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Chapter 1

Introduction

ACE, often known as one of the strongest cards in a deck of cards, is a 320-bit lightweight
permutation. It is designed to achieve a balance between hardware cost and software ef-
ficiency for both Authenticated Encryption with Associated Data (henceforth “AEAD”)
and hashing functionalities, while providing sufficient security margins. To accomplish
these goals, ACE components and its mode of operation are adopted from well known
and analyzed cryptographic primitives. In a nutshell, the design of ACE, its security,
functionalities and the features it offers are described as follows.

• ACE core operations. Bitwise XORs and ANDs, left cyclic shifts and 64-bit word
shuffles

• ACE nonlinear layer. Unkeyed round-reduced Simeck block cipher [30] with block-
size of 64-bits, which provides good cryptographic properties and low hardware
cost

• ACE linear layer. Five 64-bit words are shuffled in an (3, 2, 0, 4, 1) order, which
offers good resistance against differential and linear cryptanalysis

• ACE security. Simple analysis and security bounds provided using automated tools
such as CryptoSMT solver [25] and Gurobi [1]

• Functionality. All-in-one primitive, provides both AEAD and hashing functionali-
ties using the same hardware circuit

• ACE mode of operation. Unified sponge duplex mode [5]

• Security of ACE modes. 128-bit security

• Hardware performance. Efficient in hardware. Achieves a throughput of 360 Mbps
and has an area of 4250 GE in a 65 nm ASIC. Implementation results are presented
for four ASIC libraries and two FPGAs along with parallel implementations.

• Software performance. Bit-sliced implementation of ACE permutation achieves a
speed of 9.97 cycles/byte

7
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1.1 Notations

Notation Description

X � Y,X ⊕ Y,X||Y bitwise AND, XOR and concatenation of X and Y

|X| length of X in bits

{0, 1}n, {0, 1}?, φ length n bitstring, variable length bitstring, empty string

1n, 0n length n bitstring with all 1’s, 0’s

Li left cyclic shift operator, i.e., for x ∈ {0, 1}n,
Li(x) = (xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)

word/block a 64-bit binary string

S 320 bit state of ACE

Sr, Sc r-bit rate part and c-bit capacity part of S (r = 64, c = 256)

A,B,C,D,E five 64-bit words of S, i.e., S = A||B||C||D||E
Si state at i-th iteration (also step) of ACE permutation

A[j] j-th byte of word A starting from right

Ai1, A
i
0 right and left half of word Ai

K,N, T key, nonce and tag

k, n, t length of key, nonce and tag in bits (k = n = t = 128)

AD,M,C associated data, plaintext and ciphertext (in blocksADi,Mi, Ci)

IV, iv fixed initialization vector and its length in bits

H, h message digest (in blocks Hi) and its length h = 256

`X length of X in words where X ∈ {AD,M,C}

step one round of ACE permutation (see Figure 2.1)

round one round of Simeck unkeyed function (see Figure 2.2)

SB-64 nonlinear operation of ACE permutation

u number of rounds, u = 8

s number of steps, s = 16

rci0, rc
i
1, rc

i
2 8-bit round constants

sci0, sc
i
1, sc

i
2 8-bit step constants

ACE-AE-k ACE AEAD algorithm (k = 128)

ACE-H-h ACE Hash algorithm (h = 256)

8
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1.2 Outline

The rest of the document is organized as follows. In Chapter 2, we present the com-
plete specification of the ACE permutation, ACE AEAD and ACE hash algrithms. We
summarize the security claims of our submission in Chapter 3 and provide the detailed
security analyis in Chapter 4. In Chapter 5, we present the rationale behind our de-
sign and justify the parameter choices. The details of our hardware implementations
and performance results in ASIC and FPGA are provided in Chapter 6. In Chapter 7,
we discuss the efficiency of ACE in software including bit-sliced and microcontroller
implementations. Finally, we conclude with references and test vectors in Appendix B.

9



Chapter 2

Specification

2.1 Parameters

ACE is a 320-bit permutation that operates in a unified duplex sponge mode [5] and
offers both AEAD and hashing functionalities in a single hardware circuit. The AEAD
algorithm (ACE-AE-k) and the hash algorithm (ACE-H-h) are parameterized by the
size k of the secret key and the length of the message digest h in bits, respectively.
Both the algorithms process the same amount of data per permutation call (i.e, rate r
is same) and hence r value is ignored in the individual parameters’ description.

2.1.1 ACE AEAD algorithm

The AEAD algorithm ACE-AE-k is a combination of two algorithms, an authenticated
encryption algorithm ACE-E and the verified decryption algorithm ACE-D.

An authenticated encryption algorithm ACE-E takes as input a secret keyK of length
k bits, a public message number N (nonce) of size n bits, a block header AD (a.k.a,
associated data) and a message M . The output of ACE-E is an authenticated ciphertext
C of same length as M , and an authentication tag T of size t bits. Mathematically,
ACE-E is defined as

ACE-E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
ACE-E(K,N,AD,M) = (C, T ).

The decryption and verification algorithm takes as input the secret key K, nonce
N , associated data AD, ciphertext C and tag T , and outputs the plaintext M of same
length as C only if the verification of tag is correct, and ⊥ (error symbol) if the tag
verification fails. More formally,

ACE-D(K,N,AD,C, T ) ∈ {M,⊥}.

10
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2.1.2 ACE Hash algorithm

A hash algorithm takes message M and a pre-defined initialization vector IV of length
iv bits as inputs, and returns a fixed size output H, called hash or message digest.
Formally, the hash algorithm using ACE permutation is specified by

ACE-H-h : {0, 1}∗ × {0, 1}iv → {0, 1}h

with H = ACE-H-h(M, IV ).

Note that IV and N refer to two different things. IV is for a hash function and is
fixed, while N is for an AEAD algorithm and never repeated for a fixed key.

2.2 Recommended Parameter Set

In Table 2.1, we list the recommended parameter set for the AEAD and hash fuction-
alities using the ACE permutation. The length of each parameter is given in bits and d
denotes the amount of allowed data (including both AD and M) before a re-keying is
required.

Table 2.1: Recommended parameter set for ACE-AE-128 and ACE-H-256

Functionality Algorithm r k n t log2(d) h iv

AEAD ACE-AE-128 64 128 128 128 124 - -

Hash ACE-H-256 64 - - - - 256 24

2.3 The ACE Permutation

ACE is an iterative permutation that takes a 320-bit state as an input and outputs a
320-bit state after iterating the step function ACE-step for s = 16 times (Figure 2.1).
The nonlinear operation SB-64 is applied on even indexed words (i.e., A, C and E, see
Figure 2.1) and hence the permutation name. We present the algorithmic description
of ACE in Algorithm 1.

2.3.1 The nonlinear function SB-64

In ACE, we use unkeyed reduced-round Simeck block cipher [30] with block size 64 and
u = 8 as the nonlinear operation, and denote it by SB-64. Below we provide the details
of SB-64, henceforth referred to as Simeck sbox.

11
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Ai Bi Ci Di Ei

64 64 64 64 64

SB-64 SB-64 SB-64rci0 rci1 rci2

156||sci0 156||sci1 156||sci2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Figure 2.1: ACE-step

Definition 1 (SB-64: Simeck sbox [5]) Let rc = (q7, q6, . . . , q0) where qj ∈ {0, 1}
and 0 ≤ j ≤ 7. A Simeck sbox is a permutation of a 64-bit input, constructed by iter-
ating the Simeck-64 block cipher for 8 rounds with round constant addition γj = 131||qj
in place of key addition.

x1 x0

f(5,0,1)

32
32

γ7, · · · , γ1, γ0
32 32

Figure 2.2: Simeck sbox (SB-64)

An illustrated description of the Simeck sbox is shown in Figure 2.2 and is given by

(x9||x8)← SB-64(x1||x0, rc)

where
xj ← f(5,0,1)(xj−1)⊕ xj−2 ⊕ γj−2, 2 ≤ j ≤ 9

and f(5,0,1) : {0, 1}32 → {0, 1}32 is defined as

f(5,0,1)(x) = (L5(x)� x)⊕ L1(x).

2.3.2 Round and step constants

The step function of ACE is parameterized by two sets of triplets (rci0, rc
i
1, rc

i
2) and

(sci0, sc
i
1, sc

i
2) where each rcij and scij is of length 8 bits and j = 0, 1, 2. We call them

12
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Algorithm 1 ACE permutation

1: Input: S0 = A0||B0||C0||D0||E0

2: Output: S16 = A16||B16||C16||D16||E16

3: for i = 0 to 15 do:
4: Si+1 ← ACE-step(Si)
5: return S16

6: Function ACE-step(Si):
7: Ai ← SB-64(Ai1||Ai0, rci0)
8: Ci ← SB-64(Ci

1||Ci
0, rc

i
1)

9: Ei ← SB-64(Ei
1||Ei

0, rc
i
2)

10: Bi ← Bi ⊕ Ci ⊕ (156||sci0)
11: Di ← Di ⊕ Ei ⊕ (156||sci1)
12: Ei ← Ei ⊕ Ai ⊕ (156||sci2)
13: Ai+1 ← Di

14: Bi+1 ← Ci

15: Ci+1 ← Ai

16: Di+1 ← Ei

17: Ei+1 ← Bi

18: return (Ai+1||Bi+1||Ci+1||Di+1||Ei+1)

19: Function SB-64(x1||x0, rc):
20: rc = (q7, q6, . . . , q0)
21: for j = 2 to 9 do
22: xj ← (L5(xj−1)� xj−1)⊕ L1(xj−1)⊕ xj−2 ⊕ (131||qj−2)
23: return (x9||x8)

round constants and step constants, respectively. As shown in Figure 2.1, the round
constant triplet (rci0, rc

i
1, rc

i
2) is used within the Simeck sboxes while the step constant

(sci0, sc
i
1, sc

i
2) is XORed to the words B, D and E.

In Table 2.2 we list the hexadecimal values of the constants and show the procedure
to generate these constants in Section 5.6.2.

Table 2.2: Round and step constants of ACE

Step i Round constants (rci0, rc
i
1, rc

i
2) Step constants (sci0, sc

i
1, sc

i
2)

0 - 3 (07, 53, 43), (0a, 5d, e4), (9b, 49, 5e), (e0, 7f, cc) (50, 28, 14), (5c, ae, 57), (91, 48, 24), (8d, c6, 63)
4 - 7 (d1, be, 32), (1a, 1d, 4e), (22, 28, 75), (f7, 6c, 25) (53, a9, 54), (60, 30, 18), (68, 34, 9a), (e1, 70, 38)
8 - 11 (62, 82, fd), (96, 47, f9), (71, 6b, 76), (aa, 88, a0) (f6, 7b, bd), (9d, ce, 67), (40, 20, 10), (4f, 27, 13)
12 - 15 (2b, dc, b0), (e9, 8b, 09), (cf, 59, 1e), (b7, c6, ad) (be, 5f, 2f), (5b, ad, d6), (e9, 74, ba), (7f, 3f, 1f)

13
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2.4 AEAD Algorithm: ACE-AE-128
In Algorithm 2, we present a high-level overview of ACE-AE-128. The encryption
(ACE-E) and decryption (ACE-D) processes of ACE-AE-128 are shown in Figure 2.3. In
what follows, we first illustrate the position of rate and capacity bytes of the state, and
the padding rule. We then describe each phase of ACE-E and ACE-D.

Algorithm 2 ACE-AE-128 algorithm
1: Authenticated encryption ACE-E(K,N,AD,M):

2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,C)← Encyption(S,M)

6: T ← Finalization(S,K)

7: return (C, T )

8: Initialization(N,K):

9: S ← load-AE(N,K)

10: S ← ACE(S)

11: for i = 0 to 1 do:

12: S ← (Sr ⊕Ki, Sc)

13: S ← ACE(S)

14: return S

15: Processing-Associated-Data(S,AD):

16: (AD0|| · · · ||AD`AD−1)← padr(AD)

17: for i = 0 to `AD − 1 do:

18: S ← (Sr ⊕ADi, Sc ⊕ 0c−2||01)
19: S ← ACE(S)

20: return S

21: Encryption(S,M):

22: (M0|| · · · ||M`M−1)← padr(M)

23: for i = 0 to `M − 1 do:

24: Ci ←Mi ⊕ Sr

25: S ← (Ci, Sc ⊕ 0c−2||10)
26: S ← ACE(S)

27: C`M−1 ← trunc-msb(C`M−1, |M | mod r)

28: C ← (C0, C1, . . . , C`M−1)

29: return (S,C)

30: padr(X):

31: X ← X||10r−1−(|X| mod r)

32: return X

33: trunc-lsb(X,n):

34: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption ACE-D(K,N,AD,C, T ):
2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,M)← Decyption(S,C)

6: T ′ ← Finalization(S,K)

7: if T ′ 6= T then:

8: return ⊥
9: else:

10: return M

11: Decryption(S,C):

12: (C0|| · · · ||C`C−1)← padr(C)

13: for i = 0 to `C − 2 do:

14: Mi ← Ci ⊕ Sr

15: S ← (Ci, Sc ⊕ 0c−2||10)
16: S ← ACE(S)

17: M`C−1 ← Sr ⊕ C`C−1

18: C`C−1 ← trunc-msb(C`C−1, |C| mod r)||trunc-lsb(M`C−1, r−|C| mod r))

19: M`C−1 ← trunc-msb(M`C−1, |C| mod r)

20: M ← (M0,M1, . . . ,M`C−1)

21: S ← ACE(C`C−1, Sc ⊕ 0c−2||10)
22: return (S,M)

23: Finalization(S,K):

24: for i = 0 to 1 do:

25: S ← ACE(Sr ⊕Ki, Sc)

26: T ← tagextract(S)

27: return T

28: trunc-msb(X,n):

29: if n = 0 then:

30: return φ

31: else:

32: return (x0, x1, . . . , xn−1)

14
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(b) Verified decryption algorithm ACE-D

Figure 2.3: Schematic diagram of ACE-AE-128 AEAD algorithm

2.4.1 Rate and capacity part of state

The following 8 bytes constitute the Sr part of state and are used for both absorbing
and squeezing.

A[7], A[6], A[5], A[4], C[7], C[6], C[5], C[4]

The rationale of these byte positions is explained in Section 5.8. The remaining bytes
form the Sc part of state.

2.4.2 Padding

Padding is necessary when the length of the processed data is not a multiple of the
rate r value. Since the key size is a multiple of r, we get two key blocks K0 and K1, so
no padding is needed. Afterwards, the padding rule (10∗), denoting a single 1 followed
by the required number of 0’s, is applied to the message M , so that its length after
padding is a multiple of r. The resulting padded message is divided into `M r-bit blocks
M0‖ · · · ‖M`M−1. A similar procedure is carried out on the associated data AD which
results in `AD r-bit blocks AD0‖ · · · ‖AD`AD−1. In the case where no associated data is
present, no processing is necessary. We summarize the padding rules for the message
and associated data below.

padr(M) ←M‖1‖0r−1−(|M | mod r)

padr(AD) ←
{
AD‖1‖0r−1−(|AD| mod r) if |AD| > 0

φ if |AD| = 0

15
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Note that in case of AD or M whose length is a multiple of r, an additional r-bit
padded block is appended to AD or M to distinguish between the processing of partial
and complete blocks.

2.4.3 Loading key and nonce

The state is loaded byte-wise with 128-bit nonce N = N0||N1 and 128-bit key K =
K0||K1, and the remaining eight bytes are set to zero. All nonce bytes are divided and
loaded in the words B and E in a descending byte order. The key is loaded in words A
and C in the same manner. The word D is initialized by the zero bytes. Symbolically,
the state is initialized as follows.

A[7], A[6], · · · , A[0]← K0[7],K0[6], · · · ,K0[0]

C[7], C[6], · · · , C[0]← K1[7],K1[6], · · · ,K1[0]

B[7], B[6], · · · , B[0]← N0[7], N0[6], · · · , N0[0]

E[7], E[6], · · · , E[0]← N1[7], N1[6], · · · , N1[0]

D[7], D[6], · · · , D[0]← 0x00, 0x00, · · · , 0x00

We use load-AE(N,K) to denote the process of loading the state with nonce N and
key K bytes in the positions described above.

2.4.4 Initialization

The goal of this phase is to initialize the state S with public nonce N and secret key
K. The state is first loaded using load-AE(N,K) as described above. Afterwards, the
permutation ACE is applied to the state, and the two key blocks are absorbed into the
state with ACE applied each time. The initialization steps are described below.

S ← ACE(load-AE(N,K))

S ← ACE(Sr ⊕K0, Sc)

S ← ACE(Sr ⊕K1, Sc)

2.4.5 Processing associated data

If there is associated data, each ADi block, i = 0, . . . , `AD − 1 is XORed with the Sr
part of the internal state S, and one-bit domain separator is XORed to lsb of E[0].
Then, the ACE permutation is applied to the whole state.

S ← ACE(Sr ⊕ ADi, Sc ⊕ (0c−2‖01)), i = 0, . . . , `AD − 1

This phase is defined in Algorithm 2.

2.4.6 Encryption

Similar to the processing of associated data, however, with a different domain separator,
each message block Mi, i = 0, . . . , `M − 1 is XORed to the Sr part of the internal state

16
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S resulting in the corresponding ciphertext Ci, which is extracted from the Sr part of
the state. After the computation of each Ci, the whole internal state is permuted by
applying ACE, i.e.,

Ci ← Sr ⊕Mi,

S ← ACE(Ci, Sc ⊕ (0c−2‖10)), i = 0, · · · , `M − 1

The last ciphertext block C`M−1 is truncated so that its length is equal to that
of the last unpadded message block. The details of encryption procedure is given in
Algorithm 2.

2.4.7 Finalization

After the extraction of the last ciphertext block and a single call of ACE, the domain
separator is reset to 0x00 indicating the start of the finalization phase. Afterwards, the
two key blocks are absorbed into the state. Finally, the tag is extracted from the same
byte positions that are used for loading the key. The finalization steps are mentioned
below and illustrated in Algorithm 2.

S ← ACE(Sr ⊕Ki, Sc), i = 0, 1

T ← tagextract(S).

The function tagextract(S) extracts the 128-bit tag T = T0||T1 from the state bytes
as follows.

T0[7], T0[6], · · · , T0[0]← A[7], A[6], · · · , A[0]

T1[7], T1[6], · · · , T1[0]← C[7], C[6], · · · , C[0]

2.4.8 Decryption

The decryption procedure is symmetrical to the encryption procedure and illustrated
in Algorithm 2.

2.5 Hash Algorithm: ACE-H-256
The hash algorithm ACE-H-256 takes message M and a pre-defined initialization vector
IV of length 24 bits as inputs, and then returns 256-bit message digestH. The depiction
of the ACE-H-256 is shown in Figure 2.4 and illustrated in Algorithm 3. We now
describe each phase of ACE-H-256 in detail.

17
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ACE ACE ACE ACE ACE ACE ACEload-H(IV )
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Initialization Absorbing Squeezing

Figure 2.4: Hash algorithm ACE-H-256

2.5.1 Message padding

The padding rule (10∗) similar to ACE-AE-128 is applied to the input message M ,
where a single 1 followed by 0’s is appended to it such that its length after padding is
a multiple of r. We denote the padding rule by

padr(M) = M‖10r−1−(|M | mod r)

The resulting padded message is then divided into `M r-bit blocks M0‖ · · · ‖M`M−1.

2.5.2 Loading initialization vector

The state is first initialized by IV = h/2‖r‖r′, where r′ denotes the number of bits
squeezed per permutation call (r = r′ = 64 for ACE-H-256). Eight bits are used to
encode each of the used h/2, r and r′ sizes [21] and loaded in word B as follows.

B[7]← 0x80

B[6]← 0x40

B[5]← 0x40

The remaining bytes are set to 0x00. We denote this process by load-H(IV ).

2.5.3 Initialization

The load-H(IV ) procedure loads the state with the IV . Then a single call of ACE
completes the initialization phase.

S ← ACE(load-H(IV ))

2.5.4 Absorbing and squeezing

Each message block is absorbed by XORing it to the Sr part of the state (see Section 2.4.1),
then the ACE permutation is applied. After absorbing all the message blocks, the h-
bit output is extracted from the Sr part of the state r bits at a time followed by the
application of the ACE permutation until a total of 4 extractions are completed.

18
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Algorithm 3 ACE-H-256 algorithm

1: ACE-H-256(M, IV ):

2: S ← Initialization(IV )

3: S ← Absorbing(S,M)

4: H ← Squeezing(S)

5: return H

6: Initialization(IV):

7: S ← load-H(IV )

8: S ← ACE(S)

9: return S

10: padr(M) :

11: M ←M ||10r−1−(|M| mod r)

12: return M

1: Absorbing(S,M):

2: (M0|| · · · ||M`M−1)← padr(M)

3: for i = 0 to `M − 1 do:

4: S ← ACE(Sr ⊕Mi, Sc)

5: return S

6: Squeezing(S):

7: for i = 0 to 2 do:

8: Hi ← Sr

9: S ← ACE(S)

10: H3 ← Sr

11: return H0||H1||H2||H3
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Chapter 3

Security Claims

ACE is an all-in-one primitive and provides both authenticated encryption with asso-
ciated data and hashing functionalities. The AEAD mode assumes a nonce respecting
adversary and we do not claim any security in the event of nonce reuse. If the verifi-
cation procedure fails, the decrypted ciphertext and the new tag should not be given
as output. Moreover, we claim no security for reduced-round versions of ACE-AE-128
and ACE-H-256. In summary, the security claims of ACE-AE-128 and ACE-H-256 are
given in Tables 3.1 and 3.2, respectively.

Note that the integrity security in Table 3.1 includes the integrity of nonce, associ-
ated data and plaintext.

Table 3.1: Security goals of ACE-AE-128 (in bits)

Confidentiality Integrity Authenticity Data limit

128 128 128 2124

Table 3.2: Security goals of ACE-H-256 (in bits)

Collision Preimage Second preimage

128 192 128
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Chapter 4

Security Analysis

In this chapter, we first analyze the security of the ACE permutation by assessing its
indistinguishability properties against various distinguishing attacks. We primarily fo-
cus on the diffusion behavior, expected upper bounds on the probabilities of differential
and linear characteristics, algebraic properties and self-symmetry based distinguishers.
Next, we present the security bounds of ACE-AE-128 and ACE-H-256, whose results
directly follow the security proofs of sponge modes.

In our analysis, we denote the linear layer by π, i.e., π permutates the words of
state. For example, if π(0, 1, 2, 3, 4) = (3, 2, 0, 4, 1) ,then after applying π, the state
A||B||C||D||E is transformed to D||C||A||E||B. Moreover, by the component function
fj we refer to the Algebraic Normal Form (ANF) of the j-th bit.

4.1 Diffusion

To assess the diffusion behavior, we evaluate the minimum value of u×s such that each
component function of the state after s steps depends on all the input state bits. We
find that u = 11 gives full bit diffusion within a single Simeck sbox. Since ACE has five
words that are updated in each step, we note that s has to be at least 5. Accordingly,
we search for the following values of (u, s) ∈ {(i, 5)|1 ≤ i ≤ 11}. Note that for u = 8
and s = 5, the number of linear layers satisfying the full bit diffusion property are 13,
and π = (3, 2, 0, 4, 1) is one among them.

Given that (u, s) = (8, 16) and π = (3, 2, 0, 4, 1) for ACE, we claim that meet/miss-
in-the-middle distinguishers cannot cover more than ten steps, because ten steps guar-
antees full bit diffusion in both forward and backward directions.

4.2 Differential and Linear Cryptanalysis

To analyze the security of ACE w.r.t differential and linear distinguishers [17, 28], we
model ACE using Mixed Integer Linear Programming (MILP) and bound the minimum
number of active Simeck sboxes (SB-64). We then provide expected bounds for the
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maximum probabilities of differential (resp. linear) characteristics. Table 4.1 depicts
the minimum number of active Simeck sboxes for all linear layers.

4.2.1 Expected bounds on the maximum probabilities of dif-
ferential and linear characteristics

Let ns(π) be the minimum number of active Simeck sboxes in s steps for a linear layer
π, and p denote the Maximum Differential Probability bound (MDP) for a u-round
Simeck sbox in log2(·) scale. An in-depth analysis of values of p has been provided in
[6] (cf. Section 4.2). We choose u, s and π such that

• the upper bound on the maximum differential characteristic probability is less
than 2−320, i.e., |ns(π)p| > 320.

• u × s is minimum and s is at least three times the number of steps required for
full bit diffusion. This implies s ≥ 15 for ACE.

For (u, s) = (8, 16) and π = (3, 2, 0, 4, 1), ns(π) = 21 and p = −15.8. Thus, |21 ×
(−15.8)| ≈ 331.8 > 320 and maximum differential characteristic probability bound is
2−331.8. The maxiumum squared correlation of a linear characteristic is computed anal-
ogously using γ = −15.6 and equals 2−327.6, where γ is the maximum square correlation
of a 8-round Simeck sbox (cf. Section 4.2.2 [6]).

4.3 Algebraic Properties

In this section, we provide bounds for the algebraic degree of ACE and evaluate its
security against integral distinguishers. We use the bit based division property [29, 9]
to compute the algebraic degree. We find that the algebraic degree of a 8-round Simeck
sbox is 36. Note that the algebraic degree (after 8 rounds) of all component functions
from f0 − f31 is 36 while it is 27 for the component functions f32 − f63. Thus, to
evaluate the algebraic degree of ACE it is enough to find bounds for algebraic degree
of the component functions f0, f32, f64, f96, f128, f160, f192, f224, f256 and f288. Table 4.2
provides bounds of the algebraic degree for the above component functions.

Note that since the number of words in ACE is odd, due to slow diffusion the
algebraic degrees are 63 and 62 for the component functions f64 and f96 after 2 steps,
respectively. A similar trend can be seen for the component functions f256 and f288.
This non-uniformity in degree continues till step five, after which the degree is stabilized
to 304-313 due to full bit diffusion (Section 4.1). We expect that the degree reaches
319 in six steps.

Integral distinguishers [24]. To search for the longest length integral distinguisher,
we set a single bit of the input state as constant (0) and the rest are set to active (1). We
then evaluate the algebraic degree at the s-th step of each component function in terms
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Table 4.1: Minimum number of active Simeck sboxes for s-step ACE

Linear layer step s

π 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0, 3, 4, 2) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(1, 0, 4, 2, 3) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(1, 2, 0, 4, 3) 0 1 2 3 4 6 8 8 9 10 11 12 14 16 16 17
(1, 2, 3, 4, 0) 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16
(1, 2, 4, 0, 3) 0 1 1 2 3 5 7 8 9 9 10 11 13 15 16 17
(1, 3, 0, 4, 2) 0 0 1 2 4 4 5 7 9 12 13 14 15 16 17 19
(1, 3, 4, 0, 2) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5
(1, 3, 4, 2, 0) 0 0 1 2 3 4 5 6 7 9 11 12 12 13 14 15
(1, 4, 0, 2, 3) 0 1 2 3 4 6 8 8 9 10 11 12 14 16 16 17
(1, 4, 3, 0, 2) 0 1 1 2 4 5 6 7 9 10 11 12 14 15 16 18
(1, 4, 3, 2, 0) 0 1 2 3 5 6 7 9 11 12 13 14 15 17 18 19
(2, 0, 1, 4, 3) 0 1 2 3 4 6 6 8 9 10 11 12 14 15 16 17
(2, 0, 3, 4, 1) 0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
(2, 0, 4, 1, 3) 0 0 1 2 3 3 4 5 7 9 10 11 12 12 13 14
(2, 3, 0, 4, 1) 0 0 1 2 3 5 7 9 10 10 11 12 13 15 17 19
(2, 3, 1, 4, 0) 0 0 1 3 4 6 7 8 8 9 11 12 13 14 15 16
(2, 3, 4, 0, 1) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(2, 3, 4, 1, 0) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(2, 4, 0, 1, 3) 0 0 1 3 4 5 7 9 10 10 11 13 14 15 17 19
(2, 4, 1, 0, 3) 0 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17
(2, 4, 3, 0, 1) 0 1 2 3 5 5 6 7 8 10 10 11 12 13 15 15
(2, 4, 3, 1, 0) 0 0 1 2 4 6 7 8 9 10 11 12 13 14 15 16
(3, 0, 1, 4, 2) 0 1 1 2 4 6 8 8 10 10 11 13 15 16 17 19
(3, 0, 4, 1, 2) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5
(3, 0, 4, 2, 1) 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(3, 2, 0, 4, 1) 0 1 2 3 5 7 8 9 11 12 13 15 16 17 19 21
(3, 2, 1, 4, 0) 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10
(3, 2, 4, 0, 1) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(3, 2, 4, 1, 0) 0 0 1 2 3 6 8 9 9 10 11 12 15 16 18 18
(3, 4, 0, 1, 2) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(3, 4, 0, 2, 1) 0 1 2 3 4 4 5 6 7 8 8 9 10 11 12 12
(3, 4, 1, 0, 2) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(3, 4, 1, 2, 0) 0 1 2 3 5 7 8 9 11 12 13 15 16 17 19 21
(4, 0, 1, 2, 3) 0 1 2 3 4 5 7 8 10 12 13 13 14 15 17 19
(4, 0, 3, 1, 2) 0 0 1 2 3 3 4 5 7 9 10 11 12 12 13 14
(4, 0, 3, 2, 1) 0 1 2 3 4 5 6 8 10 11 12 13 14 15 16 17
(4, 2, 0, 1, 3) 0 0 1 2 4 6 7 9 10 11 12 13 14 15 17 19
(4, 2, 1, 0, 3) 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10
(4, 2, 3, 0, 1) 0 1 2 3 5 6 8 9 10 11 12 14 16 17 18 19
(4, 2, 3, 1, 0) 0 0 1 1 2 3 4 4 4 5 5 6 7 8 8 8
(4, 3, 0, 1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(4, 3, 0, 2, 1) 0 0 1 2 3 5 6 7 10 10 11 12 13 15 16 17
(4, 3, 1, 0, 2) 0 0 1 2 4 5 6 7 9 10 11 12 13 14 15 17
(4, 3, 1, 2, 0) 0 0 1 1 2 3 4 4 4 5 5 6 7 8 8 8
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Table 4.2: Bounds on the algebraic degree of ACE

Component function

steps (s) f0 f32 f64 f96 f128 f160 f192 f224 f256 f288
1 36 27 36 27 36 27 36 27 36 27
2 92 83 63 62 92 83 92 83 63 62
3 126 125 119 117-120 239-247 235-245 236-249 233-248 119 118-120
4 240-247 238-246 241-248 242-247 306-312 303-311 304-313 304-311 241-248 241-247

of the involved active bits. If the algebraic degree equals the number of active bits,
then the bit is unknown (i.e., XOR sum of the component function is unpredictable).
Otherwise, it is balanced in which case the XOR sum is always zero.

In Table 4.3, we list the integral distinguishers of ACE. Note that the positions of
constant bits are chosen based on the degree of the Simeck sbox.

Table 4.3: Integral distinguishers of ACE

Steps s Input division property Balanced bits

8

132||0||1287 64-127, 256-319

196||0||1223 None

1160||0||1159 None

1224||0||195 64-127, 256-319

1288||0||131 None

4.4 Self Symmetry-based Distinguishers

A cryptographic permutation is vulnerable to attacks such as rotational distinguishers,
slide distinguishers [18] and invariant subspace attack [26] which exploit the symmetric
properties of a round function. For example, in ACE the nonlinear Simeck sbox is
rotational invariant if constants are not added at each round. Thus, a proper choice of
round constants is required to mitigate the above attacks.

ACE employs an 7-bit LFSR to generate round and step constants (see Section 5.6.2).
Below we list properties of the constants which ensure that each step function of ACE
is distinct.

• For 0 ≤ i ≤ 15, sci0 6= sci1 6= sci2

• For 0 ≤ i ≤ 15, (rci0, rc
i
1, rc

i
2) 6= (sci0, sc

i
1, sc

i
2)

• For 0 ≤ i, j ≤ 15 and i 6= j, (rci0, rc
i
1, rc

i
2) 6= (rcj0, rc

j
1, rc

j
2)

• For 0 ≤ i, j ≤ 15 and i 6= j, (sci0, sc
i
1, sc

i
2) 6= (scj0, sc

j
1, sc

j
2).
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4.5 Security of ACE-AE-128 and ACE-H-256
The security proofs of modes based on the sponge construction rely on the indistin-
guishability of the underlying permutation from a random one [11, 15, 14, 22]. In
previous sections, we have shown that there are no distinguishers for 16 steps of ACE.
Thus, the security bounds of sponge modes are applicable to both ACE-AE-128 and
ACE-H-256.

ACE-AE-128 security. We assume a nonce-respecting adversary, i.e, for a fixed K,
the nonce N is never repeated. Then considering a data limit of 2d, k-bit security
is achieved if c ≥ k + d+ 1 and d � c/2 [14]. The parameter set of ACE-AE-128
(Table 2.1 in Section 2.2) with actual effective capacity 254 (2 bits are lost for domain
separation) satisfies this condition, and hence ACE-AE-128 provides 128-bit security for
confidentiality, integrity and authenticity.

Note that we could use r = 192, d = 64 and obtain the same level of security
[22]. However, this would require an additional 128 XORs and cannot meet our objec-
tive to achieve both AEAD and hash functionalities using the same hardware circuit.
Nevertheless, this is another option for ACE with high throughput.

ACE-H-256 security. For a sponge based hash with b = r + c and h-bit message
digest, the generic security bounds [13, 21] are given by:

• Collision: min(2h/2, 2c/2)

• Preimage: min(2min(h,b),max(2min(h,b)−r, 2c/2))

• Second-preimage: min(2h, 2c/2)

Accordingly, ACE-H-256 provides 128, 192 and 128-bit securities for collision, preimage
and second preimage, respectively.
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Chapter 5

Design Rationale

In this chapter, we provide the rationale for our design choices and justify the design
principles of each component of ACE, ACE-AE-128 and ACE-H-256.

5.1 Choice of the Mode: sLiSCP Sponge Mode

Our adopted mode is a variation of the sponge duplex construction. Sponge construc-
tions are very diversified in terms of the offered security level. Particularly, it is proven
that the sponge and its single pass duplex mode offer a 2c/2 bound against generic at-
tacks [12, 15] which provides a lower bound on the width of the underlying permutation.
However, for authenticated encryption (AE), a security level of 2c−d is proven when the
number of queries is upper bounded by 2d [16]. When restricting the data complexity
to the maximum of 2d queries with d� c/2, one can reduce the capacity and increase
the rate for a better throughput with the same security level. Jovanovic et.al. [22]
have shown that sponge based AE achieve higher security bound, i.e., min{2b/2, 2c, 2k}
compared to [14]. However, we are concerned with the former bound, as shown in
Section 4.5.

In sponge keyed encryption modes, nonce reuse enables the encryption of two differ-
ent messages with the same key stream, which undermines the privacy of the primitive.
More precisely, the sponge duplex authenticated encryption mode requires the unique-
ness of a nonce when encrypting different messages with the same key because the
ability of the attacker to acquire multiple combinations of input and output differences
leaks information about the inner state bits, which may lead to the reconstruction of the
full state [15, 10]. Nonce reuse in the duplex constructions reveals the XOR difference
between the first two plaintexts by XORing their corresponding ciphertexts. On the
other hand, a nonce reuse differential attack may be exploited if the attacker is able
to inject a difference in the plaintext and cancel it out by another difference after the
permutation application. However, such an attack depends on the probability of the
best differential characteristic and the number of rounds of the underlying permutation.
Accordingly, if such a permutation offers enough resistance to differential cryptanaly-
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sis, the feasibility of nonce reuse differential attacks is minimal. The condition on the
differential behavior of the underlying permutation is also important when considering
resynchronization attacks, where related nonces are to be used. For that reason, even
if nonce reuse is not permitted, the underlying permutation used in the initialization
stage should be strong enough to mitigate differential attacks.

Given the above results, the sLiSCP sponge mode [5] realizes the following objec-
tives:

- The flexibility to adapt the same circuitry to provide both authenticated encryp-
tion and hashing functionalities, as we adopt a unified round function for all
functionalities.

- High key agility, which fits the lightweight requirements, because AE mode require
no key scheduling.

- Simplicity, as there is no need to implement a decryption algorithm, because the
same encryption algorithm is used for decryption.

- Both plaintext and ciphertext blocks are generated online without the need to
process the whole input message and encrypted material first.

- Keyed initialization and finalization phases that make key recovery hard even if
the internal state is recovered and also renders universal forgery with the knowl-
edge of the internal state unattainable.

- Hardware efficient initialization and finalization stages where the state is initial-
ized with the key which is again absorbed in the rate part afterward.

- Domain separators run for all rounds of all stages and offer uniformity across
different stages. We change the domain separators with each new transition and
not before because we found that it leads to a more efficient hardware implemen-
tations. Such mechanism has been shown to be secure in [22].

5.2 ACE State Size

Our main objective is to choose b (state size) that provides 128-bit security for both
hash and AEAD, i.e., 256-bit hash output and 128-bit key and tag. For b-bit state with
b = r+c, r-bit rate and c-bit hash output, generic attacks with 2c/2 permutation queries
exist [12]. Thus, to satisfy the security requirements of hash, c should be 256 which
implies b ≥ 257. The immediate choices are b = 288, 320 and 384. In ACE, we choose
b = 320 as it provides the best trade-off among hardware and software requirements,
security and efficiency. With this choice of b, ACE can have implementations in a wide
range of platforms. We discard the other state sizes for the following reasons.

• Considering the lightweight applications, 384-bit state is too heavy in hardware.
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• 288 is not a multiple of 64, hence, we can not efficiently use inbuilt 64-bit CPU
instructions for software implementation.

5.3 ACE Step Function

The step function of the ACE permutation can be seen as a generalized five 64-bit word
sLiSCP-light [6] structure. Since we aim to build a 320-bit permutation, we could
have used a 4-word sLiSCP-light with 80-bit Simeck sboxes. However, we found that
it is not practical to evaluate most of the cryptographic properties for the resulting
permutation using Simeck sboxes with sizes > 64, and that our 80-bit based software
implementation is not efficient. Consequently, we decided to use a 5-word sLiSCP-light
with 3 Simeck sboxes and wrap around the linear mixing between words A and E. We
also decided to XOR SB-64(A) with SB-64(E) and not E to avoid the need for an extra
temporary 64-bit register to store the initial value of E while intermediate results of
the iterated SB-64 function are stored in E.

5.4 Nonlinear Layer: Simeck sbox (SB-64)

The Simeck sbox is an unkeyed independently parameterized variant of the round func-
tion of the Simon round function [8]. Moreover, it has set a new record in terms of
hardware efficiency and performance on almost all platforms [30]. In what follows, we
list the reasons that motivated our adoption of Simeck sboxes as the nonlinear function
of ACE permutation.

• Simeck has a hardware friendly round function that consists of simple bitwise
XOR, AND and cyclic shift operations. Moreover, the hardware cost grows lin-
early with input size.

• It is practical to evaluate the SB-64 maximum (expected) differential probability
and maximum (expected) linear squared correlation which are 2−15.8 and 2−15.6,
respectively. Accordingly, we can provide an expected bounds against differential
and linear cryptanalysis.

• SB-64 has an algebraic degree of 36 and the output component functions f0− f31
(resp. f32 − f63) depend on 61 (resp. 55) input state bits, which enables us to
provides guarantees gainst algebraic and diffusion-based attacks.

• Each Simeck sbox is independently parameterized by the associated set of round
constants, which suggests that the actual security against differential and linear
cryptanalysis is better than the reported bounds.
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5.5 Linear Layer: π = (3, 2, 0, 4, 1)

The choice of a linear layer is crucial for the proper mixing among the blocks, which in
turn affects the differential and algebraic properties. Out of 5! possible permutations
of the words, 44 do not exhibit fixed points. Moreover, we found that iterating such
permutations for multiple rounds achieves different differential and algebraic bounds.
Accordingly, we searched their space to find the ones that offer the best diffusion and
result in the minimum number of active Simeck sboxes in the smallest number of steps.
We found that only two permutations, π = (3, 2, 0, 4, 1), and π′ = (3, 4, 1, 2, 0) achieve
these conditions. More precisely, using either π or π′, ACE reaches full bit diffusion in
5 steps and has 21 active Simeck sboxes (see Table 4.1). Accordingly, we picked π as
our linear layer.

5.6 Round and Step Constants

5.6.1 Rationale

We use the following set of constants to mitigate the self-symmetry distinguishers.

• Three 8-bit unique step constants (sci0, sc
i
1, sc

i
2). The 3-tuple constant value

is unique across all steps, hence it destroys any symmetry between the steps of the
permutation. Accordingly, we mitigate slide distinguishers [18]. We also require
that for any given step i, sci0 6= sci1 6= sci2 in order to destroy any symmetry
between word shuffles.

• Three 8-bit unique round constants (rci0, rc
i
1, rc

i
2). One bit of each round

constant is XORed with the state of the Simeck sbox in each round to destroy
the preservation of any rotational properties. Moreover, we append 31 ‘1’ bits to
each one bit constant, which results many inversions, and accordingly breaks the
propagation of the rotational property in one step.

Our choice of the LFSR polynomial to generate the constants ensures that each tuple of
such constants does not repeat due to the periodicity of the 8-tuple sequence constructed
from the decimated m-sequence of period 127 (for theory of m-sequences see [19]).

5.6.2 Generation of round and step constants

We use an LFSR of length 7 with the feedback polynomial x7 + x + 1 to generate the
round and step constants of ACE. To construct these constants, the same LFSR is run
in a 3-way parallel configuration, as illustrated in Figure 5.1. Let a denote the sequence
generated by the initial state (a0, a1, . . . , a6) of the LFSR without parallelization. The
parallel version of this LFSR outputs three sequences, all of them using decimation
exponent 3. Instead of one XOR gate feedback for the non-parallel implementation,
three XOR gates are needed to compute three feedback values.
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a6 a3 a0

a4 a1

a5 a2

Figure 5.1: LFSR for generating ACE constants.

Figure 5.2 shows the same LFSR as Figure 5.1, but annotated with sequence ele-
ments at the moment when the last three bits for the round constants are available.
The round constants are produced by the sequence elements a24i+21, a24i+22 and a24i+23

in every clock cycle as follows.

rci0 = a24i+21‖a24i+18‖a24i+15‖a24i+12‖ a24i+9‖a24i+6‖a24i+3‖a24i+0

rci1 = a24i+22‖a24i+19‖a24i+16‖a24i+13‖a24i+10‖a24i+7‖a24i+4‖a24i+1

rci2 = a24i+23‖a24i+20‖a24i+17‖a24i+14‖a24i+11‖a24i+8‖a24i+5‖a24i+2

where

• rci0 corresponds to the sequence a with decimation 3

• rci1 corresponds to the sequence a shifted by 1, then decimated by 3

• rci2 corresponds to the sequence a shifted by 2, then decimated by 3

a24i+27 a24i+24 a24i+21

a24i+25 a24i+22

a24i+26 a24i+23

rci0

rci1

rci2

a24i+30

a24i+28

a24i+29

Figure 5.2: Schematic of the 3-way parallel LFSR for generation of the constants

In every 8-th clock cycle, the step constants are needed in addition to round con-
stants. The computation of step constants does not need any extra circuitry, but rather
uses the three feedback values a24i+28, a24i+29 and a24i+30 together with all 7 state bits,
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︸ ︷︷ ︸
sci2

︸ ︷︷ ︸
sci1

a24i+30, a24i+29, a24i+28, a24i+27, a24i+26, a24i+25, a24i+24, a24i+23, a24i+22, a24i+21︸ ︷︷ ︸
sci0

Figure 5.3: Three 8-bit step constants, generated from 10 consecutive sequence elements

annotated in Figure 5.2. Figure 5.3 shows how the 10 consecutive sequence elements
are used to generate step constants. The step constants are given by:

sci0 = a24i+28‖a24i+27‖a24i+26‖a24i+25‖a24i+24‖a24i+23‖a24i+22‖a24i+21

sci1 = a24i+29‖a24i+28‖a24i+27‖a24i+26‖a24i+25‖a24i+24‖a24i+23‖a24i+22

sci2 = a24i+30‖a24i+29‖a24i+28‖a24i+27‖a24i+26‖a24i+25‖a24i+24‖a24i+23

We provide an example of how to obtain hex values of constants from the m-sequence
in Appendix C.

5.7 Number of Rounds and Steps

Our rationale for choosing the number of rounds u and number of steps s of ACE is
based on achieving the best trade-off between security and efficiency. By security and
efficiency, we mean the value of (u, s) for which ACE is indistiguishable from a random
permutation and u × s is minimum. We now justify the choice of (u, s) = (8, 16) for
ACE.

Diffusion. Our first criteria is that s should be at least 3×m where m is the number of
#steps needed to achieve full bit diffusion in the state. This choice is inspired from [20]
and directly adds a 33% security margin against meet/miss-in-the-middle distinguishers,
as in 2m steps full bit diffusion is achieved in both forward and backward directions.
Hence, m = 5 =⇒ u ≥ 4 and s ≥ 15 (c.f. Section 4.1). However, we found that
we cannot choose u = 4, . . . , 7, because we also aim to achieve good resistance against
differential and linear cryptanalysis. Note that having a smaller number of rounds
results in a weaker Simeck sbox.

Maximum expected differential characteristic probability (MEDCP). Our
second criteria is to push the MEDCP value of ACE to below 2−320. This value depends
on the MEDCP of a u-round Simeck sbox and the number of such active sboxes in s
steps (denote by ns). We have n15 = 19 and n16 = 21 (see Table 4.1).

Table 5.1 depicts that (u, s) ∈ {(8, 15), (8, 16), (9, 15), (9, 16)}. However, if we con-
sider the differential effect, then the differential probability is 2−15.8 when u = 8. An
indepth analysis of such effect has been provided in [6] where the CryptoSMT tool [25]
is used to obtain the optimal differential characteristics and corresponding probabilities.
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Table 5.1: Optimal differential characteristic probability p for u-round Simeck sbox and
the corresponding MEDCP of ACE for s = 15, 16.

u 4 5 6 7 8 9

log2(p) -6 -8 -12 -14 -18 -20

n15 × log2(p) -114 -152 -228 -266 -342 -380

n16 × log2(p) -126 -168 -252 -294 -378 -420

Accordingly, we have:

n15 ×−15.8 = 19×−15.8 = −300.2 > −320

n16 ×−15.8 = 21×−15.8 = −331.8 < −320.

Thus, we ignore (u, s) = (8, 15) and choose (u, s) = (8, 16). The other two choices are
discarded from the efficiency perspective as u×s = 135 (resp. 144) when (u, s) = (9, 15)
(resp. (9,16)) compared to 128 iterations when (u, s) = (8, 16).

5.8 Choice of Rate Positions

We have followed a similar strategy in choosing the rate position as the one that has
been used in sLiSCP [5, 7]. More precisely, we absorb message blocks in words A and C.
Such rate positions allow the input bits to be processed by the Simeck sboxes as soon as
possible so we achieve faster diffusion. Also, our choice forces any injected differences
to activate Simeck sboxes in the first step which also enhances ACE’s resistance to
differential and linear cryptanalysis. This observation has also been confirmed by a
third party cryptanalysis of sLiSCP [27].

5.9 Statement

The authors declare that there are no hidden weaknesses in the ACE permutation,
ACE-AE-128 and ACE-H-256.
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Chapter 6

Hardware Design and Analysis

In this chapter, we describe the hardware implementation of ACE module, which is a
single module that supports all three functionalities: authenticated encryption, verified
decryption, and hashing using the same hardware circuit. Section 6.1 outlines some of
the principles underlying our hardware design. Section 6.2 describes the interface and
top-level ACE module module. Section 6.3 goes into the details of the state machine
and datapath implementation. And, finally, Section 6.4 presents the implementation
results for four ASIC libraries and two FPGAs.

6.1 Hardware Design Principles

The design principles and assumptions followed by the hardware implementations:

1. Multi-functionality module. The system should support all three operations,
namely authenticated encryption, authenticated decryption, and hashing, in a
single module (Figure 6.1), because lightweight applications generally cannot af-
ford the extra area for separate modules. As a result, the area for the system will
be greater compared to a single-function module.

2. Single input/output ports. In small devices, ports can be expensive, and
optimizing the number of ports may require additional multiplexers and control
circuitry. To ensure that we are not biasing our design in favour of the system and
at the expense of the environment, the key, nonce, associated data, and message
all use a single data-input port (Table 6.1). Similarly, the output ciphertext,
tag, and hash all use a single output port (Table 6.1). That being said, the
authors agree with the proposed lightweight cryptography hardware API’s [23]
use of separate public and private data ports and will update implementations
accordingly.

3. Valid-bit protocol and stalling capability. The environment may take an
arbitrarily long time to produce any piece of data. For example, a small micro-
processor could require multiple clock cycles to read data from memory and write

33



ACE: Submission to the NIST LWC competition

it to the systems input port. We use a single-phase valid bit protocol, where
each input or output data signal is paired with a valid bit to denote when the
data is valid. The receiving entity must capture the data in a single clock cycle
(Figure 6.4), which is a simple and widely applicable protocol. The system shall
wait in an idle state, while signalling the environment that it is ready to receive.
In reality, the environment can stall as well. In the future, ACE hardware imple-
mentations will be updated to match the proposed lighweight crypto hardware
API’s use of a valid/ready protocol for both input and output ports.

4. Use a “pure register-transfer-level” implementation style. In particular,
use only registers, not latches; multiplexers, not tri-state buffers; synchronous, not
asynchronous reset; no scan-cell flip-flops; clock-gating is used for power and area
optimization.

6.2 Interface and Top-level Module

In Figure 6.1, we depict the block diagram of the top-level ACE module and the de-
scription of each interface signal is given in Table 6.1.

Table 6.1: Interface signals

Input signal Meaning
reset resets the state machine
i mode mode of operation
i dom sep domain separator
i padding the last block is padded
i data input data
i valid valid data on i data

Output signal Meaning
o ready hardware is ready
o data output data
o valid valid data on o data

Table 6.2: Modes of operation
i mode
(1) (0) Mode Operation or phase
0 0 ACE-E Encryption
0 1 ACE-D Decryption
1 0 ACE-H-256 Absorb
1 1 ACE-H-256 Squeeze

The ACE-AE-128 mode can perform two operations: authenticated encryption (ACE-E)
and verified decryption (ACE-D). The ACE-H-256 mode has two phases: absorbing and
squeezing, both of which have the same domain separator. We use the i mode input
signal (see Table 6.2) to distinguish between the operations or phases.

The environment separates the associated data and the message/ciphertext, and
performs their padding if necessary, as specified in Sections 2.4 and 2.5. The control
input i pad is used to indicate that the last i data block is padded. The hardware is
unaware of the lengths of individual phases, hence no internal counters for the number
of processed blocks are needed. The domain separators are provided by the environment
and serve as an indication of the phase change for AEAD functionality, i.e., whether
the input data for ACE-AE-128 is the key, associated data or plaintext/ciphertext. For
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Figure 6.1: Top-level ACE module and the interface with the environment

ACE-H-256, the phase change is indicated by the change of the i mode(0) signal, as
shown in Table 6.2.

6.2.1 Interface protocol

The top-level ACE module is in constant interaction with the environment application.
We show this interaction in a form of protocol in Figures 6.2a-6.2d for the ACE-AE-
128 encryption example, using the signal names from Figure 6.1. The environment is
only allowed to send data to the ACE hardware when it is in the idle mode, which
is indicated by the hardware using the o ready signal. The only exception from
this behaviour is the reset signal, which will force the hardware module to reset its
state machine and return to the idle state and set the o ready signal. Figure 6.2a
shows the environment (one the left) resetting the ACE module (on the right), waiting
for the o ready to be asserted, then sending the key and the nonce, as specified
in load-AE(N,K) in Section 2.4. Upon receiving all four key and nonce blocks, the
ACE module starts with the initial ACE permutation, as indicated on the right. After
completing the permutation, ACE module enters idle state and asserts the o ready
to signal to the environment that it can accept new data. The environment proceeds
with K0, accompanied by the proper values for i mode and i dom sep. Loading and
initialization is the same for both ACE-E and ACE-D, which is why Figure 6.2a shows
i mode=0− (see Table 6.2). The ACE module performs the ACE permutation and
asserts o ready, and the environment responds with the second key block K1.

Figure 6.2b shows the communication between the environment and the ACE module
for the first two blocks of associated data AD0 and AD1. The environment sets
i dom sep to value 1 and signals the arrival of new AD block with i valid. Af-
ter completing the ACE permutation, ACE module asserts the o ready. Figure 6.2c
shows the handshake signals for encryption of message blocks M5 and M6. The environ-
ment sends the plaintexts along with i dom sep=2 and i mode=00. The ACE module
receives M5, encrypts it and immediately returns C5 together with asserted o valid,
then starts the ACE permutation and asserts o ready upon its completion. With
exception of the tag generation, encryption (decryption) is the only phase during ACE-
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Figure 6.2: Interface protocol
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AE-128 when the ACE module sends data to the environment.
Each time a data block is transmitted between the environment and the ACE module

the valid bit protocol is used: the environment asserts the i valid, and the ACE module
the o valid signal. This naming convention is centred around the hardware module.
Another important part of the handshake between the environment and ACE module is
the o ready signal: ACE module sets this signal to 1 when it is ready to receive new
data from the environment, and to 0 when it is busy and wants the environment to
wait.

When all message blocks are encrypted, the finalization and tag generation begins
(Figure 6.2d). The environment changes i dom sep to value 0 and starts sending the
key blocks. After receiving K0, ACE module performs an ACE permutation and sets
o ready. After receiving K1, ACE module again performs an ACE permutation, but
this time replies to the environment with two tag blocks T0, T1 , each accompanied
by the o valid signal. Afterwards, the ACE module returns to idle and asserts the
o ready signal.

As was mentioned before, the ACE module is unaware of the number of AD and M
blocks, and relies on the environment to set proper values for i dom sep. However, the
ACE state machine is not completely free of counters: a small internal counter is needed
to keep track of the number of blocks received and transmitted during the loading and
initialization phase and the tag extraction. Another counter is needed to keep track of
the ACE permutation, which requires 128 clock cycles to complete. More details follow
in Subsection 6.2.3.

In streaming applications, the total length of the data might not be known at the
time that the message begins streaming. Hence, each time data is sent to the cipher,
the environment informs the cipher what type of data is being sent. This information is
easily encoded using a two-bit mode signal to denote which operation is to be performed
(Encryption, Decryption, Hashing) and the two-bit domain separator to denote the
type of data being processed (associated data, message, ciphertext). The hardware
uses o ready to signal that it is ready to receive new data, and the environment uses
i valid to signal that it is sending data to the hardware.

6.2.2 Protocol timing

More detailed representation of the events between the environment and the ACE module
is possible with the use of timing diagrams in Figures 6.3-6.5. In each diagram, the top
few lines show the interface signals (Table 6.1), which were already discussed as a part
of the communication protocol between the environment and the hardware module.
Signals i mode and i dom sep are omitted from the timing diagrams: their current
value is the same as shown in the corresponding protocol figure. The vertical ticks on
the horizontal lines represent the time: a single column shows the signal values within
the same clock period.

Loading and initialization during ACE-AE-128. Figure 6.3 shows the loading and
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initialization up to the beginning of the second ACE permutation; it corresponds to
the upper half of the protocol Figure 6.2a. At the top, we can see the interface sig-
nals reset, o ready, i valid and i data, followed by the internal signals count,
pcount and phase, which are a part of the ACE state machine. Counter count is
needed to keep track of the number of loaded key and nonce blocks. It is then reused
to count the number of key blocks processed during the rest of initialization and during
finalization, and for counting the number of produced tag and hash blocks. Counter
pcount keeps track of the 128 clock cycles needed for one ACE permutation. Af-
ter the environment deasserts the reset signal, the ACE module clears the internal
state machine signals, enters the Load phase and sets the o ready signal. The en-
vironment responds with the first key block K0, accompanied with asserted i valid.
The ACE module stores the new data into its internal state and increments count.
Figure 6.3 shows an example when the response of the environment varies, e.g., the de-
lay between K0 and K1 is bigger than delay between K1 and N0. After receiving N1, the
ACE module performs the first ACE permutation, denoted LoadPerm: the o ready
signal is dropped and the pcount increments every clock cycle. After LoadPerm is
finished, the state machine enters the Init phase and the o ready signal is set to 1
while waiting for the first key block. Arrival of the next i valid and K0 triggers the
second ACE permutation.

Load

i_valid

i_data

count

phase

K0 K1 N0 N1

0 1 2 3

reset

count stalls while

waiting for i_valid

LoadPerm

0

Init

K0

pcount 1 20 125126127 1 20

o_ready

Figure 6.3: Timing diagram: Loading and initialization during ACE-AE-128

Encryption during ACE-AE-128. Figure 6.4 shows the timing diagram during the
encryption of message blocks M5 and M6, corresponding to protocol in Figure 6.2c. It
clearly shows both sides of the valid-bit protocol. The first five lines show the top-
level interface signals and line six shows the value of the permutation counter pcount:
8 ·16 = 128 clock cycles are needed to complete 16 steps, 8 rounds per step, for one ACE
permutation. The values round and step, shown in the last two lines in Figure 6.4
are not two actual counters, but the lower and upper bits of counter pcount.

After completing the previous permutation, ACE module asserts o ready. The en-
vironment replies with a new message block M5 accompanied by an i valid signal.
The hardware immediately encrypts, returns C5 and asserts o valid. This clock cy-
cle is also the first round of a new ACE permutation and the o ready is deasserted,
indicating that the hardware is busy. Figure 6.4 also shows the ACE module remaining
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Figure 6.4: Timing diagram: Encryption during ACE-AE-128

busy (o ready = 0) for the duration of one ACE permutation. When pcount wraps
around from 127 to 0, the hardware is again idle and ready to receive new input, in this
case M6. The counter count is not being used. Since processing of associated data is
very similar to encryption, with exception of AD blocks instead of M blocks and no
output for o data, we do not show a separate timing diagram.

Tag phase during ACE-AE-128. Figure 6.5 shows a part of the finalization, tag
extract and the return of the state machine into the loading phase, corresponding
to the lower part of the protocol in Figure 6.2d. The timing diagram starts with
the completion of the ACE permutation after block K0 was received, followed by K1

immediately, which triggers the second ACE permutation during finalization, which is
also the last ACE permutation of ACE-AE-128. After the permutation, ACE module
sends two tag blocks to the environment. The counter count is used to return the
ACE module to the Load phase, where it sets the o ready signal and awaits the new
key and nonce in case of ACE-AE-128, or fixed IV in case of ACE-H-256.

o_data

pcount 125126127
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o_valid

T1

Finalphase Tag

127 0 1

i_data K1

i_valid

o_ready

Load

0

count 0 1

Figure 6.5: Timing of tag phase during ACE-AE-128
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6.2.3 Control phases

In the previous section (6.2.2) we touched on the different phases of the control circuitry.
The phases are categorizations of the active connections between the ACE permutation
on the interface signals. The seven categories, i.e., phases, are shown in Figure 6.6 and
described below:

• The first column shows Load (Figure 6.6(I.)) and Permutation (Figure 6.6(II.)).
The domain separator is not used.

– Load phase: i data is loaded (Figure 6.6(I.)) into A,B,C and E words
of the internal state S during ACE-AE-128, and into word B of the internal
state S during ACE-H-256, while the other words of S are set to 0. During
each Load, a portion of the internal state S is replaced with new data.

– Permutation phase: one iteration of the ACE permutation, without any in-
teractions with the environment. This happens 128× during the LoadPerm,
and 127× for all other ACE permutations.

• The second column shows Init/ProcAD/Final/Absorb (Figure 6.6(III.))
and Squeeze (Figure 6.6(IV.)). The domain separator is set to 1 for ProcAD
and to 0 for all other phases in this column.

– Init/ProcAD/Final/Absorb phase: the i data is added (XORed) to
the Sr portion of the internal state S before entering the ACE permutation,
i.e., between two consecutive ACE permutations. This phase is treated as
one phase from the hardware perspective, i.e., the state machine drives same
control signals, but from the algorithm perspective it captures the behaviour
during initialization, processing associated data and finalization for ACE-AE-
128, and during absorbing for ACE-H-256.

– Squeeze phase: during ACE-H-256 squeezing, o data is extracted from the
A and C words of the internal state S, then ACE permutation is triggered
(except for the last block H3). There is no adding or replacing of any portion
of the internal state S.

• The third column shows Encrypt (Figure 6.6(V.)) and Decrypt (Figure 6.6(VI.))
phase during ACE-AE-128. For both phases, the domain separator is set to 2.

– Encrypt phase: received i data (plaintext) is added to the Sr portion of
the internal state S and the result of this operation (ciphertext) is passed to
the o data output. The resulting ciphertext is a part of the internal state
S when the next ACE permutation begins.

– Decrypt phase: received i data (ciphertext) is XORed with the Sr portion
of the internal state S and the result of this operation (plaintext) is passed
to the o data output. The resulting plaintext does not enter the next ACE
permutation. Instead, the ciphertext from i data is used to replace the Sr
portion of the internal state before the next ACE permutation begins.
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• The last column shows the Tag phase (Figure 6.6(VII.)). The domain separator
is not used.

– Tag phase: during tag extract, the o data is extracted from the A and C
words of the internal state S.
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Figure 6.6: Phases and datapath operations

Note that the phases in Figure 6.6, that are showing ACE permutation, only show one
round: in Figures 6.6(III.-VI.) the first round of ACE permutation, where interaction
with the environment is required, and in Figure 6.6(II.) any round of ACE permutation,
where no interaction with the environment takes place. For example, the encryption
of M5 block from timing diagram in Figure 6.4, consists one phase Encrypt (V.),
followed by 127× Permutation (II.) - all together 128 rounds of ACE permutation.
Table 6.3 summarizes the phases shown in Figure 6.6, including datapath operation
taken (column dp. op.), and specifies the exact Sr input to the ACE permutation and
the output of ACE module for the environment, i.e., the o data value.
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Table 6.3: Control table for datapath based on phases from Figure 6.6

Dp. Input to Output to
Function i mode i dom sep Phase op permutation environment

– – – – – Load I. × ×
– – – – – Permutation II. Sr ×

En/De-crypt 0– 00 Init III. Sr ⊕ i data ×
En/De-crypt 0– 01 ProcAD
En/De-crypt 0– 00 Final

Hash 10 00 Absorb
Hash 11 00 Squeeze IV. Sr Sr

Encrypt 00 10 Encrypt V. Sr ⊕ i data Sr ⊕ i data
Decrypt 01 10 Decrypt VI. i data Sr ⊕ i data

En/De-crypt 0– – – Tag VII. × A,C of S
– stands for “don’t care” × stands for “not used”

6.3 Hardware Implementation Details

In this section, we describe the implementation details of ACE module. Section 6.3.1 de-
scribes how the state machine is derived from the interface protocols (Figures 6.2a–6.2d)
and datapath phases (Figure 6.6). Section 6.3.2 describes the datapath.

6.3.1 State machine

Control flow between phases. Figure 6.7 shows all possible transitions between the
state machine phases from Figure 6.6. After reset signal, we first enter Load, followed
by a single ACE permutation LoadPerm. Although load-AE(N,K) and load-H(IV )
are different, they are considered as a unified Load phase for the high-level description
of the state machine in Figure 6.7. After LoadPerm, the transition depends on the
operation, i.e., mode: the left branch is taken during ACE-AE-128, and the right branch
during ACE-H-256.

The first phase on the ACE-AE-128 branch is Init. The transition from Init
depends on the value of i dom sep signal. When i dom sep=1, we enter the ProcAD
phase, and remain there for as long as i dom sep=1. Regardless if current state
is Init or ProcAD, the i dom sep=2 will trigger transition to either Encrypt or
Decrypt, depending on the i mode value. Note that because of our padding rule,
there will always be at least one block with i dom sep=2. The FSM will enter the
Final phase only when the domain separator changes to 0. The phase Final is
followed by the Tag phase and the return to the reset state unconditionally.

For ACE-H-256, the state machine always transitions to Absorb phase, because
the padding rule implies at least one message block. The domain separator is always 0,
but we use the 2-bit i mode signal to trigger the transition from Absorb to Squeeze
phase, as shown in Figure 6.7.
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Optimized control flow between phases. Figure 6.8 shows the optimized control
flow from Figure 6.7, with ACE-AE-128 on the left and ACE-H-256 on the right branch.
The optimized figure is annotated with transient states in which the paths split or join.
The values of the interface signals are checked in the splitting transient states. Note
that transient states do not indicate a clock cycle boundary, while all other states do.

Summary of control flow. The high-level algorithms for ACE (Figures 2.3 and 2.4)
were designed to simplify the state machine. Functionally, it is equivalent for the
boundary between phases to occur either before or after the permutation. The boundary
was placed after the permutation updates the state register. As will be demonstrated in
Section 6.3.2, with this structure the two-bit domain separator is sufficient to determine
the value of many of the multiplexer select lines and other control signals. All phases
that have a domain separator of "00" have the same multiplexer select values. The
same also holds true for "01". Unfortunately, this cannot be achieved for "10",
because encryption and decryption require different control signal values, but the same
domain separator. Using the domain separator to signal the transition between phases
for encryption and decryption also simplified the control circuit. For hashing, the
transition from absorbing to squeezing is controlled by the i mode signal.

A final note about the control flow diagrams in this section: only when the num-
ber of iterations in a certain phase depends on the length of the data, i.e., `X , X ∈
{AD,M,C}, which is indicated by the value change of interface signal i mode or
i dom sep, we show the transition to itself. While the phases Load, Init, Final,
Tag and Squeeze also take more than one iteration, the number of iterations is fixed
by the ACE-AE-128 and ACE-H-256 algorithms specified in Chapter 2 and hence not
shown in the control flow diagrams in Figures 6.7 and 6.8. However, this level of detail
is included in the state machine Figures 6.9-6.11.

Derivation of state machine from control flow. The implementation details for
the control flow from Figure 6.8 are shown as state machines, spread out through
Figures 6.9-6.11. All the phases are split into at least two parts, following the convention
iStateName and pStateName, where the prefix “i” stands for “idle” and “p” for
“permutation”, and the state name corresponds to the phase name. In the “idle” states,
the ACE module is waiting for new input from the environment, i.e., for i valid=1.
In the “permutation” states the ACE permutation is running and the ACE module is
busy, i.e., o ready=0. The normal structure can be seen in the iInit and pInit
states in Figure 6.11. There are a few exceptions to the normal structure:

• The phase Load (Figure 6.9) can receive multiple blocks consecutively without
running a permutation. Hence, there is a third state Load without a prefix in
addition to iLoad and pLoad.

• The phase Tag (Figure 6.11) can transmits multiple blocks consecutively without
running a permutation. Hence, there is no need for a p-state.

• The states pAbsorb and pSqueeze (Figure 6.10) have the same behaviour for
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idling, and so their idle states are merged into iHash.

• Similarly, states pProcAD, pEncrypt and pDecrypt all use the same merged
idle state iAED.

Each state is annotated with four circles to denote the four bits encoding the current
values on the interface signals i mode and i dom sep. An empty circle denotes 0, a
filled circle denotes 1, and a circle with a dash is a “don’t care” value, meaning the be-
haviour is independent of this bit. Each transition between a pair of states is annotated
with a roman numeral from Figure 6.6 denoting the datapath operation to be performed.

State machine: Loading. The loading part of the state machine is shown in
Figure 6.9. The reset control signal places the state machine into the iLoad idle
state, where it awaits the first key block in the case of ACE-AE-128 or a single IV block
in the case of ACE-H-256. In case of ACE-AE-128, the environment sends 4(2 + 2)
key and nonce blocks, and the state machine uses an internal counter count to keep
track of the loading,i.e., to keep track of iterations back to state Load. This behaviour
was explained in timing diagram in Figure 6.3. After the loading blocks are received,
the state machine enters the permutations state pLoad, which is controlled by the
counter pcount counting steps and rounds as was shown in Figure 6.4. The transition
to the left branch is made in the case of i mode=0-, i.e., for ACE-AE-128, in which
case the state machine continues in Figure 6.11, and to the right branch in the case of
i mode=1-, i.e., in the case of ACE-H-256 in which case the state machine continues
in Figure 6.10. In both cases, the next state is an idle state.

State machine: Hashing. The hashing states continue in Figure 6.10, corresponding
to the Absorb and Squeeze phase in the right branch of the control flow in Figure
6.8. The first state entered is the merged idle state iHash. Upon the next i valid,
we can continue to one of the permutation states based on the value of the i mode(0)
signal, which is set by the environment. The left loop in Figure 6.10 shows the state
machine entering pAbsorb when i mode=10, followed by the iHash idle state. The
end of the message for ACE-H-256 is indicated by the mode chage to i mode=11, which
causes the transition from iHash to pSqueeze. Note that since the number of hash
blocks is fixed and does not require any input from the environment, we do not need a
return loop from pSqueeze to iHash. The state machine uses the counter count to
keep track of the hash blocks produced so far. No ACE permutation is needed after H3.

State machine: Encryption and decryption. The left branch in Figure 6.9, taken
in the case of ACE-AE-128, is shown in Figure 6.11. Similarly, we first enter the
iInit state and transition to pInit at the arrival of the next i valid. The counter
pcount is, as usual, used to keep track of the ACE permutation, and the counter
count of the number of iterations in Init phase. After the second ACE permuta-
tion in the Init phase is completed, we proceed to iAED, a merged idle state for
iProcAD, iEncrypt and iDecrypt. The next i valid triggers the transition
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to pProcAD if i dom sep=01 or to transient state on the right if i dom sep=10,
for either pEncrypt or pDecrypt, depending on the i mode. Either way, an ACE
permutation starts, and the pcount runs for 128 cycles. After completing an ACE
permutation, the state machine returns to the idle state iAED. When we observe
i dom sep=00, the state machine will transition into pFinal state and run the first
ACE permutation in Final phase. Again, counter count is used to keep track of
the two iterations. The idle state iFinal is entered only once. Finally, the state
machine enters the Tag state, and ACE module transmits two tag blocks to the envi-
ronment. Again, counter count is used, but this time, no ACE permutation is required.

Summary of state machine. The state machine is responsible for the o valid and
o ready interface signals. It is also tasked with control signals for the multiplexers
in ACE datapath, which accommodate different interactions between ACE module and
the environment, i.e., different phases from Figure 6.6. This will be discussed in more
detail in Section 6.3.2.
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The state machine and encodings for control signals were designed to take advantage
of similarities in structure to enable optimizations in the control circuitry. The only
control-flow decision made within an idle state is to exit when i valid=’1’. This
reduces the number of idle states and facilitates combinational logic optimizations due
to the uniform structure of the control flow. Loading, squeezing, and finalization all
use the same one-hot counter to count their iterations. Also, all seven of the states that
perform the permutation have the same control structure, which provides opportunities
for logic synthesis optimizations, such as common subexpression elimination.

6.3.2 ACE datapath

Figure 6.12 shows the schematic for the ACE datapath. The top of the figure depicts
the five 64-bit signals A, B, C, D and E, with the A and C registers split into half.
The triangular shapes on signal lines denote splitting or joining of signals, e.g., the
64-bit data input ı data is split into two halves, one for each 32-bit part of the Sr.
Similarly, the output of the 32-bit 3-to-1 multiplexer is joined with the unmodified A0
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(half of signal A) before entering the SB-641. Next the hardware components required
for absorbing, replacing and driving the outputs, annotated with “i data and o data
muxes”, are shown. The rest of the Figure 6.12 shows one step of the ACE permutation,
annotated on the left.

Module SB-641 in Figure 6.12 implements one out of eight rounds required for SB-64.
The three parallel SB-641 modules are shown in Figure 6.12. There is an important
difference between Figures 2.1 and 6.12:

• Figure 2.1 shows the ACE-step, containing three parallel Simeck boxes SB-64

• Figure 6.12 shows the ACE-datapath, the actual hardware implementation, where
we implement one round SB-641 and reuse it 8 times to complete one SB-64.
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Figure 6.12: The ACE-datapath

The repeated use of SB-641 is functionally equivalent to SB-64. However, imple-
menting SB-641 has multiple advantages. The SB-641 module is one-eighth the size of a
full SB-64 module. Also using SB-641 enables the step and round to use same hardware
circuitry. The rounds and steps always use the same hardware, but in different clock
cycles, which forces the use of multiplexers inside the ACE permutation. Additions
with round and step constants, SB-641, linear permutation layer and the multiplexers
to choose between round and step constants are annotated as well. The step/round
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multiplexers are the last layer of multiplexers to choose between loading and permuta-
tion outputs before updating the 64-bit registers A, B, C, D and E.

Hardware circuitory for en/de-cryption and hash. Figure 6.12 depicts the ACE
permutation, but also shows the circuitry needed to utilize the ACE permutation to
have a specific mode. The absorbing hardware part is also shown in Figure 6.12. Apart
from the output generation, this behaviour is the same for ACE-AE-128 initialization,
processing associated data, encryption, finalization, and for the ACE-H-256 absorbing
and squeezing phase. For ACE-AE-128 decryption, extra multiplexers are required on
the inputs to the ACE permutation, hence the 3:1 multiplexers before the start of the
ACE permutation.

The FSM phases and “i data and o data muxes”. The state machine is respon-
sible to drive the control signals for all the multiplexers shown in Figure 6.12 based on
the current state and values of counters count and pcount. The “round/step muxes”
choose the step output (left mux input), when the pcount changes in its step part,
and the round input (right mux input), when only the lower round bits of the counter
pcount change, as explained in timing diagram in Figure 6.4. For most of the time,
the “load/perm muxes” are passing the permutation signals (left mux inputs), with
the exception of the Load stages before LoadPerm, as shown in control diagrams and
state machines in Figures 6.7-6.9. The “i data and o data muxes” consist of six 32-
bit multiplexers: two 3-to-1 “i data multiplexers” and two pairs of 4-to-1 and 2-to-1
“o data multiplxers”.

Tables 6.4-6.6 below show different scenarios for the “i data and o data muxes”.
There are three sets of these multiplexers: 3:1 i data multiplexers (Table 6.4), 4:1
o data multiplexers (Table 6.5), and 2:1 o data multiplexers (Table 6.6). Each set
of multiplexers has one instance in the A1 column of the datapath and one instance in
the C1 column (Figure 6.12). All three tables are formatted in the same way. Column
2 corresponds to the multiplexer for A1 and column 3 to the multiplexer for C1. The
multiplexer inputs are linked to ACE hardware phases in Figure 6.6 in column 4. Recall
that phases III-VI include only the first iteration of the ACE permutation, which is
the iteration in which all the i data and o data interaction with the environment
takes place. Every one of these phases is then followed by the remaining 127 iterations
of the ACE permutation, i.e., 127× phase II. In phase II, the i data and o data are
disconnected from the ACE permutation circuit in the lower part of Figure 6.12. For
the “i data multiplexers” in Table 6.4 there are two exceptions, which have the same
multiplexer inputs for all 128 iterations of ACE permutation: the hash sqeeuzing (IV
followed by 127× II) and the loading permutation LoadPerm (128× II). Table 6.6
has two exceptions, where no output is generated during any part of the phase, includ-
ing all 128 iterations of the ACE permutation: Init, ProcAD, Final, Absorb
(Figure 6.6(III)), and the all Load and LoadPerm phases (Figure 6.6(I, II)).
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Table 6.4: 3-to-1 “i data multiplexers”

mux input Sr input for permutation Fig.6.6
position ∗ A1 part C1 part subfigure description

0 i data0 i data1 VI replace Sr with new data
1 A1 ⊕ i data0 C1 ⊕ i data1 III, V add new data into Sr

2 A1 C1 IV, II hash squeezing and during
ACE permutation iter. II

∗ mux input positions are numbered from the left

Table 6.5: 4-to-1 “o data multiplexers”

mux input 4-to-1 mux output for 2-to-1 mux Fig.6.6
position ∗ o data0 part o data1 part subfigure description

0 A1 ⊕ i data0 C1 ⊕ i data1 V, VI data block Ci or Mi

1 A1 C1 IV hash block Hi

2 A1 A0 VII tag block T0

3 C1 C0 VII tag block T1

∗ mux input positions are numbered from the left

Table 6.6: 2-to-1 “o data multiplexers”

mux input 2-to-1 mux output for Fig.6.6
position ∗ o data0 part o data1 part subfigure description

0 4-to-1 o data0 4-to-1 o data1 IV, V output data block
mux output mux output VI, VII Mi, Ci, Ti or Hi

1 all 0 block all 0 block I, II, III and no output
∗ mux input positions are numbered from the left

Estimated and synthesized cost of ACE permutation. In Table 6.7, we provide
both the estimate based on the CMOS 65 nm ASIC library and actual hardware area of
the ACE permutation. For the CMOS 65 nm we use an estimate of 3.75 GE for a 1-bit
register and 2.00 GE for a 2-input XOR gate. The row “other XOR” contains the XOR
gates needed for masking B, D and E with outputs of the three SB-641 modules, and
for the addition of step constants.

First we provide the estimate for the ACE permutation without multiplexers. Then
we add the round/step multiplexers and a minimum number of load multiplexers, in
this case for word B which is loaded during ACE-H-256, and the synthesized area of
the LFSR for the constant generation, to obtain the estimate (and synthesized results)
for the ACE permutation with minimal amount of multiplexers added.

Finally, we add the estimates for the hardware needed to support the mode. We esti-
mate the “i data and o data muxes” as 2-to-1 muxes, e.g., a 4-to-1 mux is estimated
as 3 2-to-1 muxes, yielding in total 6 2-to-1 muxes per bit. The XORs for mode are the
ones required for the encryption/decryption. Additional load multiplexers are needed
to load the entire state. These components, listed in the second part of Table 6.7,
amount to 1408 GE (estimated), but the synthesis reports show, the tools were able
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to do some optimizations, e.g., using actual (and smaller) 3-to-1 muxes. Finally, we
list the estimate and the synthesized result for the complete datapath, followed by the
synthesized state machine and the results for ACE module. The complete cipher results
reported here are for logic synthesis (i.e., before place-and-route) with a sufficiently long
clock period to get a minimum area. This differs from the results in Table 6.9, where
the results are for physical synthesis (after place and route) and the selected result is
the one with the maximum performance over area-squared ratio (Section 6.4.2).

Table 6.7: ACE permutation hardware area estimate and implementation results

Component Estimate Count Estimate per
per unit [GE] component [GE]

State registers 3.75 320 1200
SB-641 154† 3 462
Other XORs 2.00 3× (64 + 8) 432
Permutation without muxes (estimate) 2094
round/step muxes 2.00 320 640
min load muxes 2.00 64 128
LFSR for constants 49† 49
Permutation with muxes (estimate) 2911
Synthesized result† 2870

i data/ o data muxes 2.00 6× 32× 2 = 384 768
XORs for mode 2.00 32× 2 = 64 128
Additional load muxes 2.0 64× = 256 512
Hardware for the mode (estimate) 1408
Synthesized result† 1128

Complete datapath (estimate) 4319
Synthesized result† 3998

State machine (synthesized result†) 318

ACE module (estimate) 4637
Synthesized result† 4317

† pre-PAR implementation results

6.4 Hardware Implementation Results

In this section, we provide the ASIC and FPGA implementation results of ACE and its
modes. We first give the details of the synthesis and simulation tools and then present
the implementation results.
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Table 6.8: Tools and implementation technologies

Tools and libraries for ASICs

Logic synthesis Synopsys Design Compiler vN-2017.09

Physical synthesis Cadence Encounter 2014.13-s036 1

Simulation Mentor Graphics QuestaSim 10.5c

ASIC cell libraries 65 nm STMicroelectronics CORE65LPLVT, 1.25V
TSMC 65 nm tpfn65gpgv2od3 200c and tcbn65gplus 200a at 1.0V
ST Microelectronics 90 nm CORE90GPLVT and
CORX90GPLVT at 1.0V
IBM 130nm CMRF8SF LPVT with SAGE-X v2.0 standard cells
at 1.2V

Synthesis tools for FPGAs

Logic synthesis Mentor Graphics Precision 64-bit 2016.1.1.28 (for Intel/Altera)
ISE (for Xilinx)

Physical synthesis Altera Quartus Prime 15.1.0 SJ (for Intel/Altera)
ISE (for Xilinx)

6.4.1 Tool configuration and implementation technologies

Table 6.8 lists the configuration details of synthesis and simulation tools and libraries
for both ASIC and FPGA implementations. All area results are post place-and-route.
Energy results are computed through timing simulation of the post place-and-route
design at a clock speed of 10 MHz.

For ASICs, logic synthesis was done using the compile ultra command and clock
gating; and physical synthesis (place-and-route) was done with a density of 95%. By
selecting a target clock speed, synthesis for ASICs can exhibit a significant range in
tradeoffs between speed and area for the same RTL code. The results reported here
reflect the clock speed and area that obtained the highest ratio of performance over
area-squared. We used area squared, because area is a reasonable approximation of
power and is much less sensitive to the choice of the ASIC library than is power itself.

6.4.2 Implementation results

Figure 6.13, Table 6.9, and Table 6.10 present the hardware implementation results.
Note that ACE module performs all three functionalities (authenticated encryption, ver-
ified decryption and hashing) in a single module.

Figure 6.13 shows area2 vs. throughput for ASICs with different degrees of paral-
lelization, denoted by A-p (p = 1, 2, 3, 4, 8). The throughput axis is scaled as log(Tput)
and the area axis is scaled as log(area2). The grey contour lines denote the relative
optimality of the circuits using Tput/area2. Throughput is increased by increasing
the degree of parallelization (unrolling), which reduces the number of clock cycles per
permutation round. Going from p = 1 to p = 8 results in a 1.72× area increase, and
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optimality increases as parallelism increases from 1 to 8.
As can be seen by the relative constant size of the shaded rectangles enclosing the

data points, the relative area increase with parallelization is relatively independent of
implementation technology.
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Figure 6.13: Area2 vs Throughput

Table 6.9: ASIC implementation results

ST Micro 65 nm TSMC 65 nm ST Micro 90 nm IBM 130 nm

Label Tput A f E A f E A f E A f E

[bpc] [GE] [MHz] [nJ] [GE] [MHz] [nJ] [GE] [MHz] [nJ] [GE] [MHz] [nJ]

A-1 0.5 4250 720 27.9 4600 705 20.1 3660 657 62.2 4350 128 46.8

A-2 1 4780 618 18.4 5290 645 12.4 4130 628 35.8 4980 88.9 29.4

A-4 2 5760 394 15.1 6260 588 8.51 4940 484 25.4 5910 90.5 21.1

A-8 4 7240 246 11.4 8090 493 6.40 6170 336 19.4 7550 63.2 18.4

Table 6.9 represents the same data points as Figure 6.13 with the addition of maxi-
mum frequency (f, MHz) and energy per bit (E, nJ). Energy is measured as the average
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value while performing all cryptographic operations over 8192 bits of data at 10 MHz.
As throughput increases, energy per bit decreases consistently, despite higher circuit
area and, therefore, power consumption. Connecting modules in a combinational chain
can result in an exponential increase of the number of glitches, which drastically in-
creases power consumption. However, because of the small size of the ACE permutation,
the actual increase in power is not that significant for parallelism up to degree 8.

Table 6.10: FPGA implementation results

Frequency # of slices # of FFs # of LUTs

Module [MHz]

Xilinx Spartan 3 (xc3s200-5ft256)

ACE permutation 181 215 327 381

ACE module 68 727 353 1410

Xilinx Spartan 6 (xc6slx9-3ftg256)

ACE permutation 306 127 327 378

ACE module 123 429 365 1272

Frequency # of LC # of FFs # of LUTs

Module [MHz]

Intel/Altera Stratix IV (EP4SGX70HF35M3)

ACE permutation 128 327 327 296

ACE module 51 781† 354 781

† ACE module includes ALTSYNCRAM block memory with 35 bits.
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Chapter 7

Efficiency Analysis in Software

The ACE permutation is designed to be efficient on a wide range of resource constrianed
devices, which requires the primitive to be efficient in hardware as well as software.
Even for lightweight applications, a server communicating with such devices needs
to perform the encryption/decryption, and hashing operations at a high speed. We
assess the efficiency of the ACE permutation and its modes on two different software
platforms: high-performance CPUs and microcontrollers. For the high-performance
CPU implementation, we consider a bit-sliced implementation of ACE using SIMD
instruction sets.

7.1 Software: High-performance CPU

We implement ACE in the bit-slice fashion using SIMD instruction sets which provides
resistance against cache-timing attacks and allows to execute multiple independent ACE
instances in parallel. We consider SSE and AVX instruction sets in Intel processors
where the SSE and AVX instruction sets, support 128-bit and 256-bit SIMD registers,
known as XMM and YMM, respectively. Algorithm 4 depicts the detailed steps of
our implementation. In our implementation, packing and unpacking of data are two
important tasks, which are performed at the beginning and at the end of the execution
of the permutation and also during the execution of the permutation.

Basic idea. The key idea for our software implementation of the ACE permutation is
to split the state of the permutation among different registers for performing similar
types of operations (e.g., SB-64). For instance, when eight parallel instances of ACE are
evaluated using YMM registers, we pack data for SB-64 operation into six YMM regis-
ters and other blocks are stored in four other YMM registers. This allows us to perform
the same operations in different registers to achieve efficiency in the implementation.
Below we explain the bit-slice implementation details of ACE for YMM registers. The
details for the SSE implementation using XMM registers are similar, and so are omitted.
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Packing and unpacking for ACE. There are two different types of packing and un-
packing operations in our implementation: 1) one pair is performed at the beginning
and end of the permutation execution; and 2) the other one is performed at the be-
ginning and end of the SB-64 layer in each step. We start by describing the first one.
For the software implementation, we denote an ACE state by Si = si0s

i
1s
i
2s
i
3s
i
4s
i
5s
i
6s
i
7s
i
8s
i
9

where each sij is a 32-bit word, 0 ≤ i ≤ 7 and 0 ≤ j ≤ 9. First, the eight independent
states S0, S1, S2, S3, S4, S5, S6, S7 of ACE are loaded into ten 256-bit registers as follows.

R0 ← s07s
0
6s

0
5s

0
4s

0
3s

0
2s

0
1s

0
0; R4 ← s17s

1
6s

1
5s

1
4s

1
3s

1
2s

1
1s

1
0;

R1 ← s27s
2
6s

2
5s

2
4s

2
3s

2
2s

2
1s

2
0; R5 ← s37s

3
6s

3
5s

3
4s

3
3s

3
2s

3
1s

3
0;

R2 ← s47s
4
6s

4
5s

4
4s

4
3s

4
2s

4
1s

4
0; R6 ← s57s

5
6s

5
5s

5
4s

5
3s

5
2s

5
1s

5
0;

R3 ← s67s
6
6s

6
5s

6
4s

6
3s

6
2s

6
1s

6
0; R7 ← s77s

7
6s

7
5s

7
4s

7
3s

7
2s

7
1s

7
0;

R8 ← s39s
3
8s

2
9s

2
8s

1
9s

1
8s

0
9s

0
8; R9 ← s79s

7
8s

6
9s

6
8s

5
9s

5
8s

4
9s

4
8;

Then the packing operation is defined as

PACK(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9) :

R0 ← s15s
1
4s

1
1s

1
0s

0
5s

0
4s

0
1s

0
0; R4 ← s17s

1
6s

1
3s

1
2s

0
7s

0
6s

0
3s

0
2;

R1 ← s35s
3
4s

3
1s

3
0s

2
5s

2
4s

2
1s

2
0; R5 ← s37s

3
6s

3
3s

3
2s

2
7s

2
6s

2
3s

2
2;

R2 ← s55s
5
4s

5
1s

5
0s

4
5s

4
4s

4
1s

4
0; R6 ← s57s

5
6s

5
3s

5
2s

4
7s

4
6s

4
3s

4
2;

R3 ← s75s
7
4s

7
1s

7
0s

6
5s

6
4s

6
1s

6
0; R7 ← s77s

7
6s

7
3s

7
2s

6
7s

6
6s

6
3s

6
2;

R8 ← s39s
3
8s

2
9s

2
8s

1
9s

1
8s

0
9s

0
8; R9 ← s79s

7
8s

6
9s

6
8s

5
9s

5
8s

4
9s

4
8;

where the SB-64 operation is performed on R0, R1, R2, R3, R8, and R9.
The unpacking operation, denoted by UNPACK(), is the inverse of the packing op-

eration, which we omit here. Both operations are implemented using vpermd and
vperm2i128, vpunpcklqdq and vpunpckhqdq instructions. Assume that we wish
to apply the SB-64 operation on disjoint 64 bits (i.e., a2i+1a2i or b2i+1b2i) in the registers
A = a7a6a5a4a3a2a1a0 and B = b7b6b5b4b3b2b1b0. As SB-64 adopts the Feistel structure,
the data in A and B are regrouped for the homogeneity of operations in SB-64. For
this, we need the second pair of packing and unpacking operations for the SB-64 layer,
which is given by

PACK SB-64(A,B) : UNPACK SB-64(A,B) :
A← b6b4b2b0a6a4a2a0; A← b3a3b2a2b1a1b0a0;
B ← b7b5b3b1a7a5a3a3 B ← b7a7b6a6b5a5b4a4;

ROAX operation. We create an instruction for one round of execution of SB-64,
denoted by ROAX, which is given by

ROAX(A,B, q1, q2) :

tmp← A; C ← 0xfffffffe;

A← (L5(A)� A)⊕ L1(A);

A← A⊕B ⊕ (C ⊕ q1, C ⊕ q2, · · · , C ⊕ q1, C ⊕ q2);
B ← tmp;
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where A and B are either a XMM or YMM register, L5(A) (resp. L1(A)) denotes the
left cyclic shift by 5 (resp. 1) on every ai in A, which is implemented using vpslld
and vpsrld instructions.
Swapblock operation. With R0, R1, · · · , R9 as input, the swap block operation,
denoted as SWAPBLKS, corresponding to π = (3, 2, 0, 4, 1) is given by

SWAPBLKS(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9) :

R0 ← s11s
1
0s

1
7s

1
6s

0
1s

0
0s

0
7s

0
6; R4 ← s19s

1
8s

1
5s

1
4s

0
9s

0
8s

0
5s

0
4

R1 ← s31s
3
0s

3
7s

3
6s

2
1s

2
0s

2
7s

2
6; R5 ← s39s

3
8s

3
5s

3
4s

2
9s

2
8s

2
5s

2
4

R2 ← s51s
5
0s

5
7s

5
6s

1
1s

4
0s

4
7s

4
6; R6 ← s59s

5
8s

5
5s

5
4s

4
9s

4
8s

4
5s

4
4

R3 ← s71s
7
0s

7
7s

7
6s

1
1s

6
0s

6
7s

6
6; R7 ← s79s

7
8s

7
5s

7
4s

6
9s

6
8s

6
5s

6
4

R8 ← s33s
3
2s

2
3s

2
2s

1
3s

1
2s

0
3s

0
2; R9 ← s73s

7
2s

6
3s

6
2s

5
3s

5
2s

4
3s

4
2;

The execution of the eight parallel instances of the ACE permutation is summarized in
Algorithm 4.

Algorithm 4 Eight parallel instances of the ACE permutation
1: Input: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)
2: Output: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)

3: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)← PACK(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
4: for i = 0 to 15 do:
5: R0, R1 ← PACK SB-64(R0, R1);
6: R2, R3 ← PACK SB-64(R2, R3);
7: R8, R9 ← PACK SB-64(R8, R9);

8: for j = 0 to 7 do:
9: R0, R1 ← ROAX(R0, R1, rc

i
0[j], rci1[j]); . rci0[j] : j-th lsb of rci0

10: R2, R3 ← ROAX(R2, R3, rc
i
0[j], rci1[j]);

11: R8, R9 ← ROAX(R8, R9, rc
i
2[j], rci2[j]);

12: end for
13: R0, R1 ← UNPACK SB-64(R0, R1);
14: R2, R3 ← UNPACK SB-64(R2, R3);
15: R8, R9 ← UNPACK SB-64(R8, R9);
16: C ← 0xffffff00; D ← 0xffffffff;
17: tmp0← (D,C ⊕ sci0, D,C ⊕ sci1, D,C ⊕ sci0, D,C ⊕ sci1)
18: tmp1← (D,C ⊕ sci2, D,C ⊕ sci2, D,C ⊕ sci2, D,C ⊕ sci2)
19: R4 ← R4 ⊕ tmp0; R5 ← R5 ⊕ tmp0;
20: R6 ← R6 ⊕ tmp0; R7 ← R7 ⊕ tmp0;
21: R8 ← R8 ⊕ tmp1; R9 ← R9 ⊕ tmp1;
22: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)← SWAPBLKS(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
23: end for
24: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)← UNPACK(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
25: return (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
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Benchmarking. We implement the ACE permutation and ACE-AE-128 and ACE-H-
256 modes in C using SSE2 and AVX2 instruction sets and measure their performances
on two different Intel processors: Skylake and Haswell. The codes were compiled using
gcc 5.4.0 on 64-bit machines with the compiler flags -O2 -funroll-all-loops
-march=native. For both implementations, we evaluate eight parallel instances and
compute the throughput of the permutation and its modes. Table 7.1 presents the
performance results in cycles per byte for both implementations where the message
digest is computed for 1024 bits and encryption is also done for 1024 bits and the
associated data length is set to 128 bits. In our implementation, we include the costs
for all packing and unpacking operations. The best speed achieved is 9.97 cycles/byte
for ACE, using the AVX2 implementation on Skylake.

Table 7.1: Benchmarking the results for the ACE permutation and its AE and Hash
modes.

Primitive Speed Instruction CPU Name
[cpb] Set Spec.

ACE

15.66 SSE2 Skylake
9.97 AVX2 Intel i7-6700
16.96 SSE2 Haswell
10.56 AVX2 Intel i7-4790

ACE-AE-128
110.29 SSE2 Skylake
68.53 AVX2 Intel i7-6700
128.66 SSE2 Haswell
89.10 AVX2 Intel i7-4790

ACE-H-256
95.65 SSE2 Skylake
58.81 AVX2 Intel i7-6700
108.15 SSE2 Haswell
66.12 AVX2 Intel i7-4790

7.2 Software: Microcontroller

We implement the ACE permutation and ACE-AE-128 on two distinct microcontroller
platforms. For ACE-AE-128, we implement only encryption, as decryption is the same
as encryption, except updating the rate with ciphertext. Our codes are written in
assembly language to achieve optimal performance. We choose: 1) MSP430F2370, a
16-bit microcontroller from Texas Instruments with 2.3 Kbytes of programmable flash
memory, 128 Bytes of RAM, and 12 general purpose registers of 16 bits, and 2) ARM
Cortex M3 LM3S9D96, a 32-bit microcontroller with 524.3 Kbytes of programmable
flash memory, 131 Kbytes of RAM, and 13 general purpose registers of 32 bits. We
focus on four key performance measures, namely throughput (Kbps), code size (Kbytes),
energy (nJ), and RAM (Kbytes) consumptions.
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For ACE-AE-128, the scheme is instantiated with a random 128-bit key and 128-bit
nonce. Note that the throughput of the modes decreases compared to the permutation
as the messages are processed on 64-bit blocks and (5 + `)(resp. (4 + `) ) executions
of the permutation are needed to evaluate the AE (resp. hash) mode where ` is the
number of the processed data in blocks including padding if needed. Table 7.2 presents
the performance of the ACE permutation and its modes.

Table 7.2: Performance of ACE on microcontrollers at a clock frequency of 16 MHz

Platform Primitive #AD blocks #M blocks Memory (bytes) #cycles Throughput Energy/bit
SRAM Flash [Kbps] [nJ]

16-bit MSP430F2370

ACE permutation - - 304 1456 69440 73.73 225
ACE-AE-128 0 16 330 1740 1445059 11.34 1461
ACE-AE-128 2 16 330 1786 1582892 10.35 1600
ACE-H-256 - 2 330 1682 413056 4.96 3340
ACE-H-256 - 16 330 1684 1375672 11.91 1390

32-bit Cortex M3 LM3S9D96

ACE permutation - - 523 1598 13003 393.76 846
ACE-AE-128 0 16 559 1790 269341 60.83 5479
ACE-AE-128 2 16 559 1858 294988 55.54 6001
ACE-H-256 - 2 559 1822 77114 26.56 12550
ACE-H-256 - 16 559 1822 256524 63.87 5218
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Appendix A

Other NIST-LWC Submissions

In Table A.1, we list our other NIST-LWC submissions whose underlying permutation
adopts a similar design as sLiSCP-light [6] family of permutations. ACE is an all in one
primitive that utilizes a generalized version of sLiSCP-light with state size 320-bit and a
different linear layer to offer both hashing and authenticated encryption functionalities.
Spix adopts sLiSCP-light-256 in a monkey duplex to offer higher throughput than
generic Sponge-based AE schemes. Spoc is an authenticated cipher that enables higher
bound on the underlying state size to offer same security as other generic AE schemes,
thus allowing larger rate size. Spoc adopts sLiSCP-light-192 and sLiSCP-light-256 to
enable different performance and hence different target applications. In Table A.1, the
submissions are classified based on their functionalities, mode of operation parameters
and hardware area in 65 nm ASIC.

Table A.1: Submissions with sLiSCP-light like permutations

Algorithm Permutation Functionality Parameters (in bits) Mode of operation Area

State Rate Security [GE]

ACE-AE-128 and ACE-H-256 ACE AEAD & Hash 320 64 128 Unified sLiSCP sponge 4250

Spix [4] sLiSCP-light-256 AEAD 256 64 128 Monkey Duplex 2611

Spoc-64 [3] sLiSCP-light-192 AEAD 192 64 128 Spoc 2329

Spoc-128 [3] sLiSCP-light-256 AEAD 256 128 128 Spoc 3054
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Appendix B

Test Vectors

B.1 Simeck sbox

Test vector for Simeck sbox with input = 0000000000000000 and rc = 0x07.

Round State

0 0000000000000000

1 FFFFFFFF00000000

2 FFFFFFFFFFFFFFFF

3 00000000FFFFFFFF

4 0000000100000000

5 FFFFFFFC00000001

6 FFFFFF9AFFFFFFFC

7 00000C2DFFFFFF9A

8 00001C1E00000C2D
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B.2 ACE Permutation

Test vector for ACE with all zero state.

Table B.1: Test vector for ACE permutation

Step State

0 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1 FFFFC7CAFFFFE776 00003C9E00001C3A 00001C1E00000C2D FFFFDBD4FFFFEB67 FFFFC361FFFFE36A

2 A008C151D9C4D9F0 25ACD9A124884ECC 86A59002FBFA4BCD D9528A87DDC179A3 DA531AC0DB77ADAA

3 446BFB17FEAC5A5F 683F3428F9654513 68637D8AD2D9A691 F55A0C1AF1B48501 B26C12762212F44E

4 5453CAE4EC2F4442 1229976DFAB4E931 62A32D3D4BF8A3A4 C3AAEBC356636242 85E95CBAFC2E53AF

5 598621C1B175FD21 2D4271827840D029 7067E7DBE7730CF1 EA4B2DD90065936F C09419107D0BC64B

6 F082FCB61529AA71 7BCFD42DFA4C3E52 2D5F0057B73ACCE3 3796D138A276F5D5 A9725A507DF3111B

7 FEFB14A90FFC6647 9F5776716E158260 8E92C0A5D6800B6F 47FF05347B0A9853 1B675DA36BA6435A

8 89F30BAF3692897B C4FDA6EBEC5A67C9 14F005716C4AFC2A DAFC0BEA21D2ED4A A4552F657DB01A48

9 4C23136992E442A3 011A48EC0CB5FB43 66FE8CDB3B4199E5 F0219458887736CA 3A1811F81F10637C

10 2610F06C195D5056 17AE4FD7BD09471B FFBDD5A7EAB46BCE 298CB1937B9E0DFB E94BF8C44E4343C5

11 C0DC927D4DB070E3 CF7763937E89CB5C 15839159A987CDA1 FCD3B2B79FA9B089 2726D3BB3C7F7307

12 EB0021C196A1BD2A 0430040EFF58D77D BC9CEE20225F9C0F AB4F7D562B579198 34B898627E2EE36E

13 6665A40D97687B80 5930C806DDEBC73A 61B46748C3F87266 AC9EBE137FC7980E A2FF33F7DD4CEFF9

14 AB3B18A05461271D 8E535FE0229BC4A8 3A17D3E8D0C0DEBE 3DB2755BFB6661D6 289C6819008FFCC9

15 9FE7E5EA42C1167A 637EA3CF659E1667 A7C2AFF4D71079A3 05973F456EB70EC1 12D203D0B8FA2D26

16 5C93691AD5060935 DC19CE947EAD550D AC12BEE1A64B670E F516E8BE1DFA60DA 409892A4E4CCBC15

B.3 ACE-AE-128
Key 00111122335588DD 00111122335588DD

Nonce 111122335588DD00 111122335588DD00

Associated data 1122335588DD0011 1122335588DD00

Plaintext 335588DD00111122 335588DD001111

Ciphertext F9362385DC213A07 CEFEF38C34CEFF

Tag AE85154F0242F0E4 0F9ECA3FE696D7C6

B.4 ACE-H-256
Message 335588DD00111122 335588DD001111

Hash 1676336AB5C04A1D 9225FB283172A757 A0637A6523127B83 EFC3E990BABBD2E6
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Appendix C

Constants: Sequence to Hex
Conversion

In this section, we show how to obtain hex values of the constants for i = 0. Note that
the LFSR is reset to initial all-one state (1, . . . , 1) at the beginning of each ACE per-
mutation. The example is captured in Table C.1. First column in the table represents
the clock cycle, which corresponds to the round within the step. The next column is
showing the current LFSR state in this clock cycle. The bits are written in the same
pattern as states in Figure 5.2, without showing the three feedback bits. The third
column is showing 10 sequence bits, composed of the three feedback bits, followed by
the state bits: the top row shows the subsequence with correct indices and the bottom
row their respective values. The last three bits in every row are used directly as round
constant in every clock cycle. The 10-bit subsequence from clock cycle 7 is used directly
as the step constant and interpreted as shown in Figure 5.3.
The HEX values for step i = 0, listed in Table 2.2 are obtained as follows:

• from the last three columns of Table C.1 for the round constants

• from the last row of Table C.1 for the step constants

as follows:

rc00 = 00000111 = 0x07 sc00 = 01010000 = 0x50
rc01 = 01010011 = 0x53 sc01 = 00101000 = 0x28
rci2 = 01000011 = 0x43 sci2 = 00010100 = 0x14
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Table C.1: Generation of round and step constants for i = 0

clk. (current)
cycle LFSR state (current) subsequence bits

1 1 1 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0
0 1 1

1 1 0 0 0 1 1 1 1 1 1 1
0 1 1 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3

1 0 1
0 1 0 0 0 0 0 0 1 1 1 1

0 0 1 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6
2 0 0

0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9

3 1 0
0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12
4 0 1

0 0 0 1 1 0 0 0 0 0 1 0
0 0 0 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15

5 1 0
1 0 0 0 0 0 1 1 0 0 0 0

0 0 0 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18
6 0 1

0 1 1 0 1 0 0 0 0 1 1 0
1 0 0 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21

7 1 0
0 0 0 0 0 1 0 1 0 0 0 0 ← sc02, sc

0
1, sc

0
0

↑ ↑ ↑
rc02 rc01 rc00
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