

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

Discrete Diffusion on Graphs and Real Hyperplane Arrangements

D.G. Wagner

Department of C&O University of Waterloo

Tutte Colloquium University of Waterloo June 26, 2020

Overview

Discrete Diffusion

D.G. Wagner

Discrete diffusion o graphs.

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Ouestions

1 Discrete diffusion on graphs.

- The model.
- The "standard" chip-firing model.
- Physical analogies.

Overview

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standard" chip-firing model. Physical analogies

Real hyperpla arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

1 Discrete diffusion on graphs.

- The model.
- The "standard" chip-firing model.
- Physical analogies.

2 Real hyperplane arrangements.

- Equilibrium steady state.
- Non-equilibrium steady state.
- Questions.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

Thanks to

Danielle Cox (MSVU) Martin van Bommel (StFXU) Stephen Finbow (StFXU)

for the

East Coast Combinatorics Conference (Antigonish, 2019)

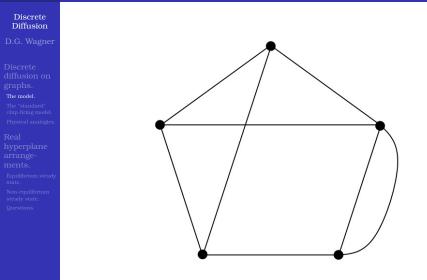
where Danielle's cohort were talking about this.

Discrete diffusion on graphs. The model.

chip-firing model. Physical analogies

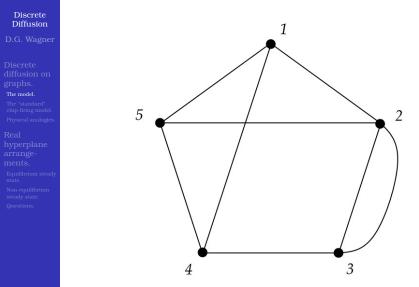
Real hyperplane arrangements.

Equilibrium steady state.


Non-equilibrium steady state.

the model

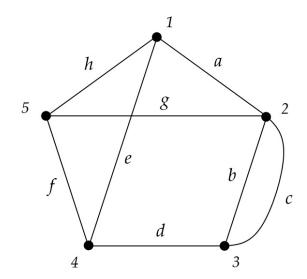
Duffy, Lidbetter, Messinger, Nowakowski (2016)



a multigraph G = (V, E)

finite, undirected

connected, loopless


D.G. Wagner

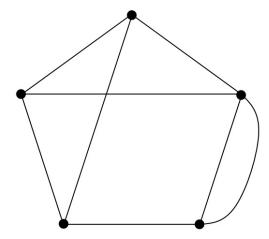
Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

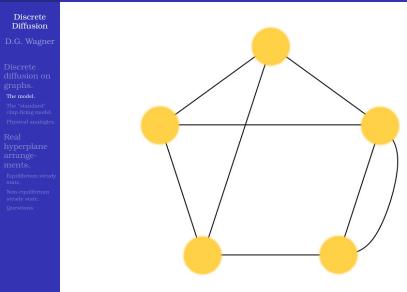
Equilibrium steady state.

Discrete Diffusion

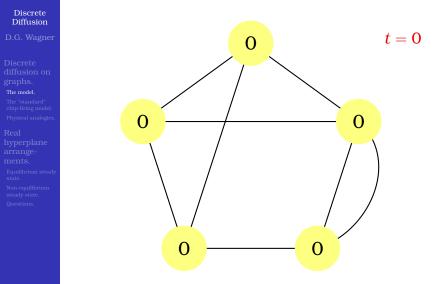

D.G. Wagner

Discrete diffusion on graphs. The model.

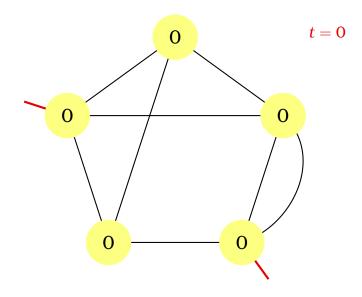
The "standard" chip-firing model. Physical analogies


Real hyperplan arrangements.

Equilibrium steady state.



a real $c(v) \in \mathbb{R}$ at each vertex $v \in V$

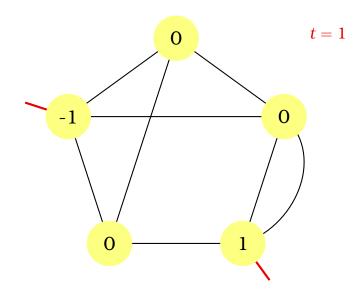


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

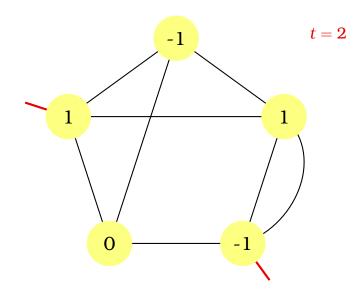


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium stead state.

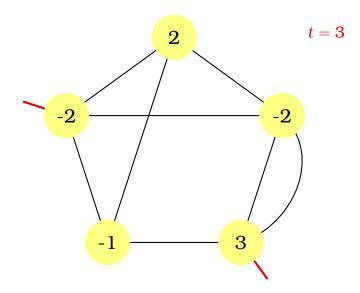


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

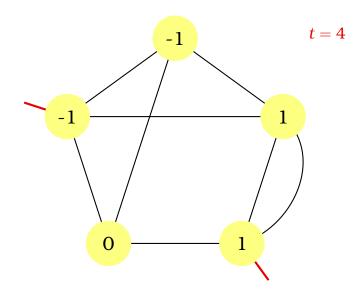


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

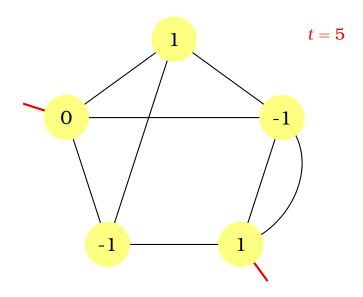


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium stead state.

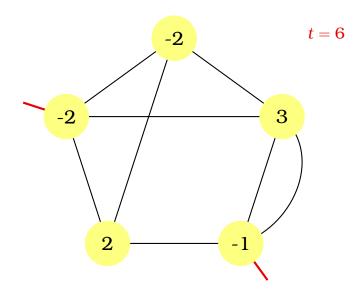


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.



Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

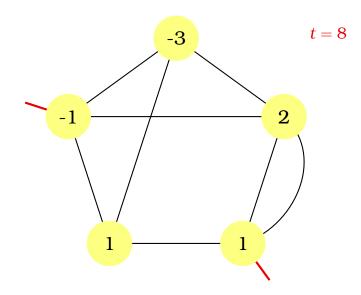


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium stead state.

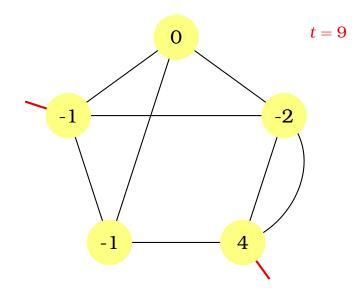


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium stead state.

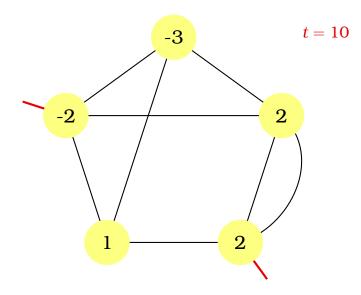


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

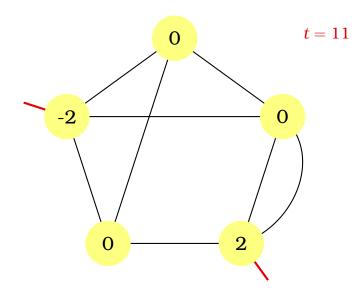


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

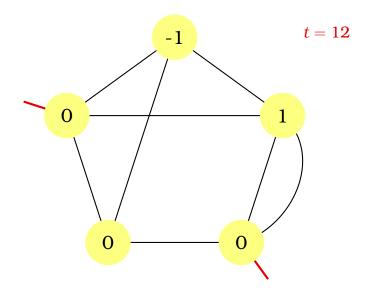


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

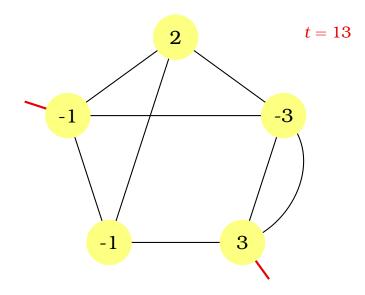


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

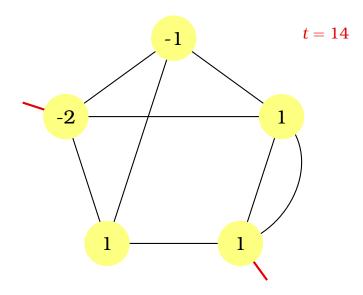


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

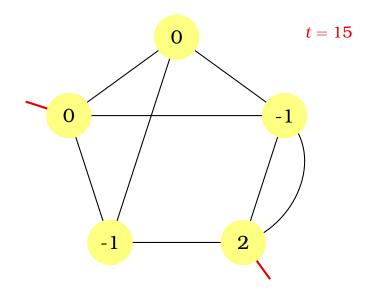


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

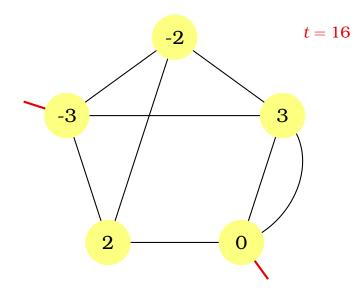


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

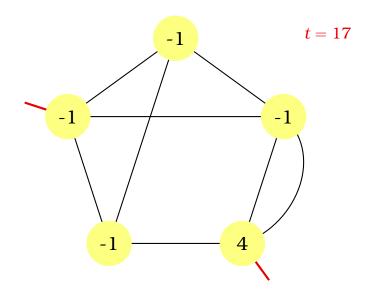


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

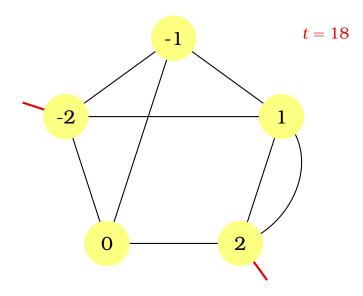


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

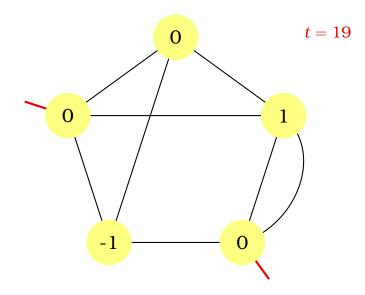


Discrete diffusion on graphs. The model. The "standard"

chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

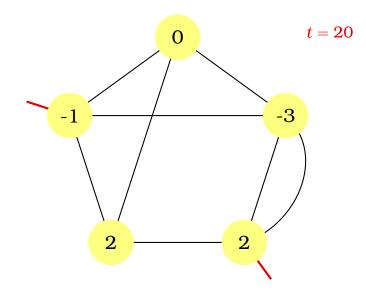


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

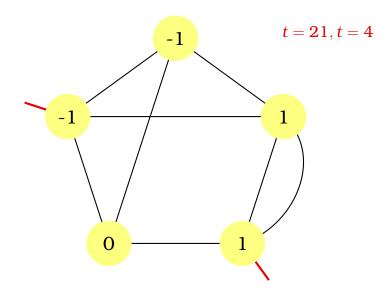


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

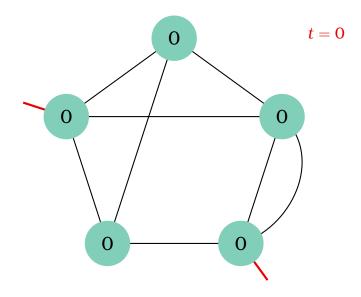


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplar arrangements.

Equilibrium steady state.

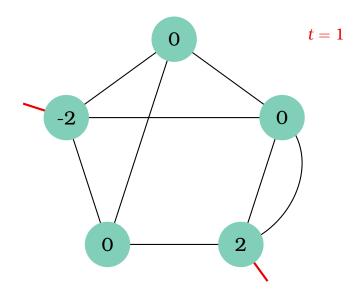


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

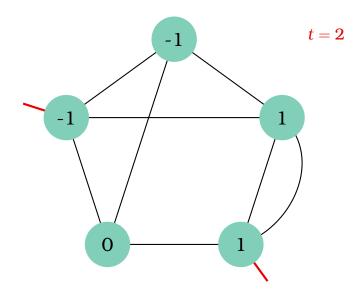


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

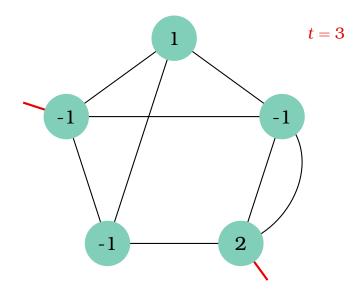


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

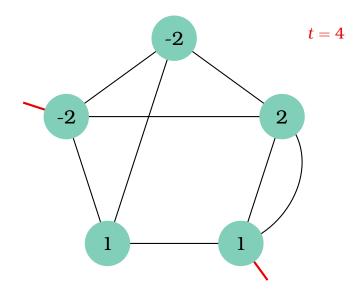


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

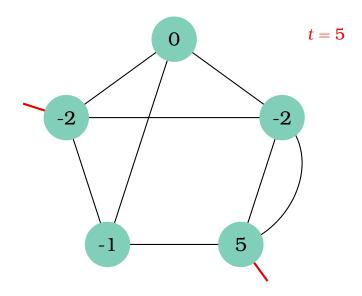


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

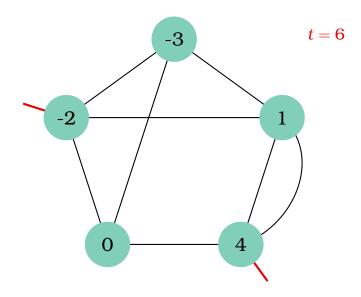


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

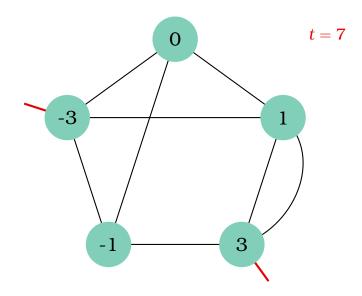


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

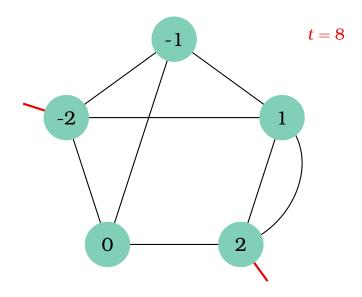


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

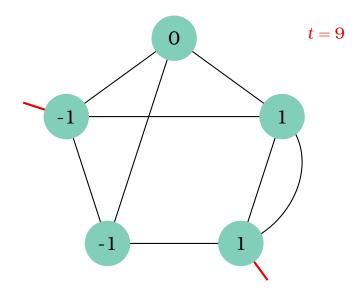


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

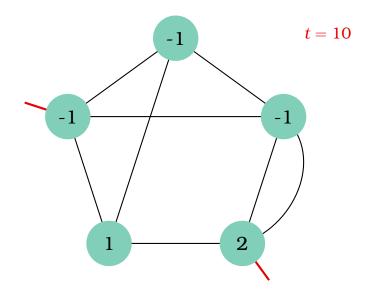


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

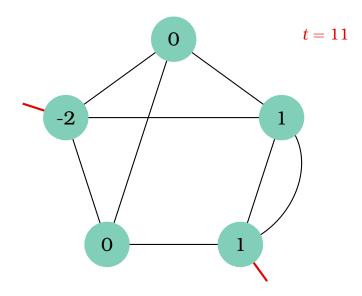


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

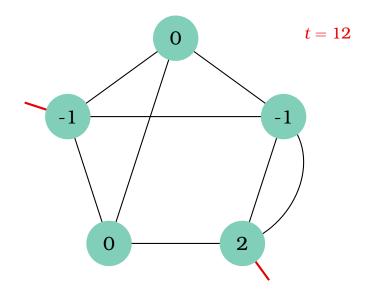


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.



Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

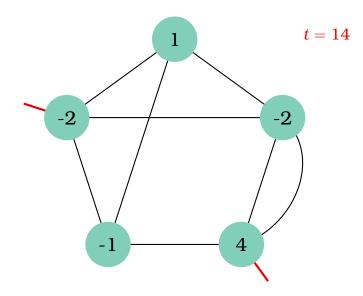


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

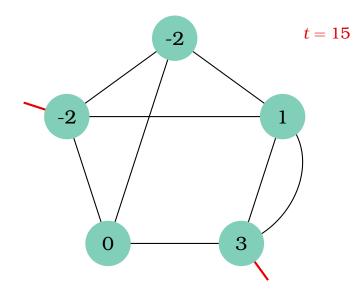


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

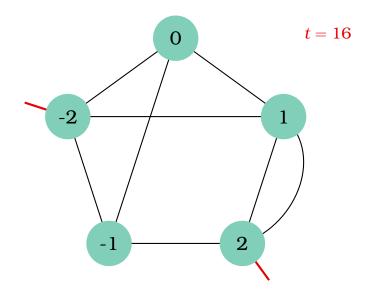


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

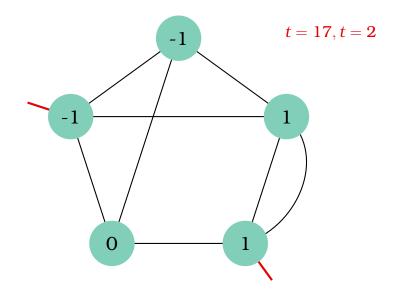


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

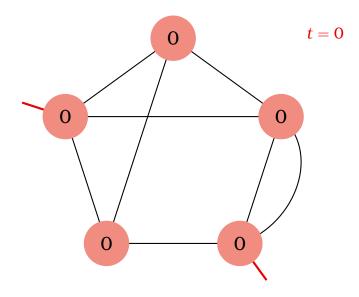


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplar arrangements.

Equilibrium steady state.

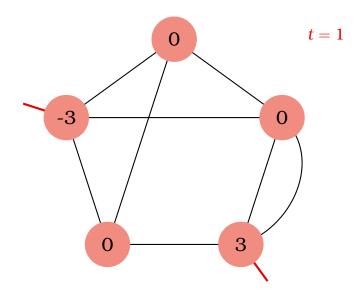


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

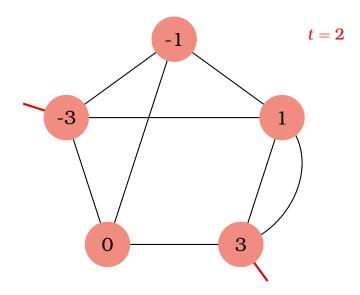


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

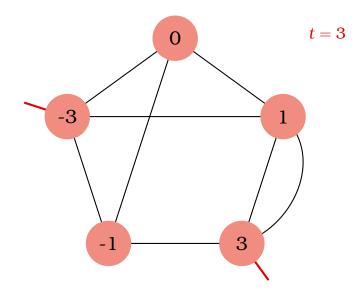


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

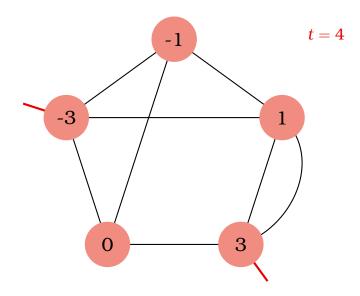


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

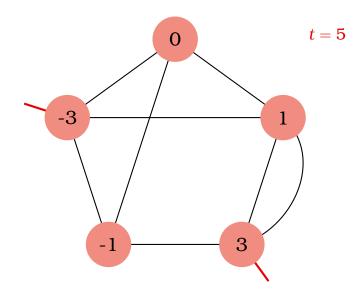


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

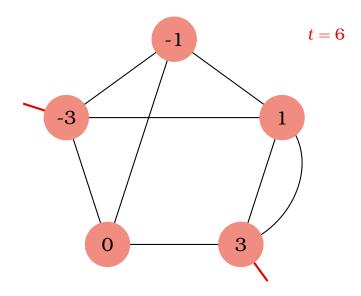


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

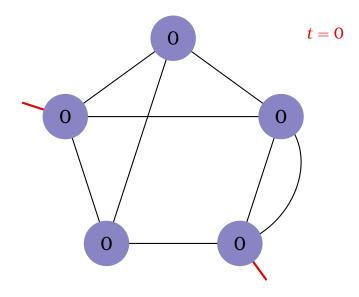


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

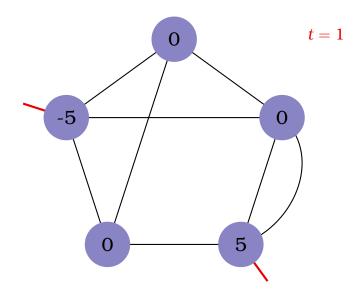


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

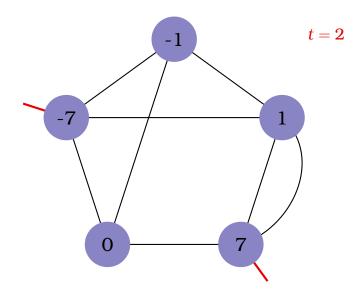


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

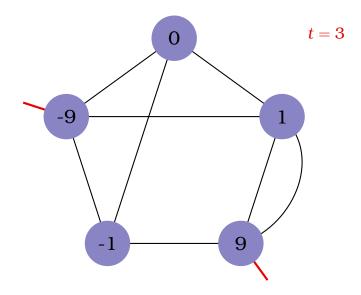


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

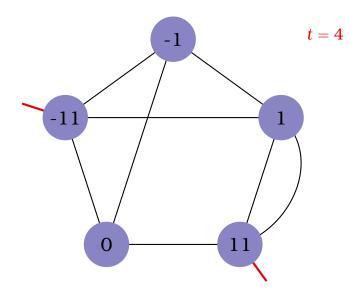


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

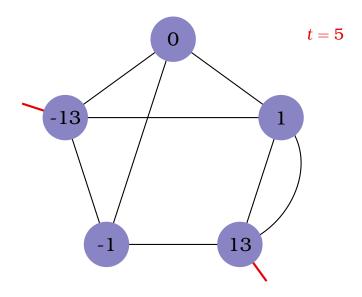


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

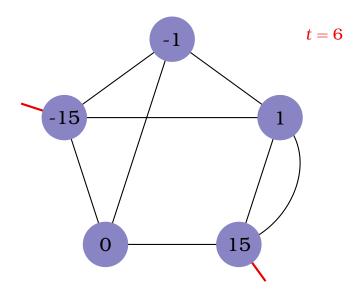


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

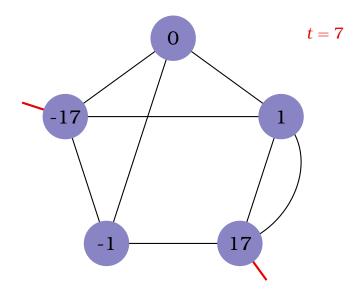


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

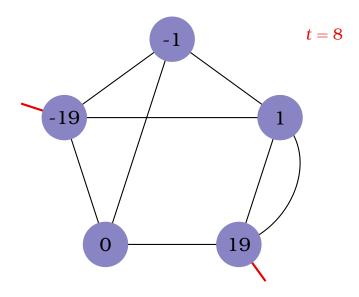


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

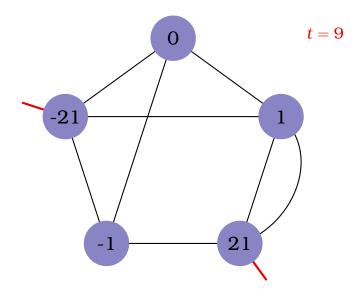


Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

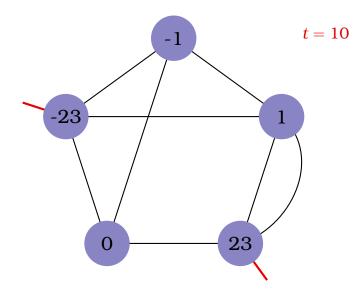


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.



Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

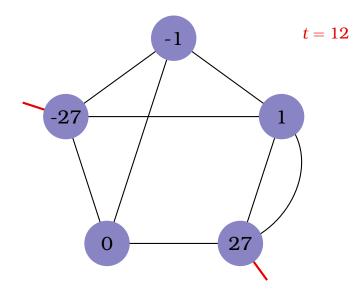


Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

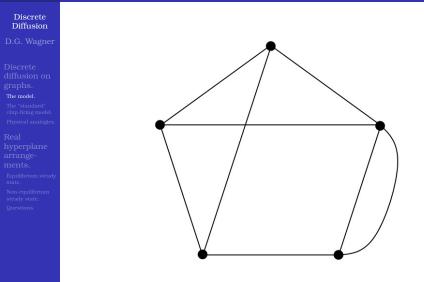
Real hyperplan arrangements.

Equilibrium steady state.



Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

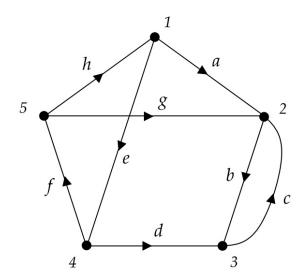

Real hyperplan arrangements.

Equilibrium steady state.

let's describe that with algebra

Discrete Diffusion

orient the edges arbitrarily



The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

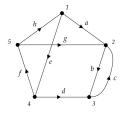
the V-by-E signed incidence matrix

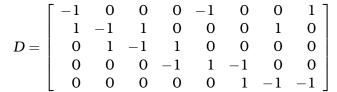
Discrete Diffusion									
D.G. Wagner									
Discrete liffusion on graphs.									
The model. The "standard" chip-firing model. Physical analogies.									
	D =	$\left[\begin{array}{c} -1\\1\\0\\0\\0\end{array}\right]$	$ \begin{array}{c} 0 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} $	$0 \\ 1 \\ -1 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 1 \\ -1 \\ 0 \end{array} $	$ \begin{array}{c} -1 \\ 0 \\ 0 \\ 1 \\ 0 \end{array} $	$0 \\ 0 \\ 0 \\ -1 \\ 1$	0 1 0 0 -1	

the V-by-E signed incidence matrix

Discrete Diffusion

D.G. Wagner


Discrete diffusion or graphs.


The model. The "standard" chip-firing model. Physical analogies

Real hyperplar arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

the V-by-E signed incidence matrix

Discrete Diffusion

D.G. Wagner

Discrete diffusion o graphs.

The model. The "standar

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

Discrete
Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplane arrangements.

Equilibrium stead state.

Non-equilibrium steady state.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standar

chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

• $\mathbf{c} = \{c(v) : v \in V\}$ are (integer) *chip counts* of the vertices *V*.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model.

The "standard" chip-firing model. Physical analogies

Real hyper

arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

- $\mathbf{c} = \{c(v) : v \in V\}$ are (integer) *chip counts* of the vertices *V*.
- **sign** function sgn : $\mathbb{R}^E \to \{-1, 0, 1\}^E$ coordinatewise

$$\operatorname{sgn}(r) = \left\{ egin{array}{ccc} 1 & ext{if } r > 0, \ 0 & ext{if } r = 0, \ -1 & ext{if } r < 0. \end{array}
ight.$$

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standar

chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

- $\mathbf{c} = \{c(v) : v \in V\}$ are (integer) *chip counts* of the vertices *V*.
- **sign** function sgn : $\mathbb{R}^E \to \{-1, 0, 1\}^E$ coordinatewise

$$\operatorname{sgn}(r) = \left\{ egin{array}{ccc} 1 & ext{if } r > 0, \ 0 & ext{if } r = 0, \ -1 & ext{if } r < 0. \end{array}
ight.$$

c^{Δ} = $-\operatorname{sgn} D^{\mathsf{T}} \mathbf{c}$ is the *activity* of **c**.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model.

chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. • $\mathbf{c} = \{c(v) : v \in V\}$ are (integer) *chip counts* of the vertices *V*.

sign function sgn : $\mathbb{R}^E \to \{-1, 0, 1\}^E$ coordinatewise

$$sgn(r) = \begin{cases} 1 & \text{if } r > 0, \\ 0 & \text{if } r = 0, \\ -1 & \text{if } r < 0. \end{cases}$$

• $\mathbf{c}^{\triangle} = -\operatorname{sgn} D^{\mathsf{T}} \mathbf{c}$ is the *activity* of \mathbf{c} .

■ $\mathbf{h} = \{h(v): v \in V\}$ is a column vector of *external supplies and demands*.

Discrete
Diffusion
D.G. Wagner
Discrete
diffusion on
The model.

Discrete Diffusion

D.G. Wagner

diffusion on graphs. The model. The "standard"

chip-firing model. Physical analogies

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Initial chip counts \mathbf{c}_0 at time t = 0.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Initial chip counts c₀ at time t = 0.
For all t ∈ N,

$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\scriptscriptstyle \triangle} + \mathbf{h}.$$

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Initial chip counts c₀ at time t = 0.
For all t ∈ N,

$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\scriptscriptstyle riangle} + \mathbf{h}.$$

For all $t \in \mathbb{N}$,

$$\mathbf{c}_{t+1} - \mathbf{c}_t = -D \operatorname{sgn} D^{\mathsf{T}} \mathbf{c}_t + \mathbf{h}.$$

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard"

The "standard" chip-firing model. Physical analogies

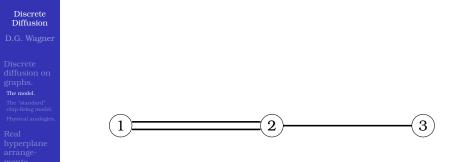
Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. Initial chip counts c₀ at time t = 0.
For all t ∈ N,

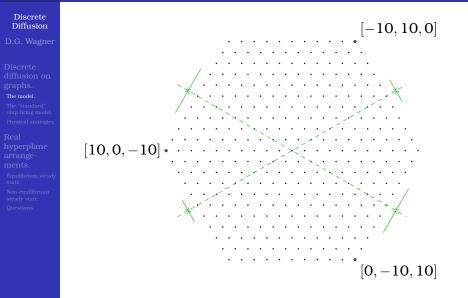
$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\scriptscriptstyle riangle} + \mathbf{h}.$$

For all $t \in \mathbb{N}$,

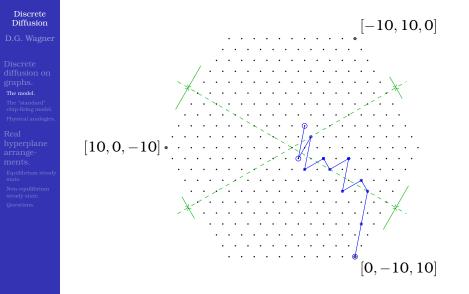

$$\mathbf{c}_{t+1} - \mathbf{c}_t = -D \operatorname{sgn} D^{\mathsf{T}} \mathbf{c}_t + \mathbf{h}.$$

Compare: the heat equation for $\mathbf{c} : \Omega \times \mathbb{R} \to \mathbb{R}$

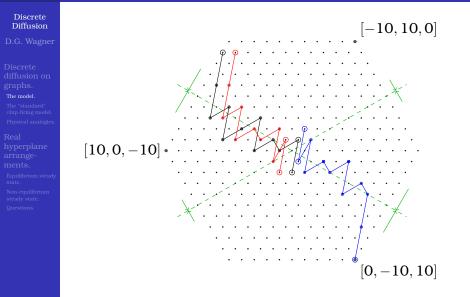
$$rac{\partial}{\partial t} \, \mathbf{c}(\mathbf{x},t) \, = \,
abla^2 \, \mathbf{c}(\mathbf{x},t) \, + \, \mathbf{h}.$$



an example



in $\mathbb{Z}^V \cap \ker(\mathbf{1}^T)$



the case $\mathbf{h} = \mathbf{0}$

the case $\mathbf{h} = \mathbf{0}$

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard"

chip-firing model.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

the critical group

Discrete Diffusion
The "standard" chip-firing model. Physical analogies.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

• $L = DD^{\mathsf{T}}$ is the *Laplacian* matrix.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. ^{The model.} **The "standard"**

chip-firing model. Physical analogies

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions *L* = *DD*^T is the *Laplacian* matrix.
For *L* : Z^V → Z^V,

 $\ker(L) = \mathbb{Z} \mathbf{1}$ $\operatorname{coker}(L) \simeq \mathbb{Z} \oplus K(G)$

for some finite abelian *critical group* K(G).

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs, The model. The "standard" chip-firing model.

Physical analogies

Real

hyperplar arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. *L* = *DD*^T is the *Laplacian* matrix.
For *L* : Z^V → Z^V,

 $\ker(L) = \mathbb{Z} \mathbf{1}$ $\operatorname{coker}(L) \simeq \mathbb{Z} \oplus K(G)$

for some finite abelian *critical group* K(G).

■ The size of *K*(*G*) is the number of spanning trees of *G*.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. *L* = *DD*^T is the *Laplacian* matrix.
For *L* : Z^V → Z^V,

 $\ker(L) = \mathbb{Z} \mathbf{1}$ $\operatorname{coker}(L) \simeq \mathbb{Z} \oplus K(G)$

for some finite abelian *critical group* K(G).

- The size of *K*(*G*) is the number of spanning trees of *G*.
- Well-studied since the 1980s.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

physical analogies

Discrete Diffusion
The "standard" chip-firing model. Physical analogies.

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperpland arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

• *currents* $\mathbf{j} = \{j(e) : e \in E\}$ on edges.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

currents j = {j(e) : e ∈ E} on edges. *potentials* φ = {φ(v) : v ∈ V} on vertices.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperplane arrangements.

- Equilibrium steady state.
- Non-equilibrium steady state. Questions

• *currents* $\mathbf{j} = \{ j(e) : e \in E \}$ on edges.

- *potentials* $\varphi = \{\varphi(v) : v \in V\}$ on vertices.
- *conductances* $Y = \text{diag}(y_e : e \in E)$ on edges.

Discrete Diffusion
The "standard" chip-firing model. Physical analogies.

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

• Kirchhoff's Current Law: $D\mathbf{j} + \mathbf{h} = \mathbf{0}$.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model. Physical analogies.

Real

hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Kirchhoff's Current Law: Dj + h = 0.
Ohm's Law: j = -YD^Tφ.

Discrete Diffusion

- D.G. Wagner
- Discrete diffusion on graphs. The model. The "standard" chip-firing model.
- Physical analogies.
- Real hyperplane arrangements.
- Equilibrium steady state.
- Non-equilibrium steady state.

- Kirchhoff's Current Law: $D\mathbf{j} + \mathbf{h} = \mathbf{0}$.
- Ohm's Law: $\mathbf{j} = -YD^{\mathsf{T}}\varphi$.
- Together these yield $DYD^{\mathsf{T}}\varphi = \mathbf{h}$.

Discrete Diffusion

- D.G. Wagner
- Discrete diffusion on graphs. The model. The "standard" chip-firing model.
- Physical analogies.
- Real hyperplane arrangements.
- Equilibrium steady state.
- Non-equilibrium steady state. Questions.

- Kirchhoff's Current Law: $D\mathbf{j} + \mathbf{h} = \mathbf{0}$.
- Ohm's Law: $\mathbf{j} = -YD^{\mathsf{T}}\varphi$.
- Together these yield $DYD^{\mathsf{T}}\varphi = \mathbf{h}$.
- Given D, Y, and \mathbf{h} ,
 - **j** is the solution to KCL minimizing $\mathbf{j}^{\mathsf{T}}Y^{-1}\mathbf{j}$.

the heat equation on G = (V, E)

Discrete Diffusion
chip-firing model. Physical analogies.

the heat equation on G = (V, E)

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. ^{The model.} The "standard"

chip-hring model. Physical analogies.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

• Let $\mathbf{c}: V \times [0, \infty) \to \mathbb{R}$ satisfy:

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chin-firing model

Physical analogies.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. • Let $\mathbf{c} : V \times [0, \infty) \to \mathbb{R}$ satisfy: $\mathbf{c}(\cdot, 0) : V \to \mathbb{R}$ are initial conditions, and

Discrete Diffusion

D.G. Wagner

diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperplan arrange-

Equilibrium steady state.

Non-equilibrium steady state. • Let $\mathbf{c} : V \times [0, \infty) \to \mathbb{R}$ satisfy: $\mathbf{c}(\cdot, 0) : V \to \mathbb{R}$ are initial conditions, and for all $t \ge 0$,

$$\frac{\partial}{\partial t}\mathbf{c} = -DYD^{\mathsf{T}}\mathbf{c}.$$

Discrete Diffusion

D.G. Wagner

diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions • Let $\mathbf{c} : V \times [0, \infty) \to \mathbb{R}$ satisfy: $\mathbf{c}(\cdot, 0) : V \to \mathbb{R}$ are initial conditions, and for all $t \ge 0$, ∂

$$\frac{\partial}{\partial t}\mathbf{c} = -DYD^{\mathsf{T}}\mathbf{c}.$$

• (No external heat source $\mathbf{h} \equiv \mathbf{0}$.)

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Physical analogies.

Real hyperpland arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. • Let $\mathbf{c} : V \times [0, \infty) \to \mathbb{R}$ satisfy: $\mathbf{c}(\cdot, 0) : V \to \mathbb{R}$ are initial conditions, and for all $t \ge 0$, ∂

$$\frac{\partial}{\partial t}\mathbf{c} = -DYD^{\mathsf{T}}\mathbf{c}.$$

• (No external heat source $\mathbf{h} \equiv \mathbf{0}$.)

Relaxes exponentially quickly to a constant function on *V* as $t \to \infty$.

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

real hyperplane arrangements

real hyperplane arrangements

Discrete
Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

real hyperplane arrangements

D.G. Wagner

diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

Standard orthonormal basis $\delta_1, ..., \delta_n$ of $\mathcal{V} = \mathbb{R}^n$.

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions Standard orthonormal basis δ₁, ..., δ_n of V = ℝⁿ.
 A finite set of nonzero vectors L = {ℓ₁, ..., ℓ_m} in V.

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

- Standard orthonormal basis $\delta_1, ..., \delta_n$ of $\mathcal{V} = \mathbb{R}^n$.
- A finite set of nonzero vectors $\mathcal{L} = \{\ell_1, ..., \ell_m\}$ in \mathcal{V} .
- Hyperplanes $H_j = \ker(\ell_j^{\mathsf{T}})$ for j = 1, ..., m.

- D.G. Wagner
- Discrete diffusion on graphs. The model. The "standard" chip-firing model. Physical analogies

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

- Standard orthonormal basis $\delta_1, ..., \delta_n$ of $\mathcal{V} = \mathbb{R}^n$.
- A finite set of nonzero vectors $\mathcal{L} = \{\ell_1, ..., \ell_m\}$ in \mathcal{V} .
- Hyperplanes $H_j = \ker(\ell_j^{\mathsf{T}})$ for j = 1, ..., m.
- Let *D* be the *n*-by-*m* matrix with ℓ_j as the *j*-th column, for j = 1, ..., m.

Discrete Diffusion
Real hyperplane arrange-
ments. Equilibrium steady state.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard"

chip-firing model. Physical analogies

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

Initial state $\mathbf{c}_0 \in \mathcal{V}$ at time t = 0.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. ^{The model.} The "standard"

chip-firing model. Physical analogies

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions Initial state c₀ ∈ V at time t = 0.
For all t ∈ N,

$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\Delta} + \mathbf{h}.$$

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chin-firing model

emp-nring model. Physical analogies

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. Initial state c₀ ∈ V at time t = 0.
For all t ∈ N,

$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\Delta} + \mathbf{h}.$$

• (exactly the same equation as the graph case)

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. Initial state c₀ ∈ V at time t = 0.
For all t ∈ N,

$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\scriptscriptstyle \Delta} + \mathbf{h}.$$

• (exactly the same equation as the graph case)

The external supply $\mathbf{h} \in \mathcal{V}$ need not be in the span of \mathcal{L} ,

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chip-firing model.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. Initial state c₀ ∈ V at time t = 0.
For all t ∈ N,

$$\mathbf{c}_{t+1} = \mathbf{c}_t + D\mathbf{c}_t^{\scriptscriptstyle \Delta} + \mathbf{h}.$$

- (exactly the same equation as the graph case)
- The external supply $\mathbf{h} \in \mathcal{V}$ need not be in the span of \mathcal{L} ,

but the general case reduces to that case.

D.G. Wagner

Discrete diffusion on graphs.

The "standard" chip-firing model. Physical analogies

Real hyperr

arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

equilibrium steady state

Discrete
Diffusion
D.G. Wagner
Equilibrium steady state.
Non-equilibrium

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real

arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. Long and Narayanan (2017) showed that for graphs and when **h** = **0**, the sequence (**c**^T_{t+1}**c**_t) is weakly decreasing and bounded below, proving the following theorem in that case.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. ^{The model.}

The "standard" chip-firing model. Physical analogies.

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. ■ Long and Narayanan (2017) showed that for graphs and when **h** = **0**, the sequence (**c**^T_{t+1}**c**_t) is weakly decreasing and bounded below, proving the following theorem in that case.

• Define $\operatorname{Pot}_{\mathcal{L}} : \mathcal{V} \to \mathbb{R}$ by

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) = \mathbf{v}^{\mathsf{T}}\mathbf{v} - |D^{\mathsf{T}}\mathbf{v}|_{1}$$

for all $\mathbf{v} \in \mathcal{V}$.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies.

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. • Long and Narayanan (2017) showed that for graphs and when $\mathbf{h} = \mathbf{0}$, the sequence $(\mathbf{c}_{t+1}^{\mathsf{T}} \mathbf{c}_t)$ is weakly decreasing and bounded below, proving the following theorem in that case.

• Define $\operatorname{Pot}_{\mathcal{L}} : \mathcal{V} \to \mathbb{R}$ by

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) = \mathbf{v}^{\mathsf{T}}\mathbf{v} - |D^{\mathsf{T}}\mathbf{v}|_{1}$$

for all $\mathbf{v} \in \mathcal{V}$. Note that $|D^{\mathsf{T}}\mathbf{v}|_1 = \sum_{j=1}^m |\boldsymbol{\ell}_j^{\mathsf{T}}\mathbf{v}|$.

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model

The "standard" chip-firing model. Physical analogies

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. ■ Long and Narayanan (2017) showed that for graphs and when **h** = **0**, the sequence (**c**^T_{t+1}**c**_t) is weakly decreasing and bounded below, proving the following theorem in that case.

• Define $\operatorname{Pot}_{\mathcal{L}} : \mathcal{V} \to \mathbb{R}$ by

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) = \mathbf{v}^{\mathsf{T}}\mathbf{v} - |D^{\mathsf{T}}\mathbf{v}|_{1}$$

for all $\mathbf{v} \in \mathcal{V}$.

Lemma

Assume $\mathbf{h} = \mathbf{0}$. Then for all $t \in \mathbb{N}$,

$$\mathbf{c}_{t+1}^{\mathsf{T}}\mathbf{c}_t = \operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_t).$$

Discrete Diffusion
Discrete diffusion of
Equilibrium ste state.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

Theorem (at present)

Assume $\mathbf{h} = \mathbf{0}$.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

A

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

Theorem (at present)

ssume
$$\mathbf{h} = \mathbf{0}$$
.
For all $\mathbf{v} \in \mathcal{V}$,

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) \geq -rac{1}{4} \max\{|D^{\mathsf{T}}\mathbf{u}|_1: \ \mathbf{u}^{\mathsf{T}}\mathbf{u}=1\}^2.$$

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

A

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

Theorem (at present)

ssume
$$\mathbf{h} = \mathbf{0}$$
.
For all $\mathbf{v} \in \mathcal{V}$,

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) \geq -rac{1}{4} \, \max\{|D^{^{\intercal}}\mathbf{u}|_1: \; \mathbf{u}^{^{\intercal}}\mathbf{u}=1\}^2.$$

For all
$$t \in \mathbb{N}$$
, $\operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_t) \geq \operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_{t+1})$.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

A

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

Theorem (at present)

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) \geq -\frac{1}{4} \max\{|D^{\mathsf{T}}\mathbf{u}|_{1}: \mathbf{u}^{\mathsf{T}}\mathbf{u}=1\}^{2}.$$

• For all $t \in \mathbb{N}$, $\operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_t) \geq \operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_{t+1})$.

■ If the sequence (Pot_L(**c**_t)) attains its limit, then the sequence (**c**_t) is eventually periodic, of period one or two.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

A

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplane arrangements.

Equilibrium steady state.

Non-equilibriun steady state. Questions.

Theorem (at present)

Assume
$$\mathbf{h} = \mathbf{0}$$
.
For all $\mathbf{v} \in \mathcal{V}$.

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) \geq -\frac{1}{4} \max\{|D^{\mathsf{T}}\mathbf{u}|_{1}: \mathbf{u}^{\mathsf{T}}\mathbf{u}=1\}^{2}.$$

For all $t \in \mathbb{N}$, $\operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_t) \geq \operatorname{Pot}_{\mathcal{L}}(\mathbf{c}_{t+1})$.

- If the sequence (Pot_L(**c**_t)) attains its limit, then the sequence (**c**_t) is eventually periodic, of period one or two.
- (If all of $\mathbf{c}_0, \ell_1, ..., \ell_m$ are in a lattice in \mathcal{V} , then the sequence (Pot_{\mathcal{L}}(\mathbf{c}_t)) attains its limit.)

Discrete Diffusion
Equilibrium steady state.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The "standard" chip-firing model. Physical analogies

Real

hyperplar arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions. Let A = -sgn D^T V ⊆ {−1,0,1}^m be the set of attainable activities. (it's finite, centrally symmetric,...)

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The "standard" chip-firing model. Physical analogies

Real

hyperplar arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

- Let A = -sgn D^T V ⊆ {−1,0,1}^m be the set of attainable activities. (it's finite, centrally symmetric,...)
- For $\alpha \in \mathcal{A}$, the set $\Delta_{\alpha} = \{ \mathbf{v} \in \mathcal{V} : \mathbf{v}^{\Delta} = \alpha \}$ is a relatively open cone pointed at **0**.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The "standard" chip-firing model. Physical analogies.

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions.

- Let A = -sgn D^T V ⊆ {−1,0,1}^m be the set of attainable activities. (it's finite, centrally symmetric,...)
- For $\alpha \in \mathcal{A}$, the set $\Delta_{\alpha} = \{ \mathbf{v} \in \mathcal{V} : \mathbf{v}^{\Delta} = \alpha \}$ is a relatively open cone pointed at **0**.

So

$$\mathcal{V} = \bigsqcup_{\alpha \in \mathcal{A}} \Delta_{\alpha}$$

is a polyhedral fan decomposition of $\boldsymbol{\mathcal{V}}.$

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The "standard" chip-firing model. Physical analogies

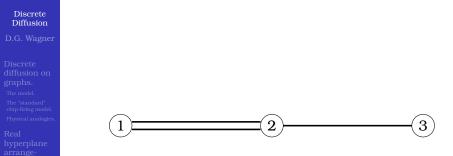
Real hyperpland arrangements.

Equilibrium steady state.

Non-equilibrium steady state. Questions

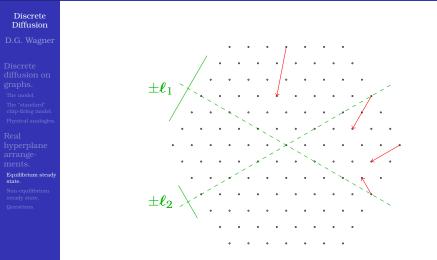
- Let A = -sgn D^T V ⊆ {−1,0,1}^m be the set of attainable activities. (it's finite, centrally symmetric,...)
- For $\alpha \in \mathcal{A}$, the set $\Delta_{\alpha} = \{ \mathbf{v} \in \mathcal{V} : \mathbf{v}^{\Delta} = \alpha \}$ is a relatively open cone pointed at **0**.

So

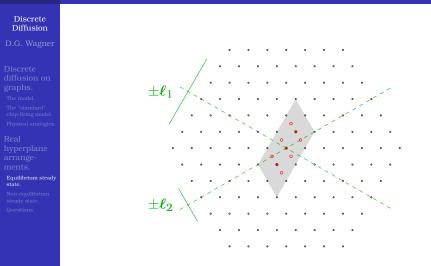

$$\mathcal{V} = \bigsqcup_{\alpha \in \mathcal{A}} \Delta_{\alpha}$$

is a polyhedral fan decomposition of \mathcal{V} .

For α ∈ A, let s_α = (-1/2)Dα be the site of Δ_α. (Note: it is possible that s_α ∉ Δ_α.)


an example

- Equilibrium stead
- Non-equilibrium steady state. Questions.



Δ_{α} and $D\alpha$ for $\alpha \in \mathcal{A}$

-convDA and \mathbf{s}_{α} for $\alpha \in A$

visualizing the LN potential

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

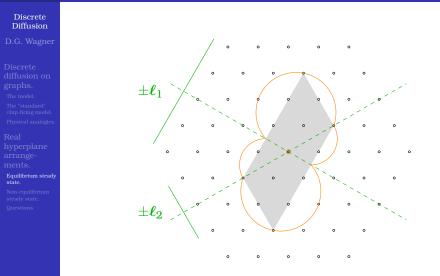
The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

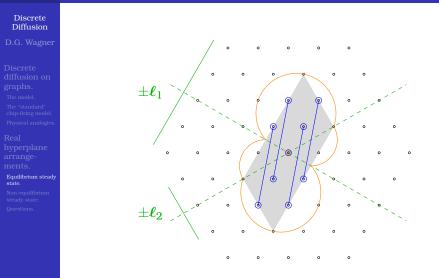
Non-equilibrium steady state.

Proposition


For $\mathbf{v} \in \Delta_{\alpha}$,

$$\operatorname{Pot}_{\mathcal{L}}(\mathbf{v}) = (\mathbf{v} - \mathbf{s}_{\alpha})^{\mathsf{T}} (\mathbf{v} - \mathbf{s}_{\alpha}) - \mathbf{s}_{\alpha}^{\mathsf{T}} \mathbf{s}_{\alpha}.$$

On Δ_{α} , that is the squared distance to \mathbf{s}_{α} minus the squared length of \mathbf{s}_{α} .



the zero set of $Pot_{\mathcal{L}}$

the steady states

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard"

chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

non-equilibrium steady state

Discrete
Diffusion
Non-equilibrium steady state.

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The "standard" chip-firing model. Physical analogies

Real hyperplar arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

Consider the diffusion $\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots$

Discrete Diffusion

D.G. Wagner

Discrete diffusion of graphs.

The model. The "standard" chip-firing model. Physical analogies

Real hyperpla arrange

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

Consider the diffusion $\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots$

• Assume that this is eventually periodic in the following sense:

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standard" chip-firing model. Physical analogies

Real

hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

- **Consider the diffusion** $\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots$
- Assume that this is eventually periodic in the following sense:

there are $\mathbf{b} \in \mathcal{V}$ and $T \ge 0$ and $p \ge 1$ such that for all $t \ge T$, $\mathbf{c}_{t+p} = \mathbf{c}_t + p\mathbf{b}$

Discrete Diffusion

D.G. Wagner

Discrete diffusion or graphs.

The model. The "standard" chip-firing model. Physical analogies

Real hyperplar arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

- **Consider the diffusion** $\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots$
- Assume that this is eventually periodic in the following sense:
 - there are $\mathbf{b} \in \mathcal{V}$ and $T \ge 0$ and $p \ge 1$ such that for all $t \ge T$, $\mathbf{c}_{t+p} = \mathbf{c}_t + p\mathbf{b}$
- (So **b** is the average "buildup/backlog" per time step.)

Discrete Diffusion

- D.G. Wagner
- Discrete diffusion on graphs.
- The model. The "standard" chip-firing model. Physical analogies
- Real hyperplan arrangements.
- Equilibrium steady state.
- Non-equilibrium steady state.

- Consider the diffusion $\mathbf{c}_0, \mathbf{c}_1, \mathbf{c}_2, \dots$
- Assume that this is eventually periodic in the following sense:
 - there are $\mathbf{b} \in \mathcal{V}$ and $T \ge 0$ and $p \ge 1$ such that for all $t \ge T$, $\mathbf{c}_{t+p} = \mathbf{c}_t + p\mathbf{b}$
- (So **b** is the average "buildup/backlog" per time step.)
- (Conjecture: this happens for input confined to a lattice.)

Discrete Diffusion
D.G. Wagner
Non-equilibrium steady state.

Discrete Diffusion

D.G. Wagner

Note that

$$p\mathbf{b} = \mathbf{c}_{T+p} - \mathbf{c}_T = \sum_{i=T}^{T+p-1} \left(D \mathbf{c}_i^{\scriptscriptstyle riangle} + \mathbf{h}
ight).$$

The model. The "standard" chip-firing mode Physical analogi

Real hyperplan arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

Discrete Diffusion

D.G. Wagner

Non-equilibrium steady state.

Note that

$$p\mathbf{b} \,=\, \mathbf{c}_{T+p} - \mathbf{c}_T \,=\, \sum_{i=T}^{T+p-1} ig(D \mathbf{c}_i^{\scriptscriptstyle riangle} + \mathbf{h} ig) \,.$$

So $\mathbf{b} = \mathbf{h} + D\mathbf{j}$, where

$$\mathbf{j} = \frac{1}{p} \sum_{i=T}^{T+p-1} \mathbf{c}_i^{\scriptscriptstyle \triangle}.$$

Discrete Diffusion

D.G. Wagner

Note that

$$p\mathbf{b}\,=\,\mathbf{c}_{T+p}-\mathbf{c}_{T}\,=\,\sum_{i=T}^{T+p-1}\left(D\mathbf{c}_{i}^{\scriptscriptstyle{ redsymbol{\Delta}}}+\mathbf{h}
ight).$$

Real hyperplane arrangements

Equilibrium steady state.

Non-equilibrium steady state.

So $\mathbf{b} = \mathbf{h} + D\mathbf{j}$, where

$$\mathbf{j} = rac{1}{p}\sum_{i=T}^{T+p-1} \mathbf{c}_i^{\scriptscriptstyle riangle}.$$

• Notice that $-1 \leq j \leq 1$ coordinatewise in \mathbb{R}^m .

the response polytope

Discrete Diffusion
Non-equilibrium steady state. Questions.

the response polytope

D.G. Wagner

Discrete diffusion on graphs.

The "standard" chip-firing model. Physical analogies

Real hyperpland arrangements.

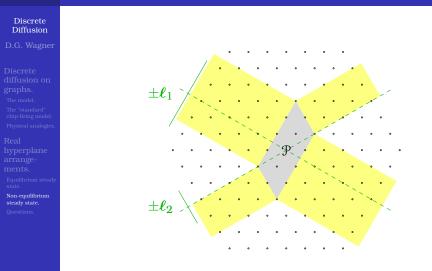
Equilibrium steady state.

Non-equilibrium steady state.

Questions.

• Let $\mathcal{P} = -\text{conv}D\mathcal{A}$.

the response polytope


Discrete Diffusion

- D.G. Wagner
- Discrete diffusion on graphs.
- The model. The "standard" chip-firing model. Physical analogies.
- Real hyperplar arrangements.
- Equilibrium steady state.
- Non-equilibrium steady state.
- Questions.

- Let $\mathcal{P} = -\text{conv}D\mathcal{A}$.
- In the graph case, these are the vectors in ℝ^V that result from flows that are bounded by 1 on each edge.

$\mathbf{h} - \mathbf{b}$ is in \mathcal{P}

current projects/conjectures

Discrete
Diffusion
Non-equilibrium
steady state. Questions.

current projects/conjectures

Discrete Diffusion

D.G. Wagner

diffusion on graphs. The model. The "standard" chin-firing model

chip-firing model. Physical analogies

Real hyperpla arrange-

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

In the limit of continuous time, the induced currents j are determined by minimizing b^Tb and j^Tj (and...?) subject to h − b ∈ P.

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard"

chip-firing model. Physical analogies.

Real hyperpland arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

- In the limit of continuous time, the induced currents j are determined by minimizing b^Tb and j^Tj (and...?) subject to h − b ∈ P.
- In the case of discrete time, what is $\mathbf{c}_{t+1}^{\mathsf{T}}\mathbf{c}_t$ when $\mathbf{h} \neq \mathbf{0}$?

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

- In the limit of continuous time, the induced currents j are determined by minimizing b^Tb and j^Tj (and...?) subject to h − b ∈ P.
- In the case of discrete time, what is $\mathbf{c}_{t+1}^{\mathsf{T}}\mathbf{c}_t$ when $\mathbf{h} \neq \mathbf{0}$?
- Generalize $Pot_{\mathcal{L}}$ accordingly.

D.G. Wagner

- Discrete diffusion on graphs. The model.
- The "standard" chip-firing model. Physical analogies.

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

- In the limit of continuous time, the induced currents j are determined by minimizing b^Tb and j^Tj (and...?) subject to h − b ∈ P.
- In the case of discrete time, what is $\mathbf{c}_{t+1}^{\mathsf{T}}\mathbf{c}_t$ when $\mathbf{h} \neq \mathbf{0}$?
- Generalize $Pot_{\mathcal{L}}$ accordingly.
- Eventual periodicity is not required.

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium stead state.

Non-equilibrium steady state.

Questions.

questions

Questions.

questions

Discrete

questions

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyper

arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

■ When **h** = **0**, are there examples in which the sequence

 $Pot_{\mathcal{L}}(\boldsymbol{c}_{0}), Pot_{\mathcal{L}}(\boldsymbol{c}_{1}), Pot_{\mathcal{L}}(\boldsymbol{c}_{2}), Pot_{\mathcal{L}}(\boldsymbol{c}_{3}), \dots$

does not attain its limit?

questions

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chindiring model

chip-hring model. Physical analogies

Real hyperpland arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

■ When **h** = **0**, are there examples in which the sequence

 $Pot_{\mathcal{L}}(\boldsymbol{c}_{0}), Pot_{\mathcal{L}}(\boldsymbol{c}_{1}), Pot_{\mathcal{L}}(\boldsymbol{c}_{2}), Pot_{\mathcal{L}}(\boldsymbol{c}_{3}), ...$

does not attain its limit?

Can one say something quantitative about the lengths of the periods in (special) eventually periodic cases?

questions

Discrete Diffusion

D.G. Wagner

Discrete diffusion on graphs. The model. The "standard" chin firing model

chip-firing model. Physical analogies

Real hyperplane arrangements.

Equilibrium steady state.

Non-equilibrium steady state.

Questions.

■ When **h** = **0**, are there examples in which the sequence

 $Pot_{\mathcal{L}}(\boldsymbol{c}_{0}), Pot_{\mathcal{L}}(\boldsymbol{c}_{1}), Pot_{\mathcal{L}}(\boldsymbol{c}_{2}), Pot_{\mathcal{L}}(\boldsymbol{c}_{3}), ...$

does not attain its limit?

- Can one say something quantitative about the lengths of the periods in (special) eventually periodic cases?
- Issues regarding irrationality and non-periodic steady states.

D.G. Wagner

Discrete diffusion or graphs. The model.

The "standard" chip-firing model. Physical analogies

Real hyperplan arrangements.

Equilibrium stead state.

Non-equilibrium steady state.

Questions.

Thank You!