
Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

Discrete Diffusion on Graphs
and Real Hyperplane Arrangements

D.G. Wagner

Department of C&O
University of Waterloo

Tutte Colloquium
University of Waterloo

June 26, 2020



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

Overview

1 Discrete diffusion on graphs.
The model.
The “standard” chip-firing model.
Physical analogies.

2 Real hyperplane arrangements.
Equilibrium steady state.
Non-equilibrium steady state.
Questions.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

Overview

1 Discrete diffusion on graphs.
The model.
The “standard” chip-firing model.
Physical analogies.

2 Real hyperplane arrangements.
Equilibrium steady state.
Non-equilibrium steady state.
Questions.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

Thanks to

Danielle Cox (MSVU)
Martin van Bommel (StFXU)

Stephen Finbow (StFXU)

for the

East Coast Combinatorics Conference
(Antigonish, 2019)

where Danielle’s cohort were talking about this.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

the model

Duffy, Lidbetter, Messinger, Nowakowski (2016)
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a constant function on V as t →∞.
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Let D be the n-by-m matrix with `j as the j-th
column, for j = 1, ...,m.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

real hyperplane arrangements

Standard orthonormal basis δ1, ..., δn of V = Rn.

A finite set of nonzero vectors L = {`1, ..., `m} in V.

Hyperplanes Hj = ker(`T
j ) for j = 1, ...,m.

Let D be the n-by-m matrix with `j as the j-th
column, for j = 1, ...,m.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

real hyperplane arrangements

Standard orthonormal basis δ1, ..., δn of V = Rn.

A finite set of nonzero vectors L = {`1, ..., `m} in V.

Hyperplanes Hj = ker(`T
j ) for j = 1, ...,m.

Let D be the n-by-m matrix with `j as the j-th
column, for j = 1, ...,m.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

real hyperplane arrangements

Standard orthonormal basis δ1, ..., δn of V = Rn.

A finite set of nonzero vectors L = {`1, ..., `m} in V.

Hyperplanes Hj = ker(`T
j ) for j = 1, ...,m.

Let D be the n-by-m matrix with `j as the j-th
column, for j = 1, ...,m.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

real hyperplane arrangements

Standard orthonormal basis δ1, ..., δn of V = Rn.

A finite set of nonzero vectors L = {`1, ..., `m} in V.

Hyperplanes Hj = ker(`T
j ) for j = 1, ...,m.

Let D be the n-by-m matrix with `j as the j-th
column, for j = 1, ...,m.



Discrete
Diffusion

D.G. Wagner

Discrete
diffusion on
graphs.
The model.

The “standard”
chip-firing model.

Physical analogies.

Real
hyperplane
arrange-
ments.
Equilibrium steady
state.

Non-equilibrium
steady state.

Questions.

discrete diffusion on L

Initial state c0 ∈ V at time t = 0.

For all t ∈ N,

ct+1 = ct + DcM
t + h.

(exactly the same equation as the graph case)

The external supply h ∈ V need not be in the span
of L,

but the general case reduces to that case.
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Long and Narayanan (2017) showed that for
graphs and when h = 0, the sequence (cT

t+1ct) is
weakly decreasing and bounded below, proving
the following theorem in that case.
Define PotL : V→ R by

PotL(v) = vTv − |DTv|1
for all v ∈ V.
Note that |DTv|1 =

∑m
j=1 |`

T
j v|.

Lemma

Assume h = 0. Then for all t ∈ N,

cT
t+1ct = PotL(ct).
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Long-Narayanan (2017) updated by W.

Theorem (at present)

Assume h = 0.

For all v ∈ V,

PotL(v) ≥ −1
4

max{|DTu|1 : uTu = 1}2.

For all t ∈ N, PotL(ct) ≥ PotL(ct+1).
If the sequence (PotL(ct)) attains its limit, then the
sequence (ct) is eventually periodic, of period one or
two.

(If all of c0, `1, ..., `m are in a lattice in V, then the
sequence (PotL(ct)) attains its limit.)
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visualizing the LN potential

Let A = −sgn DT V ⊆ {−1,0,1}m be the set of
attainable activities. (it’s finite, centrally
symmetric,... )

For α ∈ A, the set ∆α = {v ∈ V : vM = α} is a
relatively open cone pointed at 0.

So
V =

⊔
α∈A

∆α

is a polyhedral fan decomposition of V.

For α ∈ A, let sα = (−1/2)Dα be the site of ∆α.
(Note: it is possible that sα 6∈ ∆α.)
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Proposition

For v ∈ ∆α,

PotL(v) = (v− sα)T(v− sα)− sT
αsα.

On ∆α, that is the squared distance to sα minus the
squared length of sα.
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what happens if h 6= 0?

Consider the diffusion c0,c1,c2, ...

Assume that this is eventually periodic
in the following sense:

there are b ∈ V and T ≥ 0 and p ≥ 1 such that
for all t ≥ T , ct+p = ct + pb
(So b is the average “buildup/backlog” per time
step.)

(Conjecture: this happens for input confined to a
lattice.)
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Note that

pb = cT+p − cT =

T+p−1∑
i=T

(
DcM

i + h
)
.

So b = h + Dj, where

j =
1
p

T+p−1∑
i=T

cM
i .

Notice that −1 ≤ j ≤ 1 coordinatewise in Rm .
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In the graph case, these are the vectors in RV that
result from flows that are bounded by 1 on each
edge.
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In the limit of continuous time, the induced
currents j are determined by minimizing bTb and
jTj (and...?) subject to h− b ∈ P.

In the case of discrete time, what is cT
t+1ct when

h 6= 0?

Generalize PotL accordingly.

Eventual periodicity is not required.
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