

Introduction

- Gong-Harn Public Key Cryptosystem (GH-PKC) is based on third-order linear feedback shift register (LFSR) sequence with a particular phase.
- Security is based on the difficult in solving discrete logarithm (DL) problem in $GH(q^3)$ where q = p or $q = q^2$, depending on the implementation, and p is a prime.
- For an implementation of GH-PKC over GF(p), the security of the implementation is based on the difficult in solving DL problem in $GF(p^3)$.
 - \succ ie. In order to implement the GH-PKC over GF(p) with 1024-bit security, a 341-bit *p* is required!

Third-order Characteristic Sequence

- Irreducible polynomial f(x) of degree 3 over GF(p): $f(x) = x^3 - ax^2 + bx - 1$
- If initial state is:

$$s_0 = 3, s_1 = a, s_2 = a^2 - 2b$$

- Then the sequence generated by f(x) is called a thirdorder characteristic sequence.
- We denote the *k*th term in the sequence generated by f(x) as:

$$s_k = s_k(a,b)$$

Profile of Third-Order Characteristic Sequences

- Period Q is factor of p^2+p+1
- Trace Representation:

$$S_{k} = Tr(\alpha^{k}) = \alpha^{k} + \alpha^{kq} + \alpha^{kq^{2}}, k = 0, 1, ...$$

where α is a root of f(x) in the extension field GF(q^3).

Reciprocal Sequence

- Given the f(x) above, the reciprocal polynomial is: $f^{-1}(x) = x^3 - bx^2 + ax - 1$
- By choosing the corresponding initial states as shown above, the sequence generated by $f^{1}(x)$ is also a third order characteristic sequence.
- The k^{th} generated by $f^{1}(x)$ is the $-k^{th}$ term generated by *f(x)*: $s_k(b,a) = s_{-k}(a,b)$

Commutative Law

• Let $f(x) = x^3 - ax^2 + bx - 1$ be irreducible over GF(q) and $\{s_i\}$ be the characteristic sequence generated by f(x). Then for any positive integers *k* and *e*:

 $s_k(s_e(a,b), s_{-e}(a,b)) = s_{ek}(a,b)$

Gong Harn Public-key Cryptosystem (Gong-Harn, 1999, 2001)

Dual State Fast Evaluation Algorithm (DSEA)	Cor (s
• To compute the $s_{\pm k}$ sequence terms.	1. C
 Binary representation of k: 	
$k = \sum_{i=0}^{n} k_i 2^{n-i} = k_0 2^n + k_1 2^{n-1} + \dots + k_n$	
• Let $T_0 = k_0 = 1$ and $T_j = k_j + 2T_{j-1}$ for $1 \le j \le n$. $\Rightarrow T_n = k$. Let $t = T_{j-1}$ and $t' = T_j$	
• For $k_j = 0$ For $k_j = 1$	N
$s_{t'+1} = s_t s_{t+1} - a s_{-t} + s_{-(t-1)}$ $s_{t'+1} = s_{t+1}^2 - 2s_{-(t+1)}$	
$s_{t'} = s_t^2 - 2s_{-t}$ $s_{t'} = s_t s_{t+1} - as_{-t} + s_{-(t-1)}$	
$s_{t'-1} = s_t s_{t-1} - bs_{-t} + s_{-(t+1)}$ $s_{t'-1} = s_t^2 - 2s_{-t}$	
	i.
Computation of a Previous Sequence Term	ii.
• Given (s_k, s_{k+1}) and its dual. Determine $s_{+(k-1)}$ terms.	
• Let $delta = s_{k+1}s_{-(k+1)} - s_1s_{-1}$	
• Then $s_{+(k-1)}$ terms can be computed by:	
PS = -S D(e) D(S) = S	
$ S_{k-1} = \frac{cs_{-(k+1)} - s_{-1} - c_{-(k+1)}}{dolta} \frac{cs_{k} - s_{-k}}{c_{k} - s_{-k}} $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$s_{-(k-1)} = \frac{D(e)s_{k+1} - s_1e}{delta} \begin{vmatrix} e^{-s_{-1}D(e_1) + e_2} \\ c_1 = s_1s_{k+1} - s_{-1}s_k \\ c_2 = s_1s_{k+1} - s_{-1}s_k \end{vmatrix}$	×
$s_{-(k-1)} = \frac{D(e)s_{k+1} - s_1e}{delta}$ $c_{-} = s_{-1}D(c_1) + c_2$ $c_1 = s_1s_{k+1} - s_{-1}s_k$ $c_2 = s_k^2 - 3s_{-k} + (b^2 - a)s_{-(k+1)}$	
• Note that delta cannot be zero! $\begin{aligned} c = s_{-1}D(c_{1}) + c_{2} \\ c_{1} = s_{1}s_{k+1} - s_{-1}s_{k} \\ c_{2} = s_{k}^{2} - 3s_{-k} + (b^{2} - a)s_{-(k+1)} \end{aligned}$	
$s_{-(k-1)} = \frac{D(e)s_{k+1} - s_1e}{delta}$ $c_{-} = s_{-1}D(c_1) + c_2$ $c_1 = s_1s_{k+1} - s_{-1}s_k$ $c_2 = s_k^2 - 3s_{-k} + (b^2 - a)s_{-(k+1)}$ • Note that delta cannot be zero! $k = x_1 + b^2 - a + $	
$s_{-(k-1)} = \frac{D(e)s_{k+1} - s_1e}{delta} \begin{bmatrix} c - s_{-1}D(c_1) + c_2 \\ c_1 = s_1s_{k+1} - s_{-1}s_k \\ c_2 = s_k^2 - 3s_{-k} + (b^2 - a)s_{-(k+1)} \end{bmatrix}$ • Note that delta cannot be zero! * Experimental data shows that <i>delta</i> will be zero if <i>k</i> is either <i>p</i> -1 or <i>p</i> . * If either <i>a</i> or <i>b</i> is zero, <i>delta</i> will be zero if either <i>s_k</i> or <i>s_{k+1}</i> is zero.	ک € 2. C

GH Diffie-Hellman Key Agreement Protocol

System Parameters:

 $f(x) = x^3 - ax^2 + bx - 1$, an irreducible polynomial over GF(p), where p is a prime number. Period of the third-order characteristic sequence is denoted by Q.

Alice

Chooses K_A , $0 < K_A < Q$, $gcd(K_A, Q) = 1$ **Private Key: Public Key Pair:** $(S_{K_{A}}, S_{-K_{A}})$ (S_{K_A}, S_{-K_A}) (S_{K_B}, S_{-K_B}) **Common Key Pair:** $S_{\pm K_{A}}(S_{K_{R}}, S_{-K_{R}})$

 $S_{\pm K_{A}}(S_{K_{B}}, S_{-K_{B}}) = S_{\pm}$

mputation of Mixed Terms s_{±u(k+v)} using s_{k-1} , s_k , s_{k+1}) and its dual

Compute the sequence terms $s_{\pm(k+v)}$

- Use a general result for LFSR sequence:
- Define *Transitional Matrix A* and *State Matrix Mn*:

$$A = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -b \\ 0 & 1 & a \end{bmatrix} \qquad M_n = \begin{bmatrix} s_{n-2} & s_{n-1} & s_n \\ s_{n-1} & s_n & s_{n+1} \\ s_n & s_{n+1} & s_{n+2} \end{bmatrix}$$

Note:
$$\underline{s}_k \cdot A = (s_k, s_{k+2}, s_{k+2}) \cdot \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -b \\ 0 & 1 & a \end{bmatrix}$$
$$= (s_{k+1}, s_{k+3}, s_k - bs_{k+1} + as_{k+2}) = \underline{s}_{k+1}$$

Two properties:

$$\underline{s}_{v} = \underline{s}_{0} \cdot A^{v} = \underline{s}_{1} \cdot A^{v-1} = \underline{s}_{2} \cdot A^{v-2} = \dots = \underline{s}_{v-1} \cdot A^{1}$$

$$M_{\nu} = M_0 \cdot A^{\nu} \Longrightarrow A^{\nu} = M_0^{-1} \cdot M_{\nu} \text{, if } \det(M_0) \neq 0$$

If det
$$(M_0) \neq 0$$
, then
 $\underline{s}_{k+\nu} = \underline{s}_k \cdot A^{\nu} = \underline{s}_k \cdot (M_0^{-1} \cdot M_{\nu}) = \underline{s}_k \cdot \left(\begin{bmatrix} s_{-2} & s_{-1} & s_0 \\ s_{-1} & s_0 & s_1 \\ s_0 & s_1 & s_2 \end{bmatrix}^{-1} \begin{bmatrix} s_{\nu-2} & s_{\nu-1} & s_{\nu} \\ s_{\nu-1} & s_{\nu} & s_{\nu+1} \\ s_{\nu} & s_{\nu+1} & s_{\nu+2} \end{bmatrix}$

where (s_{v-1}, s_v, s_{v+1}) and its dual can be computed using DSEA algorithm and $s_{n-2} = s_{n+1} - as_n + bs_{n-1}$

$$as_{\nu+2} = as_{\nu+1} - bs_{\nu} + s_{\nu-1}$$

- In particular, the s_{k+v} term is equal to \underline{s}_{k-1} multiplied by the middle column of $M_0^{-1} \cdot M_y$
- For Matrix M0 to be invertible, we need $det(M_0) \neq 0$:

$$\det(M_0) = (b^2 - 2a)[3(a^2 - 2b) - a^2] - b[b(a^2 - 2b) - 3a] + 3[ab - 3 \cdot 3] \neq 0$$

By choosing a and b correspondingly, $det(M_0)$ can be guaranteed to be non-zero!

Compute $s_{\pm u}(s_{(k+v)}, s_{-(k+v)})$ using DSEA algorithm

GH Digital Signature Algorithm (GH DSA)

- Alice:
- Signing Process:
- duals.

Signature Verification

- Verifying Process:

References:

Bob

 (S_{K_R}, S_{-K_R})

$$\bullet$$

$$S_{\pm K_{R}}(S_{K_{A}}, S_{-K_{A}})$$

Chooses K_B , $0 < K_B < Q$, $gcd(K_B, Q) = 1$

$$t_{K_{B}}(S_{K_{A}}, S_{-K_{A}})$$

```
Susana Sin
Department of Electrical and Computer
Engineering
University of Waterloo
Waterloo, ON, N2T 2G1, Canada
Email: ssjsin@engmail.uwaterloo.ca
```

ElGamal-like signature algorithm

• Private Key: Choose x, with 0 < x < Q and gcd(x, Q) = 1• Public Key: The s_{+x} terms generate by f(x)

. Randomly choose k, with 0 < k < Q and gcd(k,Q) = 1. Use DSEA algorithm to compute (s_{k-1}, s_k, s_{k+1}) and its dual such that $gcd(s_k, Q) = 1$. $r = s_k$

2. Compute h=h(m), where h() is a hash function

3. Solve for *t* in the signing equation: $h \equiv xr + kt \mod Q \Rightarrow t$ $\equiv k^{-1}(h - rx) \mod Q$

• (r, t) is the digital signature of the message m. Alice sends Bob (m, r, t) together with (s_x, s_{x+1}) , (s_k, s_{k+1}) and their

1. Compute $s_{\pm(x-1)}$ and $s_{\pm(k-1)}$ using (s_x, s_{x+1}) , (s_k, s_{k+1}) and their duals.

2. If $gcd(t, Q) = 1 \Rightarrow Case 1$, else $\Rightarrow Case 2$

Case 1: To verify

 $S_{\pm x} = S_{\pm r^{-1}(h-kt)} = S_{\mp r^{-1}t(-ht^{-1}+k)} = S_{\pm u(k+v)}$ Compute $u = -r^{1}t \mod Q$, $v = -ht^{-1} \mod Q$

ii. Compute mixed terms $s_{\pm u(k+v)}$

iii. Verify sequence terms

Case 2: To verify

 $S_{\pm kt} = S_{\pm (h-rx)} = S_{\mp r(-hr^{-1}+x)} = S_{\pm u(x+v)}$ Compute $u = -r \mod Q$, $v = -hr^1 \mod Q$

ii. Compute mixed terms $s_{\pm u(x+v)}$

iii. Compute s_{+kt}

iv. Verify sequence terms

• G. Gong and L. Harn, A new approach for public key distribution, *Proceedings of China-Crypto'98*, May 1998, Chengdu, China

• G. Gong and L. Harn, The GH public-key cryptosystems, the Proceedings of the 8th Annual Workshop on Selected Areas in Cryptography, Toronto, Aug 16-18, 2001