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where ������� is any function such that �	� �
����� � � . Encoding and
decoding require �


�� �����
���������������	���
bit operations and the area is� 
�� �����������������
memory bits. If, for example, we let ������� 
 ���
�
 !� , then the proposed
scheme has the same complexity as the codes given in [10] and a
redundancy of" �����$#%� 
'& ���
�� !�(��)�*,+-�����
 (���
�
 !�(� � �.���
�/�����/���
�	���
which is slightly better than the redundancy of the method in [10]. But
if we allow a little bit more computational effort with �
����� 
 �103254 ,
then the proposed scheme has a complexity of

�

�� ���768� 05254 � and� 
9� ����� , and a redundancy of" �����$#%� 
 � & # �;:=< �>���
�
 -�?� � �.�����/�����@���


 )�* A & 6����
�  �(� � �.�����/�����@���B*
This is definitely better than the redundancy of the method in
[10]. Finally, note that if the balanced code used in step S1 of
the encoding algorithm is optimal (thus requiring approximatelyC * +-���
�
 !� redundant bits) then the redundancy of the proposed code
will be " �����$#D� 
 )E* +!���
�  �(� � �.���
�F���
�	���G*
Currently, the most efficient way to realize optimal balanced codes
is by using an enumerative encoding technique [5], [7, p. 117] which
requires

�

H� ���  � bit operations and

� 
H� ��� 4 � bits. Thus at
present, the use of optimal balanced codes will result in quite high
complexity.
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Public-Key Cryptosystems Based
on Cubic Finite Field Extensions

Guang Gong and Lein Harn

Abstract—The cryptographic properties of third-order linear feedback
shift-register (LFSR) sequences over GF LNMEO are investigated. A fast
computational algorithm for evaluating the P th term of a characteristic
sequence of order Q is presented. Based on these properties, a new
public-key distribution scheme and an RSA-type encryption algorithm
are proposed. Their security, implementation, information rate, and
computational cost for the new schemes are discussed.

Index Terms— Characteristic sequence, cubic finite field extension,
linear feedback shift-register sequence, public-key exchange scheme,
RSA-type encryption.

I. INTRODUCTION

With the rapid development of Internet applications, information
security in today’s world is more important than that in any previous
eras. Designing cryptosystems that meet requirements of communi-
cation bandwidth, information rate, computational speed, and various
security strategies has become a very challenging task for researchers.

In the most widely used modern cryptosystems, such as the RSA
[18], the Diffie–Hellman public-key distribution scheme [3], the
ElGamal cryptosystem [5], and DSS [16], increasing the size of the
modulus is necessary in order to strengthen their security.

From the point of the linear feedback shift-register (LFSR) se-
quences, the exponential function which used in the RSA encryption,
the Diffie–Hellman (DH) public-key exchange scheme [3], and the
ElGamal digital signature scheme is a first-order LFSR sequence
over GF �,R�� or SUT , where V is a product of two prime numbers.
In the literature, there is another family of public-key cryptosystems
similar to RSA, DH, and ElGamal public-key cryptosystems, which
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are called the Dickson polynomial scheme [13]–[15] or LUC [20],
[21], respectively. The mathematical function used in this family of
the public-key cryptosystems is the second-order LFSR sequence
over GF

�����
or ��� with a special initial state. This kind of LFSR

sequences are coset constant [8]. We will give their definition in
Section II. (Note: throughout of this correspondence, we will use the
term LFSR sequences over GF

�����
or � � instead of linear recurring

sequences over GF
�����

or � � , since the term of initial state is related
to an LFSR.)

In this correspondence, we will explore to construct public-key
cryptosystems by using third-order LFSR sequences over GF

���	�
or

� � . First, we will investigate the cryptographic properties of third-
order LFSR sequences and propose a fast computational algorithm to
evaluate the 
 th term of a third-order characteristic sequence. Based
on these properties, we will construct two public-key cryptographic
algorithms. One is a public-key distribution scheme that can reduce
the size of the modulus while speeding up the computation. The
security is based on the difficulty of solving the discrete logarithm
in GF

�����
�
. Another one is a RSA-type encryption algorithm whose

security is based on the difficulty of factoring a large composite inte-
ger. We will also discuss their security, implementation, information
rate, and computational cost.

For the theory of LFSR sequences, the reader is refereed to [8],
[12], and for the fundamental theory of finite fields, see [12].

II. RHIRD-ORDER CHARACTERISTIC SEQUENCES

Let ��� GF
���	�

, where
�

is a prime and
� ����� � � ����� ��������� ���! �" �$# � (1)

be a polynomial over � . A sequence % %% �'&!%)(+* is said to be a third-
order LFSR sequence with a characteristic polynomial

� �,���
if the

elements of s satisfy

%!($� � %!(
-/.�0 � %1(
- � � %1(
-�2  
436587 (2)

If % %% has the initial state %
94�:5 , % . � �
, and % � � � � 0<; � , then% %% �=&1%1(+* is called the characteristic sequence generated by

� �����
.

We denote %1( as %!( � �" �>� or %1( � � � , and % %% as % %% � �" �>� or % %% � � � .
Assume that ? .  ? �  ? 2 are all three roots of

� �,���
in the splitting

field of
� �����

over � . According to Newton’s formula, the elements
of % %% can be represented by the symmetric 
 th-power sum of the roots
as follows:

% ( �@? ( . � ? (� � ? (2  
A�@B  C�! ED�D>D 7 (3)

Let us denote the period of
� �,���

as F	G>H � � � . Notice that if
� �,���

is
irreducible over � , then the period of % %% � � � is equal to F	G�H � � � .

Lemma 1: Let
� ����� � � 2 0 � � � �<��� 0 � be a polynomial over

�  ? .  ? �  ? 2 be three roots of
� �,���

in the splitting field of
� �,���

over �  and % %% be the characteristic sequence generated by
� �,���

. Let

� ( �,��� � � 0�? (. � 0I? (� � 0�? (2 7 (4)

i)
� ( �,��� � � 2 0$% ( � �" �>�J� � � % -/( � �" �>�J� 0 � , where % -C( � �" �>� �%!( �,�  �� � .

ii)
� �����

and
� ( �,��� have the same period if and only if� F	G�H � � �  
 � � �

.
iii) If

� F	G�H � � �  
 � � �
, then

� �����
is irreducible over � if and

only if
� ( �,��� is irreducible over � .

Proof: i) It follows from Newton’s formula of (3). ii) Note that
the minimal polynomials of ? ( K and ? K have the same period if and
only if

� F	G�H � � �  
 � � �
. Hence F	G�H � � �����L� �MF�G�H � � ( �,���L� if and

only if
� F	G�H � � �  
 � � �

. iii) It follows from ii).

Remark: Let
� -C. �,��� � � 2 0 ��� � � � � 0 � . Then

� -C. �,��� is the
reciprocal polynomial of

� �,���
and &!%!-/( � �� �>� * is the characteristic

sequence over � generated by
� -N. �,��� . We also call &!% -/( � �� �>� * the

reciprocal sequence of &1%!( � �" �>� * .
Lemma 2: Let

� ����� � � 2 0 � � � �6��� 0 � be a polynomial over� , and let % %% be the characteristic sequence generated by
� �,���

. Then
for all positive integers 
 and O

% ( � %
P � �" �>�  % - P � �" �>�J� �Q% ( P � �" �>� 7 (5)

Proof: From Lemma 1� P ����� � ��� 0�? P. �>��� 0I? P� �>��� 0R? P2 �
� � 2 0R% P � �� �>�J� � � %!- P � �� �>�J� 0 � 7 (6)

Thus

%!( � %1P � �� �>�  % - P � �" �>�J� � � ? P . � ( �Q� ? P� � ( �@� ? P2 � (
�I? P (. � ? P (� � ? P (2 �Q%1( P � �" �>� 7 Q.E.D.

Note: If we consider
�

and
�

as variables in � and 
 as a fixed
integer, then %!( � �" �>� and %!-/( � �" �>� are Waring polynomials. From
[12, Theorem 7.46], we have the following fact.

Fact 1: Let 
 be a fixed positive integer. If 
 satisfies
� 
  � K 0 � � � �! S � �1 ;  5 , then for any T  	U # � , the system of equations

%1( � �" �>� �@T and %V-/( � �" �>� �QW
has a unique solution

� �" �>�X# �ZY[� . In other words, %1( � �" �>� and
%!-/( � �" �>� are orthogonal in � in variables

�
and

�
.

We denote that \]� � � �^�_� �
. A positive integer ` is called

a coset leader modulo \ if ` is the smallest integer in the set
&>a � K mod \cb S �dB  /�! ;e* , where a is a positive integer.

Theorem 1: Let
� ����� � � 2 0 � � � �'��� 0 � be an irreducible

polynomial over � of the period \]� � � �f�4� �
and % %% �=&!% ( *

be the characteristic sequence generated by
� �,���

. Let 
 and 
8g be
different coset leaders modulo \ , and both 
 and 
hg are relatively
prime to \ . Then � %1(  %!i/( �kj� � % (  % iC( � 7

Proof: If
� % (  % i/( � � � % (  % i/( � , then� ( �,��� � � 2 0R%1( ����� %!i/( � 0 �
� � 2 0R% ( ����� % i/( � 0 � � � ( ����� 7

Thus
� ( ����� also has ? (K ,

�_l S l 5 , as its roots. From Lemma
1,
� ( �,��� is irreducible over � . Therefore, ? ( K and ? ( K are conjugate

of each other. In other words, there exists an integer a  B l a l ; ,
such that


 g�m 
 ��n���ocpeq \ � 7
This contradicts the fact that 
 and 
hg are different coset leaders
modulo \ . Q.E.D.

Remark: Lemma 2 and Theorem 1 will play key roles in construct-
ing a public-key distribution scheme, since the former guarantees the
commutative property and the later provides a one-to-one correspon-
dence between the private key space and the public key space. Fact
1, together with Lemma 2, will be used to construct an RSA-type
encryption scheme.

III. FAST COMPUTATIONAL METHOD

In [7], there is an algorithm to calculate the 
 th term of any linear
recurring sequences. Here we will provide a much more efficient
algorithm to calculate the 
 th term of a third-order characteristic
sequence.
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Lemma 3: Let
�������

be the third-order reciprocal characteristic
sequence over � with the characteristic polynomial �
	���
 , defined
by (1), and

���������
, its reciprocal sequence. Then for any positive

integers � and �
i)

��������� ������ ���
�
, and

ii)
��� ��! � ������!"����!#�$����%�! � �����'&(!*) �,+� � .

Proof: From (2), we have
� &�� �.- &��/10 - &(�& 0 - &(�2 and

� & � � 	 -
� /*0 - �& 0 - �2 


&
3

Notice that
- / -4&�- 2 �65

. Then
� & � �7- &��/10 - &��& 0 - &(�280 �

/:9�;=<?>(9@2
- � ; - �>

�A� &�� 0 � 2
;CB
/

-ED �;
�A��&�� 0 � � D �

which gives i). The same argument can be applied to ii). Q.E.D.

Let F � G;HB@I F ; � G D ; be the binary representation of F , J I �
F I +�#K

, and J > � F > 0 � J > D / , 5MLANOLQP
. So, J G � F . From Lemma

3, the recurrence can be described by the following formulas.
For F > �RK

��S D / �A��S ��S D / �AT � D S 0 � D�U S % /WV (7)��S �A� &S �X� � D S (8)

and ��S % / �A��S ��S % / �AY � D S 0 � D�U S D /ZV 3 (9)

For F > �[5
��S D / �A� &S �\� � D S (10)��S �A��S ��S % / �AY � D S 0 � D�U S D /ZV (11)��S % / �A� &S % / �X� � D�U S % /]V 3 (12)

Since
����^��

and
��� D ^�� are symmetric in (7)–(12) and the proba-

bility that F > equals
K

or
5

is
5�_ �

, therefore, we obtain the following
result.

Theorem 2: With the same �4	��?
 , ��� ^ � , and
��� D ^ � as in Lemma

3. Using (7)–(12) to calculate a pair of the F th terms
��^

and
� D ^

needs `badc�eOF modulo f multiplications on average.

Note: This method is much more efficient than the algorithm
using modulo polynomial [7]. The algorithm provided in [7] requiresg 	�hi	��'
jadc�eOFk
 arithmetic operations to calculate the F th term of an
LFSR sequence of order � over � where hi	��'
 is the total number of
arithmetic operations required to multiply two polynomials of degree
� � 5

. In case of � �#lm) h (3) is the total number of multiplications
modulo f required to multiply two polynomials of degree

�
over

�n	 � GF 	Hf�
o
 and reduce it by modulo �4	p�q
 . Notice that multiplying
two polynomials of degree

�
over � without reduction by modulo

�4	��?
 already requires nine multiplications modulo f . So, by using the
algorithm in [7] to calculate the F th term

��^
requires at least `iadcreOF

multiplications modulo f . Consequently, the total computational cost
for calculating a pair of the F th term

� ^
and

� D ^ needs at least5�s adcre�F multiplications modulo f .

IV. A PUBLIC-KEY DISTRIBUTION SCHEME

In this section, we will present a public-key distribution (GH-
PKD) scheme that is constructed by a pair of third-order characteristic
sequences and discuss its security.

A. GH-PKD Scheme

Key-Generation Phase:

• System public parameters: f is a prime number, and �4	��q
 �
� 2 ��Y �

& 0 T � � 5
is an irreducible polynomial over GF 	Hf@


with the period t � f
& 0 f 0 5

.
• User Alice selects u that satisfies

Kwv u v t and erxzyM	pu ) t{
 �$5
as her private key. She then computes 	 ��|z)@� D | 
 as her public
key from the system public key f and �4	��?
 � � 2 �{Y �

& 0 T � � 5
.

• User Bob selects
P

that satisfies that
K}v~P�v t and

e�x�yM	 P�) t�
 ��5
as his private key. He then computes 	 � G )?� D G 


as his public key from the system public key f and �4	��q
 �
� 2 ��Y �

& 0 T � � 5
.

Key-Distribution Phase: (See the bottom of this page.)
According to Lemma 2��| 	 � G )�� D G 
 �A��| G ��� G 	 ��|z)?� D | 
 )

and

� D | 	 � G )?� D G 
 �A� D | G �#� D G 	 ��|�)�� D | 
 3
Namely, their common key is 	 ��| G )�� D | G 
 .
Example: Let f ��5�5

, and �4	��?
 � � 2 0\� � � 5
be an irreducible

polynomial over GF 	 5�5 
 of period
5zl�l�������5 ` .

Alice: Selects u � ` as her private key. Her public key is
	 �z��)�� D � 
 � 	 5�Km)q� 
 .

Bob: Selects
P�� 5�l

as private key. His public key is
	 � /]2 )�� D /Z2 
 � 	 ��)
5 
 .

Key-Distribution Phase:
Alice: ��| 	 � G )�� D G 
 �#��� 	 ��)�5 
 �#s

and � D | 	 � G )�� D G 
 �#� D � 	 �m)@5 
 �#� / &Z� 	 �m)�5 
 �#� 3
So she obtains the key 	 s )o� 
 .

Bob: � G 	 ��|�)�� D | 
 ��� /Z2 	 5�Km)q� 
 �#s
and � D /]2 	 5zK )k� 
 ��� / & I 	 5zK )q� 
 �#� 3
He obtains the same key 	 sm)(� 
 as Alice.

Remark:

i) In the Key-Distribution Phase, this scheme does not involve the
system public key �
	p�q
 � � 2 �\Y �

& 0 T � � 5
.

ii) The spaces of the private keys and public keys are the sets
consisting of all coset leaders modulo f

& 0 f 0 5
relatively

prime to f
& 0 f 0 5

and all irreducible polynomials over GF 	Hf@

of degree

l
with the period f

& 0 f 0 5
, respectively. According

to Theorem 1, the map FO�C�}	 ��^�)?� D ^ 
 from the space of the

Alice
U=� �p� V���k�k�k�q� � Bob

computing: computing:� | 	 � G )�� D G 
 and
� D | 	 � G )q� D G 
 U=� �p� V� �q�k�k�k��� � G 	 � | )?� D | 
 and

� D G 	 � | )?� D | 
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private keys to the space of the public keys is bijective. Thus
there will be different public keys corresponding to different
private keys in GH-PKD. Moreover, the size of the space of
private (or public) keys is

���������	�
����
����
where

����� 

is the

Euler function.
iii) In each key exchange session, the computational cost for each

user is ������� � modulo
�

multiplications on average.

B. Security of GH-PKD

The security for GH key distribution scheme is based on the
difficulty of solving the discrete logarithm in GF

������

. If an attacker

tries to compute Alice’s private key � from her public key
���! �"#�%$& '


,
a polynomial (  ��*)�
�+,) �.- �/ 0)213�4�%$& 5) - � can be formed. Since
( �*)�
�+6) �7-�8 )21���97) - � is irreducible over : , according to Lemma 1,
(  !��)2
 is also irreducible over : . Assume that ; and < are the roots
of ( �*)�
 and (  �*)�
 in the extension GF

�=� � 

of : , respectively. They

then can be derived by solving roots of ( ��)�
>+,) �?-@8 )A13�B97) - �
and (  ��)�
C+�) � - �  ) 1 �D� $& ) - � in GF

��� � 

. Then < + ;

 
. As a

result, once ; and < are known, solving the exponent � is equivalent
to solving the discrete logarithm in GF

��� � 

. According to [1], [2],

[6], [9], and [11], solving the discrete logarithm in GF
�=� � 


is much
harder than solving discrete logarithm in the GF

�=�#

for the same

�
.

V. AN RSA-TYPE ENCRYPTION SCHEME

In this section, we will propose an RSA-type public-key cryptosys-
tem by using a pair of third-order characteristic sequences over E>F ,
which is an integer ring modulo G .

A. An RSA-Type Encryption Algorithm

1) Public keys: � and G , where G +H�#IJ"�� and
I

are primes, and
��KML � � "%�ON - �!
P+Q�%"�R.+TSU"��

.
2) Private keys V N "&�PW4RXW � , where V N ’s are given by Table I.
3) Enciphering: For a message Y +Z� Y\[ " Y 1 
 where ]\^�Y	[ "
Y 1 ^ZG " the sender computes _ [ +Q�/`�� Y [ " Y 1 
 and _ 1 +�%$&`�� Y [ " Y 1 
 . The ciphertext _ +T� _ [ " _ 1 
 .

4) Deciphering: First, the receiver computes three functions
(14)–(16) of the ciphers _ [ " _ 1 in order to choose a proper
decryption key V , in the set a!V N "&�bWcR3W �ed in Table I. Then
he computes Y [ +f�/g�� _ [ " _ 1 
 and Y 1 +T� $ g�� _ [ " _ 1 
 using
the selected key V .

Note that all computations here are performed in E F .

Remark: According to Fact 1 and the Chinese Remainder Theo-
rem, the map

� Y [ " Y 1 
Chi���/`!� Y [ " Y 1 
5"���$&`!� Y [ " Y 1 
0


is a bijective map from the message space to the ciphertext space.
Next we will show how to construct decryption keys. For a third-

order characteristic sequence
� ��

over : +
GF
�=�O


generated by
( �*)�
	+j) �k-�8 )21b�l97) - �

, its period, m#nMo �p� �� 
 , may be one of
three cases as listed below:

Case 1: ( ��)2
 is reducible over :rqim#n7o �*� �� 
7s � - � .
Case 2: ( ��)2
C+t�*) - ; 
 ( [ ��)2
 where ( [ �*)�
 is irreducible over :

and ;Duv:�qwm#n7o �p� �� 
�s �#1 - � and m#n7o �p� �� 
 is not a factor
of
� - �

.

Case 3: ( ��)2
 is irreducible over :xqjm#n7o �p� �� 
Ms �#1>�	�
��� .
According to the method for solving a cubic equation in a finite

field in [17], substituting
)v+ryz�4� $ [ 8 into ( ��)2
 , then

( �*)�
C+|{#�*yU
>+}y � �4~k� 8 "29M
�y.�B�\� 8 "�9M
 (13)

TABLE I
A CONSTRUCTION FOR THE DECIPHERING KEYS

where

~k� 8 "29M
X+}� $ [ 8 1 �B9
and

�\� 8 "29M
C+ - S.�!� $ � 8 � �D� $ [ 8 9 - �/�
(14)

The discriminate of the cubic (14) is defined as
� � 8 "�9M
C+ -�� ~ � � 8 "29M
 - S��J� 1 � 8 "29M
'�

(15)

Let
) u�a ��"�I d ,

� � 8 "#9M
C+ - S��J�\� 8 "A9M
�� - S�� � � 8 "29M

- S��J�\� 8 "A9M
 - - S�� � � 8 "29M


1��
(16)

where ��u|a ��) - ��
0�/�U"���)
�l�!
0�%� d , and
R
) "

the Legendre symbol of an integer
R

with respect to the prime
)O�

(17)

Now we are in a position to give a definition for a logic function�X�=�J"2)2

, which is related to the ciphertext

� _ [ " _ 1 
 , where
� u

a �%"�S�"�� d and
) ula �&"2I d .�X�0�%"A)�


is true q � � _ [ " _ 1 
M� mod
)�
X+ ] or

� � _ [ " _ 1 
7�p� �UL )2
P�+
] , � � � _ [ " _ 1 
���)�
�+Z�

and � � _ [ " _ 1 
M��� �UL )�
�+��%�
q Case 1

�X��S�"A)�

is true q � � _ [ " _ 1 
7��� �UL )�
z�+ ] and

� � � _ [ " _ 1 
0�%)�
�+ - � .
q Case 2

�X���U"A)�

is true q � � _�[ " _ 1 
M�*� �UL )2
��+ ] , � � � _�[ " _ 1 
0�%)�
�+��

and� � _ [ " _ 1 
���� �UL )�
��+��
.

q Case 3

We denote � [5��� +}) - � , � 1 ��� +})21 - � , and � � ��� +�)A1���)��}� .
From Lemma 1, two polynomials

)A� - Y	[ ) 1 � Y 1 ) - �
and) �k- _ [ )A1P� _ 1 ) - � have the same period. So the receiver can

select a proper deciphering key based on the polynomial constructed
by the ciphertext

� _�[ " _ 1 
 . Table I gives the construction of these
deciphering keys.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2605

B. Security

It is clear that the security of the scheme is based on the difficulty
of factoring a large composite integer.

C. Computational Cost

As in the RSA public-key system, we can choose a small � such
that the computational cost for computing the � th terms of the third-
order characteristic sequence with

�������	�
���
������������� � �����
and its reciprocal polynomial is low. For example, by taking � ���

,
we compute

� � �"!$# � �%�&���
and � � �&���%�(')� �

�+* �"� � � � �,� � � � � � �
�.- � � �� �(' �0/ � and � 1 ���2� �.- �,� � � * � � �03

So 4 �5� � 1 . Similarly,
� � �"!$# � / � ��� � and � / � ��� � �6')� �

� / * �"� � � / � �,� � � / � � � �
� /�- � � � / � �6' � � and � /71 ��� � � /8- �,� � � / * � � / � 3

We get 4 � � � /71 . Totally, we only need
�:9

modulo ; multiplications
for enciphering a

'=<?>)@ ; -bit message. For deciphering process, first
we need to decide a proper deciphering key A , i.e., we need to
compute three functions. B � 4 � # 4 � �:�DCE>$FG���

requires H modulo ;
multiplications. For

� B � 4 � # 4 � �JI)��� and K � 4 � # 4 � �:�LCE>$F%���
, each of

the last two functions requires
� 3 �=<M>N@
O

modulo
O

multiplications and� 3 �=<M>N@QP
modulo

P
multiplications, respectively. Second, we need to

compute the A th terms of the third-order characteristic sequence with� * � 4 � � � � 4 � �2�R�
and its reciprocal polynomial, which needsS <M>N@ ; modulo ; multiplications on average. Therefore, the total

computational cost in the deciphering process is
� 'T<M>N@ ; modulo ;

multiplications on average.

VI. CONCLUSION AND DISCUSSION

As we have shown, we can conclude that the proposed public-key
distribution scheme (GH-PKD) and the RSA-type encryption scheme
are practical efficient public-key cryptosystems. Especially, GH-PKD
is successful in reducing the size of the modulus while speeding up
the computation. Note that from current literatures [19], [22], [23],
only a few of public-key cryptosystems have been put into practical
use.

The method presented here can lead to the construction of public-
key cryptosystems by using ; th-order characteristic sequences over
GF

�UO7�
of any degree ;WV !

.
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[17] L. Rédei, Algebra. Leipzig, Germany: Geest & Portig, 1959; London,
U.K.: Pergamon, 1967.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public key cryptosystems,” ACM, vol. 21, no. 2,
pp. 120–126, Feb. 1978.

[19] B. Schneier, Applied Cryptography, 2nd ed. New York: Wiley, 1996.
[20] P. Smith, “LUC public-key encryption,” Dr. Dobb’s J., pp. 44–49, Jan.

1993.
[21] P. Smith and C. Skinner, “A public-key cryptosystem and a digital

signature system based on the Lucas function analogue to discrete
logarithms,” in Proc. Asiacrypt’94, Nov. 1994, pp. 298–306.

[22] D. R. Stison, Cryptography, Theory and Practice. Boca Raton, FL:
CRC, 1995.

[23] W. Stallings, Network and Internetwork Security Principles and Prac-
tice. New York: IEEE, 1995.


