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Abstract

Best and Hlouskova [1] have developed an active set QP algorithm for solving the problem of
maximizing an expected utility function of n assets with transaction cost. The algorithm requires
the assumption that the optimal solution founded at the end of each iteration is non-degenerate.
In the real world, this assumption is impractical. The starting point for the algorithm often is a
degenerate point. In the essay, I will present a method for solving this problem. This method is
based on breaking the tie using the primal-dual property of the optimization problem.
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Chapter 1

Introduction

1.1 Portfolio Optimization Problem with Transaction Cost Model

We consider the problem[3][4][5]

minimize : −t(µ′x + p′x+ + q′x−) + 1
2x′Σx

subject to : l′x = 1

x− x+ + x− = x̂

0 ≤ x+ ≤ d

0 ≤ x− ≤ e


(1.1)

where x = (x1, . . . , xn)′, µ = (µ1, . . . , µn)′ and Σ = [σij ], t is a scalar parameter.

Throughout this paper prime (′) denotes transposition. All vectors are column vectors unless
primed. The notation zi or (z)i will be used to denote the ith component of the vector z.

Let xi denote the proportion of wealth to be invested in asset i, and let µi denote the expected
return on asset i, i = 1, . . . , n. Let σij denote the covariance between assets i and j, 1 ≤ i, j ≤ n.
Σ = [σij ] is called the covariance matrix for the assets and is symmetric and positive semidefinite.
Throughout the essay we will make the stronger assumption that Σ is positive definite. In terms
of x, the expected return of the portfolio, µp, and the variance of the portfolio, σ2

p, are given by

µp = µ′x and σ2
p = x′Σx

Let l = (1, 1, . . . , 1)′; i.e., l is an n vector of ones. Since the components of x are proportions,
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they must sum to one; i.e., l′x = 1. The constraints l′x = 1 is usually called the budget constraint.

In the portfolio optimization setting, the goal is to choose a value for x which gives a large
value for µp and a small value for σ2

p. These two goals tend to be in conflict. By introducing the
parameter t, the problem has been solved nicely. For t ≥ 0, the parameter t balances how much
weight is placed on the maximization of µ′x (expected return) and minimization of x′Σx (risk).

To make the portfolio model more practical, most modern portfolio analysts insist on provision
for transaction costs. These are usually incurred relative to some target portfolio, say x̂. This
may be the presently held portfolio or some industry standard such as S&P500 in the US. The
idea is that the portfolio model should include costs for buying or selling assets relative to the
target portfolio. Let x+ denote the vector of purchases and let x− denote the vector of sales.
Then the holdings vector x may be represented as

x = x̂ + x+ − x−, x+ ≥ 0, x− ≥ 0.

Let p and q denote the vectors of purchases and sales transactions costs. Having separated out
the sales and purchases, the total transaction cost is

p′x+ + q′x−.

In practice, most money managers will not accept very large changes in their holdings.
Changes can be controlled by introducing bounds on amount of assets purchased and sold. This
constraints can be formulated by introducing the bound constraints. Let d and e denote upper
bounds on the amount sold and purchased, respectively. Hence we have the model formulation
as presented in (1.1).

1.2 Degeneracy and Its Appearance in Portfolio Optimization

Definition 1.1 For a general convex quadratic programming problem (QP);

min{ c′x +
1
2
x′Cx |Ax ≤ b} (1.2)

where c, x are n-vectors, C is an (n, n) symmetric positive semi-definite matrix, A is an (m,n)
matrix and b is an m-vector.

The feasible region for (1.2) is the set of points S = {x |Ax ≤ b }. A point x0 is feasible

for (1.2), if x0 ∈ S and infeasible, otherwise. Constraints i is inactive at x0 if a′ix0 < bi,
active at x0 if a′ix0 = bi and violated at x0 if a′ix0 > bi.
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Definition 1.2 A feasible point x0 is degenerate for problem (1.2), if it is feasible and if the
gradients of constraints active at x0 are linearly dependent.

In practical applications, many problems of the form (1.1) will be solved each time with µ

and Σ being updated in response to new data. Consider two consecutive time periods t1 and t2

with t2 > t1. Let µ1,Σ1 and x̂1 be the values for µ,Σ and x̂ respectively for t = t1. Similarly,
let µ2,Σ2 and x̂2 be the data for t = t2. If the time periods t1 and t2 are close, it is resonable
to expect that Σ1 and Σ2 will be close as also will be µ1 and µ2. Let x∗1 denote the optimal
solution for the time period 1 problem. At the end of time period 1, the investor’s holdings will
be allocated according to x∗1. It is normal to set x̂2 = x∗1 so that the transaction costs will be
measured against the investor’s present holdings (t = t1). The transaction costs may result in
many of the asset holdings for the optimal solution of time period 2 being identical to those of
the optimal solution of time period 1, namely x∗1. An active set QP algorithm for the solution
of the time period 2 problem can be initiated using x̂2 = x∗1 as the starting point for the time
period 2 version of (1.1). However, a difficulty is that this point is degenerate as shown in the
following lemma.

Lemma 1.3 If the target point x̂ satisfies l′x̂ = 1, then the point (x̂′, (x̂+)′, (x̂−)′)′ with x̂+ =
x̂− = 0 is a degenerate point for (1.1).

Proof
x̂ is a valid solution to the equation l′x̂ = 1 by the assumption in the lemma. The constraint
x−x+ +x− = x̂ is also satisfied. So far we have n+1 active constraints. Furthermore, the lower
bounds of zero on x̂+ and x̂− are all active. In total, we have 3n + 1 active constraints. Problem
(1.1) only has 3n variables and there are 3n + 1 constraints active at the point (x̂′, (x̂+)′, (x̂−)′)′.
This implies that the active constraints are linear dependant. Thus (x̂′, (x̂+)′, (x̂−)′)′ is a degen-
erate point.

2
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Chapter 2

A Solution Algorithm for the

Portfolio Model

2.1 Algorithm

A basic difficulty of incorporating transaction costs is that it triples the number of problem
variables and requires the addition of 3n linear constraints. This gives an optimization problem
which is considerably more time consuming to solve.

Best and Hlouskova have developed a method for solving the 3n-dimensional problem by solv-
ing a sequence of n-dimensional optimization problems, which account for the transaction costs
implicitly rather than explicitly. The method is based on deriving the optimality conditions for
the higher dimensional problem solely in terms of lower dimensional quantities. Their method
requires the solution of a number of n-dimensional problems without the additional linear con-
straints and thus with corresponding savings in computer time and storage. Their key idea is to
treat the transaction costs implicitly rather than explicitly.

Problem (1.1) is a special case of the following 3n-dimensional model problem.

minimize : f(x) + p(x+) + q(x−)

subject to : x− x+ + x− = x̂, Ax ≤ b,

d ≤ x ≤ e,

x+ ≥ 0, x− ≥ 0,


(2.1)
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Where A is an (m,n) matrix, b is an m-vectors, x is an n-vector of asset holdings, d and e

are n-vectors of lower and upper bounds on x, respectively, and −f(x) is an expected utility
function. The constraints Ax ≤ b represent general linear constraints on the assets holdings and
the constraints d ≤ x ≤ e impose explicit bounds on the asset holdings. x̂, x+ and x− are as in
(1.1). For i = 1, . . . , n, the purchase cost for x+

i is given by pi(x+
i ) and the sales cost for x−i is

given by qi(x−i ). The total cost of the transaction is thus

p(x+) + q(x−),

where p(x+) =
∑n

i=1 pi(x+
i ) and q(x−) =

∑n
i=1 qi(x−i ).

Define
S ≡ {x ∈ Rn | Ax ≤ b, d ≤ x ≤ e} (2.2)

The algorithm will require the following two assumptions.

Assumption 2.1 d < x̂ < e

Assumption 2.2 let x, x+,and x− ∈ Rn.

1. f(x) is a twice differentiable convex function;

2. p(x+) and q(x−) are separable functions; i.e., p(x+) = Σn
i=1pi(x+

i ) and q(x−) = Σn
i=1qi(x−i );

3. pi(x+
i ) and qi(x−i ) are convex functions of a single variable for i = 1, . . . , n;

4. p, q are twice differentiable functions;

5. ∇p(x+) ≥ 0 and ∇q(x−) ≥ 0; i.e.,pi(x+
i ) and qi(x−i ) are increasing functions for i =

1, . . . , n.

Definition 2.3 Let x ∈ Rn. The index sets of x are defined as follows

I+(x) = { i | xi > x̂i}

I(x) = { i | xi = x̂i}

I−(x) = { i | xi < x̂i}
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Definition 2.4 Let x ∈ Rn

(i) x+ ∈ Rn is the positive portion of x if

x+
i =

 xi − x̂i i ∈ I+(x)

0 i ∈ I(x)
⋃

I−(x)

(ii) x− ∈ Rn is the negative portion of x if

x−i =

 0 i ∈ I(x)
⋃

I+(x)

x̂i − xi i ∈ I−(x)

Note that if x+ and x− are the positive and negative portions of x, then (x′, (x+)′, (x−)′)′

satisfies the constraints x+ ≥ 0, x− ≥ 0 and x− x+ + x− = x̂

Definition 2.5 If (x′, (x+)′(x−)′)′ is a feasible solution for (2.1) and satisfies the property that
not both of x+

i , x−i are strictly positive for i = 1, . . . , n then we call (x′, (x+)′, (x−)′)′ is a proper
feasible solution. Additionally, if (x′, (x+)′(x−)′)′ is a proper feasible solution, which is optimal
for (2.1), then we call (x′, (x+)′(x−)′)′ a proper optimal solution.

In the algorithm we are about to discuss, it searches for an optimal solution for (2.1) to a
proper optimal solution.

The algorithm is formulated in terms of solving a sequence of sub-problems. The sub-problems
to be solved depend on two n-vectors d̃ and ẽ as follows:

sub(d̃, ẽ) : min {f(x) + c̃(d̃, ẽ, x)|Ax ≤ b, d̃ ≤ x ≤ ẽ}

The vectors d̃ and ẽ are to be specified. They will always satisfy:

d̃i = di, ẽi = x̂i, or d̃i = x̂i, ẽi = ei, or d̃i = ẽi = x̂i (2.3)

In addition, c̃(d̃, ẽ, x) =
∑n

i=1 c̃i(d̃i, ẽi, xi), where for i = 1, . . . , n

c̃i(d̃i, ẽi, xi) =


pi(xi − x̂i), if d̃i = x̂i and ẽi = ei,

0 if d̃i = ẽi = x̂i,

qi(x̂i − xi) if d̃i = di and ẽi = x̂i

(2.4)
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The sub-problem SUB(d̃, ẽ) is an n-dimensional problem with linear constraints and a convex,
twice differentiable,non-linear objective function. There are many algorithms with demonstrably
rapid convergence rates to solve it. See, for example, [2].

Remark 2.1

1. The feasible region for SUB(d̃, ẽ) is a compact set. From Assumption (2.2)(1),(4), the
objective function for SUB(ẽ, ẽ) is continuous. These two facts imply the existence of a
solution for SUB(d̃, ẽ).

2. Note that for (2.1) the upper and lower bounds on x and the continuity of f(x)(from
Assumption 2.2(1)) imply f(x) is bounded from below over the feasible region of (2.1).
Furthermore, from Assumption 2.2(2),(5), p(x+) + q(x−) is also bounded from below over
the feasible region of (2.1). Therefore, the objective function for (2.1) is bounded from
below over the feasible region of (2.1).

The solution method for (2.1) is solely in terms of n-dimensional quantities. This method
treats the variable x+ and x−, the constraint x − x+ + x− = x̂, as well as the constraints
x+ ≥ 0, x− ≥ 0, implicitly rather than explicitly. At each iteration j, each xi is restricted
according to one of the possibilities: (i) di ≤ xi ≤ x̂i, (ii) xi = x̂i or (iii) x̂i ≤ xi ≤ ei. The
objective function for SUB(d̃, ẽ) is created by adding transaction cost terms according to (i)-(iii)
as follows: In the case of (i) this term is qi(x̂i − xi), which is the transaction cost for selling the
amount x̂i − xi of asset i. In the case of (ii) this term is zero. In the case of (iii) this term is
pi(xi − x̂i), which is the transaction cost for buying the amount xi − x̂i of asset i.

At the jth iteration, SUB(d̃, ẽ) is solved to produce optimal solution xj+1 and multiplier
uj+1 for the constraints Ax ≤ b, then for each i ∈ I(xj+1) the multiplier vj+1

i and wj+1
i can be

calculated. If these are all non-negative, then ((xj+1)′, (x+)′, (x−)′) is optimal for (2.1), where
x+ and x− are the positive and negative portions of xj+1, respectively.

Otherwise, suppose vj+1
k1

is the smallest of these multipliers. For the next iteration, the upper
bound on xk1 is changed to ek1 and the lower bound on it is changed to x̂k1 . If wj+1

k2
is the smallest

such multiplier, then for the next iteration, the lower bound on xk2 is changed to dk2 and the
upper bound is changed to x̂k2 . The objective function value for (2.1) for the next iteration will
be strictly less than the present one.

Next we give a detailed formulation of the algorithm.
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ALGORITHM 2.1

Model Problem: Problem (2.1) under Assumptions 2.1, 2.2 and S 6= ∅, where S is given by
(2.2).

Begin

Initialization:

Start with any x0 ∈ S. Construct the initial bounds and d̃0, ẽ0 as follows:

do for i = 1, . . . , n

if x0
i > x̂i set d̃0

i = x̂i, ẽ0
i = ei

elseif x0
i < x̂i set d̃0

i = di, ẽ0
i = x̂i

else set d̃0
i = ẽ0

i = x̂i

endif

enddo

Set j = 0 and go to Step 1.

Step 1: Solution of Sub-problem

Solve SUB(d̃j , ẽj) to obtain optimal solution xj+1 and the multiplier vector uj+1 for the
constraints Ax ≤ b. Go to Step 2.

Step 2: Update and Optimality Test

For i ∈ I(xj+1) compute

8



vj+1
i = (∇f(xj+1) + A′uj+1)i +

dpi(0)
dx+

i

,

wj+1
i = −(∇f(xj+1) + A′uj+1)i +

dqi(0)
dx−i

.

Further, compute k1 and k2 such that

vj+1
k1

= min { vj+1
i | i ∈ I(xj+1) },

wj+1
k2

= min {wj+1
i | i ∈ I(xj+1) }.

if vj+1
k1

≥ 0 and wj+1
k2

≥ 0 then STOP with a proper optimal solution ((xj+1)′, (xj+1,+)′, (xj+1,−)′)′

for (2.1), where xj+1,+ and xj+1,− are positive and negative portions of xj+1 with respect to x̂,

respectively.

elseif vj+1
k1

≤ wj+1
k2

then

d̃j+1
i =

 d̃j
i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1),

ẽj+1
i =


ẽj
i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1)− {k1},

ek1 , i = k1,

replace j with j + 1 and go to Step 1.

else
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d̃j+1
i =


d̃j

i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1)− {k2},

dk2 , i = k2,

ẽj+1
i =

 ẽj
i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1),

replace j with j + 1 and go to Step 1.

endif

End

Remark 2.2:

Consecutive sub-problems differ in that one or more pairs of bounds have been replaced by
others and corresponding changes have been made in the convex separable part of the objective
function. Furthermore, the optimal solution for SUB(d̃j , ẽj) is feasible for SUB(d̃j+1, ẽj+1) and
may be used as a starting point for it. Thus, if S 6= ∅ then the feasible region of any sub-problem
solved by the algorithm is non-empty.

2.2 Finite Termination of the Algorithm

First let’s consider the problem

min {f(x)|a′ix ≤ bi, i = 1, . . . ,m− 1, a′mx = bm} (2.5)

where f(x) is any twice differentiable convex function, a1, . . . , am are n-vectors and b1, . . . , bm are
scalars. Suppose x∗ is an optimal solution for (2.5).Then KKT’s for (2.5) assert that there exists
an m-vector u = (u1, . . . , um)′ such that

a′ix
∗ ≤ b,a

′
mx∗ = bm, , i = 1, . . . ,m− 1

−∇f(x∗) = u1a1 + · · ·+ umam, ui ≥ 0 i = 1, . . . ,m− 1

ui(a′ix
∗ − bi) = 0, i = 1, . . . ,m− 1

 (2.6)
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Without loss of generality assume that the first k − 1 inequality constraints are active at x∗ and
denote

R ≡ {x|a′ix = bi, i = 1, . . . , k − 1, a′ix ≤ bi, i = k, . . . ,m} (2.7)

where k − 1 < m.

The following is taken from [1], Lemma (5.1) in Appendix.

Lemma 2.6 Let R be defined by (2.7), x∗ be a non-degenerate optimal solution for (2.7), um be
the multiplier for constraint m,um < 0 and a′ix

∗ = bi for i = 1, . . . , k− 1. Then there exist points
x̃ ∈ R for which f(x̃) < f(x∗).

Proof
Because x∗ is non-degenerate, a1, . . . , ak−1 and am are linearly independent. Let dk+1, . . . , dn be
any vectors such that

D′ = [ a1, . . . , ak−1, am, dk+1, . . . , dn]

is nonsingular. Let
D−1 = [ c1, . . . , ck, ck+1, . . . , cn]

where ci, denotes the ith column of D−1 for i = 1, · · · , n. Let s = ck. By definition of the inverse
matrix,

a′is = 0, i = 1, . . . , k − 1 (2.8)

and
a′ms = 1 (2.9)

Consider points of the form x∗ − σs, where σ is a non-negative scalar. From (2.8)

a′i(x
∗ − σs) = a′ix

∗ = bi, i = 1, · · · , k − 1

so the first k − 1 constraints remain active at x∗ − σs for all σ ≥ 0. Furthermore, from (2.9),

a′m(x∗ − σs) = bm − σ < bm, for σ > 0

Thus, constraint m becomes inactive at x∗ − σs for all strictly positive σ. Since constraints
k, . . . ,m− 1 are inactive at x∗, this implies that

x∗ − σs ∈ R for all positive sufficiently small σ (2.10)
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From (2.6) and the fact that constraints k, . . . ,m− 1 are inactive at x∗ we have

−∇f(x∗) = u1a1 + · · ·+ uk−1ak−1 + umam

From this, (2.8), (2.9) and the hypothesis that um < 0, it follows that

∇f(x∗)′s = −um > 0 (2.11)

From Taylor’s series

f(x∗ − σs) = f(x∗)− σ∇f(x∗)′s +
1
2
σ2s′H(ξ)s, (2.12)

where H denotes the Hessian of f(x) and ξ is on the line segment joining x∗ and x∗ − σs. It
now follows from (2.10)- (2.12) that f(x∗ − σs) < f(x∗) for all positive sufficiently small σ. This
completes the proof of the lemma. 2

The finite termination property of the algorithm is established in the following theorem.

Theorem 2.7 Let assumption (2.1),(2.2) be satisfied and let S 6= ∅, where S is given by (2.2).
Begin with any x0 ∈ S, let the algorithm be applied to (2.1) and let x1, x2, . . . , xj , . . . be the points
so obtained. Let xj,+ and xj,− be the positive and negative portion of xj, respectively. Assume each
((xj)′, (xj,+)′, (xj,−)′)′ is non-degenerate. Then G(xj+1, xj+1,+, xj+1,−) < G(xj , xj,+, xj,−) for j =
1, 2, . . ., where G(x, x+, x−) is the objective function of (2.1) and for some k, ((xk)′, (xk,+)′, (xk,−)′)′

is a proper optimal solution for (2.1).

The finite termination of the algorithm relies on the assumption that the optimal solution for
the SUB problem is non-degenerate. Practically, this assumption is not always true. The most
trivial degenerate point x̂ does appear as the optimal solution for the SUB problem. In the next
chapter, we will discuss in great detail how to overcome this difficulty.
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Chapter 3

Solution for the Degeneracy

3.1 Optimality Condition

In the end of the last chapter, we mentioned that it’s not unreasonable to have the target point
as the optimal solution for the subproblem in the BH method. Whenever this happens, there is
no assurance that the BH method will terminate in finite steps since the assumptions in theorem
(2.7) won’t hold anymore.

Definition 3.1 The point x0 is a quasi-stationary point for (1.1) if

(1) x0 is in the feasible region of (1.1).

(2) x0 is optimal for min { −t(µ′x) + p′x+ + q′x− + 1
2x′Σx | a′ix = bi, all i ∈ I(x0)}

Lemma 3.2 The feasible point formed by target point (x̂′, 0′, 0′)′ is a quasi-stationary point for
(1.1).

Proof
The feasible region for problem

min { −t(µ′x) + p′x+ + q′x− +
1
2
x′Σx | a′ix = bi, all i ∈ I((x̂′, 0, 0)′)} (3.1)

only has one feasible point, (x̂′, 0′, 0′)′. Therefore (x̂′, 0′, 0′)′ is optimal for (3.1). Hence, (x̂′, 0′, 0′)′

is a quasi-stationary point for (1.1). 2
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We also have shown that (x̂′, 0′, 0′)′ is a degenerate point in previous section. Hence, (x̂′, 0′, 0′)′

is a degenerate quasi-stationary point. If it were not degenerate, we could just compute the
smallest multiplier for active constraints. If that multiplier were non-negative, the present solution
is optimal and we are done. If it were negative, we could simply delete that constraint from the
active set and carry on.

But the quasi-stationary point is degenerate and this causes problems. First observe that
dropping a single bound constraint will not allow a positive move because the budget constraint
would be violated. The equality constraints cannot be dropped because they are equality con-
straints. Therefore, we can’t just delete the single constraint with the smallest negative multiplier.
There are at least two bound constraints must be dropped; i.e., some component of x+ and some
component of x− must be increased from 0. Although x̂ is not necessary degenerate for SUB
problem, (x̂′, 0′, 0′) is degenerate for (1.1).

Let’s see two examples first to demonstrate the degeneracy problems in the portfolio opti-
mization.

In the both examples,

µ =

 1

1.1

 x =

 x1

x2

 x̂ =

 0.1

0.9


t = 1 d = e = ∞ Σ =

 1 0

0 1


In the first example, the transaction cost vectors are

p = q =

 105

105

 .

Hence the problem (1.1) becomes
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Example 3.1

minimize : −(x1 + 1.1x2) + 105(x+
1 + x+

2 + x−1 + x+
2 ) + 1

2(x2
1 + x2

2)

subject to : x1 + x2 = 1

x1 − x+
1 + x−1 = 0.1

x2 − x+
2 + x−2 = 0.9

x+
1 ≥ 0, x−1 ≥ 0

x+
2 ≥ 0, x−2 ≥ 0


(3.2)

The transaction costs for selling and buying are very big in this example. Selling or buying α

percent of the current holdings will cost the investor $(α× 105). If the gain from the changing of
the holdings can not compensate the cost for the transaction fee, it is unwise for the investor to
make any transactions. By observation, the transaction costs will be too big to be compensated
by any gain from the change of holdings. Hence, the best action is not to sell or buy any assets.
Thus, we guess the optimal solution will be (x̂′, 0′, 0′)′.

Lemma 3.3 The degenerate point (x̂′, 0′, 0′)′ is the optimal solution for problem (3.2).

Proof
Let (x′0, (x

+
0 )′, (x−0 )′)′ = (x̂′, 0′, 0′)′+d be a feasible solution to the problem. In order to satisfy the

budget constraint, we must have either asset 1 increase and asset 2 decrease or asset 1 decrease
or asset 2 increase. First, let’s can assume that

x−1 = x+
2 = 0. (3.3)

Then we must have
x+

1 = x−2 = 4d 6= 0. (3.4)

Thus
d = [ 4d −4d 4d 0 0 4d ]′

and

x′0 = [ x̂1 +4d, x̂2 −4d ]′

(x+
0 )′ = [ 4d, 0 ]′

(x−0 )′ = [ 0, 4d ]′

15



Let f(x) denotes the objective function. Then

f(x0, x
+
0 , x−0 ) = −((x̂1 +4d) + 1.1(x̂2 −4d)) + 105(4d + 0 + 0 +4d) +

1
2
((x̂1 +4d)2 + (x̂2 −4d)2)

= −(x̂1 + 1.1x̂2) +
1
2
(x̂2

1 + x̂2
2)−4d + 1.14d + 105(24d) +

1
2
(24d(x̂1 − x̂2) + 24d2)

= f(x̂, 0, 0) + 0.14d + 2× 1054d + (4d(x̂1 − x̂2) +4d2)

≥ f(x̂, 0, 0) + (2× 105 + 0.1)4d +4d(x̂1 − x̂2)

= f( ˆx, 0, 0) + (2× 105 + 0.1)4d +4d(1− x̂2 − x̂2) since x̂1 + x̂2 = 1

= f(x̂, 0, 0) + (2× 105 + 0.1 + 1− 2x̂2)4d

≥ f(x̂, 0, 0) + (2× 105 + 0.1 + 1− 2)

≥ f(x̂, 0, 0)

Therefore (x̂′, 0′, 0′)′ is the optimal solution for (3.2) under assumption (3.3).

Instead of having assumption (3.3), we assume that

x+
1 = x−2 = 0.

Under this assumption, the statement f(x0, x
+
0 , x−0 ) ≥ f(x̂, 0, 0) is still true using the similar

proof as before. Hence (x̂′, 0′, 0′)′ is optimal under this assumption.

In all, we have showed that (x̂′, 0′, 0′)′ is the optimal solution in both cases. We can conclude
that the optimal solution for (3.2). 2

The next example will show that the target point is not always the optimal solution. In this
example

p = q =

 10−5

10−5

 .

In this case, the transaction costs are very small. In most of the cases, the gain from the change
of the current holdings will be much greater than the lose from the transaction costs. Hence, the
investor will change the holdings if the resulting portfolio has the greater return than the present
one. This time, the target portfolio may not be the optimal holdings anymore. The following
demonstrates this idea.

The example problem will be (1.1) becomes

Example 3.2
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minimize : −(x1 + 1.1x2) + 10−5(x+
1 + x+

2 + x−1 + x+
2 ) + 1

2(x2
1 + x2

2)

subject to : x1 + x2 = 1

x1 − x+
1 + x−1 = 0.1

x2 − x+
2 + x−2 = 0.9

x+
1 ≥ 0, x−1 ≥ 0

x+
2 ≥ 0, x−2 ≥ 0


(3.5)

To show that the target point x̂ is not the optimal solution, we only need to find a point
with a smaller objective value. Consider point x0 = [0.5 0.5 0.4 0 0 0.4]′. By direction
calculation, we have

f(x0) = 0.5 + 1.1× 0.5 + 10−5 × 0.4 + 10−5 × 0.4 +
1
2
(0.52 + 0.52)

= 1.05 + 0.8× 10−5 + 0.25

= 1.3 + 0.8× 10−5

< 1.51 = f(x̂, 0, 0)

This verifies that the (x̂′, 0′, 0′)′ is not the optimal solution for the problem (3.5).

Using these two examples, we have showed the degenerate point could either be the optimal
solution to the problem or a non-optimal solution. Since the size of practical problems usually
is very big, we can’t use the analysis as we did in the previous example. We have developed a
systematic approach to determine if the current degenerate point is the optimal solution.

To test for the optimality for the degenerate point x0, the following lemmas will be used.

Lemma 3.4 Let x0 be a quasi-stationary point for

min { f(x) | Ax ≤ b } (3.6)

Let A0 be a subset of the rows of A corresponding to those constraints active at x0. If the LP

min { ∇f ′(x0)s | A0s ≤ 0 } (3.7)

has an optimal solution s = 0, then x0 is optimal for (3.6). If s = 0 is not optimal, then (3.7) is
unbounded from below and there exists an s such that A(x0 + s) ≤ b and ∇f ′(x0)s < 0.
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Proof
Suppose that s = 0 is an optimal solution for (3.7) and x0 is not the optimal solution for (3.6).
Then there exists a solution x′ = x0 + s0 such that

f(x0) > f(x′). (3.8)

Ax′ ≤ b (3.9)

Since Ax0 ≤ b and Ax′ = A(x0 + s0) ≤ b,

As0 ≤ 0 (3.10)

This implies that s0 is feasible to problem (3.7).

By the Taylor Theorem, we know

f(x′) = f(x0) +∇f(x0)′s0 +
1
2
s′0Hf(x0)s0. (3.11)

f(x) is a convex function. This implies that

s′0Hf(x0)s0 ≥ 0. (3.12)

Combine (3.8),(3.11) and (3.12), we have

∇f(x0)′s0 < 0.

This contradicts to the fact that ∇f(x0)′s = 0 is the optimal value for (3.7). Hence, our assump-
tion that x0 is not the optimal solution is not true. i.e., x0 is the optimal solution for problem
(3.6).

If s = 0 is not the optimal solution for (3.7), then there must exist another feasible solution
s̃ such that

∇f ′(x0)s̃ < ∇f ′(x0)s = 0, As̃ ≤ 0. (3.13)

Let ŝ = σs̃, where σ > 0. Then

A0ŝ = A0(σs̃)

= σ(A0s̃)

< 0 by (3.13)

Therefore, ŝ is a feasible solution as well. Also,

∇f ′(x0)ŝ = ∇f ′(x0)(σs̃)

= σ(∇f ′(x0)s̃)

→ −∞ as σ →∞
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Hence, the problem (3.7) is unbounded from below.

Let A =

 A0

A1

 and b =

 b0

b1

, where A0 are a subset of A corresponding to those con-

straints active at x0. Then
A0x0 = b0 , A1x0 < b1.

let s = −σs̃, where σ is positively sufficiently small. Then

A(x0 + s) = Ax0 + As

=

 A0

A1

x0 +

 A0

A1

 s

=

 A0x0 − σA0s̃

A1x0 − σA1s̃


≤

 b0

b1

 .

Also, ∇f ′(x0)s = σ∇f ′(x0)s̃ < 0. In all, we have showed that there exists an s such that
A(x0 + s) ≤ b and ∇f ′(x0)s < 0. 2

The version of (3.7) for problem (1.1)is

minimize : ∇f ′(x̂)s + p′s+ + q′s−

subject to : s− s+ + s− = 0

l′s = 0

s+ ≥ 0, s− ≥ 0


(3.14)

Using the above lemma, we can check if the target solution is the optimal solution. One way
of checking the optimality of s = 0 for (3.14) is to use the KKT conditions. This approach could
be tedious if the size of the problem is very large, which is always the case in the real applications.

If s = 0 is not the optimal solution, then we need to find an s such that As ≤ 0 and
∇f ′(x̂)s < 0.

The following lemmas provide an alternating way of checking optimality for (3.14) and find a
search direction if s = 0 is not the optimal solution.
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Lemma 3.5 If there exist integers i and j, i 6= j such that

∇f ′(x̂)i + pi < ∇f ′(x̂)j − qj . (3.15)

Then (3.14) is unbounded from below. A search direction which causes this is

s = (0, . . . , s+
i , 0, . . . ,−s−j , 0, . . . , 0)′,

s+ = (0, . . . , 0, s+
i , 0, . . . , 0)′,

s− = (0, . . . , 0, s−j , 0, . . . , 0)′

(3.16)

with s+
i = s−j = α > 0. Note s+

i is in the ith position of s+ and s−j is in the jth position of s−.

Proof
Suppose there exists integers i and j satisfy (3.15). Let s be the vector as defined in (3.16). Then

∇f ′(x̂)s + p′s + q′s = ∇f ′(x0)is
+
i −∇f ′(x0)js

−
j + pis

+
i + qjs

−
j ,

= α(∇f ′(x0)i + pi −∇f ′(x0)j + qj)

< 0

As si = sj = α approaching infinity, ∇f ′(x̂)s + p′s + q′s approaches negative infinity.

The search direction (s′, (s+)′, (s−)′)′ is feasible for (3.14) since

l′s = s+
i − s−j +

∑
k 6=i,j

sk

= α− α +
∑
k 6=i,j

0

= 0

and

s− s+ + s− =
∑
k 6=i,j

(sk − s+
k + s−k ) + s+

i − s+
i − s−j + s−j

=
∑
k 6=i,j

0 + 0

= 0.

Thus, Problem (3.14) is unbounded from below. By lemma (3.4), we can use (s′, (s+)′, (s−)′)′

as the search direction. Along this search direction, the objective function value of (1.1) is de-
creasing. Hence we can jump out of the degenerate point for problem (1.1). 2
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Remark 3.1

To find a pair of i and j satisfy (3.15), we just need to calculate u = min{ ∇f(x0)i + pi | i =
1, . . . , n } and v = max{ ∇f(x0)j − qj | j = 1, . . . , n }. If u < v, then we have found a pair of i

and j which satisfies (3.15). Otherwise, we can conclude there is no such pair can satisfy (3.15).

Lemma 3.6 If there is no pair of i and j satisfies (3.15), then x̂ is the optimal solution for
problem (1.1). i.e. ∀ i, j ∈ {1, . . . , n}

∇f(x̂)i + pi ≥ ∇f(x̂)j − qj . (3.17)

Proof
We will proceed the proof with the dual of the problem. The Dual problem for (3.14) is the
following:

maximize : 0′µ (3.18)

subject to : µ1 + µ2l = −∇f(x̂) (3.19)

−µ1 − µ3 = −p (3.20)

µ1 − µ4 = −q (3.21)

µ3 ≥ 0 (3.22)

µ4 ≥ 0 (3.23)

Since the objective function is a constant, any feasible solution will be the optimal solution
for this optimization problem.

Suppose that µ1, µ2, µ3 and µ4 is a set of feasible solution for the above problem. Then using
the above constraints, we can derive the following equations:

(3.20) + (3.21) =⇒ (µ3)i + (µ4)i = pi + qi, (3.24)

(3.19) + (3.20) =⇒ µ2l
′ − µ3 = −∇f(x̂)− p (3.25)

(3.19)− (3.21) =⇒ µ2l
′ − µ4 = −∇f(x̂) + q (3.26)

We know that there exits an extreme feasible point which is the optimal solution for the
optimization problem. This point has at least 3n + 1 active constraints since there are 3n + 1
variables. There are 3n equations and 2n inequalities for the dual problem. Hence, we need to
have at least one more equality to make a feasible point to be an extreme point. Therefore, it is
either (µ3)i = 0 or (µ4)i = 0 for some i ∈ {1, . . . , n}.
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Without lose generosity, let (µ3)i = 0. Use this in (3.25), we will have

(µ2l
′)i − 0 = −(∇f(x̂) + p)i.

Therefore
µ2 = −(∇f(x̂) + p)i. (3.27)

Substitute µ2 into (3.19), we have

µ1 − (∇f(x̂) + p)il = −∇f(x̂)

Therefore
µ1 = −∇f(x̂) + (∇f(x̂) + p)il (3.28)

Substitute µ1, µ2 into(3.20), we have

∇f(x̂)− (∇f(x̂) + p)il − µ3 = −p

Simplify further, we solved µ3.

µ3 = ∇f(x̂)− (∇f(x̂) + p)il + p (3.29)

Substitute µ1 into (3.21),
−∇f(x̂) + (∇f(x̂) + p)il − µ4 = −q

Solve above equation, we have

µ4 = −∇f(x̂) + (∇f(x̂) + p)il + q. (3.30)

Now we only need to check if inequality constraints have been violated.

(µ3)k = ∇f(x̂)k −∇f(x̂)i − pi − pk, k ∈ {1, . . . , n}

= (∇f(x̂) + p)k − (∇f(x̂) + p)i

We will choose i with the following property so that (µ3)k ≥ 0.

i = min { (j |∇f(x̂) + p)j , j = 1, 2, . . . n }

Now we will check if (µ4)k ≥ 0, ∀ k ∈ {1, . . . , n}.

(µ4)k = −∇f(x̂)k +∇f(x̂)i + pi + qk,

= (∇f(x̂) + p)i − (∇f(x̂)− q)k

≥ 0 by (3.17)
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Now we can conclude that {µ1, µ2, µ3, µ4} is a optimal solution of the dual problem. Since the
objective function for the dual problem is constant (0), the optimal value for the dual problem
is 0. By Strong Duality theorem, the optimal value for the primal problem is 0 as well. Hence
s = 0 is the optimal solution for problem (3.14). Therefore x̂ is the optimal solution for (1.1) by
Lemma (3.5).

2

3.2 Degeneracy Algorithm

We will give a detailed formulation of the modified Best/Hlouskova algorithm, which resolves
degeneracy as in Section 3.1.

ALGORITHM 3.1

Model Problem: Problem (1.1) and S 6= ∅, where S is the feasible region for (1.1).

Begin

Initialization:

Start with any x0 ∈ S. Construct the initial bounds and d̃0, ẽ0 as follows:

do for i = 1, . . . , n

if x0
i > x̂i set d̃0

i = x̂i, ẽ0
i = ei

elseif x0
i < x̂i set d̃0

i = di, ẽ0
i = x̂i

else set d̃0
i = ẽ0

i = x̂i

endif
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enddo

Set j = 0 and go to Step 1.

Step 1: Solution of Sub-problem

Solve SUB(d̃j , ẽj) to obtain optimal solution xj+1 and the multiplier vector uj+1 for the
constraints Ax ≤ b.

if xj+1 is not a degenerate point for the original problem, Go to Step 2.

else Go to Step 3.

endif

Step 2: Update and Optimality Test

For i ∈ I(xj+1) compute

vj+1
i = (∇f(xj+1) + A′uj+1)i +

dpi(0)
dx+

i

,

wj+1
i = −(∇f(xj+1) + A′uj+1)i +

dqi(0)
dx−i

.

Further, compute k1 and k2 such that

vj+1
k1

= min { vj+1
i | i ∈ I(xj+1) },

wj+1
k2

= min {wj+1
i | i ∈ I(xj+1) }.

if vj+1
k1

≥ 0 and wj+1
k2

≥ 0 then STOP with a proper optimal solution ((xj+1)′, (xj+1,+)′, (xj+1,−)′)′
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for (1.1), where xj+1,+ and xj+1,− are positive and negative portions of xj+1 with respect to x̂,

respectively.

elseif vj+1
k1

≤ wj+1
k2

then

d̃j+1
i =

 d̃j
i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1),

ẽj+1
i =


ẽj
i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1)− {k1},

ek1 , i = k1,

replace j with j + 1 and go to Step 1.

else

d̃j+1
i =


d̃j

i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1)− {k2},

dk2 , i = k2,

ẽj+1
i =

 ẽj
i , i ∈ {1, . . . , n} − I(xj+1),

x̂i, i ∈ I(xj+1),

replace j with j + 1 and go to Step 1.

endif

Step 3: Degeneracy Handling

Compute
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k = min { k |∇f ′(xj+1)k + pk, k = 1, . . . , n }

and

l = max { j |∇f ′(xj+1)j − qj , j = 1, . . . , n }.

if ∇f ′(xj+1)k + pk ≥ ∇f ′(xj+1)l − ql, Go to Step 3.1

else Go to Step 3.2

endif

Step 3.1 STOP output the optimal solution ((xj+1)′, (xj+1,+)′, (xj+1,−)′)′ for (1.1), where
xj+1,+ and xj+1,− are positive and negative portions of xj+1 with respect to x̂, respectively.

Step 3.2

d̃j+1
i =

 d̃j
i , i ∈ {1, . . . , n} − {l},

di, i = l,

ẽj+1
i =

 ẽj
i , i ∈ {1, . . . , n} − {k}

ek, i = k

replace j with j + 1 and go to Step 1.

End

The algorithm is demonstrated using Example (3.3) and (3.4), which in addition show the
values of the objective function at each iteration.

Example 3.3 f(x) = x1 + 1.1x2 + 1
2(x2

1 + x2
2), x̂ =

 0.1

0.9

 , p(x+) = 105(x+
1 + x+

2 ), q(x−) =

105(x−1 + x−2 ). The constraints for the problem are

x1 + x2 = 1
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x1 − x+
1 + x−1 = x̂1

x2 − x+
2 + x−2 = x̂2

Initialization: We choose x0 =

 0.1

0.9

 as the starting point for the sub-problem. Then

d̃0 = ẽ0 = x̂ and thus c̃0(x) = 0.

Step 1: SUB(d̃0, ẽ0) is precisely the problem:

min {x1 + 1.1x2 +
1
2
(x2

1 + x2
2) |x1 + x2 = 1, 0.1 ≤ x1 ≤ 0.1, 0.9 ≤ x2 ≤ 0.9 },

which has the optimal solution x1 =

 0.1

0.9

. It is a degenerate point for the original problem.

Therefore, we proceed to step 3.

Step 3: ∇f(x1) =

 1.1

2

, and p = q =

 105

105

. Therefore, k = 1 with ∇f(x1)1 + p1 =

1.1 + 105 and l = 2 with ∇f(x1)2 − q2 = 2− 105. Since

∇f(x1)1 + p1 > ∇f(x1)2 − q2,

we stop with the optimal solution (x, x+, x−)′ = (0.1, 0.9, 0, 0, 0, 0)′

Example 3.4 We obtain a second example from Example 3.1 by leaving f(x), x̂, x0, A, b, d

and e unchanged but taking p = q =

 10−5

10−5



Initialization: Then d̃0 = ẽ0 = x̂ and thus c̃0(x) = 0.

Step 1: SUB(d̃0, ẽ0) is precisely the problem:

min {x1 + 1.1x2 +
1
2
(x2

1 + x2
2) |x1 + x2 = 1, 0.1 ≤ x1 ≤ 0.1, 0.9 ≤ x2 ≤ 0.9 },
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which has the optimal solution x1 =

 0.1

0.9

. It is a degenerate point for the original problem.

Therefore, we proceed to step 3.

Step 3:∇f(x1) =

 1.1

2

, and p = q =

 10−5

10−5

. Therefore, k = 1 with ∇f(x1)1 + p1 =

1.1 + 10−5 and l = 2 with ∇f(x1)2 − q2 = 2− 10−5. Since

∇f(x1)1 + p1 < ∇f(x1)2 − q2,

we have

d̃j+1
i =

 d̃j
i = x̂i, i = 1

−∞, i = 2,

ẽj+1
i =

 ẽj
i = x̂i, i = 2

∞, i = 1

Step 1: SUB(d̃0, ẽ0) is precisely the problem:

min {x1 + 1.1x2 +
1
2
(x2

1 + x2
2) |x1 + x2 = 1, 0.1 ≤ x1, x2 ≤ 0.9 },

which has the optimal solution x2 =

 0.55

0.45

.

Step 2: I(x2) = ∅, u1 = 1.55 − 10−5, u2 = u3 = 10−5. Since u1 ≥ 0, u2 ≥ 0 and u3 ≥ 0,

((x2)′, (x2,+)′, (x2,−)′)′ is optimal for (1.1) with the given data, where x2,+ =

 0.35

0

, x2,− = 0

0.35

. Furthermore, G(x2, x2,+, x2,−) = 1.29751.

Theorem 3.7 Begin with any feasible point for problem (1.1), let the algorithm 3.1 be applied to
the problem and let x1, x2, . . . , xj , . . . be the points so obtained. Let xj,+ and xj,− be the positive
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and negative portion of xj, respectively. Then G(xj+1, xj+1,+, xj+1,−) < G(xj , xj,+, xj,−) for j =
1, 2, . . ., where G(x, x+, x−) is the objective function of (1.1) and for some k, ((xk)′, (xk,+)′, (xk,−)′)′

is a proper optimal solution for (1.1).

Proof
At the end of step 1 in iteration j − 1, if the optimal point ((xj)′, (xj,+)′, (xj,−)′)′ is not de-
generate, we proceed to step 2 as in Algorithm 2.1. By Theorem (2.7), we either have that
((xj)′, (xj,+)′, (xj,−)′)′ is the optimal solution for problem (1.1) or G((xj+1)′, (xj+1,+)′, (xj+1,−)′) <

G((xj)′, (xj,+)′, (xj,−)′).

If ((xj)′, (xj,+)′, (xj,−)′)′ is degenerate, then we proceed to step 3. If

∇f ′(x0)k + pk ≥ ∇f ′(x0)j − qj ,

where k, j are defined as in Step 3 of the algorithm, then according to Lemma (3.6), ((xj)′, (xj,+)′, (xj,−)′)′

is an optimal solution for (1.1). This is in consistent with step 3.1 in the Algorithm 3.1

If
∇f ′(x0)k + pk < ∇f ′(x0)j − qj ,

then according to Lemma (3.5), we can find a search direction s as defined in the lemma. Along
this search direction, the objective function of the problem will decrease. And the search direction
in step 3.2 is defined based on the Lemma (3.5). Hence

G((xj+1)′, (xj+1,+)′, (xj+1,−)′) < G((xj)′, (xj,+)′, (xj,−)′).

2

Remark 3.2

In each iteration, the objective function value is strictly decreased and the problem is bounded
from below over the feasible region (Remark 2.1). Hence there are only finitely many iterations
and none of the sub-problems can be repeated. Thus, the algorithm terminates in a finite number
of steps with an optimal solution for (1.1).

3.3 Generalization of Algorithm

The algorithm we have discussed in the previous section is for solving problem (1.1). And this
problem is a special case for (2.1). With minor modification, Algorithm 3.1 can be applied to the
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following problem.

minimize : f(x) + p(x+) + q(x−)

subject to : l′x = 1

x− x+ + x− = x̂

0 ≤ x+ ≤ d

0 ≤ x− ≤ e


(3.31)

where x is an n-vector of asset holdings, d and e are n-vectors of lower and upper bounds on x,
respectively, and −f(x) is an expected utility function. t is a scalar parameter.x̂, x+ and x− are
as in (1.1). For i = 1, . . . , n, the purchase cost for x+

i is given by pi(x+
i ) and the sales cost for x−i

is given by qi(x−i ). The total cost of the transaction is thus

p(x+) + q(x−),

where p(x+) =
∑n

i=1 pi(x+
i ) and q(x−) =

∑n
i=1 qi(x−i ).

In Algorithm 3.1, we search for a pair of i and j, i 6= j such that

∇f ′(x0)i + pi < ∇f ′(x0)j − qj .

Since the transaction cost functions in (3.31) are no longer linear functions, we search for a pair
of i and j, i 6= j such that

∇f ′(x0)i +∇(pi(x+
i )) < ∇f ′(x0)j −∇(qi(x−i )). (3.32)

Lemma 3.8 Modifying the Algorithm 3.1 according to (3.32), the new algorithm is a solution
algorithm for problem (3.31).

Proof
The accuracy of Algorithm 3.1 is based on Lemma (3.4), (3.5) and (3.6). The convexity of the
objective function is untouched by the modification to the problem since both p(x+), q(x+) are
still convex function as before. In the proof of lemma (3.5) and (3.6), pi and qj are only be used
as scalar for comparison. The linear property of the transaction cost function is not significant to
the structure of the proofs. By substituting the scalar pi with ∇(pi(x+

i )) and qj with ∇(qj(x−j ))
will not change the structure of the dual problem which is defined in the proof of the lemmas.
This is due to the constraints for the main problem has not been modified. The inequalities
derived from the dual problem also won’t be affected either. Hence, the conclusion drawn from
those inequalities still applies to problem (3.31). Therefore, the modified the Algorithm 3.1 is a
solution algorithm for problem (3.31). 2
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3.4 Conclusion

We have consider the problem of maximizing an expected utility function of n assess with the
occurrence of degeneracy. This work is based on the existing solution algorithm developed by
Best and Hlouskova. In order to jump out the degenerate point, we have developed the solution
algorithm using primal and dual property. The method finds a search direction without involving
solving linear system of equations. The easy degeneracy handling steps came from the simplicity
of the constraint functions defined in the problem.
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