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Abstract

In general, computation of the efficient portfolios for a portfolio optimization problem

requires the inversion of the covariance matrix Σ, which is computationally quite expensive.

Best and Hlouskova[1] showed that a portfolio optimization problem can be solved in

closed form in the special case that assets are uncorrelated. However, the assumption of

uncorrelated assets is unduly restrictive. The aim of this essay is to generalize a closed

form solution of the mean-variance portfolio selection problem to partially correlated and

bounded assets. Although we only discuss a triple-branch covariance matrix (See Definition

2.1), the explicit representation is sufficient to analyze the expected return and the variance

of the efficient portfolios. It shows insight into the nature of the efficient frontier in the

presence of inequality constraints. In this essay, we give a closed form solution for a portfolio

optimization problem having lower bounds for two cases; a universe of only risky assets

and a universe of risky assets plus an additional risk free asset. In each of theses cases, the

assets are partially correlated in the sense that covariance matrix is a triple-branch matrix.
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Chapter 1

Introduction

The Mean-Variance (M-V) portfolio selection problem and the related Capital Asset Pric-

ing Model (CAPM) have been studied by many researchers under a variety of assumptions.

Brennan [4] addressed the issue of borrowing and lending rates. Turnbull [10] also consid-

ered this along with personal taxation, uncertain inflation and non-market assets. Levy [7]

dealt with the problem of short sales as did Schnabel [5].

In general, portfolio optimization problems with inequality constraints must be solved

with a QP (quadratic programming) algorithm [2]. It is often impossible to obtain a

closed form solution. Best and Hlouskova [1] developed a closed form solution for the

mean-variance portfolio selection problem for uncorrelated and bounded assets when an

additional technical assumption was satisfied. However, the assumption of uncorrelated

assets is unduly restrictive.

The contribution of this essay is as follows. In this essay, we discuss a special covari-

ance matrix. The form of the matrix is that the diagonal elements and the last row and
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column are nonzero, while the others are zero. This matrix is called triple-branch matrix.

Although we only discuss a special covariance matrix, the matrix can reflect the partial

correlation between asset xi and asset xn. When the covariance matrix is positive definite,

and some additional technical assumptions are satisfied, we derive a closed form solution

for the efficient portfolios. Obtaining an explicit representation of efficient asset holdings

subject to bound constraints with the triple-branch covariance matrix does give insight

into the efficient frontier in the presence of inequality constraints.

In Chapter 2, we derive a closed form solution for a portfolio optimization problem with

just a budget constraint. This illustrates the nature of the triple-branch covariance matrix.

However, such a model will generally have extremely large long and short positions which

are unrealistic. Therefore, in Chapter 3, we deal with a model to preclude short selling,

i.e., we require that all components of the asset holdings must be non-negative.

In Chapter 4, we deal with a variation of the model of Chapter 3. In addition to the n

risky assets, we suppose that there is an additional asset which is risk free. The risk free

asset has a zero variance and a zero covariance with the risky asset. An example of a risk

free asset is Treasury bills.

In Chapter 5, we will find that the uncorrelated and bounded assets discussed by Best

and Hlouskova [1] are a special case of the Partially Correlated, Bounded Assets model

presented by the essay.

Finally, we give the conclusions.
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Chapter 2

Assets with an Equality Constraint

In this chapter, We will discuss the portfolio optimization problem without inequality

constraints

min{−tµ′x +
1

2
x′Σx | l′x = 1}, (2.1)

where Σ is a triple-branch matrix, l is an n-vector of ones, µ is an n-vector of expected

returns, x is an n-vector of asset holdings to be determined and t is a non-negative scalar

parameter denoting the investor’s aversion to risk.

2.1 Some Notations and Definitions

The type of covariance matrix we will be using is formulated in the following definition.
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Definition 2.1. A (n, n) matrix Σ is called triple-branch matrix, if

Σ =























σ1 0 · · · b1

0 σ2 · · · b2

· · · · · · · · · · · ·

0 0 · · · bn−1

b1 b2 · · · σn























where σ1, · · · , σn and b1, · · · , bn−1 can be non-zero.

Besides being used in financial models, in modern control theory the parameter matrix

of an nonlinear adjustment system is often in this triple-branch form [6].

Prime(’) denotes matrix transposition. Any non-primed vector is a column vector.

For a more concise formulation of a optimal solution, we define the following constants.

θ1k = (
1

σk

+ ... +
1

σn−1
), (2.2)

θ2k = (
µk

σk

+ ... +
µn−1

σn−1
), (2.3)

θ3k = (
b2
k

σk

+ ... +
b2
n−1

σn−1
), (2.4)

θ4k = (
bk

σk

+ ... +
bn−1

σn−1

− 1)/(σn − θ3k), (2.5)

θ5k = (
µkbk

σk

+ ... +
µn−1bn−1

σn−1
− µn)/(σn − θ3k), (2.6)

θ6k = (
µ2

k

σk

+ ... +
µ2

n−1

σn−1
), (2.7)

Q1k =
1

θ1k + θ2
4k(σn − θ3k)

, (2.8)
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Q2k = Q1k(θ2k + θ4kθ5k(σn − θ3k)), (2.9)

for k = 1, ..., n − 1.

2.2 A Closed Form Solution for Assets with an Equal-

ity Constraint

The solution of (2.1) can be formulated concisely in terms of the constants from (2.2) to

(2.9).

Assumption 2.1.

1) σi > 0, i = 1, · · ·n, σn − θ31 > o.

Assumption 2.1 guarantees the matrix Σ positive definite. Because Σ is positive defi-

nite, it is also invertible and furthermore the optimality conditions (Karush-Kuhn-Tucker

conditions) are both necessary and sufficient for optimality.

The optimality conditions for (2.1) are

tµ − Σx = ul, l′x = 1. (2.10)

Based on these conditions, (2.1) has the optimal solution [3]

x = h0 + th1 =
Σ−1l

l′Σ−1l
+ t(Σ−1µ −

l′Σ−1µ

l′Σ−1l
Σ−1l), (2.11)

u =
tl′Σ−1µ − 1

l′Σ−1l
. (2.12)
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The variance and expected return of the efficient portfolios are

σ2
p = h′

0Σh0 + 2th′

1Σh0 + t2h′

1Σh1, (2.13)

and

µp = µ′h0 + tµ′h1, (2.14)

respectively.

Lemma 2.1. Let A be an m by m non-singular matrix with

A−1 =

















a11 · · · · · · a1m

· · · · · · · · · · · ·

· · · · · · · · · · · ·

am1 · · · · · · amm

















,

and let Ā be a matrix which is the same as A except that the kth column of A has been

replaced by the vector

β = [β1, · · · , · · · , βm]′.

Suppose y = A−1β, thus the coefficients āij of (Ā)−1 satisfy

āij =











aij − (yi/yk)a
kj, i 6= k,

akj/yk, i = k.

Proof is given in [9]. �

Similarly, there is

Lemma 2.2. Suppose that Ā is a matrix which is the same as A except that the kth row

of A has been replaced by the row vector

β = [β1, · · · , · · · , βm].
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Let y = βA−1, then the coefficients āij of (Ā)−1 satisfy

āij =











aij − (yj/yk)a
ik, j 6= k,

aik/yk, j = k.

Theorem 2.1. Let Assumption 2.1 be satisfied. Then

Σ−1 =



























































1
σi

+ b2

i

σ2

i σnyn
, i = j 6= n,

bibj

σiσjσnyn
, i 6= j, i 6= n, j 6= n,

−
bj

σjσnyn
, i 6= j, i = n,

− bi

σiσnyn
, i 6= j, j = n,

1
σnyn

, i = j = n,

(2.15)

where

yn = 1 −
θ31

σn

. (2.16)

Proof: Let

A1 =

















σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · σn

















,

Ā1 =























σ1 0 · · · b1

0 σ2 · · · b2

· · · · · · · · · · · ·

0 0 · · · bn−2

0 0 · · · σn























,

7



β1 = [b1, · · · , bn−1, σn]′,

and

y1 = A−1
1 β1 = [

b1

σ1

, · · · ,
bn−1

σn−1

, 1]′.

Lemma 2.1 implies that the coefficients ā1
ij of (Ā1)

−1 satisfy

ā1
ij =



























1
σi

, i = j,

−bi

σiσn
, i 6= j, j = n,

0, otherwise.

(2.17)

Therefore Σ is a matrix whose nth row of Ā1 is replaced by the row vector

β1 = [b1, · · · , bn−1, σn].

Suppose

y = βĀ1
−1

= [
b1

σ1
, . . . ,

bn−1

σn−1
, 1 −

θ31

σn

], (2.18)

then Lemma 2.2 with (2.17) and (2.18) implies that the coefficients aij of Σ−1 satisfy

aij =



























































1
σi

+ b2

i

σ2

i σnyn
, i = j 6= n,

bibj

σiσjσnyn
, i 6= j, i 6= n, j 6= n,

−
bj

σjσnyn
, i 6= j, i = n,

− bi

σiσnyn
, i 6= j, j = n,

1
σnyn

, i = j = n,

(2.19)

which is the desired result. �
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Using (2.11) and Theorem 2.1, we can determine the efficient portfolios as follows.

First observe

l′Σ−1 =





































1
σ1

− b1

σ1σnyn
+ b1

σ1σnyn

n−1
∑

i=1

bi

σi

· · ·

1
σi
− bi

σiσnyn
+ bi

σiσnyn

n−1
∑

i=1

bi

σi

· · ·

1
σnyn

− 1
σnyn

n−1
∑

i=1

bi

σi





































′

=































1
σ1

+ b1θ41

σ1

· · ·

1
σi

+ biθ41

σi

· · ·

−θ41































′

, (2.20)

and

Σ−1µ =





































µ1

σ1

− b1µn

σ1σnyn
+ b1

σ1σnyn

n−1
∑

i=1

biµi

σi

· · ·

µi

σi
− biµn

σiσnyn
+ bi

σiσnyn

n−1
∑

i=1

biµi

σi

· · ·

µn

σnyn
− 1

σnyn

n−1
∑

i=1

biµi

σi





































=































µ1

σ1

+ b1θ51

σ1

· · ·

µi

σi
+ biθ51

σi

· · ·

−θ51































. (2.21)

From (2.20) and (2.21),

l′Σ−1l =

n−1
∑

i=1

1

σi

+
1

σnyn

−
2

σnyn

n−1
∑

i=1

bi

σi

+
1

σnyn

(

n−1
∑

i=1

bi

σi

)2

= θ11 + θ2
41(σn − θ31),

l′Σ−1µ =
n−1
∑

i=1

µi

σi

+
µn

σnyn

−
1

σnyn

n−1
∑

i=1

biµi

σi

9



−
µn

σnyn

n−1
∑

i=1

bi

σi

+
1

σnyn

(
n−1
∑

i=1

bi

σi

)(
n−1
∑

i=1

biµi

σi

)

= θ21 + θ41θ51(σn − θ31).

Therefore, we obtain the optimal solution for (2.1) as

xi =
1
σi

+ bi

σi

θ41

θ11 + θ2
41(σn − θ31)

+t[
µi

σi

+
bi

σi

θ51 −
θ21 + θ41θ51(σn − θ31)

θ11 + θ2
41(σn − θ31)

(
1

σi

+
bi

σi

θ41)]

= [Q11(1 + biθ41) + t(µi + biθ51 − Q21(1 + biθ41))]/σi, (2.22)

i = 1, 2, · · · , n − 1,

xn =
−θ41

θ11 + θ2
41(σn − θ31)

+ t[−θ51 +
θ21 + θ41θ51(σn − θ31)

θ11 + θ2
41(σn − θ31)

θ41]

= −θ41Q11 + t[−θ51 + Q21θ41], (2.23)

u = −Q11 + tQ21. (2.24)

The expected return is

µp = µ′x(t) = Q11

n−1
∑

i=1

µi

σi

[(1 + biθ41) + t(µiθ51 − Q21(1 + biθ41)]

−Q11µnθ41 + tµn(−θ51 + Q21θ41)

= Q21 + t(θ61 + θ2
51(σn − θ31) −

Q2
21

Q11
).

The variance is

σ2
p = h′

0Σh0 + µ′h1t
2,

where

h′

0Σh0 = Q2
11θ11 − Q2

11θ31θ
2
41 + σnQ2

11θ
2
41 = Q11, (2.25)
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and

µ′h1t
2 = (θ61 + θ2

51(σn − θ31) − Q21θ21 − Q21θ41θ51(σn − θ31))t
2

= (θ61 + θ2
51(σn − θ31) −

Q2
21

Q11
)t2.

Hence

σ2
p = Q11 + (θ61 + θ2

51(σn − θ31) −
Q2

21

Q11
)t2

From the above discussions, we obtain the following result.

Theorem 2.2. Let Assumption 2.1 be satisfied and
∑

be triple-branch matrix, then the

optimal solution for (2.1) is

xi = [Q11(1 + biθ41) + t(µi + biθ51 − Q21(1 + biθ41))]/σi,

i = 1, 2, · · · , n − 1,

xn = −θ41Q11 + t(−θ51 + Q21θ41),

and the multiplier for the budget constraint is

u = −Q11 + tQ21,

where θ41, θ51, Q11, and Q21 are defined from (2.5) to (2.9).
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Chapter 3

Assets with Lower Bounds

3.1 Several Important Results

In this section, we extend the results of Chapter 2 by augmenting the model problem (2.1)

with non-negativity constraints.

One model problem for the section is thus

min{−tµ′x +
1

2
x′Σx | l′x = 1, x ≥ 0}. (3.1)

We require the following

Assumption 3.1.

1) σi > 0, i = 1, · · ·n, σn − θ31 > o,

2) −θ4k > 0, 1 + biθ4k > 0, k = 1, · · ·n − 1, i = k, · · ·n − 1,

3) bi ≥ bi+1, i = 1, · · ·n − 2,
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4) µi < µi+1, i = 1, · · ·n − 1,

5) θ5k ≤ µnθ4k, k = 1, · · · , n − 1.

For k = 0, 1, · · · , n, define

tk =



























0, k = 0,

Q1k(1+bkθ4k)
Q2k(1+bkθ4k)−(µk+bkθ5k) , k = 1, · · · , n − 1,

∞, k = n.

(3.2)

For k = 1, · · · , n − 1, define










































xk = xk(t) = ((xk)1, (xk)2, · · · , (xk)n)′ where,

(xk)i = 0, i = 1, · · · , k − 1,

(xk)i = (xk(t))i

= [Q1k(1 + biθ4k) + t(µi + biθ5k − Q2k(1 + biθ4k))]/σi, i = k, · · · , n − 1,

(xk)n = −θ4kQ1k + t[−θ5k + Q2kθ4k],

(3.3)







(xn)i = 0, i = 1, · · · , n − 1,

(xn)n = 1,
(3.4)

uk = uk(t) = −Q1k + tQ2k, (3.5)

un(t) = −σn + tµn, (3.6)































vk = vk(t) = ((vk)1, (vk)2, · · · , (vk)n)′ where,

(vk)i = (vk(t))i

= −Q1k(1 + biθ4k) + t[Q2k(1 + biθ4k) − biθ5k − µi] i = 1, · · · , k − 1,

(vk)i = 0, i = k, · · · , n,

(3.7)
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(vn)i = (vn(t))i

= (−σn + bi) + t(µn − µi) i = 1, · · · , n − 1,

(vn)n = 0.

(3.8)

Lemma 3.1. For k = 1, · · · , n − 2, we have

Q1k(1 + bkθ4k)

Q2k(1 + bkθ4k) − (µk + bkθ5k)
=

Q1,k+1(1 + bkθ4,k+1)

Q2,k+1(1 + bkθ4,k+1) − (µk + bkθ5,k+1)
. (3.9)

Proof: From (2.8) and (2.9), we obtain

Q1k(1 + bkθ4k)

Q2k(1 + bkθ4k) − (µk + bkθ5k)

=
1 + bkθ4k

(1 + bkθ4k)(θ2k + θ4kθ5k(σn − θ3k)) − (µk + bkθ5k)(θ1k + θ2
4k)(σn − θ3k)

=
1 + bkθ4k

(θ2k − µkθ1k) + (σn − θ3k)(θ4kθ5k − µkθ2
4k) + bk(θ4kθ2k − θ5kθ1k)

.

Since

θ2k − µkθ1k = θ2,k+1 − µkθ1(k+1),

(σn − θ3k)(θ4kθ5k − µkθ
2
4k)

=
1

(σn − θ3k)
[(

bk

σk

+ θ4,k+1(σn − θ3(k+1)))(
bkµk

σk

+ θ5,k+1(σn − θ3(k+1)))

−µk(
bk

σk

+ θ4,k+1(σn − θ3(k+1)))
2]

=
(σn − θ3(k+1))

2

(σn − θ3k)
(θ4,k+1θ5,k+1 − µkθ

2
4,k+1)

+
(σn − θ3(k+1))

(σn − θ3k)

bk

σk

θ5,k+1 −
(σn − θ3(k+1))

(σn − θ3k)

µkbk

σk

θ4,k+1,
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and

bk(θ4kθ2k − θ5kθ1k)

=
bk

(σn − θ3k)
[(

bk

σk

+ θ4,k+1(σn − θ3(k+1)))(
µk

σk

+ θ2,k+1)

−(
µkbk

σk

+ θ5,k+1(σn − θ3(k+1)))(
1

σk

+ θ1(k+1))]

=
bk

(σn − θ3k)
(θ4,k+1θ2,k+1 − θ5,k+1θ1(k+1))(σn − θ3(k+1))

+
bk

(σn − θ3k)
(
bk

σk

θ2,k+1 −
µkbk

σk

θ1(k+1))

+
bk(σn − θ3(k+1))

(σn − θ3k)
(
µk

σk

θ4,k+1 −
1

σk

θ5,k+1).

Then, for ease of notation, define

Θ1 = θ2,k+1 − µkθ1(k+1),

Θ2 = θ4,k+1θ5,k+1 − µkθ
2
4,k+1,

Θ3 = θ4,k+1θ2,k+1 − θ5,k+1θ1(k+1).

Hence

Q1k(1 + bkθ4k)

Q2k(1 + bkθ4k) − (µk + bkθ5k)

=
1 + bkθ4,k+1

Θ1 + (σn − θ3(k+1))Θ2 + bkΘ3

=
Q1,k+1(1 + bkθ4,k+1)

Q2,k+1(1 + bkθ4,k+1) − (µk + bkθ5,k+1)
.

�

Lemma 3.2. Let Assumption 3.1 be satisfied. Then for k = 1, · · · , n − 1,

−θ5k + Q2kθ4k ≥ 0. (3.10)
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Proof: (3.10) can be easily obtained from Assumption 3.1. Since Assumption 3.1 (1)

and (4) imply that

θ2k

θ1k

≤ µn, (3.11)

then, this inequality with Assumption 3.1 (2) and (5) implies that

−θ5kθ1k + θ4kθ2k ≥ 0, (3.12)

which implies that for k = 1, · · · , n − 1,

−θ5k + Q2kθ4k =
−θ5kθ1k + θ4kθ2k

θ1k + θ2
4k(σn − θ3k)

≥ 0.

�

Lemma 3.3. Let Assumption 3.1 be satisfied. Then for k = 1, · · · , n−1, i = 1, · · · , n−1,

µi + biθ5k − Q2k(1 + biθ4k) < µi+1 + bi+1θ5k − Q2k(1 + bi+1θ4k). (3.13)

Proof: From Assumption 3.1(3) and Lemma 3.2, we have

for k = 1, · · · , n − 1, i = k, · · · , n − 1,

(bi − bi+1)(θ5k − Q2kθ4k) ≤ 0. (3.14)

This with Assumption 3.1(4) implies that

µi + biθ5k − Q2k(1 + biθ4k) < µi+1 + bi+1θ5k − Q2k(1 + bi+1θ4k). (3.15)

�

Lemma 3.4. For k = 1, · · ·n,

l′xk = 1.
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Proof: Since for k = 1, · · ·n − 1,

l′xk =
n−1
∑

i=k

(xk)i + (xk)n

=
n−1
∑

i=k

Q1k(1 + biθ4k)

σi

− θ4kQ1k

+t[
n−1
∑

i=k

µi + biθ5k − Q2k(1 + biθ4k)

σi

− θ5k + Q2kθ4k],

and

n−1
∑

i=k

Q1k(1 + biθ4k)

σi

− θ4kQ1k

= Q1k(

n−1
∑

i=k

1

σi

+ θ4k

n−1
∑

i=k

bi

σi

) − θ4kQ1k

= Q1k(θ1k + θ4k(θ4k(σn − θ3k) + 1)) − θ4kQ1k

= Q1k(θ1k + θ2
4k(σn − θ3k))

= 1,

and

n−1
∑

i=k

µi + biθ5k − Q2k(1 + biθ4k)

σi

− θ5k + Q2kθ4k

=

n−1
∑

i=k

µi

σi

+ θ5k

n−1
∑

i=k

bi

σi

− Q2k(

n−1
∑

i=k

1

σi

+ θ4k

n−1
∑

i=k

bi

σi

) − θ5k + Q2kθ4k

= θ2k + θ5k(θ4k(σn − θ3k) + 1) − Q2k(θ1k + θ4k(θ4k(σn − θ3k) + 1)) − θ5k + Q2kθ4k

= θ2k + θ4kθ5k(σn − θ3k) − Q2k(θ1k + θ2
4k(σn − θ3k))

= θ2k + θ4kθ5k(σn − θ3k) − (θ2k + θ4kθ5k(σn − θ3k))
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= 0,

then for k = 1, · · ·n − 1,

l′xk = 1.

For k = n, from (3.4), we can directly obtain l′xn = 1.

So, l′xk = 1, for k = 1, · · ·n. �

Lemma 3.5. Let Assumption 3.1 be satisfied and t0, · · · , tn be defined by (3.2). Then for

k = 1, · · · , n, tk−1 < tk.

Proof: From Lemma 3.4, we have that l′xk = 1 is satisfied for any value of the parameter

t. This implies that the sum of the coefficients of t in xk equals to zero, i.e.,

n−1
∑

i=k

µi + biθ5k − Q2k(1 + biθ4k)

σi

+ (−θ5k + Q2kθ4k) = 0. (3.16)

From Lemma 3.2, we have that

−θ5k + Q2kθ4k ≥ 0.

Then

n−1
∑

i=k

µi + biθ5k − Q2k(1 + biθ4k)

σi

≤ 0.

Lemma 3.2 and Lemma 3.3 imply the existence of an integer ρk with k ≤ ρk ≤ n − 1,

such that

µi + biθ5k − Q2k(1 + biθ4k) < 0, i = k, · · · , ρk and (3.17)

µi + biθ5k − Q2k(1 + biθ4k) ≥ 0, i = ρk + 1, · · · , n − 1. (3.18)
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Hence for k = 1, · · · , n − 1,

µk + b1θ5k − Q2k(1 + bkθ4k) < 0. (3.19)

(3.19) with Assumption 3.1 (2) implies that

t1 =
Q11(1 + b1θ41)

Q21(1 + b1θ41) − (µ1 + b1θ51)
> 0 = t0.

For k = 2, · · · , n − 2, Lemma 3.1 implies that

tk =
Q1k(1 + bkθ4k)

Q2k(1 + bkθ4k) − (µk + bkθ5k)

=
Q1,k+1(1 + bkθ4,k+1)

Q2,k+1(1 + bkθ4,k+1) − (µk + bkθ5,k+1)
.

From Lemma 3.2 and Assumption 3.1 (3), we obtain

bk(Q2,k+1θ4,k+1 − θ5,k+1) ≥ bk+1(Q2,k+1θ4,k+1 − θ5,k+1).

This inequality with Assumption 3.1 (4) implies

Q2,k+1(1 + bkθ4,k+1) − (µk + bkθ5,k+1)

> Q2,k+1(1 + bk+1θ4,k+1) − (µk+1 + bk+1θ5,k+1) > 0. (3.20)

(3.20) with Assumption 3.1 (2) and (3) implies that

Q1,k+1(1 + bkθ4,k+1)

Q2,k+1(1 + bkθ4,k+1) − (µk + bkθ5,k+1)

<
Q1,k+1(1 + b(k+1)θ4,k+1)

Q2,k+1(1 + b(k+1)θ4,k+1) − (µ(k+1) + b(k+1)θ5,k+1)
,

i.e.

tk < tk+1.

For k = n − 1, tk < tk+1 holds trivially and this completes the proof of Lemma 3.5.

�
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Lemma 3.6. For k = 1, · · · , n, i = 1, · · · , k − 1,

(vk(t))i ≥ 0, for t with t ≥ tk−1. (3.21)

Proof: From (3.2) to (3.7), for k = 1, · · · , n − 1, i = 1, · · · , k − 1,

(vk(tk−1))k−1

= −Q1k(1 + bk−1θ4k) +
Q1,k−1(1 + bk−1θ4,k−1)(Q2k(1 + bk−1θ4k) − bk−1θ5k − µk−1)

Q2,k−1(1 + bk−1θ4,k−1) − (µk−1 + bk−1θ5,k−1)
.

Re-arranging and then applying Lemma 3.1 gives

(vk(tk−1))k−1 = 0. (3.22)

Using (3.7), Assumptions 3.1 (2),(3), and Lemma 3.3, we have

(vk(t))i−1 ≥ (vk(t))i, 2 ≤ i ≤ k − 1, t ≥ 0. (3.23)

So

(vk(t))i−1 ≥ (vk(t))k−1. (3.24)

Using Lemma 3.3 and (3.19)

Q2k + bk−1(Q2kθ4k − θ5k) − µk−1 > Q2k + bk(Q2kθ4k − θ5k) − µk > 0. (3.25)

By definition of vk , (vk(t))k−1 are strictly increasing functions of t. This with (3.22)

and (3.24) implies that (3.21) is satisfied for all t with t ≥ tk−1 when k = 1, · · · , n−1, i =

1, · · · , k − 1.

In order to show (3.21), it remains to prove that for i = 1, · · · , n − 1,

(vn(t))i ≥ 0, for t with t ≥ tn−1. (3.26)
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We first prove that

tn−1 =
σn − bn−1

µn − µn−1

. (3.27)

Since

tn−1 =
Q1,n−1(1 + bn−1θ4,n−1)

Q2,n−1(1 + bn−1θ4,n−1) − (µn−1 + bn−1θ5,n−1)
, (3.28)

where

1 + bn−1θ4,n−1

= 1 +
bn−1(bn−1 − σn−1)

σn−1σn − b2
n−1

=
σn−1(σn − bn−1)

σn−1σn − b2
n−1

, (3.29)

and

Q2,n−1(1 + bn−1θ4,n−1)

Q1,n−1

= (θ2,n−1 + θ4,n−1θ5,n−1(σn − θ3,n−1))(1 + bn−1θ4,n−1)

=
µn−1(σn−1σn − b2

n−1) + (bn−1 − σn−1)(µn−1bn−1 − µnσn−1)

(σn−1σn − b2
n−1)

2
(σn − bn−1)

=
µn−1(σn − bn−1)(σn−1σn − b2

n−1)

(σn−1σn − b2
n−1)

2
+

bn−1(σn − bn−1)(µn−1bn−1 − µnσn−1)

(σn−1σn − b2
n−1)

2

−
σn−1(σn − bn−1)(µn−1bn−1 − µnσn−1)

(σn−1σn − b2
n−1)

2
, (3.30)

and

µn−1 + bn−1θ5,n−1

Q1,n−1

=
(µn−1(σn−1σn − b2

n−1) + bn−1(µn−1bn−1 − µnσn−1))((σn − bn−1) + (σn−1 − bn−1))

(σn−1σn − b2
n−1)

2
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=
µn−1(σn − bn−1)(σn−1σn − b2

n−1)

(σn−1σn − b2
n−1)

2
+

bn−1(σn − bn−1)(µn−1bn−1 − µnσn−1)

(σn−1σn − b2
n−1)

2

+
(µn−1(σn−1σn − b2

n−1) + bn−1(µn−1bn−1 − µnσn−1))(σn−1 − bn−1)

(σn−1σn − b2
n−1)

2
, (3.31)

then from (3.30) and (3.31), we obtain that

Q2,n−1(1 + bn−1θ4,n−1)

Q1,n−1
−

µn−1 + bn−1θ5,n−1

Q1,n−1

=
µnσn−1 − σn−1µn−1

σn−1σn − b2
n−1

.

Substitution this and (3.29) into (3.28), we proved (3.27). Now we will prove (3.26).

From (3.8) and Assumptions 3.1 (3),(4), we have that

(vn(t))i−1 ≥ (vn(t))i, 2 ≤ i ≤ n − 1, t ≥ 0. (3.32)

Since

(vn(tn−1))n−1 = −σn + bn−1 + tn−1(µn − µn−1),

then this with (3.27), we obtain that

(vn(tn−1))n−1 = 0. (3.33)

By definition of vn(t) , (vn(t))n−1 is strictly increasing function of t. This with (3.32)

and (3.33) implies that (3.26) is satisfied. �

3.2 A Closed Form Solution for Assets with Lower

Bounds

Theorem 3.1. Let Assumption 3.1 be satisfied and t0, · · · , tn be defined by (3.2). Then

for k = 1, · · · , n,
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(a) tk−1 < tk,

(b) x(t) = xk(t), for all t ∈ [tk−1, tk], is optimal for (3.1) with xk(t) being given by (3.3)

and (3.4),

(c) the multiplier for the budget constraint is given by u(t) = uk(t) for all t ∈ [tk−1, tk],

where uk(t) is given by (3.5) and (3.6),

(d) the multiplier for the lower bounds are given by v(t) = vk(t) for all t ∈ [tk−1, tk], where

vk(t) is given by (3.7) and (3.8).

Proof: Lemma 3.5 completes the proof of part(a).

With Assumption 3.1 (1), the KKT conditions are both necessary and sufficient for

optimal problem (3.1)( See [8]). These conditions are



























x ≥ 0, l′x = 1,

tµ − Σx = ul − v, v ≥ 0,

v′x = 0.

(3.34)

From Lemma 3.4, we know that l′xk = 1, for k = 1, · · ·n.

In addition, tµ − Σxk = ukl − vk also follows directly (3.3)— (3.7).

Furthermore, the definitions of xk, vk imply that v′

kxk = 0.

In order to show (3.34), it remains to prove that for all t with tk−1 ≤ t ≤ tk, the

following inequalities are satisfied.

(xk)i ≥ 0, i = k, · · · , n (3.35)
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and

(vk)i ≥ 0, i = 1, · · · , k − 1. (3.36)

When k = n, the coefficient of t vanishes. Thus, (3.35) holds for k = n. Now let k be

such that 1 ≤ k ≤ n − 1. From (3.10), (3.18), Assumption 3.1 (1) and (2), it follows that

(xk)i ≥ 0 for i = ρk + 1, · · · , n and

t ≥ 0. (3.37)

In order to prove (xk)i also satisfying the lower bounds for i with k ≤ i ≤ ρk, it follows

from (3.3) and (3.17) that t must satisfy

t ≤ min{
Q1k(1 + biθ4k)

Q2k(1 + biθ4k) − (µi + biθ5k)
| i = k, · · · , ρk}. (3.38)

Assumption 3.1 (1), (2) and (3) imply that

Q1k(1 + bkθ4k) ≤ Q1k(1 + biθ4k) i = k + 1, · · · , n − 1 (3.39)

and from Lemma 3.3, we have

µk + bkθ5k − Q2k(1 + bkθ4k) < µi + biθ5k − Q2k(1 + biθ4k),

i = k + 1, · · · , n − 1. (3.40)

From (3.17), µi + biθ5k − Q2k(1 + biθ4k) < 0, i = k, · · · , ρk and from Assumption 3.1

(1) and (2), Q1k(1 + biθ4k) > 0 for i = 1, · · · , n − 1.

It now follows from (3.39) and (3.40) that

Q1k(1 + bkθ4k)

Q2k(1 + bkθ4k) − (µk + bkθ5k)
<

Q1k(1 + biθ4k)

Q2k(1 + biθ4k) − (µi + biθ5k)
,

i = k + 1, · · · , ρk. (3.41)
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Inequality (3.41) implies that

min{
Q1k(1 + biθ4k)

Q2k(1 + biθ4k) − (µi + biθ5k)
| i = k, · · · , ρk}

=
Q1k(1 + bkθ4k)

Q2k(1 + bkθ4k) − (µk + bkθ5k)
= tk.

(3.37) and (3.38) imply that

(xk)i ≥ 0, i = k, · · · , n (3.42)

for all t with 0 ≤ t ≤ tk.

From Lemma 3.6, we have

(vk(t))i ≥ 0, t ≥ tk−1. (3.43)

Thus, (3.42) together with (3.43) imply that (3.35) and (3.36) are satisfied simultane-

ously for tk−1 ≤ t ≤ tk which completes the proof of the theorem. �

The principal result for (3.1) with Assumption 3.1 is as follow. For t = 0, all assets are

held positively with values given below. As t is increased, eventually asset 1 is reduced

to zero at t = t1. Asset 1 will remain at zero for all t ≥ t1. Assets 2, · · · , n will be held

positively for t ≥ t1 until asset 2 is reduced to zero when t = t2. Now both assets 1 and 2

remain at zero for all t ≥ t2 and assets 3, · · · , n are held positively until asset 3 is reduced

to zero when t = t3. The process continues with the assets dropping out and staying out

in the order of their indices. This monotonicity result is a consequence of Assumption 3.1.

This result is illustrated in Figure 3.1.
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Figure 3.1: Efficient Frontier for Risk Assets with No Short Sales
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3.3 Example

Example 3.1. Find all points on the efficient frontier for (3.1) for the problem with n = 3,

µ = (1, 2, 3)′ and

Σ =











1 0 0.2

0 4 0.1

0.2 0.1 3











.

The results of applying Theorem 3.1 are summarized in Table 3.1. Observe that in the

first interval, x1(t) > 0 for t0 ≤ t < t1, (x1(t))1 is decreasing in t and is reduced to 0 for

t = t1. In interval 2, (x2)(t)1 = 0, (x2(t))2 is decreasing in t and is reduced to 0 when

t = t2. Furthermore, the multiplier for the non-negativity constraint on asset 1, namely

(v2(t))1, is increasing in t. In interval 3, everything is placed in asset 3 and the multipliers

for the non-negativity constraints on asset 1 and asset 2, namely (v3(t))1 and (v3(t))2,

respectively, are increasing functions of t. This results are summarized in Table 3.1.

Comparing Table 3.1 with Table 3.2, we find that the solution of example 3.1 agrees

with results obtained by QP algorithm when t = 0, t = 1, t = 1.0284, t = 2.9.
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Table 3.1: Optimal Solution for Example 3.1

Interval 1: t0 = 0 ≤ t ≤ 1.0284 = t1

Q11 = 0.6882 Q21 = 1.5282 u1 = -0.6882 + 1.5282t

index optimal portfolio x1(t) dual variables v1(t)

1 0.6521 - 0.6341t 0.0000 + 0.0000t

2 0.1675 + 0.1047t 0.0000 + 0.0000t

3 0.1803 + 0.5294t 0.0000 + 0.0000t

Interval 2: t1 = 1.0284 ≤ t ≤ 2.9000 = t2

Q12 = 1.7632 Q22 = 2.5735 u2 = -1.7632+2.5735t

index optimal portfolio x2(t) dual variables v2(t)

1 0.0000 + 0.0000t -1.6485 + 0.6029t

2 0.4265 - 0.1471t 0.0000 + 0.0000t

3 0.5735 + 0.1471t 0.0000 + 0.0000t

Interval 3: t2 = 2.9000 ≤ t ≤ ∞ = t3

σ3 = 3 µ3 = 3 u3 = -3 + 3t

index optimal portfolio x3(t) dual variables v3(t)

1 0.0000 + 0.0000t -2.8000 + 2.0000t

2 0.0000 + 0.0000t -2.9000 + 1.0000t

3 1.0000 + 0.0000t 0.0000 + 0.0000t
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Table 3.2: Results of Example 3.1 Using QP Algorithm

t Efficient Portfolios

1 2 3

0.0000 0.6521 0.1675 0.1803

1.0000 0.0180 0.2723 0.7097

1.0284 0.0000 0.2752 0.7248

2.0000 0.0000 0.1324 0.8676

2.9000 0.0000 0.0000 1.0000
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Chapter 4

Assets with Lower Bounds and with

a Risk Free Asset

4.1 Several Important Results

In this section, we will look at a problem closely related to that of the previous section.

We will consider the following problem with lower bounds

min{−t(µ0x0 + µ′x) +
1

2
x′Σx | l′x + x0 = 1, x ≥ 0, x0 ≥ 0}, (4.1)

where x0 denotes the proportion of wealth invested in the risk free asset, µ0 denotes the

expected return of asset x0 and the covariance matrix Σ is the triple-branch matrix as in

Chapter 2.

Assumption 4.1.

1) σi > 0, i = 1, · · ·n, σn − θ31 > 0,
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2) −θ4k > 0, 1 + biθ4k > 0, k = 1, · · ·n − 1, i = k, · · ·n − 1,

3) bi ≥ bi+1, i = 1, · · ·n − 2,

4) µi < µi+1, i = 0, · · ·n − 1,

5) θ5i ≤ µnθ4i, i = 1, · · · , n − 1,

6) µ0(1 + b1θ41) < µ1 + b1θ51.

First we will discuss the problem

min{−t(µ0x0 + µ′x) +
1

2
x′Σx | l′x + x0 = 1} (4.2)

that is closely related to (4.1).

Lemma 4.1. Let Assumption 4.1 be satisfied. The optimal solution for (4.2) is


















x0 = 1 − t(Q21 − µ0)/Q11,

xi = t[(µi − µ0) + bi(θ51 − µ0θ41)]/σi, i = 1, · · · , n − 1,

xn = t(µ0θ41 − θ51),

(4.3)

where θ41, θ51, Q11 and Q21 are defined as from (2.5) to (2.9) for k = 1 and the multiplier

for the budget constraint is u = tµ0.

Proof: By the KKT conditions, we have that










x0 + l′x = 1,

tµ − Σx = ul, u = tµ0.
(4.4)

Hence










x0 = 1 − tl′Σ−1(µ − µ0l),

x = tΣ−1(µ − µ0l).
(4.5)
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(4.5) with (2.20) and (2.21) implies (4.3). �

Now we will continue to consider the optimal problem (4.1). For k = −1, · · · , n, define

tk =































0, k = −1,

Q11

Q21−µ0
, k = 0,

Q1k(1+bkθ4k)
Q2k(1+bkθ4k)−(µk+bkθ5k)

, k = 1, · · · , n − 1,

∞, k = n.

(4.6)

For k = 0, 1, · · · , n, let

xk = xk(t) = ((xk)0, (xk)1, · · · , (xk)n)′,

uk = uk(t),

vk = vk(t) = ((vk)0, (vk)1, · · · , (vk)n)
′.

For k = 0, define

(x0)i =



















1 − t(Q21 − µ0)/Q11, i = 0,

t[(µi − µ0) + bi(θ51 − µ0θ41)]/σi, i = 1, · · · , n − 1,

t(µ0θ41 − θ51), i = n,

(4.7)

u0 = tµ0, (4.8)

v0 = 0. (4.9)

For k = 1, · · · , n − 1, define






























(xk)i = 0, i = 0, · · · , k − 1,

(xk)i = (xk(t))i

= [Q1k(1 + biθ4k) + t(µi + biθ5k − Q2k(1 + biθ4k))]/σi, i = k, · · · , n − 1,

(xk)n = −θ4kQ1k + t[−θ5k + Q2kθ4k],

(4.10)
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(xn)i = 0, i = 0, · · · , n − 1,

(xn)n = 1.
(4.11)

For k = 1, · · · , n − 1, define

uk(t) = −Q1k + tQ2k, (4.12)

un(t) = −σn + tµn, (4.13)































(vk)0 = (vk(t))0 = −Q1k + t(Q2k − µ0),

(vk)i = (vk(t))i

= −Q1k(1 + biθ4k) + t[Q2k(1 + biθ4k) − biθ5k − µi], i = 1, · · · , k − 1,

(vk)i = 0, i = k, · · · , n,

(4.14)































(vn)0 = −σn + t(µn − µ0)

(vn)i = vn(t))i

= (−σn + bi) + t(µn − µi) i = 1, · · · , n − 1,

(vn)n = 0.

(4.15)

where θ4k, θ5k, Q1k, and Q2k are given from (2.5) to (2.9).

Lemma 4.2. For k = 1, · · · , n − 1,

Q2k − µ0 > 0. (4.16)

Proof: From Assumption 4.1 (4) and Assumption 4.1 (5), we have

θ5k − µ0θ4k ≤ 0, (4.17)

θ2k − µ0θ1k > 0. (4.18)
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(4.17) and (4.18) imply

θ2k + θ4kθ5k(σn − θ3k) − µ0(θ1k + θ2
4k(σn − θ3k)) > 0.

Thus (4.16) is satisfied. �

Lemma 4.3. For k = 0, · · · , n,

(vk(t))0 ≥ 0, t ≥ t0. (4.19)

Proof: The KKT conditions for (4.1) are

x0 ≥ 0, x ≥ 0, l′x + x0 = 1, (4.20)

tµ − Σx = ul − v, v ≥ 0, (4.21)

tµ0 = u − v0, v0 ≥ 0, (4.22)

v0x0 = 0, v′x = 0, (4.23)

where v0 is the multiplier for the constraint x0 ≥ 0 and v is the n-vector of multipliers

corresponding to the lower bounds xi ≥ 0 for i = 1, · · · , n.

From (4.22), we obtain

(vk)0 = uk − tµ0,

for all t ≥ t0.

Substitution of uk from (4.12) gives

(vk)0 = −Q1k + t(Q2k − µ0). (4.24)

From (4.8) and Lemma 4.2, we know that (vk)0 is increasing in t for any interval

[tk−1, tk]. Consequently, (4.19) will be established by verifying that (vk(tk−1))0 ≥ 0. Observe

first that from (4.8) and (4.6)

(vk(tk−1))0 = −Q1k +
Q1(k−1)(1 + bk−1θ4(k−1))

Q2(k−1)(1 + bk−1θ4(k−1)) − (µk−1 + bk−1θ5(k−1))
(Q2k − µ0).
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Using Lemma 3.1 gives

(vk(tk−1))0 = −Q1k +
Q1k(1 + bk−1θ4k)

Q2k(1 + bk−1θ4k) − (µk−1 + bk−1θ5k)
(Q2k − µ0).

Further re-arranging leads to

(vk(tk−1))0 =
Q1k(µk−1 − µ0 + bk−1(θ5k − µ0θ4k))

Q2k(1 + bk−1θ4k) − (µk−1 + bk−1θ5k)
.

From Assumption 4.1 (3) — (6), we obtain

µk−1 − µ0 + bk−1(θ5k − µ0θ4k) ≥ µ1 − µ0 + b1(θ5k − µ0θ4k) ≥ 0. (4.25)

Now (3.20) implies

Q2k(1 + bk−1θ4k) − (µk−1 + bk−1θ5k)

≥ Q2k(1 + bkθ4k) − (µk + bkθ5k) ≥ 0. (4.26)

In addition, (4.25) and (4.26) imply

(vk(tk−1))0 ≥ 0,

and this completes the proof. �

4.2 A Closed Form Solution for Assets with Lower

Bounds and a Risk Free Asset

This principal result for (4.1) with t ≥ 0 is the following theorem.

Theorem 4.1. Let Assumption 4.1 be satisfied and let t−1, · · · , tn be defined by (4.6).

Then for k = 0, · · · , n,
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(a) tk−1 < tk, for k = 0, · · · , n,

(b) x(t) = xk(t), for all t ∈ [tk−1, tk], is optimal for (4.1) with x0(t) being given by (4.7)

and xk(t) being given by (4.10) and (4.11), for k = 1, · · · , n,

(c) the multiplier for the budget constraint is given by u(t) = uk(t) for all t ∈ [tk−1, tk],

where u0(t) is given by (4.8) and uk(t) is given by (4.12) and (4.13),

(d) the multipliers for the lower bounds are given by v(t) = vk(t) for all t ∈ [tk−1, tk],

where v0(t) is given by (4.9) and vk(t) is given by (4.14) and (4.15).

Proof:

From lemma 4.2, we obtain that

t0 =
Q11

Q21 − µ0
> t−1 = 0. (4.27)

From Assumption 4.1 (6), we obtain

µ0(1 + b1θ41) < µ1 + b1θ51.

Therefore,

Q11Q21(1 + b1θ41) − Q11(µ1 + b1θ51) < Q11Q21(1 + b1θ41) − µ0Q11(1 + b1θ41),

i.e.,

t0 =
Q11

Q21 − µ0
<

Q11(1 + b1θ41)

Q21(1 + b1θ41) − (µ1 + b1θ51)
= t1. (4.28)

This with (4.27) and Lemma 3.5 completes the proof of part (a).
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The proof of part (b) proceeds according to the two cases 0 ≤ t ≤ t0 and t0 ≤ t ≤ tn.

The KKT conditions for (4.1) are











































x0 ≥ 0, x ≥ 0, x0 + l′x = 1,

tµ − Σx = ul − v, v ≥ 0,

tµ0 = u − v0, v0 ≥ 0,

v0x0 = 0, v′x = 0.

(4.29)

Comparing (4.29) with (3.34) and by Theorem 3.1 and Lemma 4.3, we find that the

proof of part (b) only needs to show that x0(t) is optimal for 0 ≤ t ≤ t0, i.e., x0(t) meets

the KKT conditions.

Let x0, u0 and v0 be as in the statement of Theorem 4.1 and let t ∈ [0, t0]. According to

Lemma 4.1, x0 is the solution and u0 is the multiplier for the budget constraint of (4.2).

(4.7) implies that x0 is the optimal solution of (4.1) for t = 0.

From Lemma 4.2, we have

(Q21 − µ0)/Q11 ≥ 0. (4.30)

Thus from (4.7), (x0(t))0 is a decreasing function of t. Since (x0(t0))0 = 0, it follows

that (x0(t))0 ≥ 0 for 0 ≤ t ≤ t0. Assumptions 4.1 (3) - (6) imply that

µi − µ0 + bi(θ51 − µ0θ41) ≥ µ1 − µ0 + b1(θ51 − µ0θ41) > 0. (4.31)

(x0(t))i is a increasing function of t. Since (x0(0))i = 0, it follows that (x0(t))i ≥ 0 for

0 ≤ t ≤ t0, for i = 1, · · · , n − 1.

Hence x0 satisfies the first partition of (4.29).
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Comparing (4.4) with (4.29), it is obvious that x0 satisfies the second and the third par-

titions of (4.29). Therefore, x0 satisfies the KKT conditions (4.29). We proved that x0

is optimal for 0 ≤ t ≤ t0. (4.7), Assumption 4.1 (2), (4) and (5) imply that (x0(t))n is a

increasing function of t. Since (x0(0))n = 0, it follows that (x0(t))n is indeed optimal for

0 ≤ t ≤ t0.

The proof of part (b) is now complete.

For part (c), we know, for i = 0, · · · , n,

(v0(t))i = 0, t ∈ [0, t0], (4.32)

From (4.8), for k = 1, · · · , n,

(vk)0 = −Q1k + t(Q2k − µ0), (4.33)

which agrees with the statement of Theorem 4.1.

From Lemma 4.3, we have

(vk(t))0 ≥ 0, for all t with t ≥ t0. (4.34)

This with (4.32) and Theorem 3.1 completes the proof of part (d). Thus, all of the KKT

conditions for (4.1) are satisfied and the proof is complete. �

This principle result for (4.1) is as follows. For t = t−1 = 0, only the risk free asset 0

is held, i.e., x0(0) = 1 and xi(0) = 0 for i = 1, · · · , n. As t is increased, the risk free asset

0 is reduced and all risky assets are increased from zero. At t = t0, the risk free asset 0

is reduced to its lower bound 0 and remains there for all t ≥ t0. Furthermore, at t = t0,

all of the risky assets strictly exceed their lower bounds. As t is increased beyond t0, the
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process continues precisely as described by Theorem 3.1. Thus, as t is increased from zero

in (4.1), the risk free asset is reduced to its lower bound first, then the first risky asset, then

second risky asset and so on. For t−1 ≤ t ≤ t0, the first piece of the efficient frontier for

(4.1) in (σp, µp) space is a straight line, namely the Capital Market Line(CML) space. The

remainder of the efficient frontier is piece-wise hyperbolic. The CML meets the efficient

frontier for the risky assets at some point at that part for the frontier corresponding to its

first parametric interval, where all risky assets strictly exceed their lower bounds. This is

illustrated in Figure 4.1.

4.3 Example

Example 4.1. Find all points on the efficient frontier for (4.1) for the problem with n = 3,

µ = (1, 2, 3)′, µ0 = 0.5 and

Σ =











1 0 0.2

0 4 0.1

0.2 0.1 3











.

The results of applying Theorem 4.1 are summarized in Table 4.1. Observe that in the

first interval, x0(t) > 0 for t−1 ≤ t < t0, (x0(t))0 is decreasing in t and is reduced to 0 for

t = t0. In interval 2, (x1(t))0 = 0, (x1(t))1 is decreasing in t and is reduced to 0 when t = t1.

Furthermore,the multiplier for the non-negativity constraint on asset 0, namely (v1(t))0, is

increasing in t. In interval 3, (x1(t))0 = 0 and (x1(t))1 = 0, (x1(t))2 is decreasing in t and

is reduced to 0 when t = t1. The multipliers for the non-negativity constraints on asset 0

and asset 1, namely (v2(t))0 and (v2(t))1, is increasing in t. In interval 4, everything is
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t(−1): x(0)=1,x(1)=...=x(n)=0 

t(0): x(0)=0,                          
       all risky assets held positively

t(1): x(0)=x(1)=0,                     
       all other assets held positively

t(2): x(0)=x(1)=x(2)=0,                
       all other assets held positively

t(n−2): x(0)=x(1)=...=x(n−2)=0,       
          x(n−1), x(n) held positively

t(n−1): x(0)=x(1)=...=x(n−1)=0, 
          x(n)=1                

µ
p

Figure 4.1: Efficient Frontier for Risk Assets/ a Risk Free Asset with No Short Sales
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placed in asset 3 and the multipliers for the non-negativity constraints on asset 0, asset 1

and asset 2, namely (v3(t))0 (v3(t))1 and (v3(t))2, respectively, are increasing functions of

t.

Comparing Table 4.1 with Table 4.2, we find that the solution of example 4.1 agrees with

results obtained by QP algorithm when t = 0, t = 0.5, t = 0.6693, t = 1, t = 1.0284, t =

2, t = 2.9.
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Table 4.1: Optimal Solution for Example 4.1

Interval 1: t−1 = 0 ≤ t ≤ 0.6693 = t0

µ0 =0.5 u0 = 0.5t

index optimal portfolio x0(t) dual variables v0(t)

0 1.0000 - 1.4941t 0.0000 + 0.0000t

1 0.0000 + 0.3402t 0.0000 + 0.0000t

2 0.0000 + 0.3550t 0.0000 + 0.0000t

3 0.0000 + 0.7988t 0.0000 + 0.0000t

Interval 2: t0 = 0.6693 ≤ t ≤ 1.0284 = t1

Q11 = 0.6882 Q21 = 1.5282 u1 = -0.6882 + 1.5282t

index optimal portfolio x1(t) dual variables v1(t)

0 0.0000 + 0.0000t -0.6882 + 1.0000t

1 0.6521 - 0.6341t 0.0000 + 0.0000t

2 0.1675 + 0.1047t 0.0000 + 0.0000t

3 0.1803 + 0.5294t 0.0000 + 0.0000t

Interval 3: t1 = 1.0284 ≤ t ≤ 2.9000 = t2

Q12 = 1.7632 Q22 = 2.5735 u2 = -1.7632+2.5735t

index optimal portfolio x2(t) dual variables v2(t)

0 0.0000 + 0.0000t -1.7632 + 0.0000t

1 0.0000 + 0.0000t -1.6485 + 0.6029t

2 0.4265 - 0.1471t 0.0000 + 0.0000t

3 0.5735 + 0.1471t 0.0000 + 0.0000t

Interval 4: t2 = 2.9000 ≤ t ≤ ∞ = t3

σ3 = 3 µ3 = 3 u3 = -3 + 3t

index optimal portfolio x3(t) dual variables v3(t)

0 0.0000 + 0.0000t -3.0000 + 2.5000t

1 0.0000 + 0.0000t -2.8000 + 2.0000t

2 0.0000 + 0.0000t -2.9000 + 1.0000t

3 1.0000 + 0.0000t 0.0000 + 0.0000t
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Table 4.2: Results of Example 4.1 Using QP Algorithm

t Efficient Portfolios

0 1 2 3

0.0000 1.0000 0.0000 0.0000 0.0000

0.5000 0.2530 0.1701 0.1775 0.3994

0.6693 0.0000 0.2272 0.2376 0.5346

1.0000 0.0000 0.0180 0.2722 0.7097

1.0284 0.0000 0.0000 0.2752 0.7248

2.0000 0.0000 0.0000 0.1324 0.8676

2.9000 0.0000 0.0000 0.0000 1.0000
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Chapter 5

Reduction to the Special Case of

Uncorrelated Assets

In this chapter, we will verify Theorem 3.1 and Theorem 4.1 by a special case. When

bi = 0, for i = 1, · · · , n− 1, matrix Σ =























σ1 0 · · · b1

0 σ2 · · · b2

· · · · · · · · · · · ·

0 0 · · · bn−1

b1 b2 · · · σn























becomes a diagonal matrix

Σ =























σ1 0 · · · 0

0 σ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · 0

0 0 · · · σn























.
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When bi = 0, for i = 1, · · · , n − 1, equations (2.2) — (2.9) become

θ1k = (
1

σk

+ ... +
1

σn−1
), (5.1)

θ2k = (
µk

σk

+ ... +
µn−1

σn−1

), (5.2)

θ3k = 0, (5.3)

θ4k = −
1

σn

, (5.4)

θ5k = −
µn

σn

, (5.5)

θ6k = (
µ2

k

σk

+ ... +
µ2

n−1

σn−1

), (5.6)

Q1k =
1

θ1k + 1
σn

, (5.7)

Q2k = Q1k(θ2k +
µn

σn

). (5.8)

5.1 Lower Bounded Assets

The problem to be analyzed is the following n-dimensional problem with lower bounds

min{−tµ′x +
1

2
x′Σx | l′x = 1, x ≥ 0}, (5.9)

where Σ is a diagonal matrix.

In the case discussed here, Assumption 3.1 can be weakened to the following assumption.

Assumption 5.1.

1) σi > 0, for i = 1, · · ·n,
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2) µi+1 − µi > 0, for i = 1, · · ·n − 1.

For k = 0, 1, · · · , n, define

tk =



















0, k = 0,

Q1k

Q2k−µk

, k = 1, · · · , n − 1,

∞, k = n.

(5.10)

For k = 1, · · · , n, let

xk = xk(t) = ((xk)1, (xk)2, · · · , (xk)n),

uk = uk(t),

vk = vk(t) = ((vk)1, (vk)2, · · · , (vk)n).

For k = 1, · · · , n − 1, define



















(xk)i = 0, i = 1, · · · , k − 1,

(xk)i = (xk(t))i

= (Q1k + t(µi − Q2k)/σi, i = k, · · · , n,

(5.11)

and define






(xn)i = 0, i = 1, · · · , n − 1,

(xn)n = 1.
(5.12)

Furthermore, for k = 1, · · · , n − 1, define

uk(t) = −Q1k + tQ2k, (5.13)

un(t) = −σn + tµn, (5.14)
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(vk)i = (vk(t))i = −Q1k + t(Q2k − µi) i = 1, · · · , k − 1,

(vk)i = 0, i = k, · · · , n.
(5.15)

Corollary 5.1. Let
∑

be diagonal, let Assumption 5.1 be satisfied and t0, · · · , tn be defined

by (5.10). Then for k = 1, · · · , n,

(a) tk−1 < tk;

(b) x(t) = xk(t), for all t ∈ [tk−1, tk], is optimal for (5.9) with xk(t) being given by (5.11)

and (5.12);

(c) the multiplier for the budget constraint is given by u(t) = uk(t) for all t ∈ [tk−1, tk],

where uk(t) is given by (5.13) and (5.14);

(d) the multiplier for the lower bounds are given by v(t) = vk(t) for all t ∈ [tk−1, tk], where

vk(t) is given by (5.15).

This is precisely Theorem 3.1 of Best and Hlouskova [1].

5.2 Example

Example 5.1. Find all points on the efficient frontier for (5.9) for the problem with n = 3,

µ = (1, 2, 3)′ and

Σ =











1 0 0

0 4 0

0 0 3











.
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The results of applying Corollary 5.1 are summarized in Table 5.1. Observe that in

the first interval, x1(t) > 0 for t0 ≤ t < t1, x11(t) is decreasing in t and is reduced to

0 for t = t1. In interval 2, x21 = 0, x22(t) is decreasing in t and is reduced to 0 when

t = t2. Furthermore, the multiplier for the non-negativity constraint on asset 1, namely

v21, is increasing in t. In interval 3, everything is placed in asset 3 and the multipliers for

the non-negativity constraints on asset 1 and asset 2, namely v31 and v32, respectively, are

increasing functions of t.

5.3 Lower Bounded Assets with a Risk Free Asset

In this section, we will consider the following (n+1)-dimensional problem with lower bounds

min{−t(µ0x0 + µ′x) +
1

2
x′Σx | l′x + x0 = 1, x ≥ 0, x0 ≥ 0} (5.16)

where Σ is a diagonal matrix.

In the case discussed here, Assumption 4.1 can be weakened to the following assumption.

Assumption 5.2.

1) σi > 0, for i = 1, · · ·n,

2) µi+1 − µi > 0, for i = 0, · · ·n − 1.
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Table 5.1: Optimal Solution for Example 5.1

Interval 1: t0 = 0 ≤ t ≤ 1.0909 = t1

Q11 = 0.6316 Q21 = 1.5789 u1 = -0.6316 + 1.5789t

index optimal portfolio x1(t) dual variables v1(t)

1 0.6316 - 0.5789t 0.0000 + 0.0000t

2 0.1579 + 0.1053t 0.0000 + 0.0000t

3 0.2105 + 0.4737t 0.0000 + 0.0000t

Interval 2: t1 = 1.0909 ≤ t ≤ 3.0000 = t2

Q12 = 1.7143 Q22 = 2.5714 u2 = -1.7143+2.5714t

index optimal portfolio x2(t) dual variables v2(t)

1 0.0000 + 0.0000t -1.7143 + 0.5714t

2 0.4286 - 0.1429t 0.0000 + 0.0000t

3 0.5714 + 0.1429t 0.0000 + 0.0000t

Interval 3: t2 = 3.0000 ≤ t ≤ ∞ = t3

σ3 = 3 µ3 = 3 u3 = -3 + 3t

index optimal portfolio x3(t) dual variables v3(t)

1 0.0000 + 0.0000t -3.0000 + 2.0000t

2 0.0000 + 0.0000t -3.0000 + 1.0000t

3 1.0000 + 0.0000t 0.0000 + 0.0000t
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For k = −1, · · · , n, define

tk =































0, k = −1,

Q11

Q21−µ0
, k = 0,

Q1k

Q2k−µk

, k = 1, · · · , n − 1,

∞, k = n.

(5.17)

For k = 0, 1, · · · , n, let

xk = xk(t) = ((xk)0, (xk)1, · · · , (xk)n),

uk = uk(t),

vk = vk(t) = ((vk)0, (vk)1, · · · , (vk)n).

For k = 0, define

(x0)i =







1 − t(Q21 − µ0)/Q11, i = 0,

t(µi−µ0)
σi

, i = 1, · · · , n,
(5.18)

u0 = tµ0, (5.19)

v0 = 0, (5.20)

For k = 1, · · · , n − 1, define



















(xk)i = 0, i = 0, · · · , k − 1,

(xk)i = (xk(t))i

= Q1k + t(µi − Q2k)/σi, i = k, · · · , n,

(5.21)







(xn)i = 0, i = 0, · · · , n − 1,

(xn)n = 1.
(5.22)
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For k = 1, · · · , n − 1, define

uk(t) = −Q1k + tQ2k, (5.23)

un(t) = −σn + tµn, (5.24)







(vk)i = (vk(t))i = −Q1k + t(Q2k − µi) i = 0, · · · , k − 1,

(vk)i = 0, i = k, · · · , n.
(5.25)

Corollary 5.2. Let
∑

be diagonal, Assumption 5.2 be satisfied and let t−1, · · · , tn be

defined by (5.17). Then for k = 0, · · · , n,

(a) tk−1 < tk, fork = 0, · · · , n;

(b) x(t) = xk(t), for all t ∈ [tk−1, tk], is optimal for (5.16) with x0(t) being given by (5.18)

and xk(t) being given by (5.21) and (5.22), for k = 1, · · · , n;

(c) the multiplier for the budget constraint is given by u(t) = uk(t) for all t ∈ [tk−1, tk],

where u0(t) is given by (5.19) and uk(t) is given by (5.23) and (5.24);

(d)the multiplier for the lower bounds are given by v(t) = vk(t) for all t ∈ [tk−1, tk], where

v0(t) is given by (5.20) and vk(t) is given by (5.25).

This is precisely Theorem 4.1 of Best and Hlouskova [1].
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5.4 Example

Example 5.2. Find all points on the efficient frontier for (5.16) for the problem with

n = 3, µ = (1, 2, 3)′, µ0 = 0.5 and

Σ =











1 0 0

0 4 0

0 0 3











.

The results of applying Corollary 5.2 are summarized in Table 5.2. Observe that in the

first interval, x0(t) > 0 for t−1 ≤ t < t0, (x0(t))0 is decreasing in t and is reduced to 0 for

t = t0. In interval 2, (x1(t))0, (x1(t))1 is decreasing in t and is reduced to 0 when t = t1.

Furthermore,the multiplier for the non-negativity constraint on asset 0, namely (v1)(t)0, is

increasing in t. In interval 3, (x2(t))0 = 0 and (x2(t))1 = 0, (x2(t))2 is decreasing in t and

is reduced to 0 when t = t2. The multipliers for the non-negativity constraints on asset 0

and asset 1, namely (v2(t))0 and (v2(t))1, is increasing in t. In interval 4, everything is

placed in asset 3 and the multipliers for the non-negativity constraints on asset 0, asset 1

and asset 2, namely (v3(t))0 (v3(t))1 and (v3(t))2, respectively, are increasing functions of

t.
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Table 5.2: Optimal Solution for Example 5.2

Interval 1: t−1 = 0 ≤ t ≤ 0.5854 = t0

µ0 =0.5 u0 = 0.5t

index optimal portfolio x0(t) dual variables v0(t)

0 1.0000 - 1.7083t 0.0000 + 0.0000t

1 0.0000 + 0.5000t 0.0000 + 0.0000t

2 0.0000 + 0.3750t 0.0000 + 0.0000t

3 0.0000 + 0.8333t 0.0000 + 0.0000t

Interval 2: t0 = 0.5854 ≤ t ≤ 1.0909 = t1

Q11 = 0.6316 Q21 = 1.5789 u1 = -0.6316 + 1.5789t

index optimal portfolio x1(t) dual variables v1(t)

0 0.0000 + 0.0000t -0.6316 + 1.0000t

1 0.6316 - 0.5789t 0.0000 + 0.0000t

2 0.1579 + 0.1053t 0.0000 + 0.0000t

3 0.2105 + 0.4737t 0.0000 + 0.0000t

Interval 3: t1 = 1.0909 ≤ t ≤ 3.0000 = t2

Q12 = 1.7143 Q22 = 2.5714 u2 = -1.7143+2.5714t

index optimal portfolio x2(t) dual variables v2(t)

0 0.0000 + 0.0000t -1.7143 +0.0000t

1 0.0000 + 0.0000t -1.7143 + 0.5714t

2 0.4286 - 0.1429t 0.0000 + 0.0000t

3 0.5714 + 0.1429t 0.0000 + 0.0000t

Interval 4: t2 = 3.0000 ≤ t ≤ ∞ = t3

σ3 = 3 µ3 = 3 u3 = -3 + 3t

index optimal portfolio x3(t) dual variables v3(t)

0 0.0000 + 0.0000t -3.0000 + 2.5000t

1 0.0000 + 0.0000t -3.0000 + 2.0000t

2 0.0000 + 0.0000t -3.0000 + 1.0000t

3 1.0000 + 0.0000t 0.0000 + 0.0000t
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Chapter 6

Conclusions

In this essay, we first gave a brief overview of the mean-variance portfolio selection op-

timization. Further, we discussed three portfolio selection problems of risky, partially

correlated assets. In Chapter 2, we discussed a portfolio selection problem of risky, par-

tially correlated assets with an equality constraint and under some technical assumptions

developed a closed form solution for the model. In Chapter 3, we discussed a portfolio

selection problem of risky, partially correlated assets subject to lower bounds on all asset

holdings. And we obtained a closed form solution for the optimal problem with no short

sales. In Chapter 4, we also considered the case when the problem in Chapter 3 was aug-

mented by a risk free asset. Under some technical assumptions we obtained a closed form

solution for all portfolio corresponding to the efficient frontier about the the third model.

In Chapter 5, we found that these results from the essay extend those from [1].
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