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Introduction
• Gong-Harn Public Key Cryptosystem (GH-PKC) is 

based on third-order linear feedback shift register 
(LFSR) sequence  with a particular phase.

• Security is based on the difficult in solving discrete 
logarithm (DL) problem in GH(q3) where q = p or q = q2, 
depending on the implementation, and p is a prime.  

• For an implementation of GH-PKC over GF(p), the 
security of the implementation is based on the difficult in 
solving DL problem in GF(p3).

� ie. In order to implement the GH-PKC over GF(p) 
with 1024-bit security, a 341-bit p is required!

GH Diffie-Hellman Key Agreement Protocol

GH Digital Signature Algorithm (GH DSA)
• ElGamal-like signature algorithm

• Alice:

• Private Key: Choose x, with 0 < x < Q and gcd(x, Q) = 1

• Public Key: The s±x terms generate by f(x)

• Signing Process:

1. Randomly choose k, with 0 < k < Q and gcd(k,Q) = 1.  
Use DSEA algorithm to compute (sk-1, sk, sk+1) and its 
dual such that gcd(sk, Q) = 1.  r = sk

2. Compute h=h(m), where h() is a hash function

3. Solve for t in the signing equation: h ≡ xr + kt mod Q ⇒ t 
≡ k-1(h - rx) mod Q

• (r, t) is the digital signature of the message m.  Alice sends 
Bob (m, r, t) together with (sx, sx+1), (sk, sk+1) and their 
duals.

Signature Verification
• Verifying Process:

1. Compute s±(x-1) and s±(k-1) using (sx, sx+1), (sk, sk+1) and 
their duals.

2. If gcd(t, Q) = 1 ⇒ Case 1, else ⇒ Case 2 

Case 1: To verify

i. Compute u = -r-1t mod Q, v = -ht-1 mod Q

ii. Compute mixed terms s±u(k+v)

iii. Verify sequence terms

Case 2: To verify

i. Compute u = -r mod Q, v = -hr-1 mod Q

ii. Compute mixed terms s±u(x+v)

iii. Compute s±kt

iv. Verify sequence terms

Third-order Characteristic Sequence 
• Irreducible polynomial f(x) of degree 3 over GF(p):

• If initial state is:

• Then the sequence generated by f(x) is called a third-
order characteristic sequence.

• We denote the kth term in the sequence generated by 
f(x) as: 

Profile of Third-Order Characteristic 
Sequences

• Period Q is factor of p2+p+1

• Trace Representation:

where α is a root of f(x) in the extension field GF(q3).
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Reciprocal Sequence
• Given the f(x) above, the reciprocal polynomial is:

• By choosing the corresponding initial states as shown 
above, the sequence generated by f-1(x) is also a third 
order characteristic sequence.  

• The kth generated by f-1(x) is the –kth term generated by 
f(x):
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Computation of a Previous Sequence Term
• Given (sk, sk+1) and its dual.  Determine s±(k-1) terms.

• Let 

• Then s±(k-1) terms can be computed by:

• Note that delta cannot be zero!

� Experimental data shows that delta will be zero if k is 
either p-1 or p.

� If either a or b is zero, delta will be zero if either sk or sk+1
is zero.
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Commutative Law
• Let f(x) = x3 - ax2 + bx - 1 be irreducible over GF(q) and 

{si} be the characteristic sequence generated by f(x).  
Then for any positive integers k and e:
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Dual State Fast Evaluation Algorithm 
(DSEA)

• To compute the s±k sequence terms.

• Binary representation of k:

• Let T0 = k0 = 1 and Tj = kj + 2Tj-1 for 1 ≤ j ≤ n.  ⇒ Tn = k.  
Let t = Tj-1 and t’ = Tj

• For kj = 0 For kj = 1

Computation of Mixed Terms s±±±±u(k+v) using 
(sk-1, sk, sk+1) and its dual

1. Compute the sequence terms s±(k+v)

� Use a general result for LFSR sequence:

� Define Transitional Matrix A and State Matrix Mn:

� Note:

� Two properties:

i.

ii. ,if

� If , then

where (sv-1, sv, sv+1) and its dual can be computed using 
DSEA algorithm and

� In particular, the sk+v term is equal to sk-1 multiplied by the 
middle column of

� For Matrix M0 to be invertible, we need :

� By choosing a and b correspondingly, det(M0) can 
be guaranteed to be non-zero!

2. Compute s±u(s(k+v) , s-(k+v) ) using DSEA algorithm
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Common Key Pair: 

Public Key Pair: 

Bob 

System Parameters: 

1)( 23 −+−= bxaxxxf , an irreducible polynomial over GF(p), where p is a prime number.  Period of the 
third-order characteristic sequence is denoted by Q. 

Private Key: 

Alice 

Chooses KA, 0 < KA < Q, gcd(KA, Q) = 1 
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Chooses KB, 0 < KB < Q, gcd(KB, Q) = 1 
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