Introduction

- Gong-Harn Public Key Cryptosystem (GH-PKC) is based on third-order linear feedback shift register (LFSR) sequence with a particular phase.
- Security is based on the difficult in solving discrete logarithm (DL) problem in GF(q^2), where q = p or q = q^2, depending on the implementation, and p is a prime.
- For an implementation of GH-PKC over GF(p), the security of the implementation is based on the difficult in solving DL problem in GF(p^2), i.e., in order to implement the GH-PKC over GF(p), with 1024-bit security, a 341-bit p is required!

Dual State Fast Evaluation Algorithm (DSEA)

- To compute the s_k sequence terms.
- Binary representation of k:

 \[k = \sum_{i=0}^{k} k_i2^i = k_0 + k_12 + k_22^2 + \ldots + k_{k-1}2^{k-1} \]

- Let \(T_0 = k_0 \) and \(T_1 = k_0 + 2T_0 \) for \(1 \leq k \leq n \) \(\Rightarrow T_k = k \).
- Let \(f(T) \) and \(f(T') \).

Computation of a Previous Sequence Term

- Given \((s_k, s_{k+1}) \) and its dual. Determine \(s_{(k+1)} \) terms.
- Let \(\delta = s_{(k+1)} = s_{k+1} \cdot (s_{k+2} - s_k) \).
- Then \(s_{(k+1)} \) terms can be computed by:

 \[
 \begin{align*}
 D(s_k) &= s_0 \delta \\
 D(s_{k+1}) &= s_1 \delta \\
 D(s_{k+2}) &= s_2 \delta \\
 \end{align*}
 \]

Computation of Mixed Terms \(S_{(k+1)}(s_k, s_{k+1}) \) and its dual

1. Compute the sequence terms \(s_{(k+1)}(s_k, s_{k+1}) \)
 - Use a general result for LFSR sequence.
 - Define Transition Matrix A and State Matrix M:

 \[
 A = \begin{bmatrix}
 1 & 0 & \cdots & 0 \\
 0 & 1 & \cdots & 0 \\
 \vdots & \cdots & \ddots & \vdots \\
 0 & 0 & \cdots & 1
 \end{bmatrix}
 \]

 \[
 M_k = s_k \cdot (s_{k+1}, s_{k+2}, \ldots, s_{k+n})
 \]

2. Two properties:
 - \(\delta = s = s_k \cdot (s_{k+1}, s_{k+2}, \ldots, s_{k+n}) \cdot (s_{k+1}, s_{k+2}, \ldots, s_{k+n}) \cdot (s_{k+2}, s_{k+3}, \ldots, s_{k+n+1}) \cdot (s_{k+3}, s_{k+4}, \ldots, s_{k+n+2}) \cdot \ldots \cdot (s_{k+n}, s_{k+n+1}, \ldots, s_{k+n+n}) \)

Third-order Characteristic Sequence

- Irreducible polynomial \(f(x) \) of degree 3 over GF(p):

 \[f(x) = x^3 - ax^2 + bx - 1 \]

- If initial state is:

 \[s_i = 3s_i - a, s_{i+1} = a^2 - 2b \]

- Then the sequence generated by \(f(x) \) is called a third-order characteristic sequence.

Profile of Third-order Characteristic Sequences

- Period \(Q \) is a factor of \(p^2 + p + 1 \)
- Trace Representation:

 \[s_i = Tr(a^i) = a^i + a^{2i} \]

where \(a \) is a root of \(f(x) \) in the extension field GF(p^2).

Reciprocal Sequence

- Given the \(f(x) \) above, the reciprocal polynomial is:

 \[f(x) = x^3 - ax^2 + bx - 1 \]

- By choosing the corresponding initial states as shown above, the sequence generated by \(f(x) \) is also a third-order characteristic sequence.

Commutative Law

- Let \(f(x) = x^3 - ax^2 + bx - 1 \) be irreducible over GF(q) and \(s_k \) be the characteristic sequence generated by \(f(x) \). Then for any positive integers \(k \) and \(e \):

 \[s_k(s_{a, b}, s_{b, -a, b}) = s_k(s_{a, b}) \]

GH Diffie-Hellman Key Agreement Protocol

System Parameters:

- \(f(x) = x^3 - ax^2 + bx - 1 \), an irreducible polynomial over GF(p), where p is a prime number. Period of the third-order characteristic sequence is denoted by Q.

GH Digital Signature Algorithm (GH DSA)

- ElGamal-like signature algorithm
 - Alice:
 - Private Key: Choose \(x \), with \(0 < x < Q \) and \(\text{gcd}(x, Q) = 1 \)
 - Public Key: The \(s_k \) terms generate by \(f(x) \)
 - Signing Process:
 1. Randomly choose \(k \), with \(0 < k < Q \) and \(\text{gcd}(k, Q) = 1 \).
 2. Use DSA algorithm to compute \((u, v) \) and its dual such that \(\text{gcd}(u, Q) = 1 \)
 - Verifying Process:
 1. Compute \(s_k(u, v) \) and \((u, v) \) using \(f(x) \) and their duals.
 2. If \(\text{gcd}(u, Q) = 1 \) else Cases 2 or 3

References: