q; = (V(A),{e € E(A) : i € Ly(e)}). Based
on this inequality, we see that A cannot have a forest Lg-coloring: If ¢’ were an Lg-coloring
of A, then each color class i with respect to ¢’ must be a forest with at most v(A) — ¢;(A)
edges, and adding the edges together we find that e(A) < >  (v(A) — ¢i(A)), which is a

contradiction. Therefore, since A has no forest Lg-coloring, the same is true of G. This
completes the proof. O
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Chapter 4

Pseudoarboricity and list
pseudoarboricity

4.1 Pseudoarboricity

A pseudoforest is a multigraph in which every component has at most one cycle (possibly a
2-cycle). It is simply a forest together with at most one additional edge in each component.
Analogous to arboricity, the pseudoarboricity pa(G) of a multigraph G is the minimum
number of colors needed to edge-color G into monochromatic pseudoforests. Similar to how
every forest F' has at most v(F) — 1 edges, every pseudoforest F' has at most v(F') edges.
Conversely, if a connected multigraph F' has at most v(F') edges, then F' is a pseudofor-
est. Because a pseudoforest F' can have at most v(F) edges, an easy lower bound for the
pseudoarboricity of a multigraph G is

G) >
pa(©) =z e |

Analogous to Nash-Williams” Theorem a theorem of Hakimi [51] states that this maxi-
mum density lower bound is exact:

pa(G) = max HS)W |

Coscv@)sz2 | | S|

In other words, the trivial lower bound for pa(G) is attained at some subset S C V(G), a
“dense spot”. This theorem is sometimes formulated in terms of maximum average degree.
For a multigraph G, its maximum average degree mad(G) is

B B 2e(S)
mad(G) = sgvr(%affsezd(c;[s]) " scv@size |9

Thus, Hakimi’s Theorem states that pa(G) = [mad(G)/2]. Let us prove this theorem.
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Similar to forests, the pseudoforests of a multigraph form a matroid, known as the bicircu-
lar matroid, and an arboretum-style proof similar to the one we used to prove Nash-Williams’
Theorem [23| also works for Hakimi’s Theorem. However, we give a slightly different proof of
Hakimi’s Theorem whose perspective will be useful in later edge-coloring problems. Instead
of directly using pseudoforest edge-colorings, we will use the tool of multigraph orientations.
The relationship between pseudoarboricity and orientations is encapsulated in the following
proposition (see [35]).

Proposition 31. A multigraph G has pseudoarboricity at most k if and only if G has an
orientation such that every vertex has indegree at most k.

Proof. First we prove the case k = 1. Suppose that G has pseudoarboricity one, that is,
G is itself a pseudoforest. It is easy to find an orientation of GG such that every vertex has
indegree at most one (see Figure[d.1]). First we orient the cycles of G to form directed cycles.
The remaining undirected edges of G form a forest . We root each component of I’ either
at a vertex of a cycle of G, which is unique if it exists, or at an arbitrary vertex if the latter
does not apply. Then we orient each edge of a component of F' away from the chosen root
vertex of that component. Adding back the directed cycles, we get an orientation of G such
that every vertex has indegree at most one. Conversely, suppose that G has an orientation
D such that every vertex has indegree at most one. Let X be a connected component of D.
Adding up the indegrees of all vertices of X, we find that e(X) < v(X), implying that X is
a pseudoforest. Therefore, GG is a pseudoforest.

Now we prove the result for all £ > 1. Suppose that G has pseudoarboricity at most k.
Let Fi,..., F} be a decomposition of GG into k spanning pseudoforests. By the case k = 1,
each F; has an orientation D; such that every vertex of D; has indegree at most one. By
combining the orientations Dy,..., D, we obtain an orientation D of G such that every
vertex has indegree at most k. Conversely, suppose that G has an orientation D such that
every vertex has indegree at most k. For each vertex of D, color all of its incoming arcs a
different color from the palette {1,...,k} to get an edge-coloring of D. Then each color class
forms a directed graph such every vertex has indegree at most one. By the case k = 1, each
color class is a pseudoforest as an undirected graph. Hence, we found an edge-coloring of G
into £ monochromatic pseudoforests, and therefore G' has pseudoarboricity at most k. [

By Proposition 31} we can reduce the problem of pseudoarboricity to the problem of
orientations with restricted indegree. From this we can construct a critical structure and use
it to prove Hakimi’s Theorem similar to how we proved Nash-Williams’ Theorem. As usual,
a multigraph G is critical if deleting any edge from G decreases its pseudoarboricity pa(G).
Let G be a multigraph, let ey be an edge of G, and let D be an orientation of G — eq. A
pseudoarboretum A with respect to D is a subgraph of GG defined recursively as follows:

e The subgraph consisting only of the undirected edge eq is a pseudoarboretum.

e If A is a pseudoarboretum, v is a vertex of A, and e is an incoming arc to v in D, then
AU {€'} is a pseudoarboretum, where €’ is the undirected version of e.
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The motivation for this definition is similar to that of the arboretum; at each step we simply
add all incoming edges that prevent us from orienting the unoriented edge. In a maximal
pseudoarboretum A then, every incoming arc to a vertex of A will form an edge in A. Thus,
we see that A is the subgraph of GG induced by all the vertices v for which there is a directed
path in D from v to one of the two end-vertices of eg. This observation is similar to how a
maximal arboretum is a union of edge-disjoint spanning trees in each color (Proposition
and thus also an induced subgraph of the multigraph, except it is simpler in this setting.

The following proposition on maximal pseudoarboreta is analogous to Proposition [22| on

maximal arboreta. The proof can be viewed simply as an oriented version of the proof of
Konig’s Theorem [1]

Proposition 32. Let G be a critical multigraph with pseudoarboricity pa(G) = k, let ey be
an edge of G, and let D be an orientation of G — ey such that every vertex has indegree at
most k — 1. If A is a mazimal pseudoarboretum with respect to D, then every vertexr of A
has indegree exactly k — 1 in D[V (A)]. In particular,

e(A) =1+ (k—1)v(A).

Proof. Let A be a maximal pseudoarboretum with respect to D. Suppose for contradiction
that a vertex u € V(A) has indegree less than k£ — 1 in D[V (A)]. Since A is maximal, u
has indegree less than k — 1 in D. By the recursive construction of A, there is a directed
path P from u to an end-vertex v of eg. Flip the direction of all arcs in P to get a new
orientation D' of G — ey. Note that every vertex still has indegree at most £ — 1. But now
the end-vertex v of ¢y has indegree less than k& — 1. Thus, we can orient ey toward v and get
an orientation of GG such that every vertex has indegree at most £ — 1. This contradicts G
having pseudoarboricity k.

The formula for e(A) comes from adding up the indegrees of the vertices of A, and also
including the undirected edge ey. [

Theorem 33 (Hakimi). For every multigraph G,

pa(G) = @w .

o |

Figure 4.1: An orientation of a pseudoforest where every vertex has indegree at most one.
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Proof. The fact that pa(G) > [e(S)/|S]] for all S C V(G) was proven at the beginning of
the section. We prove that equality is achieved for some subset S C V(G). Let H be a
critical subgraph of G with the same pseudoarboricity k. Let eg be any edge of H, let D be
an orientation of H — ey such that every vertex has indegree at most £ — 1, and let A be
a maximal pseudoarboretum with respect to D. We show that we can take S = V(A). By
Proposition [32] we have e(A) =1+ (k — 1)v(A). Since A is an induced subgraph of G, we

derive that
i) =k= 5+ (o) =G50+ ()

e(:S) e(S)

It follows that pa(G) = [e(S)/]S|], as required. O

Hence,

The density formulas for arboricity and pseudoarboricity given by Nash-Williams’ The-
orem [23| and Hakimi’s Theorem [33| are quite similar:

_ e(s) _ e(S)
alG) = RGNS [ISI — J - pall) = SCV(G) 5122 [ S| |

To see how close they are, let S C V(G) be a maximizer for a(G). We have

e(5) _ elS) e(5) e(5) pG) (ST _elS) | pG)
Si—1 7 sl TIsI0sT-n = I8 +|S|(|S|—1)<2> i '

L 2

Hence, a(G) < pa(G) + [p(G)/2]. In other words, if we have an edge-coloring of G into
pseudoforests, then we only need at most [u(G)/2] extra colors in order for G to have an
edge-coloring into forests.

4.2 List pseudoarboricity

As we did for the chromatic index and arboricity, we may define a list coloring version
of pseudoarboricity. If G is a multigraph and L is a list assignment for E(G), then a
pseudoforest L-coloring of G is an edge-coloring ¢ of G such that ¢(e) € L(e) for all
e € E(G), and such that each color class with respect to ¢ forms a pseudoforest. We
define the list pseudoarboricity pa,(G) to be the minimum integer & such that G has a
pseudoforest L-coloring for any k-list assignment L for E(G) (where all the lists have size
k). As usual, it is immediate that pa,(G) > pa(G). Similar to Seymour’s Theorem [27| that
ay(G) = a(G), we can prove that pa,(G) = pa(G). We can give a similar list arboretum-style
proof of this result because of the matroid structure of pseudoforests, but actually we can
prove this result much more easily simply using Proposition [31}
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Theorem 34. For every multigraph G, we have

par(G) = pa(G) e )W .

~ scv@)siz2 { S|

Proof. The second equality is Hakimi’s Theorem [33] For the first equality, let G' be a multi-
graph with pseudoarboricity k, and let L be any k-list assignment for E£(G). By Proposition
BIl G has an orientation D such that every vertex has indegree at most k. Give every arc of
D the list of the corresponding edge of G. Because each list has size k, for every vertex in
D we can give all of its incoming arcs a different color from the respective lists. Doing this
at all vertices, we obtain an L-coloring of GG such that for every color class, every vertex has
indegree at most one with respect to D. By Proposition 31} each color class is a pseudoforest.
Therefore, G' has a pseudoforest L-coloring. n

We can see from the proof that we only needed the list at an arc to be large enough
to guarantee that the arc can get a different color from the other arcs with the same head.
Thus, the worst possible scenario is that the lists at all of these arcs are as overlapping as
possible. This intuition can be made rigorous to prove a local lists size version of Theorem
completely analogous to Lason’s Theorem |30

Theorem 35. For every multigraph G and lists size function { : E(G) — N, the following
statements are equivalent:

(1) G has a pseudoforest L-coloring for the (-list assignment L(e) = {1,...,¢(e)}, e €
E(G);

(2) G has a pseudoforest L-coloring for any £-list assignment L.

Recall that we used the submodularity of the rank function of a multigraph to prove list
arboricity results such as Seymour’s Theorem 27} Although we did not use submodularity in
the proof of Theorem |34| on list pseudoarboricity, the indegree function d—(.S) of a directed
multigraph D is a submodular function. (For a vertex subset S C V(D), the value d(S) is
the number of arcs of D pointing from a vertex in V(D) \ S to a vertex in S.)
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Chapter 5

Bounded degree edge-colorings

We have explained three classical edge-coloring problems: proper edge-colorings, forest edge-
colorings, and pseudoforest edge-colorings. One curious aspect of the Goldberg-Seymour
Conjecture [ on the chromatic index,

X(G) < max {NG) R Wéﬁiﬂ } |

is that the density formulas for arboricity and pseudoarboricity given by Nash-Williams’
Theorem [23] and Hakimi’s Theorem

a(G) = () ] |

N SQVI(%%,)\(S\EQ “S] —1

_ e(:S)
pa(@) = SCV(G) iS22 [ Bl w ’

are almost present within its statement. In fact, the only difference appears to be a factor of
2 buried within floors and ceilings, as well as a maximum degree consideration. But it is not
obvious how these edge-coloring problems translate to one another, from matchings to forests
or pseudoforests and vice versa. The only obvious relations are that pa(G) < a(G) < X' (G)
and pa(G) < [X'(G)/2], where the latter holds because we can pair up color classes in a
proper edge-coloring to obtain a pseudoforest edge-coloring. But these do not explain why
these edge-coloring parameters seem so similar, both in the formulas and proof techniques.
This motivates us to look for a sort of “interpolation” between the chromatic index and
each of arboricity and pseudoarboricity, in the process trying to understand why maximum
degree A(G) suddenly shows up in the chromatic index.

The approach we take is to study these edge-coloring problems with the added restriction
that the maximum degree of the vertices in each of color classes be at most some specified
integer t. This is quite natural because a matching can be viewed as a subgraph with maxi-
mum degree t = 1, as a forest with maximum degree 1, or as a pseudoforest with maximum
degree 1. Taking ¢ — oo then lets us recover ordinary arboricity and pseudoarboricity. Such
an approach has been described by other authors, but in this writing we will go into greater
detail on the various structural results we could obtain, as well as the fascinating connections

42



to be found when comparing the results side-by-side. The discussed interpolated parameters
turn out to be quite interesting in their own right.

Let G be a multigraph and let ¢ > 1 be a fixed integer. A degree ¢ coloring of G is
an edge-coloring of GG such that every vertex in a given monochromatic subgraph has degree
at most t. If every vertex has degree exactly t in each color, then each of the color classes
is a spanning t-regular subgraph, which is better known as a t-factor, and the coloring
is a so-called t-factorization. We define the degree ¢ chromatic index x}(G) of G to
be the minimum number of colors needed in a degree ¢t coloring of G. Next, we define
the degree ¢ arboricity a;(G) to be the minimum number of colors needed in a degree ¢
coloring of G such that every monochromatic subgraph is a forest. We define the degree ¢
pseudoarboricity pa,(G) in the analogous way for pseudoforests. Ordinary arboricity a(G)
and pseudoarboricity pa(G) can be thought of as a;(G) and pa;(G) with ¢t = co. Finally, let
Xi.0(G), ate(G), and pas(G) be the list coloring analogues of the defined parameters. The
following facts are immediate from the definitions:

e X1(G) = ai(G) = par (G) = X'(G),
e \i(G) <pay(G) < ay(G) for all t > 1,

¢ Xi.1(G) < Xi(G), a141(G) < a(G), pas1(G) < pay(G) for all t > 1,
o \i(G) =1, ,(G) = a(G), pay(G) = pa(G) for all t > A(G).

The above facts similarly hold for the list analogues. Also, notice that x4(G) = pas(G)
because a subgraph of maximum degree at most 2 is necessarily a pseudoforest of maximum
degree at most 2.

5.1 Bounded degree subgraphs and list analogues

Bounded degree edge-colorings were first studied explicitly in general by Hakimi and Kariv
[52], who proved analogues of Vizing’s Theorem {4 and Shannon’s Theorem |§]in this setting.
Actually, they worked on the more general edge-coloring problem where the number of edges
of the same color incident to a given vertex v is at most some specified function f(v) which
could vary across the vertices (we could call this a degree f coloring), but here we will assume
f is a constant function. Our proofs will be shorter based on this assumption. We start our
study of bounded degree edge-colorings by proving the following straightforward bounds on
the degree ¢ chromatic index x}(G) and its list analogue x; ,(G) (see [61]).

Proposition 36. For every multigraph G and integer t > 1,

[%W <Xi(G) < [&W and [Mw < X(@) < W(Cﬂ .

t - t t - t
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Proof. For the lower bounds, first observe that in an edge-coloring of GG into monochromatic
subgraphs of maximum degree t, every vertex has at most ¢ incident edges of a given color,
which implies that A(G) < xi(G) - t and thus x;(G) > A(G)/t. Since x; ,(G) > xi(G), we
also get that x;,(G) > A(G)/t. These imply the stated lower bounds because x;(G) and
X;..(G) are integers.

For the upper bound on x;(G), take an edge-coloring of G into k& = x/'(G) matchings
My, ..., My, partition the set {M, ..., My} into [k/t] sets of size at most ¢, and make all
edges within a partition class the same color. The resulting edge-coloring of G with [k/t]
colors will have each color class with maximum degree t.

Finally, for the upper bound on x;,(G), let L be any list assignment for E(G) with
[x7(G)/t] colors in each list. Define the list assignment L' for E(G) by L'(e) = L(e) x [t] for
all e € E(G). Since [x3(G)/t] -t > x}3(G), there exists an L'-coloring ¢’ of G into matchings.
Define the map ¢ of E(G) by setting ¢(e) = ¢ if ¢/(e) = (¢,i). It is evidently an L-coloring,
and every color class will have maximum degree t. Hence, G has a degree t L-coloring. [

By applying Vizing’s Theorem [4] we obtain the following analogue of Vizing’s Theorem
for degree t colorings that was noted by Hakimi and Kariv [52].

Corollary 37. For every multigraph G and integer t > 1, we have

[0 ¢ ey <[220

t | =M t

This corollary implies that for every simple graph G and integer t > 1, we have

[@w < xi(@) < {—A(GBHW.

t — t

In particular, if G is simple and A(G) is not an integer multiple of ¢, then x,(G) = [A(G)/t].
Also, by Shannon’s Theorem [§ we get that x,(G) < [2A(G)/t].

The above bounds on x;(G) are inexact because Vizing’s Theorem {| cannot exactly
determine \'(G) = x| (G), that is, the case t = 1. However, the story is different with the
case t = 2, as Petersen’s famous 2-factor theorem suggests (see [67]).

Theorem 38 (Petersen). Every 2k-reqular multigraph can be decomposed into k 2-factors.

Proof. 1t suffices to prove this result for connected multigraphs. Let G be a connected 2k-
regular multigraph. Because every degree of GG is even and G is connected, G has an Euler
tour. This tour gives an orientation D of GG in which every vertex of D has both indegree
and outdegree k. Construct the bipartite graph H whose vertex set consists of two copies
v1, U of every vertex v of D, and for every arc from a vertex u to a vertex v of D we put an
edge between u; and vy in H. Since every vertex of D has both indegree and outdegree k,
H is a k-regular bipartite multigraph. By Konig’s Theorem [I| H can be edge-colored into k
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perfect matchings (matchings that touch every vertex of H). Merging the two copies vy, vy
of the vertex v back to a single vertex for every v € V(G), we obtain an edge-coloring of G
into k 2-factors. O

Using Petersen’s theorem, we may perform a similar argument to Proposition and
determine the exact value of x}(G) when ¢ is even, a result that was also noted by Hakimi
and Kariv [52].

Theorem 39. For every multigraph G and even integer t > 2, we have x;(G) = [A(G)/t].

Proof. We have shown that x,(G) > [A(G)/t] in Proposition 36, To prove the upper
bound, note that G is a subgraph of some A(G)-regular multigraph H. Suppose first that
A(G) = 2k is even. Then by Petersen’s Theorem [38] H can be decomposed into k 2-factors
Hy,...,Hy. We may partition the set {Hi,..., Hy} into [2k/t] sets of size at most /2,
and make all edges within a partition class the same color. The resulting edge-coloring of
H with [2k/t] = [A(G)/t] colors will have each color class with maximum degree ¢. Thus,
xi(G) < xi(H) < TA(G)/t].

Now suppose that A(G) = 2k + 1 is odd. Then H has an even number of vertices,
and so we may add a perfect matching to H to form a (2k + 2)-regular multigraph H’.

Following the same argument in the previous paragraph, we obtain that x;(G) < xj(H') <
[(A(G)+1)/t] = [A(G)/t]. The last equality holds because A(G) is odd and ¢ is even. [

On the other hand, when ¢ is odd it is conjectured that a bound similar to the Goldberg-
Seymour Conjecture [0 holds. Such a conjecture was originally stated by Nakano, Nishizeki,
and Saito [69] in the more general degree f coloring setting mentioned above, but in our
constant function setting we believe a slightly stronger conjecture holds.

Conjecture 40. For every multigraph G and odd integer t > 1, we have

x¢(G) < max { [%-‘ ’SQVI(%%?\(SE? [Meé%—‘ } ’

The only difference with the conjecture of Nakano, Nishizeki, and Saito is that the “+1”
in our maximum degree upper bound lies outside the fraction in their conjecture. The stated
maximum density parameter comes from noting that every color class in a degree t coloring
has at most |t]S|/2] edges. Using the same argument shown in the ordinary Goldberg-
Seymour Conjecture |§| (the case t = 1), one can show that this maximum density parameter
can always be attained by a vertex subset S C V(G) with |S| odd.

As with the Goldberg-Seymour Conjecture[d] our Conjecture[d0]can be linked to fractional
edge-colorings. Define the maximum density parameter

e(5) + | F|

max ,
scv(@),Fcoc(s) | (t|S|+ |F|)/2]
t|S|+|F|>2

p(G) =
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where 0g(.5) is the set of edges of G with exactly one end-vertex in S. We can generalize
fractional edge-colorings to fractional degree t edge-colorings as follows. A fractional degree
t coloring w of G is an assignment of a nonnegative weight wr to the edge set F' of each
subgraph of G of maximum degree at most ¢, such that ) . .wp = 1 for each edge
e € E(G). The fractional degree t chromatic index X, (G) of G is then the minimum of
> pwp over all fractional degree ¢ colorings w of G. The following formula for the fractional
degree t chromatic index x;*(G) was proven in Stiebitz et al. [86]:

X' (G) = max {A(G)/t, pi(G)} -

Zhang, Yu, and Liu [97] claimed to have proven the more natural fractional relaxation of
Conjecture 40} where we do not consider the set ' C 9¢(S) in the maximum of p;(G), but
Glock [41] showed that their formula and proof are incorrect. Still, Glock also showed that
this mistake makes no difference for Conjecture [40; using either density parameter leads
to the same upper bound in the conjecture. (This was shown with the “+1” outside the
maximum degree fraction, but the same argument also works with the “+1” in the fraction.)

Note that Conjecture 40| would imply that we could extend Shannon’s Theorem [8 on the
chromatic index }'(G) as

, 3
X < |52580)
for all odd integers t > 1, since this upper bound is the largest possible value of the stated
maximum density parameter, attained by taking G[S]| to be A(G)-regular and |S| = 3.
This upper bound would be better than the Shannon-type upper bound proven by Hakimi
and Kariv [52], which is more similar to the Shannon-type upper bound we derived from
Proposition [36]

We can check that this upper bound is the correct value of the degree t chromatic index
for the Shannon triangle G (the triangle with A(G)/2 parallel edges on each side): Write
# =q- % + r for some integers ¢, > 0 with 0 < r < 3t—2_1 For the Shannon triangle
with ’—%1 + L%J + [%J = % parallel edges on each side, we can find a degree ¢ coloring using
3 colors by making % edges on one side of the triangle have color 1 and L%J of them each
have color 2 or 3, and then permuting this color arrangement on the other two sides of the
triangle. For a Shannon triangle with r < % parallel edges on each side, we can similarly
3

find a degree t coloring using [mw colors. This implies that we can find a degree ¢

coloring of G using

/ 3r ., AG)—2r 6r 3
Xi(G) < 3+ [(375—1)/2} =Sy [3t—1w < g A+

colors. Thus the bound holds for the Shannon triangle.

Finally, we note something interesting about our stated Conjecture 40} if we assume
the ordinary Goldberg-Seymour Conjecture @ (the case t = 1), then Proposition [36] gets us
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pretty close to Conjecture [40] for all odd integers ¢ > 1: it would imply that

X(G) < max { [%—‘ ’ H Lgvr(%%,}fsm %—H } '

In particular, we can derive an approximate version of Conjecture [40] using a known approxi-
mate version of the ordinary Goldberg-Seymour Conjecture [9 such as Theorem [I8] although
the approximation gets worse as t gets larger. There is more work to be done here.

Now, recall that the List Coloring Conjecture (19| asserts that x,(G) = x'(G) for every
multigraph G. It is natural to generalize the conjecture to degree t colorings (see [61]).

Conjecture 41. For every multigraph G and integer t > 1, we have x; ,(G) = x1(G).

Let us prove this conjecture when ¢t > 2 is even. We follow the proof of Petersen’s
Theorem [38] but apply Galvin’s Theorem [20] in place of Konig’s Theorem [I]

Theorem 42. For every multigraph G and even integer t > 2, we have x; ,(G) = x;(G) =

[A(G)/t].

Proof. First we prove the theorem for the case t = 2. Let G be a multigraph. As usual,
G is a subgraph of some A(G)-regular multigraph G'. If A(G) is odd, then G’ has an even
number of vertices, and so we can add to it a perfect matching and obtain a (A(G) + 1)-
regular multigraph H. If A(G) is even, then let H = G'. In either case, H is a 2k-regular
multigraph, where k& = [A(G)/2] is an integer. Because G is a subgraph of H, we have
X5.0(G) < xy,(H). Thus, it suffices to show that x; ,(H) < [A(G)/2].

Let L be any list assignment for F(H) with [A(G)/2] colors in each list. Because H
is 2k-regular, each of its components has an Euler tour, and thus H has an orientation D
such that every vertex has both indegree and outdegree k. Construct the bipartite graph H'
whose vertex set consists of two copies vy, v9 of every vertex v of H, and for every arc from
a vertex u to a vertex v of D we put an edge between u; and v, in H'. We also give that
edge the same list as its corresponding edge in H. Observe that H' is a k-regular bipartite
graph where k = [A(G)/2] is the size of each list. By Galvin’s Theorem 20, H’ has an
L-coloring into matchings. Merging the two copies vy, v9 of the vertex v back to a single
vertex for every vertex v € V(H), we obtain a degree 2 L-coloring of H. Therefore, we have

Xa(H) < [A(G)/2], as required.

Now, to prove the theorem for all even ¢t > 2, we prove that x;,(G) < [2x5,(G)/t],
following the same approach as Proposition [36] Let G be a multigraph, and let L be a list
assignment for F(G) with [2x5 ,(G)/t] colors in each list. Define the list assignment L’ for
E(G) by L'(e)x[t/2] for all e € E(G). Since [2x5 ,(G)/t]-/2 > x35,(G), there exists a degree
2 L'-coloring of ¢’ of G. Define the L-coloring ¢ of G by setting ¢(e) = c if ¢'(e) = (¢,7). It
is easy to see that ¢ is a degree ¢ L-coloring of G, thus proving that x;,(G) < [2x5,(G)/t].

From this result we immediately get the upper bound x;,(G) < [A(G)/t]: Tf A(G)
is even, then x;,(G) < [2x5,(G)/t] = [2(A(G)/2)/t] = [A(G)/t]. And if A(G) is odd,
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then x; ,(G) < [2x5,(G)/t] = [2((A(G) + 1)/2)/t] = [(A(G) + 1)/t] = [A(G)/t]. The
last equality holds because A(G) is odd and ¢ is even. It follows that x;,(G) = xi(G) by
Theorem 39 [l

The proofs of Theorem [39|and [42| are remarkably similar to the proofs of Theorem |33 and
Theorem [34 on pseudoarboricity and list pseudoarboricity. Of course, as observed before, the
degree 2 chromatic index x,(G) = pas(G) is simply a restricted version of pseudoarboricity
pa(G), but it is quite a special one. Recall Proposition |31 that a multigraph has pseudoar-
boricity at most k if and only if it has an orientation such that every vertex has indegree
at most k. Likewise, by Euler’s theorem on Euler tours, a multigraph has maximum degree
at most 2k if and only it has an orientation such that every vertex has both indegree and
outdgree at most k. The proof of Proposition [31| was easy in that we can find a pseudoforest
edge-coloring from an orientation by a greedy coloring procedure. The proof of Petersen’s
Theorem [38] required us to use Konig’s Theorem [1| on an associated bipartite multigraph.
The difference is that pseudoforests only require that the color class vertex indegrees be at
most one, whereas in degree 2 colorings we also require that the color class vertex outde-
grees to be at most one, which a greedy procedure does not guarantee. Nevertheless, the
edge-coloring given by Konig’s Theorem [I] leads directly to Petersen’s Theorem 38, whereas
deriving Hakimi’s Theorem [33| for pseudoarboricity required the extra step of studying ap-
propriate orientations of critical multigraphs as in Theorem and the proof of this theorem
is quite similar to that of Konig; in each case we “switch” on a path leading to the uncolored
edge to derive a contradiction. Finally, the proof of Theorem on list pseudoarboricity
again only required a greedy list coloring procedure, whereas Theorem |42/ on the degree ¢ list
chromatic index required Galvin’s Theorem [20] These connections will be expanded upon
soon when we discuss bounded degree pseudoarboricity. Orientations play a prominent role
not only in the presented proofs, but also in the proof of Galvin’s Theorem and in the
polynomial method proofs of Alon and Tarsi. There are several further connections to be
explored in this topic.

It appears that the truth of Conjecture is unknown for odd ¢. Again, the truth of
the original List Coloring Conjecture (the case t = 1) would imply that this conjecture
nearly holds for every ¢ > 1 when the multiplicity p(G) is bounded. Specifically, if the List
Coloring Conjecture holds, then by Proposition [36| and Vizing’s Theorem 4 we have

29 < e < xute < [2EFHE],

which implies that x; ,(G) < x{(G) + [u(G)/t]. In particular, if G is a simple graph, then
Xi.o(G) < x3(G) + 1 for all integers ¢ > 1. On the other hand, Proposition 36| and Kahn’s
theorem on the asymptotic List Coloring Conjecture 19| do imply the asymptotic version of
Conjecture 41} That is, for fixed ¢ and p(G) we have

(@) = (14 o(1) =LY

as A(G) — oo.
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5.2 Bounded degree arboricity and list analogues

Now we study the degree t arboricity parameters a,(G) and a;¢(G). Unlike the case for
ordinary arboricity, there is no straightforward matroid structure on the independence system
of forests of maximum degree ¢. Also, the parameters a,(G) and a;,(G) appear more difficult
to determine than x;(G) and x; ,(G) do. We have that

a:(G) = xi(G) = [A(G) /1]

for all t > 1. However, at least for ¢ > 3, a;(G) no longer has a general upper bound close
to A(G)/t. In fact, for all t > 1 (assuming e(G) > 1),

a(G) > a(G) >

(G) _elG) dG)
v(G)—1

where d(G) is the average degree of G. In particular, if G is A(G)-regular, then a,(G) >
[(A(G) +1)/2]. Due to this lower bound, the case t = 2 is of particular interest. A linear
forest is a forest in which all components are paths. The linear arboricity la(G) of G is the
minimum number of colors needed in an edge-coloring of G into monochromatic linear forests.
Thus, la(G) = az(G). Linear arboricity was introduced by Harary in [54]. Our observations
demonstrate that la(G) > [A(G)/2] in general, and that la(G) > [(A(G) +1)/2] if G is
A(G)-regular. A famous conjecture of Akiyama, Exoo, and Harary [4] states that for simple
graphs, the latter lower bound is achievable.

Conjecture 43 (Linear Arboricity Conjecture). For every simple graph G, we have that
la(G) < [(A(G) +1)/2].

Note that every simple graph G is a subgraph of a A(G)-regular simple graph, possibly
on more vertices. Thus, the Linear Arboricity Conjecture is equivalent to the statement that
la(G) = [(A(G) + 1)/2] for every A(G)-regular simple graph G. The conjecture was later
extended to multigraphs by Ait-djafer [3].

Conjecture 44 (Linear Arboricity Conjecture for Multigraphs). For every multigraph G,
we have that la(G) < [(A(G) + u(G))/2].

Recall that the degree 2 chromatic index of a multigraph G is given by x5(G) = [A(G)/2]
by Theorem [39) Hence, the Linear Arboricity Conjecture for Multigraphs implies that
la(G) < x5(G) 4+ [p(G)/2]. That is, if we can color a multigraph into monochromatic
subgraphs consisting only of cycles or paths, then we need at most [u(G)/2] more colors
to make the monochromatic subgraphs consist only of paths. This is similar to the rela-
tionship between arboricity and pseudoarboricity discussed before, where we calculated that
a(G) < pa(G)+ [u(G)/2] by combining Nash-Williams’ Theorem [23| and Hakimi’s Theorem
33l Arboricity is the acyclic version of pseudoarborcity and requires at most [1(G)/2] extra
colors, and the Linear Arboricity Conjecture 44| for multigraphs asserts that the analogous
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statement is true when it comes to linear arboricity and the degree 2 chromatic index (or
“linear pseudoarboricity”). Perhaps the close relationship between pseudoarboricity and the
degree 2 chromatic index remarked above could aid in progress on the conjecture.

Actually, we believe that we can strengthen Conjecture 44 with a Goldberg-Seymour-type
conjecture for linear arboricity.

Conjecture 45. For every multigraph G, we have

@) e {291 ).

This conjecture implies that la(G) = a(G) for every regular multigraph G. This would
then imply Conjecture [44] because if G is A(G)-regular and the set S C V(G) is a maximizer
for Nash-Williams’ Theorem [23] then

11 2] < [ S8 - [0, S50« 20, o7

where the last inequality follows from A(G[S]) < u(G)(]S| — 1). Note that the inequality
pa(G) < x4(G) between pseudoarboricity and the degree 2 chromatic index becomes an
equality when G is A(G)-regular, since in this case maximum average degree is the same
as maximum degree. Thus, Conjecture 45| implies that the inequality a(G) < la(G) also
becomes an equality when G is A(G)-regular. Note that this contrasts with the case of the
chromatic index, as it is not necessarily true that the inequality [p(G)] < x'(G) becomes an
equality when G is A(G)-regular (e.g., when G is the Petersen graph); however, it is true
when G is bipartite.

Notice that the Conjecture[d5nearly implies the Goldberg-Seymour Conjecture[9 Specif-
ically, note that every linear forest can be decomposed into two matchings, so we derive that

X(G) £2-1a(G) < maX{Q [%w ’sgvr(%%,}lismz M;@J } ’

Compare this to the Goldberg-Seymour Conjecture [0 which states that

2¢(S) w |

max
" 5CV(@), “S| -1
|S|>3 odd

X' (G) <max A(G) +1

which is not too far off. The apparent connection to the Goldberg-Seymour Conjecture
might point to the difficulty of proving Conjecture 5] but it could also give insight into the
relationship between arboricity and chromatic index of dense multigraphs in future work.
We will show that a Goldberg-Seymour formula holds for bounded degree pseudoarboricity
in the next section. Also, note that Conjecture (45| implies a;(G) = a(G) for all t > 2
when G is A(G)-regular. The analogous statement for pseudoarboricity holds based on our
previous comments. We already know trivially that a;(G) = a(G) for any multigraph G when
t > A(G). This brings up an interesting question toward proving or disproving Conjecture
45 which will end the discussion of the conjecture.
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Question 46. How small can we make t to prove that a;(G) = a(G) for all A(G)-regular
multigraphs G ¢ In particular, can we prove a lower bound on t that is independent of G ¢

Let us now comment on the Linear Arboricity Conjecture[d3|for simple graphs. Analogous
to Vizing’s Theorem [4] for the chromatic index, it asserts that linear arboricity is determined
almost entirely by the maximum degree. And similar to the proper edge-coloring case, it is
NP-hard to determine in general whether la(G) = [A(G)/2] or la(G) > [(A(G) +1)/2] if
the two values are not equal. Indeed, even recognizing simple graphs with linear arboricity 2
is NP-complete [74]. The Linear Arboricity Conjecture 43| has been verified for a few classes
of graphs, such as complete graphs [85], complete bipartite graphs [4], planar graphs [94],
series parallel graphs [95], graphs of girth at least 14A(G) [46], and when the maximum
degree A(G) is one of 3,4,5,6,8,10 (see [4], B, 30, 48]). Alon [§] proved that the Conjecture
holds asymptotically using the probabilistic method. This asymptotic upper bound has been
improved multiple times [I1], [33], with the current best bound due to Lang and Postle [65]
being la(G) < A/2 + 3AY%(log A)* for sufficiently large A = A(G).

For a general upper bound on linear arboricity for simple graphs, note that Vizing’s
Theorem [4] implies that la(G) < A(G) + 1 because every matching is itself a linear forest.
Guldan [47] improves this bound by using Petersen’s Theorem [38| to decompose the graph
into smaller subgraphs for which the linear arboricity conjecture is known to hold. We study
his result.

Lemma 47. Let n be a fixed positive integer. If the linear arboricity of every 2k-regqular
simple graph is k + 1 for all k < n, then for every simple graph G we have

la(G) < [n;:l . g-‘ if A(G) is even,
la(G) < 1+ F‘Z L A(GQ) - ﬂ if A(G) is odd

Proof. As noted before, G is a subgraph of some A(G)-regular simple graph H. First assume
that A(G) = 2m is even. By the division algorithm, there is an integer 0 < r < n such that
2m = 2n|m/n] + 2r. If r = 0, then by Petersen’s Theorem , H can be decomposed into
m/n 2n-factors Hy, ..., Hy, . By hypothesis, each H; has linear arboricity n + 1, so that

1(G) < la(H) < 3 la(H) = ™Y [

n

nzl.A(zG)]

If r # 0, then again by Petersen we can decompose H into |m/n] 2n-factors Hy, ..., H |y /n
and one (2m — 2n|m/n|)-factor Hy. Again by the theorem’s linear arboricity hypothesis,

1a(G) < la(H) < la(Hy) + L%J la(H;) = (m —n L%J + 1) +(n+1) L%J
S |21 R A



Now assume that A(G) = 2m+1 is odd. Then the (2m+ 1)-regular graph H has an even
number of vertices. Let H' be H plus an arbitrary perfect matching on V(H). Then H' is
a (2m + 2)-regular graph, so by Petersen’s Theorem , H’ has a 2-factor G'. We delete the
edges of G’ not in H, followed by iteratively deleting one edge from every cycle in G'. The
result is a spanning linear forest Hy in H where every vertex of Hy has degree at least one.
Then H can be decomposed into the linear forest Hy and the subgraph H — Hj (short for
H — E(H,)). Since H — Hy has maximum degree A(G) — 1 = 2m, by the even maximum
degree case above we have

la(G) <la(H) <la(Hy)+la(H — Hy) =1+ [n;t L A<G2) — 1—‘ :

O

Because the linear arboricity conjecture has been verified for all simple graphs G with
even maximum degrees A(G) = 2,4,6,8,10, we derive Guldan’s general linear arboricity

bound [47].

Corollary 48 (Guldan). For every simple graph G, we have

la(G) < {SAEEG)-‘ if A(G) is even,
la(G) <1+ [%W if A(G) is odd.

Notice that Guldan’s bound can be improved if we have even approximate versions of the
Linear Arboricity Conjecture for small graphs. Specifically, suppose we know that the
linear arboricity of every 2n-regular graph is at most n + ¢(n) for some function ¢(n) > 1 of
n. Then following Guldan’s proof of Lemma [47], we would get that for every simple graph
G and integer n > 1,

ntcln) AG)

l(G) < [ n Al

-‘ +c(r)—1,

for some 0 < r < n — 1. As in the statement of the lemma, there is a small improvement
if A(G) is odd. If one can show that 5¢(n) < n for some integer n > 6 (i.e., that every 2n-
regular graph has linear arboricity less than n + n/5), then one would immediately improve
Guldan’s bound on linear arboricity in Corollary 7 at least when A(G) is somewhat larger
than n. This would be the best bound until one of the asymptotic bounds on la(G) applies.

Let us make one more observation on linear arboricity that was also noted by Guldan
in a different paper [45]. As noted before, every linear forest can be decomposed into two
matchings. Thus, if we have k-edge-coloring of a multigraph G into linear forests, then we
can find a proper 2k-edge-coloring of G. This proper edge-coloring has the added property
that there is a way to pair up colors so that the dichromatic subgraphs they form are all
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acyclic. It is natural to ask about proper edge-colorings with the stronger property that for
any pair of color classes, the subgraph they form is acyclic. That is, no cycle of the graph is
two-colored. Such a proper edge-coloring is called an acyclic edge-coloring, and we define
the acyclic chromatic index Y/ (G) of a simple graph G to be the minimum number of
colors needed in an acyclic edge-coloring of G. (This concept only makes sense for simple
graphs unless we allow multigraphs to have dichromatic 2-cycles.) If we arbitrarily pair up
all but possibly one of the color classes in an acyclic edge-coloring of G, then we obtain an
edge-coloring of GG into linear forests. Hence,

la(G) < [xa(G)/2].

A major conjecture of Fiaméik [34] and Alon, Sudakov, and Zaks [12] implies that we could
almost derive the Linear Arboricity Conjecture 43| from this easy upper bound.

Conjecture 49 (Acyclic Edge-Coloring Conjecture). For every simple graph G, we have
XL (G) < A(G) + 2.

In other words, the conjecture states that it takes only one more color than given by
Vizing’s Theorem [4 x'(G) < A(G) +1, to produce an acyclic edge-coloring of a given simple
graph G. Unfortunately, the Acyclic Edge-Coloring Conjecture 49| appears even harder to
resolve than the Linear Arboricity Conjecture It is not even known asymptotically. The
best known general upper bound is x/,(G) < [3.74(A(G) — 1)] + 1 due to Giotis, Kirousis,
Psaramiligkos, and Thilikos [40], which built on successive improvements that use the Lovasz
Local Lemma and entropy compression [9, 32, 68 [71]. The conjecture has been shown to
hold for graphs of girth at least ¢cA(G)log A(G) [12], triangle-free planar graphs [83], graphs
of small density [92], graphs with A(G) < 3, and almost all A(G)-regular graphs [12]. It is
still wide open.

Now let us return to studying the degree t arboricity a,(G) for more general ¢t > 2 and

multigraphs G. We believe that one could write a Goldberg-Seymour Conjecture extending
Conjecture 49| for all t > 2, of the form

a(G) < max{ [%W ,a(G)}

for some constant ¢ possibly depending on t. We expect the error term ¢ in the maximum
degree expression to grow with ¢ due to the fact that forests with high maximum degree
have many leaves, which makes each color class have an uneven degree distribution. In terms
purely of the maximum degree A(G) and multiplicity pu(G), we cannot expect a better general
upper than a;(G) < [(A(G) + u(G))/2] because a A(G)-regular multigraph G can have
arboricity a(G) as high as [(A(G) + u(G))/2]. However, the conjecture above asserts that
a:(G) gets arbitrarily close to A(G)/t as A(G) — oo so long as a(G) remains bounded; that
is, assuming the multigraph G is sparse. Let us affirm this observation using a degeneracy
argument of Caro and Roditty [20] (originally written for simple graphs, but extended to

multigraphs here). Recall that a multigraph G is k-degenerate if every subgraph of G has a
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vertex of degree at most k. By a degeneracy ordering on V(G), we can prove that e(S) <
kE(|S| —1) for all S C V(G), so that by Nash-Williams” Theorem we have a(G) < k. Hence,
bounded degeneracy implies bounded arboricity.

Proposition 50 (Caro, Roditty). For every k-degenerate multigraph G and integer t > 2,
we have

a(G) < [A(G) + (= 1Dk - 1)M(G)w .

t

Proof. 1f k = 1, then G is a forest and we have a;,(G) < [A(G)/t] as mentioned before. Now
fix K > 2 and t > 2. We prove the upper bound by induction on the number of vertices
v(G). The bound clearly holds when v(G) = 2. Assume it holds when v(G) = n. Let G be a
k-degenerate multigraph with n 4 1 vertices, and let b denote the claimed upper bound. By
definition, G has a vertex v of degree at most k. Then G’ = G—w is a k-degenerate multigraph
with n vertices and maximum degree at most A(G), so by the induction hypothesis we have
a;(G") < b. Let ¢ be an edge-coloring of G’ into b monochromatic forests with maximum
degree at most t, using the colors 1,2,...,b. We wish to color the edges incident to v. Let
v1, ..., Um be the neighbors of v in G, where m < k. Observe that de(v;) < A(G) — pg(v,v;)
forall 1 <¢<m. For 1 <i<mand 0 <j <t let L;; be the set of colors that are present
at v; exactly j times with respect to ¢'. Let a;; = |L;;|. By counting colors we have

t
Zaij:b forall 1 <<t

=0

Further, by counting edges we have
t
Zj cai; < A(GQ) — pe(v,v;)  forall 1 <i<m.
5=0

We deduce that for all 1 <i < m,

t—

—_

(t—jai; >b-t—A(G) + pe(v,v;)

i
[e)

[AG) + ((t = Dk = Dpg (v, 0)] = A(G) + pe (v, vi)
(t—Dk - pe(v,v;).

Divide both sides by ¢t — 1 (as t > 2) to find that

>
>

t—1
2a0 + Zaij >k pg(v,v)  forall 1 <i<m.
j=1
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Now make copies 1/,2, ..., of the colors used by ¢, and for each 1 < i < m let L}, equal

= Lz-]) U Ll,. By the above
inequality, we have ||L;|/ug(v,v;)] > k. Thus, we may distribute the colors in L; to the
edges in Eg(v,v;) in the form of lists so that each list has size at least k. Since k > 2, this
may be done in such a way that copies of the same color lie in the same list. There are at
most k edges incident to v, so we may perform a greedy coloring from this list assignment in
such a way that each edge gets a different color. Now replace each copy of a color a’ by its
original color a, and let ¢ be the resulting edge-coloring of G. Then each color has degree at
most ¢ at each neighbor v; of v (since we excluded Ly from L;), and each color has degree
at most two at v. Further, if a color has degree two at v, then one of the edges of that color
goes to a neighbor v; of v at which that color had degree zero respect to ¢’. This implies that
the edge-coloring ¢ has no monochromatic cycles, and hence it is a desired edge-coloring of
G, finishing the induction. O

L;y where each color is replaced by its copy. Set L; = <U

Note that it is easier to derive the upper bound a;(G) < a(G)[A(G)/t], using the ob-
servation that every forest F' has degree t arboricity a;(F) = [A(F)/t]. However, the
asymptotics as A(G) — oo would be worse than that given by Proposition From the
proposition we have

22 <ae < |22k @ ve-)

t

n(G)
|
Compare this to the degree ¢ chromatic index bounds (Proposition :

[%-‘ < (G) < [@WL&W .

A t ot

For multigraphs G of bounded degeneracy (and thus bounded multiplicity ©(G) and ar-
boricity a(G)), a;(G) gets asymptotically close to the degree ¢ chromatic index x}(G) =
A(G)/t+ O(1) as A(G) — oo, in support of the Goldberg-Seymour-type conjecture for de-
gree t arboricity a;(G). This result makes intuitive sense since a degree t coloring of a sparse
multigraph likely does not require too many extra colors to make it acyclic. In this case, the
bound is much better than the general upper bound a;(G) < [(A(G) + u(G))/2] implied by

the Linear Arboricity Conjecture 44l Also, note that if we take k =t = 2, then Proposition
gives us the Linear Arboricity Conjecture [44] for 2-degenerate multigraphs.

Finally, let us take a brief look into the list analogue a;¢(G) of degree t arboricity. Anal-
ogous to Conjecture we may attempt to generalize the original List Coloring Conjecture
in the direction of degree t arboricity.

Conjecture 51. For every multigraph G and integer t > 1, we have a;(G) = a:(G).

We also denote as ¢(G) by la,(G), referring to it as the list linear arboricity of G. The
list linear arboricity case of Conjecture [51], that la,(G) = la(G), was originally proposed
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by An and Wu [I4], who proved in a separate paper [I5] that it holds for all planar simple
graphs with maximum degree at least 13. For a fixed multigraph G, the conjecture holds
for all t > A(G) by Seymour’s Theorem [27| (since a;(G) = a(G) and a;4(G) = a,(G) for
all t > A(G)). Kim and Postle [61] proved that Conjecture [51| holds asymptotically for the
case t = 2 of list linear arboricity la,(G) of simple graphs G. In fact, list linear arboricity is
the context in which the best asymptotic bound on the ordinary linear arboricity by Lang
and Postle [65] was derived. That is, la,(G) < A/2 + 3AY2(log A)* for sufficiently large
A = A(G). Other cases of t have not been well-studied.

5.3 Bounded degree pseudoarboricity and list analogues

The connections observed between pseudoarboricity pa(G) and the degree 2 chromatic index
X5(G) after Theorem (42 make sense when we start to consider bounded degree pseudoar-
boricity pa;(G). We will be assuming ¢ > 2. As observed before, pas(G) = x5(G) since
every multigraph with maximum degree 2 is a pseudoforest with maximum degree 2. Also,
pai(G) = pa(G) for all t > A(G). Observing that

pa(G) < pay(G) < pas(G)

for every for every multigraph G and integer ¢ > 2, by Hakimi’s Theorem [33| and Theorem

42 we have
e(SW < pay(@) < [@w .

SQVI(%%,)\(S\ZQ [ |S] 2

In particular, since maximum average degree is the same as maximum degree for regular
multigraphs, we have

pay(G) = pa(G) = [A(G)/2]

for every A(G)-regular multigraph G and integer ¢t > 2. This solves the pseudoarboricity
analogue of Question [46]

Now we can give the following orientation characterization of degree t pseudoarboricity
that generalizes our observations about the connection between pseudoarboricity and the
degree 2 chromatic index after Theorem

Proposition 52. A multigraph G has degree t pseudoarboricity (with t > 2) at most k if
and only if it has an orientation such that every vertex has indegree at most k and outdegree
at most k(t —1).

Proof. For k = 1, it is easy to show that a multigraph is a pseudoforest with maximum

degree at most t if and only if it has an orientation such that every vertex has indegree at
most 1 and outdegree at most ¢ — 1, following the ideas of Proposition 31} Now we prove
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the proposition for all £ > 1 by following the same approach taken in the proof of Petersen’s
Theorem [38

Suppose that a multigraph G has degree t arboricity at most k. Let Fi,..., F} be a
decomposition of GG into k pseudoforests with maximum degree at most ¢. By the case
k =1, we can orient each of F}, ..., F} so that in each of them, every vertex has indegree at
most 1 and outdegree at most ¢ — 1. Combining these k orientations gives an orientation of
G such that every vertex has indegree at most k£ and outdegree at most k(t — 1).

Conversely, suppose that a multigraph G has an orientation D such that every vertex
has indegree at most k& and outdegree at most k(¢ — 1). Construct the bipartite graph H;
whose vertex set consists of two copies vy, vy of every vertex v of D, and for every arc from
a vertex u to a vertex v of D we put an edge between u; and vy in Hy. Let X7, X5 be the
corresponding bipartition of the vertex set of H;. Then every vertex in X; has degree at most
k(t — 1) and every vertex in X, has degree at most k. The goal is to find a k-edge-coloring
of Hi such that each color class has degree at most t — 1 at X; and degree at most 1 at
X5. To do that, we construct a new bipartite graph Hs from H; by making t — 1 copies of
every vertex in X; and distributing its at most k(f — 1) incident edges among these copies
in such a way that every vertex in H, has degree at most k. By Konig’s Theorem |1, Hy can
be edge-colored into k& matchings. Merging the ¢ — 1 copies of every vertex in X; back to a
single vertex, we obtain the desired k-edge-coloring of H;. Then merging the two copies of
a vertex in H; back to a single vertex for every vertex of GG, we obtain a k-edge-coloring of
D such that in each color class, every vertex has indegree at most 1 and outdegree at most
t — 1. By the case kK = 1, each color class is a pseudoforest in G of degree at most ¢, and
therefore G has degree ¢ pseudoarboricity at most k. O]

Using Proposition , we can prove the following formula for pa,(G) for all integers ¢ > 2
that resembles the Goldberg-Seymour Conjecture [9] The proof is almost the same as that
of Hakimi’s Theorem [33], and the “dense spot” will again be a maximal pseudoarboretum.

Theorem 53. For every multigraph G and integer t > 2, we have

pa(G) = max { | S pa( }.

t

Proof. Clearly pa;,(G) > x,(G) > [A(G)/t] and pa,(G) > pa(G). To prove that one of these
values is an upper bound, let H be a critical subgraph of G with pa,(H) = pa,(G) = k. If
k< [A(H)/t], then pa;(G) < [A(H)/t] < [A(G)/t] and we are done. Otherwise, we have
A(H) < (k—1)t. Let eg € Ex(vo,v1) be any edge of H. Using Proposition 52 let D be an
orientation of H — ey such that every vertex of D has indegree at most £k —1 and outdegree at
most (k—1)(t—1). Since dy(vo),dg(v1) < (k—1)t and ey is not oriented, both vy and v; are
“missing” an arc. That is, either their indegree or outdegree is less than the most possible.
We say that a vertex v is deficient in indegree if d(v) < k, and is deficient in outdegree if
dj,(v) < (k—1)(t —1). It cannot be that vy is deficient in indegree and v, is deficient in
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outdegree, as otherwise we could orient ey from v; to vy and contradict the value of pa;(H).
Likewise, it cannot be that v is deficient in outdegree and v, is deficient in indegree.

The rest of the proof follows that of Hakimi’s Theorem [33] Suppose that vy and vy
are both deficient in outdegree, and thus both have indegree exactly k£ — 1. Let A be the
maximal pseudoarboretum with respect to D, that is, the subgraph of G induced by all
vertices v for which there is a directed path in D from v to one of vy or v;. By the same
path flipping argument as in Proposition [32| on maximal pseudoarboreta, we can conclude
that every vertex of A has indegree exactly k — 1 in D[V (A)]. This works because vy and v,
are deficient in outdegree, so they will still have outdegree at most (k — 1)(t — 1) in D after
flipping on the directed path to one of them. Letting S = V(A), the same proof as Hakimi’s
Theorem [33] shows that pa,(G) = k = [e(S)/|S|]. Since [e(S5)/|S]] < pa(G) < pa(G), we
get that pa;(G) = pa(G) = [e(S)/|S|] as required.

If we suppose that vy and v, are both deficient in indegree, then we can perform the same
argument as above with outdegree replacing the role of indegree in the definition of maximal
pseudoarboretum. We may similarly derive that pa;(G) = k = [e(S)/((t — 1)|S|)]. Again
since [e(S)/((t — 1)|S])] < pa(G) < pai(G), we get that pa;(G) = pa(G) as required. (Of
course, this latter case can only arise if t = 2 or pa(G) = 1.) O

Finally, we can use Proposition [52| to prove that list degree ¢t pseudoarboricity and degree
t pseudoarboricity are always the same, generalizing Theorem

Theorem 54. For every multigraph G and integer t > 2, we have pa,(G) = pa(G).

Proof. Suppose G has degree t pseudoarboricity pa;(G) = k, and let L be any k-list as-
signment for F(G). By Proposition G has an orientation D such that every vertex has
indegree at most k and outdegree at most k(t — 1). Let Hy be the same bipartite graph
with maximum degree k that was constructed from D in the proof of Proposition [52, Then
Hy inherits the list assignment L from G since the edges of G and H, correspond. By
Galvin’s Theorem [20, H> has an L-coloring into matchings. By the same logic as in the
proof of Proposition [52] merging all copies of a vertex of G back to a single vertex gives us
an L-coloring of GG into pseudoforests of maximum degree at most ¢, as required. O]
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Chapter 6

Matroid coloring and list coloring

In this chapter, we give an overview of matroid colorings analogous to multigraph edge-
colorings, as well as the list versions of them. We then look at a list coloring conjecture
for matroids that is similar to the List Coloring Conjecture [19| for multigraphs. This is one
attempt to unify certain list coloring results on the chromatic index and on arboricity that
we previously discussed.

A matroid M is a pair (E,Z) where E is a finite ground set and Z is a family of subsets,
so-called independent sets, of F that satisfies the following:

(I1) D e 7.
(12) f ACBC E and B €7, then A €T,
(I3) If A, B € T and |A| < |B|, then there exists an e € B\ A such that AU {e} € Z.

Maximal independent sets are called bases, and minimal dependent sets are called circuits.
A consequence of the above axioms is that all bases have the same size. All matroids under
consideration will be assumed to be loopless, i.e., all singleton subsets of the ground set are
independent. We refer to [73] for further background in matroid theory.

An important example of a matroid that entered our arboricity and pseudoarboricity
discussions is the graphic matroid Mg and bicircular matroid Bg of a multigraph G:

Mg = (E(G), T ={F C E(G): F is a forest in G}),
Be = (E(G),Z ={F C E(G) : F is a pseudoforest in G'}).
Other important examples of matroids are the uniform matroids

Up=(In,Z={5C[n]:[S]| <r}),

(where 7 < n) and the partition matroids

M=(EIZ={ICE:|INE;)|<1foralll<i<Ek}),
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(where Ey, ..., E} is a partition of F).

The rank function r of a matroid M = (E,7) is a function on all subsets of E, with
r(X) being the size of a largest independent set contained in X, for all X C E. The rank of
M is defined to be r(FE), that is, the size of a largest independent set or basis in all of M.
The rank function r is characterized by the following properties:

R1) The outputs of r are nonnegative integers.

(R1)
(R2) For all A C E we have r(A) < |A|.

(R3) For all AC F and e € E we have r(A) <r(Au{e}) <r(A)+1.
(R4)

R4) The function r is submodular, i.e., for all A, B C E we have r(AUB) +r(ANB) <
r(A) +r(B).

As noted in chapter 3, the rank function of a graphic matroid Mg is given by r(A) =
v(G) — ¢(A) where ¢(A) is the number of components of A.

For a matroid M = (E,Z), define its chromatic number x(M) to be the minimum
number of colors needed to partition the ground set E into monochromatic independent
sets. Thus, for a multigraph G, we have that x(M¢) = a(G) is the arboricity of G, and
X(Bg) = pa(G) is the pseudoarboricity of G. We mentioned that our proof of Nash-Williams’
Theorem [23] in chapter 3 can be phrased entirely in terms of matroids. This would lead us
to a proof of Edmonds’ generalization of Nash-Williams’ Theorem [23|and Hakimi’s Theorem
to matroids [26].

Theorem 55 (Edmonds). For every matroid M = (E,I), we have

XM) = max | M(SS’J '

As with graph coloring, we may define the list chromatic number y,(M) of a matroid
M = (E,7Z) as the minimum integer k such that for every list assignment L for E with
k colors in each list, there exists an L-coloring of M in which each color class forms an
independent set. We easily see that y,(M) > x(M), and that for every multigraph G,
Xe(Mea) = ae(G) (list arboricity) and x,(Bg) = pas(G) (list pseudoarboricity). As with our
arboricity proof, we can rephrase our proof of Seymour’s Theorem [27| to prove its natural
matroid generalization [79], which was the setting of Seymour’s original proof. The proof of
Lason’s Theorem in which the lists had variable sizes, likewise extends to matroids [66].

Theorem 56 (Seymour). For every matroid M, we have x,(M) = x(M).

On the other hand, recall that Galvin’s Theorem [20] states that for any bipartite multi-
graph G we have x;(G) = x/(G). Matchings in a bipartite multigraph G = (X; U Xy, F)
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form the common independent sets of two partition matroids, namely

M =(E, T, ={ACFE:|And(w)| <1forallve Xi}),
My=(E,Z,={ACE:|And(v)| <1forallve X,}),

where 0(v) is the set of all edges incident to v. From this perspective, Galvin’s theorem is a
theorem about the list-version of the problem of partitioning a common ground set of two
matroids M; and M, into the fewest possible common independent sets.

This provides us motivation to define the joint-chromatic number y(M;, Ms) of two
matroids M; and M5 on the same ground set E to be the minimum number of colors needed
to partition E into monochromatic sets that are independent in both M; and M,. It is
immediate that x(Mi, Ms) > max{x(M;), x(Mz)}, and that x(M}, M5) = x'(G) where

1, M} are the partition matroids defined above. We may also naturally define the list
joint-chromatic number y,(M;, M5), where the coloring must be done with respect
to some list assignment for the ground set E. We see that x,(M7, M) = x}3(G). Hence,
Galvin’s theorem states that x,(Mj, Mb) = x(Mj, M}). All partition matroids can be
represented in the form of M/, M, above, so in fact we have that y,(Mi, Ms) = x(M1, Ms)
for any two partition matroids M, My on the same ground set. Moreover, Seymour’s
Theorem [56| can be restated as x,(M, M) = x(M, M) = x(M) for any matroid M. As
a common generalization, it is natural to conjecture the following matroid analogue of the
List Coloring Conjecture [19] [63].

Conjecture 57. For any two matroids My and My on the same ground set, we have

Xe(Mi, M) = x(M1, M3).

Unfortunately, this conjecture has been verified for only very few classes of matroids M,
and M. In addition to the cases of two partition matroids and the same matroids, Kiraly
and Pap [63] verified the conjecture for two transversal matroids, for two matroids of rank
2, and if the common bases are the arborescences of the disjoint union of two arborescences
rooted at the same vertex. Bérezi, Schwarcz, and Yamaguchi [17] proved non-trivial approx-
imations of this conjecture for various combinations of graphic matroids, paving matroids,
and gammoids. The following example of Kirdly [62] shows that an analogous conjecture for
the case of three matroids does not hold. Let E = {ey, eq, €3, €4, €5, €6}, and let My, My, M3
be the partition matroids defined by the circuit sets C; = {{e1,es}, {e2,e5},{€3,e6}},Co =
{{e1,e5},{ea,e6},{es,ea}},Cs = {{e1,e6}, {€2, €4}, {e3,65}}. Notethat {e1,eq,e3}, {e4, €5, €6}
is a partition of E into two common bases of M, My, M3. However, for the list assignment
L given by L(e1) = L(es4) = {1,2}, L(e2) = L(es) = {1,3}, L(es) = L(es) = {2, 3}, there is
no L-coloring that is proper for each of My, My, Ms.

For some final remarks, we note that the joint-chromatic number x(M;i, Ms) is itself
hard to determine and is a source of many interesting results and conjectures. As before, we
have the trivial lower bound x (M7, Ms) > max{x(M;), x(Mz)}, and Edmonds’ Theorem
11 gives a formula for both (M) and x(My3). Kénig’s Theorem (1| on the edge-chromatic
number of bipartite multigraphs implies that x(Mi, Ms) = max{x(M;), x(Mz)} if My,
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M are two partition matroids. This equality may not hold if one of M1, M5 is not a parti-
tion matroid. For example (see [78]), let M; be the graphic matroid of the complete graph
K4, and let My be the partition matroid on the same ground set whose parts are the three
pairs of non-adjacent edges. Then max{x(M;), x(M2)} = 2 while x(M;, M;) = 3. Nev-
ertheless, using nice topological arguments, Aharoni and Berger [2] proved that x (M, Ms)
and max{x(My), x(M3)} are not too far apart.

Theorem 58 (Aharoni, Berger). For any two matroids My, My on the same ground set,

we have that x(Mi, M) < 2max{x(M;), x(Ma)}.

As a way to generalize their theorem, Aharoni and Berger conjectured the following
stronger statement. They proved it in the case that one of x(M;j) or x(Ms) is an integer
multiple of the other.

Conjecture 59. For any two matroids My, Ms on the same ground set, we have that

X(Mi, My) < x(Mq) + x(Ma).

In addition to this, a famous conjecture of Rota [2, 93] can be stated in terms of the
joint-chromatic number as follows.

Conjecture 60 (Rota’s basis conjecture). Let My be a matroid of rank k, and let My be a
partition matroid on the same ground set with k parts, each of which is a basis of My. Then

X(M1, MQ) = k.

Aharoni and Berger’s Theorem implies that under the conditions of Rota’s basis
conjecture, x(Mj, My) < 2k. Conjecture |60| has been verfied for all paving matroids [39],
for all matroids of rank at most three [21], and recently, asymptotically for all matroids [76].
Work on the joint-chromatic number of matroids is also relevant for Ryser’s hypergraph
conjecture (see [1} 2]).
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Chapter 7

Star arboricity and list star arboricity

We study one more version of arboricity known as star arboricity. A star forest is a forest in
which each component is a star K ¢ for some ¢ > 1. For a multigraph G, its star arboricity
sa(G) is the minimum number of colors needed for an edge-coloring into monochromatic star
forests. Since every star forest is a forest, we immediately have that sa(G) > a(G). Observe
that every forest has star arboricity at most two: on each component, do a breadth-first
search starting at any vertex, and alternate the colors of the edges going up from one level
to the next. Because we can partition the edges of G into a(G) monochromatic forests, each
with star arboricity at most two, we get that
a(G) < sa(G) < 2a(G).

Star arboricity was introduced by Akiyama and Kano in [6], where they showed that the star
arboricity of the complete graph K, is [n/2] + 1. This was generalized by Aoki in [16] to
determine the star arboricity of complete multipartite graphs with partition classes of equal
size. These graphs are r-regular for some r > 1, and he showed that they have star arboricity
either [r/2] +1 or [r/2] +2. The star arboricity sa(G) for these graphs G are close to their
ordinary arboricity lower bound a(G) = [(r +1)/2]. On the other hand, Alon, McDiarmid,
and Reed [10] showed that there are infinitely many graphs whose star arboricity is exactly
the upper bound 2a(G).

Before we establish this result of Alon, McDiarmid, and Reed, let us associate the star
arboricity of a multigraph with certain orientations. Given a star forest edge-coloring ¢ of a
multigraph G, we may orient each edge e of G away from the center of the star component
in which it lies. We obtain an orientation D of GG such that every vertex has indegree at
most k, and every vertex that is the center of some star component has indegree at most
k —1. Let us call D the star forest orientation of G with respect to ¢. (Note that it may
not be possible to recover a star forest edge-coloring from an orientation of this sort.)

Theorem 61 (Alon, McDiarmid, Reed). For every integer k > 1, there exists a simple graph
G with arboricity a(G) = k and star arboricity sa(G) = 2k.
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Proof. Fix k > 1. Let G be the bipartite simple graph defined as follows (see Figure :

(i) V(G) = AUBUC (disjoint union), where |[A| =k, |B| = (k — 1)(*) +2k* — k + 1,
|IC| = (2k? — k + 1)('5'), and each of A, B, C' is an independent set,

(ii) Every vertex in A is adjacent to every vertex in B and no vertex in C.

(iii) Partition C' into ('f |) subsets of size 2k* — k + 1. There is a bijection between these
subsets of C' and the subsets of B of size k. A vertex in C' is adjacent precisely to those
vertices of B in the corresponding k-subset.

The number of edges of G is e(G) = |A| - |B| + k- |C| = k(|B| + |C|) = k(v(G) — k). First
we show that a(G) = k. Observe that

where the last equality comes from the fact that v(G) > k* To show that a(G) < k,
we orient the edges of G so that all edges between A and B are oriented toward B, and
that all edges between B and C' are oriented toward C'. In this orientation, the maximum
indegree of a vertex is k. Moreover, this orientation is acyclic, so every subgraph contains
a vertex of indegree 0. Hence, we have e(S) < k(|S| — 1) for all S C V(G). It follows from
Nash-Williams’ Theorem 23| that a(G) < k.

Now we show that sa(G) > 2k. Suppose for contradiction that ¢ is an edge-coloring of
G into 2k — 1 monochromatic star forests FY,..., F5._1. Let D be the star forest orientation
of G with respect to ¢. Each vertex of D has indegree at most 2k — 1, so the sum of
indegrees of A is at most 2k> — k. This implies that all but at most 2k? — k vertices of B
have indegree k from A. Let B’ be the set of vertices in B with indegree at least k. For
each x € B’, we can find a k-subset S(z) of {F},..., Fy;_1} such that z is not the center
of any star component of S(z). Since |B'| > |B| — (2k* — k) > (%k_l)(k — 1), we can find
a k-subset X = {x1,..., 2%} of B’ such that S(z;) = ... = S(zg). Put S = S(xy). Let C’
be the set of 2k? — k + 1 vertices of C' corresponding to X. As before, since each vertex of
X has indegree at most 2k — 1, at most 2k* — k arcs are oriented from C’ to X. Because
|C’| = 2k* — k + 1, there is a vertex y € C" such that (z;,y) is an arc of D for each z; € X.
For each i € {1,...,k}, let H; be the star forest with respect to ¢ that contains the edge
e; = x;y. By the definition of the orientation D, all the H; are distinct and do not lie in
S. Hence, there are at least |S| + |{Hi,...,Hr}| = 2k star forests with respect to ¢, a
contradiction. Therefore, sa(G) > 2k as required. O

Of course, the gap between a(G) and 2a(G) is quite large, similar to the gap between
A(G) and 2A(G) — 1 when it comes to the chromatic index x'(G). Unsurprisingly at this
point, it is NP-hard to determine star arboricity in general, and it is even NP-complete to
recognize whether a simple graph has star arboricity two [53]. Still, it would be nice to find a
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Figure 7.1: The bipartite graph G of Alon, McDiarmid, and Reed. The B;’s are k-subsets of
B. The C;’s form the partition of C'. Solid lines represent complete bipartite graphs between
the connected parts.

graph parameter that more closely determines the star arboricity sa(G) than the arboricity
a(G) by itself. One approach is to involve the maximum degree A(G). When it comes to the
maximum degree A = A(G) by itself, Algor and Alon [7] proved that for every A-regular
simple graph G,

AJ2 < sa(G) < AJ2 + O(AY3(log A)3),

(the lower bound being simply edge counting), so the star arboricity is asymptotically A /2
as A — oo. At the same time, the authors showed that there are A-regular simple graphs G
for which sa(G) > A/2+Q(log A) = a(G) + Q(log A), so the error term in the upper bound
cannot be eliminated. On the other hand, Alon, McDiarmid, and Reed [10] later proved
that sa(G) < a(G) + O(log A) as A — oo for every simple graph G with maximum degree
A, which is a matching upper bound. Harris, Su, and Vu [55] recently improved this upper
bound to

sa(@) < a(G) + O(log a(G) + /log A(G)),

and this is best possible as a function of a(G) and A(G) separately. These asymptotic bounds
were proven using probabilistic methods. The relationship between star arboricity and maxi-
mum degree/maximum density even for simple graphs appears somewhat complicated based
on these known results, but little has been studied here.

For planar simple graphs, it is easy to show via Nash-Williams” Theorem [23| that every
planar simple graph has arboricity at most 3, and therefore has star arboricity at most 6.
Algor and Alon [7] constructed a planar simple graph with star arboricity 5, and they asked
whether 5 or 6 is the true upper bound. Hakimi, Mitchem, and Schmeichel [53] later proved
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that the answer is 5, relying on a computationally difficult result of Borodin [19] on acyclic
vertex colorings. Star arboricity has also been connected to incidence colorings (see [44]).

One other parameter to consider in relation to star arboricity is degeneracy, which is
related to both maximum degree and arboricity. Recall that a multigraph G is k-degenerate
if every subgraph of GG contains a vertex of degree at most k, and that we can define a
degeneracy ordering vy, ve, . .., v, on V(G) by recursively setting v; to be a vertex of minimum
degree in G — {v;41,...,v,}, fori € {n,n—1,...,1}. This degeneracy ordering lets us show
that e(S) < k(|S] — 1) for all S C V(G). By Nash-Williams’ Theorem we have that
a(G) < k and thus sa(G) < 2k for every k-degenerate multigraph G.

Proposition 62. For every k-degenerate multigraph G, we have sa(G) < 2k.

The bipartite simple graph constructed in Theorem is in fact k-degenerate, with a
degeneracy ordering given by the vertices in A, then in B, and then in C'. Thus, Theorem
shows that it is possible for a k-degenerate multigraph to have star arboricity 2k, for every
integer £k > 1. On the other hand, by making assumptions on the degeneracy structure of
G, one can sometimes prove a better upper bound than 2k. This idea was used in [53] to
prove that every outerplanar simple graph has star arboricity at most 3.

As usual, we can define a list version of star arboricity. We define the list star arboricity
say(G) of G to be the minimum integer &k such that for every k-list assignment L for F(G)
there is a star forest L-coloring of G. It is immediate that sa,(G) > sa(G). We may
conjecture that the analogue of the List Coloring Conjecture [19| holds for list star arboricity.

Conjecture 63. For every multigraph G, we have sa,(G) = sa(Q).

For an easy upper bound on sa,(G), we clearly have that sa,(G) < x,(G) < 2A(G) — 1
because every matching is a star forest. To improve this, let us prove the following general-
ization of Proposition [62] (see [55]).

Proposition 64. For every k-degenerate multigraph G, we have sa,(G) < 2k.

Proof. Let G be a k-degenerate multigraph, and let L be any list assignment for E(G)
with 2k colors in each list. Let vy, v9,...,v, be a degeneracy ordering of the vertices of
G. We start by coloring all the edges incident to vy arbitrarily from their respective lists,
making sure that parallel edges get different colors (note that u(G) < k). Now iterating
through i« € {2,...,n}, we consider all the uncolored edges incident to v;. For each such
edge e € Eg(v;,vj) where j > i, we delete from its list L(e) every color that was given to
an adjacent edge. By the degeneracy ordering, e has at most k adjacent colored edges at its
end-vertex v;, and at most k — pue(v;, v;) adjacent colored edges at its other end-vertex vj,
since all edges between v; and v; are uncolored. Thus, we delete at most 2k — p(v;, v;) colors
from the list L(e), leaving us with a list of at least pu(v;, v;) colors at e € Eg(v;, v;). Hence,
we can L-color all the uncolored edges incident to v; while ensuring that all parallel edges
get different colors. Continuing for all , it is easy to check that this list coloring procedure
leads to star forest L-coloring of G. O
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As a corollary, we get that the k-degenerate bipartite simple graph G from Theorem
has list star arboricity sa,(G) = sa(G) = 2k, in support of Conjecture [63] Like ordinary
star arboricity, it is possible to improve this upper bound 2k if we make assumptions on the
degeneracy structure of G.

Finally, let us write an upper bound for sa,(G) in terms of the arboricity a(G). Assume
that G has at least one edge so that a(G) > 1. We have 2a(G) > 2e(H)/(v(H) — 1) > d(H)
for every subgraph H of G with e(H) > 1, where d(H) is the average degree of H. This
implies that every subgraph H of G contains a vertex of degree at most 2a(G) — 1, which is
to say, G is (2a(G) — 1)-degenerate. By Proposition [64] we have

a(G) < sap(G) < 4a(G) — 2

for every multigraph G. It would be worthwhile to improve the constant factors in this as
well as in the degeneracy upper bound for some classes of multigraphs, even asymptotically.
In this direction, Harris, Su, and Vu [55] proved that

sa(G) < a(G) + O(log A(G)),

for every simple graph G as A(G) — oo, as was shown for ordinary star arboricity. There is
more work to be done on multigraphs.
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Chapter 8

Conclusion

In this essay we looked into how techniques similar to those developed to approach the
Goldberg-Seymour Conjecture [9]

: 2¢(S5)
X'(G) <max< A(G) + 1, ngl/é?(g), “S| — 1-‘ :
|S[>3 odd
on the chromatic index (e.g., alternating paths, critical subgraphs) can be used to study
other edge-coloring problems such as arboricity a(G) and pseudoarboricity pa(G). We saw
that we can construct a maximal arboretum and a maximal pseudoarboretum that form the
“dense spots” asserted by the maximum density formulas of Nash-Williams” Theorem [23| and
Hakimi’s Theorem [33] This is similar in spirit to the role of Tashkinov trees in the study
of the Goldberg-Seymour Conjecture 9 Due to the similar dependence on maximum degree
and maximum density for many of these edge-coloring problems, we sought to “interpolate”
among these problems by studying bounded degree versions. These problems turned out to be
interesting in their own right and surprisingly related to the Goldberg-Seymour Conjecture.

We saw that we could prove exact formulas for degree ¢ subgraph colorings when t is

even (Theorem [39),
, AG
e - |29,

t
as well as for degree t pseudoarboricity for all integers ¢t > 2 (Theorem ,

()= s {[29) ).

On the other hand, for degree ¢ subgraph colorings when ¢ is odd we could only conjecture
a generalization of the Goldberg-Seymour Conjecture (Conjecture ,

Xi(G) < max { [%w V(@) 5122 [Weé%w } '
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We also conjectured that a Goldberg-Seymour bound occurs for degree t arboricity a;(G) for
all t > 2. We paid particular attention to the case t = 2 of linear arboricity as(G) = la(G),
where we conjectured that the classical Linear Arboricity Conjecture 43| can be extended to
multigraphs in a strong way (Conjecture ,

a2(G) = la(G) < max { [%W ,a(G)} .

This conjecture would bring us quite close to the ordinary Goldberg-Seymour Conjecture 9]
noting that 2-pas(G) < x'(G) < 2-a2(G) because merging two color classes in a proper edge-
coloring results in an edge-coloring into paths and even cycles. In future work, we would like
to explore further connections among the chromatic index, arboricity, and pseudoarboricity
as suggested by Conjecture [45]

The omnipresence of Goldberg-Seymour bounds and formulas hints that these edge-
coloring problems could be related in deeper ways than we have been able to uncover in this
exposition. One consistent pattern with the exact results we were able to prove (chromatic
index for bipartite multigraphs, degree t chromatic index for even ¢, and degree t pseu-
doarboricity for general ¢) is that in these cases the associated fractional maximum density
parameter meets an associated maximum degree parameter when the multigraph G is A(G)-
regular (basically, when the multigraph is made as dense as possible without increasing its
maximum degree). This is not the case with the unknown cases (degree ¢ chromatic index
for odd t, degree t arboricity for general t), and this has to do with |S| — 1 being in the
denominator of the maximum density parameter rather than |S|. This makes it all the more
remarkable that such a result as Nash-Williams” Theorem [23| holds, but it also suggests that
progress can still be made. Somehow, edge-coloring problems whose associated maximum
density parameter satisfies this sort of minimax property have a nice orientation structure
that enable a Goldberg-Seymour formula to be found. These orientation properties also
enabled us to prove that the natural analogues of the classical List Coloring Conjecture
hold for these edge-coloring problems, via Galvin’s Theorem In future work, we would
like to further explore these kinds of density patterns in edge-coloring.

There are many other related edge-coloring problems out there worth exploring, such as
joint coloring matroids and star arboricity as we’ve briefly written about. There remain a
lot of unknowns in edge-coloring, but with the connections drawn here and continued work
it is hopeful that many new interesting results could be discovered.
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