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Abstract

Calculating or approximating the derivatives for large-scale multi-dimensional functions
is an active research area in modern mathematics. The rationale behind this popularity is
its wide applications in statistics, financial mathematics and portfolio optimization. For
example, in statistics, maximum likelihood estimation seeks the value of parameter vector
that maximize the likelihood function, which requires to find the points where derivative
of likelihood function is zero; in finance, taking derivatives can be applied to sensitivity
analysis for equity valuation, with respect to single or multiple variables; numerical opti-
mization problems calculate the derivatives at each iteration, such as trust-region method.
The most straightforward way to calculate a derivative is hand-coding, but it is only ap-
plicable to sufficiently simple functions, and it’s error-prone. Finite-difference method is
easy to implement with a programming language, but the accuracy depends on the choice
of discretization steps, and hence can not be guaranteed.

Throughout this essay, we study the methodology of automatic differentiation (AD),
and introduce a structural automatic differentiation method (Structural-AD) for calculat-
ing gradient and hessian. The implementation of Structural-AD uses the software ADMAT
2.0 installed on MATLAB by Cayuga Research Associates [2009]. Structura-AD exploits
the ‘natural structure’ of some functions and it makes use of the regular reverse mode
of AD to achieve more efficient computing time and less memory usage requirement. In
the paper by Xu and Coleman [2013], they applied structural-AD to two extreme cases,
generalized partially separable problem and dynamic system computations. They showed
that computing time and memory requirement using Structural-AD is significantly reduced
compared to the regular reverse mode. We also applied structural-AD on a Conditional
Value-at-Risk (CVaR) optimization problem, specifically with the underlying function de-
scribing the loss function of a stock portfolio.
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Chapter 1

Introduction

Calculating or approximating the derivatives for large-scale multi-dimensional functions is
an active research area in modern mathematics. The rationale behind this popularity is
its wide applications in statistics, financial mathematics and portfolio optimization. For
example, in statistics, maximum likelihood estimation seeks the value of parameter vector
that maximize the likelihood function, which requires to find the points where derivative
of likelihood function is zero; in finance, taking derivatives can be applied to sensitivity
analysis for equity valuation, with respect to single or multiple variables; numerical op-
timization problems calculate the derivatives at each iteration, such as trust-region method.

Some of the common ways to calculate derivatives are: hand-coding, finite-difference,
symbolic differentiation, and automatic differentiation. The first three methods are subject
to their own limitations. Hand-coding is straight-forward, but only applicable to sufficiently
simple functions, and it’s error-prone. Finite-difference method is easy to implement with
a programming language, but the accuracy depends on the choice of discretization steps,
and hence can not be guaranteed. The disadvantage of symbolic differentiation is the in-
efficiency of computing time with the growth of the independent variables.

The idea behind automatic differentiation (AD) is basically the chain rule. AD exploits
the fact that every computer program, no matter how complicated, executes a sequence
of elementary arithmetic operations and elementary functions. By applying the chain rule
repeatedly to these operations, derivatives of arbitrary order can be computed automati-
cally, and accurate to working precision. This technique enables AD to avoid the round-off
error incurred by the finite difference method.
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AD has two modes in general - forward mode and reverse mode. In particular, if

f(x) = g(h(x)),

then chain rule gives,
df

dx
=
dg

dh

dh

dx
.

The forward mode applies chain rule to the above equation from the right to left, while
reverse model proceeds from left to right.

The analysis of the computational cost of these two modes are presented in Chapter 2.
Briefly speaking, if f : Rn → Rm and the cost of evaluating the function value of f at a
single point is denoted as cost(f), then ,

Cost of Forward Mode: n× cost(f)

Cost of Reverse Mode: m× cost(f)

Hence, as a rule of thumb, reverse mode can be used when n � m, such as most of the
optimization problems; forward mode can be used whenm� n, such as sensitivity analysis.

Throughout this research paper, we study a structural automatic differentiation method
(Structural-AD). This method exploits the ‘natural structure’ of some functions and it
makes use of the regular AD to achieve more efficient computing time and less memory
usage requirement. In the paper by Xu and Coleman [2013], they applied Structural-AD
to two extreme cases, generalized partially separable problem and dynamic system compu-
tations. They showed that computing time and memory requirement using Structural-AD
is significantly reduced compared to the regular reverse mode. The Structural-AD is first
raised by Jonsson and Coleman [1999], who illustrated how natural structure can be used
to enable efficient gradient computation. In a paper by Coleman et al. [2012], they used
a direct edge separator method to find the structure in the computational “tape”, which
supported their previous work. Similarly, fast Hessian calculation canalso be recovered
when there’s natural structure in the function.

As a major contribution of this essay, we apply Structural-AD on some problems in
different fields. The structure of this essay is outlined as follows: In Chapter 2, we intro-
duce the theory of automatic differentiation, and the two computation methods - forward
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mode and reverse mode. The comparison of the computational costs for these two meth-
ods is also provided. In Chapter 3, we provide the detailed methodology and derivation of
gradient and Hessian calculation in the Structured-AD context, following which, the com-
putational costs of calculating gradient and Hessian are also presented compared to the
finite-difference method. In Chapter 4, we applied Structural-AD to two extreme cases,
generalized partially separable problem and dynamic system computations and showed
that computing time and memory requirement using Structural-AD is significantly re-
duced compared to the regular reverse mode. In Chapter 5, we test structural-AD on a
Conditional Value-at-Risk (CVaR) optimization problem, specifically with the underlying
function describing the loss function of a stock portfolio. Chapter 6 summarizes the main
idea and findings of this thesis.

All the implementation work is performed on the software ADMAT 2.0 - an Automatic
Differentiation Toolbox for MATLAB developed by Coleman and Xu.
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Chapter 2

Theory of Automatic Differentiation

Automatic differentiation relies on the fact that every function is executed on a computer
as a sequence of elementary operations such as additions, multiplications, and elementary
functions such as sin and cos. By repeated application of chain rule on those elementary
operations, one can compute derivatives in a completely mechanical fashion. For illus-
tration purpose, we use the following simple example to show forward mode and reverse
mode.

[y1, y2] = f(x1, x2, x3, a, b)

with computation order following below:

• ω1 = log(x1 · x2)

• ω2 = x2 · x2
3 − a

• ω3 = b · ω1 + x2
x3

• y1 = ω2
1 + ω2 − x2

• y2 =
√
ω3 − ω2

Therefore, we have

• independent variables: x = (x1, x2, x3)

• dependent variables: y = (y1, y2)
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• intermediate variables: ω = (ω1, ω2, ω3)

• active variables: x,y, ω

• constants: a, b

We want to calculate the Jacobian Jf ,

Jf =

[
∇y1

∇y2

]
=

[
∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

]

For the simplicity of notations, let’s unify all the variables first,

• u1 = x1, u2 = x2, u3 = x3

• u4 = Φ4(u1, u2) = log(u1 · u2)

• u5 = Φ5(u2, u3) = u2 · u2
3 − a

• u6 = Φ6(u2, u3, u4) = b · u4 + u2
u3

• u7 = Φ7(u2, u4, u5) = u2
4 + u5 − u2

• u8 = Φ8(u5, u6) =
√
u6 − u5

Note that we will use the following notations for the rest of forward mode and reverse
mode section.

• n is the number of original independent variables

• N is the total number of variables including the independent, intermediate and de-
pendent variables

• m is the number of dependent variables

• p is the number of intermediate variables

Hence, N = m+ n+ p.
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2.1 Forward Mode

Forward mode computes the gradient of each variable ui, i = 1 . . . N , and use the chain
rule to pass the gradient to the next variable ui+1. In each computation, it computes
the vectors with input size n. We can proceed the function evaluation and the gradient
computation at the same time.
Function evaluation:

ui = xi, i = 1 . . . n,

ui = Φ({uj}j<i), i = n+ 1 . . . N

Differentiation:
∇ui = ei, i = 1 . . . n,

∇ui =
∑
j<i

ci,j · ∇uj, i = n+ 1 . . . N

where ci,j is the partial derivative of ui with respect to uj.
In the following two figures, the left one shows the computational order of the above ex-
ample, and the right one is the order of differentiation in forward mode AD.

u1 u2 u3

u4 u5

u6

u7 u8

c4,1
c4,2

c7,2

c5,2

c6,2

c5,3

c6,3

c7,4

c6,4

c7,5 c8,5

c8,6

∇u1 ∇u2 ∇u3

∇u4 ∇u5

∇u6

∇u7 ∇u8

c4,1
c4,2

c7,2

c5,2

c6,2

c5,3

c6,3

c7,4

c6,4

c7,5 c8,5

c8,6

2.2 Reverse Mode

Reverse mode computes the adjoint of each variable ui, i = 1 . . . N , and pass the adjoint to
the next variable. In each computation, it computes the vectors with output size m, hence
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reverse mode is widely used in the optimization application, since the size of the output of
optimization problems is usually one.
Compute the adjoint of the variables:

ūj =
∂y

∂uj
=
∂(y1, y2, . . . , ym)

∂uj

Compute for dependent variables:

ūn+p+j =
∂(y1, y2, . . . , ym)

∂uj
= ej, j = 1, . . . ,m

Compute for intermediates and independents uj, j = n+ p, . . . , 1,

ūj =
∂y

∂uj
=
∑
i>j

ūici,j

Reverse mode traverses through the computational graph reversely and gets the parents of
each variable so as to compute the adjoint.
In the following two figures, the left one shows the computational order of the above ex-
ample, and the right one is the order of differentiation in reverse mode AD and we can tell
that reverse mode traverses the computational graph reversely.

u1 u2 u3

u4 u5

u6

u7 u8

c4,1
c4,2

c7,2

c5,2

c6,2

c5,3

c6,3

c7,4

c6,4

c7,5 c8,5

c8,6

ū1 ū2 ū3

ū4 ū5

ū6

ū7 ū8

c4,1

c4,2

c7,2

c5,2

c6,2

c5,3

c6,3

c7,4

c6,4

c7,5 c8,5

c8,6
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2.3 Computational Cost for Forward and Reverse Modes

Before computing the cost of forward mode and reverse mode, let’s define the following:{
Nu : number of unit local derivatives, ci,j = ±1
Nū : number of non-unit local derivatives, ci,j 6= 0,±1

In forward mode, we need to solve for derivatives in forward order, ∇un+1,∇un+2, . . . ,∇uN ,

∇ui =
∑
j<i

ci,j · ∇uj, i = n+ 1, . . . , N

with each ∇ui = ( ∂ui
∂x1
, . . . , ∂ui

∂xn
), a length n vector.

Hence, the flops in forward mode is given by,

flops(forward) =
n ·Nū (multiplications ci,j∇uj, ci,j 6= 0,±1)
+n(Nu +Nū) (additions +ci,j∇uj)

⇒
flops(forward) = n(2Nū +Nu)

Therefore, the cost of forward mode is proportional to the size of the input variables.

In reverse mode, we need to solve for adjoints in reverse order ūn+p, ūn+p−1, . . . , ū1,

ūj =
∑
i>j

ūici,j

with ūj = ∂
∂uj

(y1, y2, . . . , ym) is a length m vector.

Hence, the flops in reverse mode is given by,

flops(reverse) =
mNū (multiplications ūi · ci,j, ci,j 6= ±1, 0)
+m(Nu +Nū) (additions +ūi · ci,j)

⇒
flops(reverse) = m(2Nū +Nu)

Therefore, the cost of reverse mode is proportional to the size of the output.
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2.4 Differentiation Arithmetic and High-Order Deriva-

tives

The differentiation arithmetic is based on chain rule and it can be implemented in Matlab
as an structured object with format (f(x0), f

′
(x0)). Let u denote the value of the function

u : R → R evaluated at the point x0, and where u
′
denotes the value u

′
(x0). Then, we

can proceed the function evaluation and differentiation at the same time. Let’s denote the
object as ~u = (u, u

′
).

~u+ ~v = (u+ v, u
′
+ v

′
)

~u− ~v = (u− v, u′ − v′)

~u× ~v = (uv, uv
′
+ u

′
v)

~u/~v = (u/v, u
′ − (u/v)v

′
/v))

~x = (x, 1)

~c = (c, 0)

Same structure can be applied to high-order derivative. For example, ~u = (u, u
′
, u
′′
).

~u+ ~v = (u+ v, u
′
+ v

′
, u
′′

+ v
′′
)

~u− ~v = (u− v, u′ − v′ , u′′ − v′′)

~u× ~v = (uv, uv
′
+ u

′
v, uv

′′
+ 2u

′
v
′
+ u

′′
v′)

~u÷ ~v = (u/v, u
′ − (u/v)v

′
/v, (u

′′ − 2(u/v)
′
v
′ − (u/v)v

′′
)/v)

9



Chapter 3

Structural-AD for Gradient and
Hessian Calculations

Automatic differentiation has become a popular research area because of its avoidance of
truncation error. In theory, for scalar-value function, the gradient can be computed using
reverse mode of AD with the same complexity as evaluating the function itself. However,
practical results on large-scale problem show poor performance because of huge memory
usage. In this chapter, we introduce an improvement over traditional AD when the func-
tion itself has a “separation structure”.

3.1 Definitions and Notations

• fλ(x) : Rn → R, a scalar-valued function, with λ being an uncertain parameter of
length p

• Λ = (λ1, . . . , λk) ∈ Rp×k : a sample of parameters with size k, forming a matrix

• G(x) =
[
∇xf

λ1(x), . . . ,∇xf
λk(x)

]
: gradient of fλi at x for i = 1, · · · , k

• D2
ijf(x) : second-order partial derivative of fλ at x

10



• Hf (x) :=


D2

11f(x) D2
21f(x) . . . D2

n1f(x)
D2

12f(x) D2
22f(x) . . . D2

n2f(x)
...

...
...

D2
1nf(x) D2

2nf(x) . . . D2
nnf(x)

 : Hessian of f at x

3.2 Method for Gradient Calculation

Suppose that we wish to determine, at point x, the gradient of f with respect to x for each
λi, where i = 1 . . . k, that is,

G(x) =
[
∇xf

λ1(x), . . . ,∇xf
λk(x)

]
(3.1)

Based on the work of Verma and Coleman [1998], many problems can be written as a
structured computation, namely, we can view the evaluation of fλ(x) at any x as a two-
step process:

1. solve for an intermediate vector y: F (x, y) = 0;

2. compute z = f̃λ(x, y).

for some functions F and f̃λ.
Note:

• In the first step, the function F does not have uncertain parameters λ. Uncertain
parameters only appear in the second step;

• In the second step, the function f̃λ is a scalar-value function;

• In many important cases, the first step represents the dominant work.

So for a given λ, differentiation with respect to the original variables x as well as the
intermediate variables y gives an “extended” Jacobian matrix of f̃λ(x, y) is:

Jλ =

[
Fx Fy

(∇xf̃
λ)T (∇yf̃

λ)T

]
. (3.2)

where Fx and Fy are the Jacobian matrix of F with respect to x and y respectively; (∇xf̃
λ)T

and (∇yf̃
λ)T are the transpose of the gradients of f̃λ with respect to x and y.
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Note that the Jacobian matrix (Fx, Fy) is often sparse, and Fy is lower-triangular and non-
singular.
To get the gradient of fλ(x),

(∇xf
λ) = (∇xf̃

λ)− F T
x F

−T
y (∇yf̃

λ). (3.3)

The Key Observation is that Fx, Fy do not depend on λ, and therefore can be computed
just once for all λi, i = 1, ..., k. Therefore, having computed Fx, Fy, and {∇xf̃

λi ,∇yf̃
λi , i =

1, ..., k}, column i of (3.1) can be computed by applying (3.3).

We can generalize the scalar-valued function case to vector-valued functions case; let’s
consider the following. Suppose F : Rn → Rm and to evaluate z = F (x):

Solve for y1 : F1(x)− y1 = 0

Solve for y2 : F2(x, y1)− y2 = 0

...

Solve for yp : Fp(x, y1, y2, · · · , yp−1)− yp = 0

Solve for z : F̄ (x, y1, y2, · · · , yp)− z = 0

The corresponding extended Jacobian can be written:

JE =


J1
x −I
J2
x J2

y1
−I

...
...

...
. . .

Jpx Jpy1
... Jpyp−1

−I
J̄x J̄y1 · · · · · · J̄yp

 . (3.4)

If we partition JE as


J1
x −I
J2
x J2

y1
−I

...
...

...
. . .

Jpx Jpy1
... Jpyp−1

−I
J̄x J̄y1 · · · · · · J̄yp


= [

A L
B M

]
12



Then the Jacobian of F satisfies

J = B −ML−1A.

In the paper by Xu and Coleman [2013], they demonstrate that it is not necessary to
compute the matrix (A,L) explicitly, since the off-diagonal submatrices in (A,L) involved
in the calculation of above equation occur only in a product form, which can be obtained
by the reverse mode of AD.

3.3 Method for Hessian Calculation

Consider a scalar-valued function fλ(x) : <n → <, where λ is a p-vector of (uncertain)
parameters. Suppose we wish to determine the Hessian matrix of f , at point c,

Hf (c) :=


D2

11f(c) D2
21f(c) . . . D2

n1f(c)
D2

12f(c) D2
22f(c) . . . D2

n2f(c)
...

...
...

D2
1nf(c) D2

2nf(c) . . . D2
nnf(c)

 . (3.5)

We want to make use of the special structure of fλ(x), that is:

fλ(x) = g(F (x), λ), (3.6)

where F : <n → <m is a vector-valued function, and g : <m × <p → < is scalar-valued
function. One common example of this structure is the weighted average function with the
weight vector λ.

Now, let Z = F (x), and y = g(Z, λ). For the ij−th entry of the Hessian matrix, we

13



have:

∂2f

∂xi∂xj
=

∂

∂xj

(
∂f

∂xi

)
=

∂

∂xj

[
m∑
k=1

∂g

∂Zk
· ∂Fk
∂xi

]

=
m∑
k=1

∂

∂xj

[
∂g

∂Zk
· ∂Fk
∂xi

]
=

m∑
k=1

[
∂2g

∂xj∂Zk
· ∂Fk
∂xi

+
∂2Fk
∂xj∂xi

· ∂g
∂Zk

]

=
m∑
k=1




m∑
l=1

∂2g

∂Zk∂Zl︸ ︷︷ ︸
(1)

· ∂Fl
∂xj︸︷︷︸
(2)

 · ∂Fk∂xi︸︷︷︸
(3)

+
∂2Fk
∂xj∂xi︸ ︷︷ ︸

(4)

· ∂g
∂Zk︸︷︷︸
(5)

 .

(3.7)

In the above equation,

• (1) can be acquired from the Hessian of g with respect to Z;

• (2), (3) can be acquired from the Jacobian of F with respect to x;

• (4) can be acquired from the Hessian of F with respect to x;

• (5) can be acquired from the gradient of g with respect to Z.

In this case, for a fixed x, (2), (3), (4) are only calculated once for all λi, since they are only
related the function F (x). (4) and (5) must be recalculated for each λi. In situations where
the main computational cost lies in evaluating the function F (x), calculating (2), (3), (4)
only once for all λi would save us a lot of computation.

In matrix format, in which we use the notation of Kronecker product,

Hf (c) = DF (c)T · [Hg(b)] ·DF (c) + [Dg(b)⊗ In] ·HF (c), (3.8)
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where b = F (c), DF is the Jacobian of F , Dg is the gradient of g, HF is the Hessian of F ,
Hg is the Hessian of g.

DF (c) =


∂F1

∂x1
(c) ∂F1

∂x2
(c) . . . ∂F1

∂xn
(c)

∂F2

∂x1
(c) ∂F2

∂x2
(c) . . . ∂F2

∂xn
(c)

...
...

...
∂Fm

∂x1
(c) ∂Fm

∂x2
(c) . . . ∂Fm

∂xn
(c)

 ,

HF (c) =


HF1(c)
HF2(c)

...
HFm(c)

 ,
Dg(b) =

[
∂g

∂F1

(b),
∂g

∂F2

(b), . . . ,
∂g

∂Fm
(b)

]
,

Hg(b) =


D2

11g(b) D2
21g(b) . . . D2

m1g(b)
D2

12g(b) D2
22g(b) . . . D2

m2g(b)
...

...
...

D2
1mg(b) D2

2mg(b) . . . D2
mmg(b)

 .
Again, DF (c), HF (c) are only calculated once for all λi; whereas Dg(b), Hg(b) must be
recalculated for each λi.

3.4 Comparison of the Computational Costs

Now we want to analyze the computational costs of the structural-AD method and the
finite-difference method. Before doing analysis, let’s define:

ω(F ) : the computational cost of evaluating a single entry of function F

ω(g) : the computational cost of evaluating function g

3.4.1 Compare Computational Costs for Evaluating Gradients

For the function fλ(x) = g(F (x), λ), where F : <n → <m is a vector-valued function, and
g : <m ×<p → < is scalar-valued function, let’s make the assumption that m < n. In our
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method, the gradient will be calculated as:

G(x) =


∂F1

∂x1

∂F2

∂x1
· · · ∂Fm

∂x1
∂F1

∂x2

∂F2

∂x2
· · · ∂Fm

∂x2
...

...
...

∂F1

∂xn
∂F2

∂xn
· · · ∂Fm

∂xn




∂g
∂Z1
∂g
∂Z2
...
∂g
∂Zm


To calculate the left matrix, each of the ∂Fi

∂xj
needs two function evaluations ω(F )(here, we

assume each entry are calculated using finite-difference method), so in total, the left matrix
will need 2mn function evaluations ω(F ). For the right matrix, each of the ∂g

∂Zi
needs two

function evaluations ω(g), so the right matrix will need 2m function evaluations ω(g). In
summary, the computational cost of calculating the gradient using the procedural method
is 2[mn · ω(F ) +m · ω(g)].

Using finite-difference method to calculate the gradient, each of ∂f
∂xi

needs two function
evaluations of f , and f needs m · ω(F ) + ω(g) (from the structure of f in (3.6)). Hence,
the computational cost of calculating the gradient using finite-difference method is 2n[m ·
ω(F ) + ω(g)].

Comparing these two methods, for one gradient evaluation:

The structural-AD method: 2[mn · ω(F ) +m · ω(g)],

Finite-difference method: 2[mn · ω(F ) + n · ω(g)],

When x is fixed, and λ are drawn from a sample of size k, we are interested in the savings
in our method to the finite-difference method. Now, since everything related to F will
only need to be calculated once, our method costs 2[mn · ω(F ) + km · ω(g)], whereas the
finite-difference method costs 2[kmn ·ω(F ) + kn ·ω(g)], hence, the difference of structural-
AD method and finite-difference method is k(m− n) · ω(g)− (k − 1)mn · ω(F ). Since we
make the assumption at the beginning that m < n, as k is getting large, the structrual-AD
method will beat the finite-difference method.

3.4.2 Compare Computational Costs for Evaluating Hessians

Calculating the Hessian using finite-difference method usually takes 3 evaluations of f
for each entry ∂2f

∂xi∂xj
in the Hessian matrix, so the finite-difference method will cost

3n2[m · ω(F ) + ω(g)].
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For our method, the Hessian can be calculated from the following formula (see (3.8)):

Hf (c) = DF (c)T · [Hg(b)] ·DF (c) + [Dg(b)⊗ In] ·HF (c),

where,

DF costs 2mn · ω(F ),

Hg costs 3m2 · ω(g),

Dg costs 2m · ω(g),

HF costs 3mn2 · ω(F ).

Hence, in total, our method will cost 3m2 · ω(g) + 2mn · ω(F ) + 2m · ω(g) + 3mn2 · ω(F ).

In summary, for one Hessian evaluation, the costs are the following:

The procedural method: 3m2 · ω(g) + 2mn · ω(F ) + 2m · ω(g) + 3mn2 · ω(F ),

Finite-difference method: 3n2[m · ω(F ) + ω(g)]

When x is fixed, and λ are drawn from a sample of size k, we are interested in the saving
in our method to the finite-difference method. Now, since everything related to F will only
be calculated once, our method costs:

(3m2k + 2mk) · ω(g) + (2mn+ 3mn2) · ω(F ),

Whereas the finite-difference method will cost:

(3n2k) · ω(g) + (3n2mk) · ω(F ),

If m and n are of the same order of magnitude, the first terms in both methods will
cancel with each other, and the procedural method will eventually beat the finite-difference
method as k getting larger, from the second terms we can tell.
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Chapter 4

Two Extreme Cases for
Structural-AD

Xu and Coleman [2013] exploit the structured AD and apply it to two extreme cases for
gradient computation. These problems are generalized partially separable (GPS) problem
and dynamic system computations.
A generalized partially separable problem has the following form:

for i = 1, · · · , p
Solve for yi : Fi(x)− yi = 0.

and then

Solve for z : F̄ (x, y1, · · · , yp)− z = 0.

Where the final function value is z, and it can be either a scalar or a vector.
Hence, the corresponding extended Jacobian matrix becomes,

JE =


J1
x −I
J2
x 0 −I
...

...
...

. . .

Jpx 0
... 0 −I

J̄x J̄y1 · · · · · · J̄yp

 . (4.1)

As we can tell, in the GPS problem, the intermediate variable yi only depends on the
independent variable x, not other intermediate variables.
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The dynamic system problem is the other extreme cases. The intermediate variables yi
only depends on the previous intermediate variable yi−1. It takes the following form :

for i = 1, · · · , p
Solve for yi : Fi(yi−1)− yi = 0.

and then

Solve for z : F̄ (x, y1, · · · , yp)− z = 0.

where y0 = x, and hence the corresponding extended Jacobian matrix becomes,

JE =


J1
x −I
0 J2

y1
−I

...
...

. . . . . .

0 0
... Jpyp−1

−I
J̄x J̄y1 · · · · · · J̄yp

 . (4.2)

Xu and Coleman [2013] performed comparison for computational time and memory usage
between structured AD and regular

Reverse Mode Structured Gradient memory time
p Memory (MB) Times (s) Memory (MB) Times (s) ratio speedup
10 29.27 3.75 3.56 3.15 8.22 1.19
30 87.71 10.27 3.62 8.96 24.23 1.15
50 146.17 16.98 3.68 15.05 39.72 1.13
100 292.30 33.76 3.85 29.73 75.92 1.14
150 438.43 51.00 3.99 45.25 109.88 1.13

Table 4.1: Memory usage and running times of the gradient computation based on the
structure and plain reverse-mode AD for the dynamic system.
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Reverse Mode Structured Gradient memory time
p Memory (MB) Times (s) Memory (MB) Times (s) ratio speedup
10 48.55 4.86 13.55 3.08 3.58 1.58
30 214.73 14.66 13.58 9.96 15.81 1.47
50 473.07 24.54 13.60 14.95 34.78 1.64
100 1232.21 52.18 13.68 29.95 90.00 1.74
150 2547.30 837.77 13.72 57.56 185.66 16.06

Table 4.2: Memory usage and running times of the gradient computation based on the
structure and plain reverse-mode AD for the generalized partial separability problem.
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Chapter 5

CVaR Optimization with the
Structural Gradient/Hessian
Calculation

We will show in this section how the structural gradient/Hessian calculation method re-
duces the computational cost in the CVaR optimization.

Consider the minimization problem

min
x∈Ω

f(x, µ) (5.1)

where f is a smooth (twice continuously differentiable) function of (x, µ), x is the vector
of n real design variables, µ is a vector of p parameters, and Ω is a connected region in
<n. The problem we address is concerned with the situation where µ is uncertain. In
particular, we suppose the distribution of µ is known (or can be estimated). In order to
manage “near worst case” outcomes, one approach is a CVaR-minimization approach. In
particular, consider the CVaR minimization problem:

min
x∈Ω

CV aRβ(f(x, µ)) (5.2)

The computational solution of (5.2) will be discussed below. However, the evaluation of
CV aRβ(f(x, µ)) at a given x requires the evaluation of {f(x, µi), i = 1 : m} and this can
be very expensive. One approach to (5.2) is to use the ε−method by Coleman et al. [2009].
Specifically, given a resolution parameter ε > 0, define

21



fβ(x, α) = α +
1

m(1− β)

m∑
i=1

pε(f(x, µi)− α) (5.3)

where α ∈ <, pε(z) is a continuously differentiable piecewise quadratic function:

pε(z) =


z if z ≥ ε
z2

4ε
+ z

2
+ ε

4
if −ε ≤ z ≤ ε

0 otherwise

(5.4)

Problem (5.2) can then be approximated by

min
α,x∈Ω

fβ(x, α) (5.5)

Note that (5.3) is differentiable and

∇x,αfβ(x, α) =

(
0
1

)
+

1

m(1− β)

m∑
i=1

∇x,αpε(f(x, µi)− α) (5.6)

The last term in (5.6) can be summed over three parts. Specifically,

∇x,αpε(f(x, µi)−α) =



[
∇xf(x, µi)
−1

]
if f(x, µi)− α ≥ ε(

f(x,µi)−α
2ε

+ 1
2

)[ ∇xf(x, µi)
−1

]
if −ε ≤ f(x, µi)− α ≤ ε

0 if f(x, µi)− α ≤ −ε

(5.7)

Note: although the gradient is written in piecewise format, it is actually continuous at
the critical points.
To make use of Newton’s Method (or other methods) to solve the optimization problem in
(5.5), we also need to examine the Hessian of fβ(x, α),

∇2
(x,α)fβ(x, α) =

1

m(1− β)

m∑
i=1

∇2
(x,α)pε(f(x, µi)− α) (5.8)

The last term in (5.8) can be summed over three parts. Specifically,

if f(x, µi)− α ≥ ε,

∇2
(x,α)pε(f(x, µi)− α) =

[
∇2
xxf(x, µi) 0

0 0

]
(5.9)
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if −ε ≤ f(x, µi)− α ≤ ε,

∇2
(x,α)pε(f(x, µi)− α) =

[
∇xf(x,µi)∇xf(x,µi)

T

2ε
+
(
f(x,µi)−α

2ε
+ 1

2

)
∇2
xxf(x, µi) , −∇xf(x,µi)

2ε

−∇xf(x,µi)
T

2ε
, 1

2ε

]
(5.10)

if f(x, µi)− α ≤ −ε,

∇2
(x,α)pε(f(x, µi)− α) =

[
0 0
0 0

]
(5.11)

Note: The Hessian above, very often, is not continuous at the critical points.
It is often not practical to solve (5.5) directly due to the expense of evaluating {f(x, µi), i =
1 : m} and related gradients, possibly Hessians. But since we have set the foundation using
our previously discussed structural-AD method, we can benefit from it with the following
local approximations:

f(x, µi) ∼= f(x, µ̄)+∇µf(x, µ̄)T (µi−µ̄)+
1

2
(µi−µ̄)T [∇2

µµf(x, µ̄)](µi−µ̄) := f̃(x, µi) (5.12)

Hence, the objective function now becomes,

f̃β(x, α) = α +
1

m(1− β)

m∑
i=1

pε(f̃(x, µi)− α) (5.13)

Note that use of (5.12) only requires the evaluation of f,∇f at a single pair (x, µ̄) for
any point (but does require m matrix multiplications). However, the use of the resulting
approximate values for ∇f̃β must be investigated.

To find the gradient of f̃β, from (5.7), we can see that we need to examine ∇xf̃(x, µi),
(written in component-wise)

∂f̃(x, µi)

∂xj
=
∂f(x, µ̄)

∂xj
+
∂∇µf(x, µ̄)

∂xj
(µi − µ̄) +

1

2
(µi − µ̄)T

∂[∇2
µµf(x, µ̄)]

∂xj
(µi − µ̄) (5.14)

(Note: Another view is to define a vector valued function F (x, µ) where component i
is f(x, µi), i = 1 : m. It is often possible to design the code for F so that cost(F ) �
m ∗ cost(f).)
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5.1 Special Case: Product Form

Generally the approximations (5.12) may be difficult to use since the quadratic changes
with x. However, in some speical cases, such as weighted average function, the following
product form holds:

f(x, µ) = g(x) · h(µ) + v(x)

where g(x), h(µ) and v(x) are real-valued functions.

And in this case, the situation is more tractable. For ease of explanation, and without
loss of generality, assume here that v(x) = 0. Clearly,

{f(x, µ1), ..., f(x, µm)} = g(x) · {h(µ1), ..., h(µm)}

and
{∇xf(x, µ1), ...∇xf(x, µm)} = ∇xg(x) · {h(µ1), ..., h(µm)}

Obviously then, the local approximation will become,

f(x, µi) ∼= g(x) ·h(µ̄) +g(x)[∇µh(µ̄)](µi− µ̄) +
1

2
(µi− µ̄)Tg(x)[∇2

µµh(µ̄)](µi− µ̄) := f̃(x, µi)

Hence, the objective function now becomes,

f̃β(x, α) = α +
1

m(1− β)

m∑
i=1

pε(f̃(x, µi)− α)

From the equation (7), we can see that, to find the gradient of f̃β(x, µi), we need to find
out ∇xf̃(x, µi), (written in component-wise)

∂f̃(x, µi)

∂xj
=
∂g(x)

∂xj
·
[
h(µ̄) + [∇µh(µ̄)T ](µi − µ̄) +

1

2
(µi − µ̄)T [∇2

µµh(µ̄)](µi − µ̄)

]
We can see that in the above formula, the braketed expression does not depend on x, hence
we can write down the gradient and Hessian immediately:

∇xf̃(x, µi) =

[
h(µ̄) + [∇µh(µ̄)T ](µi − µ̄) +

1

2
(µi − µ̄)T [∇2

µµh(µ̄)](µi − µ̄)

]
· 5xg(x)

∇2
xxf̃(x, µi) =

[
h(µ̄) + [∇µh(µ̄)T ](µi − µ̄) +

1

2
(µi − µ̄)T [∇2

µµh(µ̄)](µi − µ̄)

]
· 52

xxg(x)

Hence, to implement this problem in Matlab, we only need to record h(µ̃),∇µh(µ̃),∇2
µµh(µ̃)

for all points (x, µ̃).
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5.2 Stock Portfolio Application

The problem is described as follows. Suppose our portfolio contains 10 stocks from five
different industries, each industry has two stocks. The 10 stocks we selected in our problem
and their corresponding industries are:

• Credit Services: Visa Inc. (V) and MasterCard Incorporated (MA)

• Home Improvement Stores: The Home Depot, Inc. (HD) and Lowes Companies Inc.
(LOW)

• Money Center Banks: Royal Bank of Canada (RY) and The Toronto-Dominion Bank
(TD)

• Oil and Gas: Exxon Mobil Corporation (XOM) and Chevron Corporation (CVX)

• Drug Manufactures: Pfizer Inc. (PFE) and Bristol-Myers Squibb Company (BMY)

We assume that stock prices are correlated within an industry, but have no correlations
between different industries. We are interested in assigning weights to stocks such that the
CVaR of the loss variable, for one day horizon, at 95% level, is minimized; we assume that
we have a fixed amount of money to invest. Now, let’s introduce all the notations,

• St,i : the price for stock i at time t, i = 1, 2, . . . , 10

• Zt,i := logSt,i the logarithmic prices for stock i at time t, i = 1, 2, . . . , 10

• at,i : the number of shares invested in stock i at time t

• Xt,i := Zt+1,i − Zt,i : the log-returns over one day horizon from t to t+ 1 for stock i,
i = 1, 2, . . . , 10

• Vt : the value of the portfolio at time t, we could fix it to be 1.

• wt,i : denotes the relative weight of stock i at time t

• Lt+1 := −Vt
∑10

i=1 wt,i(e
Xt+1,i − 1) : denotes the loss from t to t+ 1.
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Mathematically, our problem can be formed by a minimization problem as the following:

min
wt,i

CVaR0.95(Lt+1)

s.t.
∑
i

wt,i = 1

Note that we don’t have restrictions on wt,i, since we allow short-selling. And the opti-
mized weights do not depend on the portfolio value Vt at time t. Hence, for our portolio
optimization problem mentioned before,

min
wt,i

CVaR0.95(Lt+1)

s.t.
∑
i

wt,i = 1

We can use the following piecewise linear function to realize the above optimization problem

F̄β(x, α) = α +
1

m(1− β)

m∑
i=1

[L− α]+

and
min
x

CVaR0.95(Lt+1) = min
x,α

(F̄β(x, α))

The advantages of using a piecewise linear function is that it can be formulated as
a convex programming problem, and many optimization softwares solve this question in
polynomial time. However, since we haven’t add the variance term into the objective
function, which can be expressed as wTΣw, and Σ is the covariance matrix for stocks, the
objective function can be quadratic or even more complicated. Notice that the derivative
at the critical point of the piecewise linear function is not continuous; this can cause
computational inefficiency when we add a quadratic term to the objective function. Hence,
we can use the smoothing technique by Coleman, Li, and Zhu [2009]. Instead of using the
a piecewise linear function, Coleman, Li, and Zhu [2009] suggests a piecewise quadratic
function

F̃β(x, α) = α +
1

m(1− β)

m∑
i=1

ρε(L− α)

Where ρε(z) is defined as:

ρε(z) =


z if z ≥ ε

z2

4ε
+ 1

2
z + 1

4
ε if − ε ≤ z ≤ ε

0 otherwise
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Our portfolio CVaR formulation based on Alexander et al (2006) will becomes:

min
α,w

F̄β(x, α) = min
α,w

α +
1

m(1− β)

m∑
i=1

ρε(−wT (exi − 1)− α)

s.t. wT e = 1

Note that the above objective function is the special case product form introduced in
5.1, hence we use the gradient formula in 5.1 to calculate the gradient of the objective
function and feed it into the optimization process. We compare the running time using the
structural method in 5.1 with the finite-difference gradient method and present the results
in next section.

5.3 Result Analysis

The implementation of previous smoothing CVaR optimization is done on Matlab. We
summarize our result here, the last column is the optimal weights for each stock. As we can
see, the annualized volatility of MA is the largest, and the weight assigned to MA is smallest
among all the stocks; the annualized volatility of PFE and BMY are the smallest, and the
weights assigned to them are the largest two weights. These results are consistent with
the risk-aversion convention. Moreover, we can tell from the last column that the weights
are quite diversified, where the classical Markowitz mean-variance portfolio optimization
does not have this feature. Many research papers have shown the the classical mean-
variance portfolio optimization faces the problem of highly concentration of the weights,
when short-selling is allowed, which is one of the main reason that industry did not widely
use the classical mean-variance portfolio optimization. CVaR optimization overcomes this
shortcoming in the classical theory.
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mean Volatility Volatility weight
(daily) (annually)

V 0.0009297925 0.02326158 0.444412 0.1056
MA 0.0007880421 0.02530042 0.483364 0.0220
HD 0.0005244788 0.01969459 0.376265 0.1276
LOW 0.0002576364 0.02219893 0.42411 0.0316
RY 0.0003038427 0.02065314 0.394578 0.0583
TD 0.0003510037 0.01979393 0.378163 0.1231
XOM 0.0002296607 0.01767983 0.337773 0.0655
CVX 0.0004691025 0.01911334 0.36516 0.1475
PFE 0.0002349748 0.01580621 0.301977 0.1592
BMY 0.0005091557 0.01587122 0.303219 0.1596

From the running time comparison table, we can see that as the number of samplem getting
larger, running time for solving the above optimization problem with finite-difference gra-
dient is increasing dramatically, while the running time using structrual gradient method
is growing slowly. Hence, it supports our previous findings.

m structural method (s) finite-difference method (s)
100 0.134 0.281
500 0.388 0.913
1000 0.546 2.445
2000 0.858 6.567
5000 1.387 14.772
10000 2.013 30.573

Table 5.1: Running time comparison between structural gradient method and finite-
difference method.
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Chapter 6

Conclusion

Throughout this research paper, we studied a structural automatic differentiation method
(Structural-AD). This method exploits the ‘natural structure’ of some functions and it
makes use of the regular AD to achieve more efficient computing time and less memory
usage requirement. In the paper by Xu and Coleman [2013], they applied Structural-AD
to two extreme cases, generalized partially separable problem and dynamic system compu-
tations. They showed that computing time and memory requirement using Structural-AD
is significantly reduced compared to the regular reverse mode. The Structural-AD is first
raised by Jonsson and Coleman [1999], who illustrated how natural structure can be used
to enable efficient gradient computation. In a paper by Coleman et al. [2012], they used
a direct edge separator method to find the structure in the computational “tape”, which
supported their previous work. Similarly, fast Hessian calculation canalso be recovered
when there’s natural structure in the function.

As a major contribution of this essay, we apply Structural-AD on some problems in
different fields. In Chapter 2, we introduce the theory of automatic differentiation, and the
two computation methods - forward mode and reverse mode. The comparison of the compu-
tational costs for these two methods is also provided. In Chapter 3, we provide the detailed
methodology and derivation of gradient and Hessian calculation in the Structured-AD con-
text, following which, the computational costs of calculating gradient and Hessian are also
presented compared to the finite-difference method. We showed that the computational
cost is significantly reduced using Structural-AD method compared to the finite-difference
method. In Chapter 4, we applied Structural-AD to two extreme cases, generalized par-
tially separable problem and dynamic system computations and showed that computing
time and memory requirement using Structural-AD is significantly reduced compared to
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the regular reverse mode. In Chapter 5, we test structural-AD on a Conditional Value-
at-Risk (CVaR) optimization problem, specifically with the underlying function describing
the loss function of a stock portfolio.
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