Waterloo

Gong Harn Public-key Cryptosystem (Gong-Harn, 1999, 2001)

Susana Sin

Introduction

Gong-Harn Public Key Cryptosystem (GH-PKC) is based on third-order linear feedback shift register (LFSR) sequence with a particular phase.
Security is based on the difficult in solving discrete logarithm (DL) problem in $\mathrm{GH}\left(q^{3}\right)$ where $q=p$ or $q=q^{2}$, depending on the implementation, and p is a prime.

For an implementation of GH-PKC over GF(p), the security of the implementation is based on the difficult in solving DL problem in $\mathrm{GF}\left(p^{3}\right)$.
> ie. In order to implement the GH-PKC over GF(p) with 1024-bit security, a 341 -bit p is required!

Third-order Characteristic Sequence

- Irreducible polynomial $f(x)$ of degree 3 over $\operatorname{GF}(p)$

$$
f(x)=x^{3}-a x^{2}+b x-1
$$

- If initial state is:

$$
s_{0}=3, s_{1}=a, s_{2}=a^{2}-2 b
$$

Then the sequence generated by $f(x)$ is called a third order characteristic sequence
We denote the $k^{\text {th }}$ term in the sequence generated by $f(x)$ as:
$s_{k}=s_{k}(a, b)$

Profile of Third-Order Characteristic

Sequences

- Period Q is factor of $p^{2}+p+1$
- Trace Representation:

$$
s_{k}=\operatorname{Tr}\left(\alpha^{k}\right)=\alpha^{k}+\alpha^{k q}+\alpha^{k q^{2}}, k=0,1,
$$

where α is a root of $f(x)$ in the extension field $\mathrm{GF}\left(q^{3}\right)$.

Reciprocal Sequence

- Given the $f(x)$ above, the reciprocal polynomial is:

$$
f^{-1}(x)=x^{3}-b x^{2}+a x-1
$$

By choosing the corresponding initial states as shown above, the sequence generated by $f^{1}(x)$ is also a third order characteristic sequence
The $k^{\text {th }}$ generated by $f^{1}(x)$ is the $-k^{\text {th }}$ term generated by $f(x)$:
$s_{k}(b, a)=s_{-k}(a, b)$

Commutative Law

- Let $f(x)=x^{3}-a x^{2}+b x-1$ be irreducible over $\operatorname{GF}(q)$ and $\left\{s_{i}\right\}$ be the characteristic sequence generated by $f(x)$. Then for any positive integers k and e :

Dual State Fast Evaluation Algorithm

(DSEA)

To compute the $s_{ \pm k}$ sequence terms.

- Binary representation of k

$$
k=\sum_{i=0}^{n} k_{i} 2^{n-i}=k_{0} 2^{n}+k_{1} 2^{n-1}+\cdots+k_{n}
$$

Let $T_{0}=k_{0}=1$ and $T_{j}=k_{j}+2 T_{j-1}$ for $1 \leq j \leq n . \Rightarrow T_{n}=k$ Let $t=T_{j-1}$ and $t^{\prime}=T_{j}$
For $\mathrm{k}_{\mathrm{i}}=0$
For $\mathrm{k}_{\mathrm{j}}=1$
$s_{t^{\prime}+1}=s_{t} s_{t+1}-a s_{-t}+s_{-(t-1)}$
$s_{t^{\prime}+1}=s_{t+1}^{2}-2 s_{-(t+1)}$
$s_{t^{\prime}}=s_{t}^{2}-2 s_{-t}$
$s_{t^{\prime}}=s_{t} s_{t+1}-a s_{-t}+s_{-(t-1)}$
$s_{t^{\prime}-1}=s_{t} s_{t-1}-b s_{-t}+s_{-(t+1)}$
$s_{t^{\prime}-1}=s_{t}^{2}-2 s_{-t}$

Computation of a Previous Sequence Term

- Given $\left(s_{k}, s_{k+1}\right)$ and its dual. Determine $s_{ \pm(k-1)}$ terms.
- Let delta $=s_{k+1} s_{-(k+1)}-s_{1} s_{-1}$
- Then $s_{ \pm(k-1)}$ terms can be computed by:

| $s_{k-1}=\frac{e s_{-(k+1)}-s_{-1} D(e)}{\text { delta }}$ |
| :--- | :--- |
| $s_{-(k-1)}=\frac{D(e) s_{k+1}-s_{1} e}{\text { delta }}$ | | $D\left(s_{k}\right)=s_{-k}$ |
| :--- |
| $e=-s_{-1} D\left(c_{1}\right)+c_{2}$ |
| $c_{1}=s_{1} s_{k+1}-s_{-1} s_{k}$ |
| $c_{2}=s_{k}{ }^{2}-3 s_{-k}+\left(b^{2}-a\right) s_{-(k+1)}$ |

- Note that delta cannot be zero!
* Experimental data shows that delta will be zero if k is either $p-1$ or p.
** If either a or b is zero, delta will be zero if either s_{k} or s_{k+} is zero.

GH Diffie-Hellman Key Agreement Protocol

System Parameters:

$f(x)=x^{3}-a x^{2}+b x-1$, an irreducible polynomial over $\mathrm{GF}(\mathrm{p})$, where p is a prime number. Period of the third-order characteristic sequence is denoted by Q .

Alice

Bob

Private Key:
Public Key Pair

Chooses $K_{B}, 0<K_{B}<Q, \operatorname{gcd}\left(K_{B}, Q\right)=1$ $\left(s_{K_{B}}, s_{-K_{B}}\right)$

Common Key Pair:
$s_{ \pm K_{A}}\left(s_{K_{B}}, s_{-K_{B}}\right)$
$s_{ \pm K_{B}}\left(s_{K_{A}}, s_{-K_{A}}\right)$

Computation of Mixed Terms $\mathbf{s}_{ \pm u(k+v)}$ using

(s_{k-1}, s_{k}, s_{k+1}) and its dual

1. Compute the sequence terms $s_{ \pm(k+v)}$
> Use a general result for LFSR sequence
> Define Transitional Matrix A and State Matrix Mn:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -b \\
0 & 1 & a
\end{array}\right] \quad M_{n}=\left[\begin{array}{ccc}
s_{n-2} & s_{n-1} & s_{n} \\
s_{n-1} & s_{n} & s_{n+1} \\
s_{n} & s_{n+1} & s_{n+2}
\end{array}\right] \\
& \text { ote: } \\
& \underline{s}_{k} \cdot A=\left(s_{k}, s_{k+2}, s_{k+2}\right) \cdot\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -b \\
0 & 1 & a
\end{array}\right] \\
& \\
& =\left(s_{k+1}, s_{k+3}, s_{k}-b s_{k+1}+a s_{k+2}\right)=\underline{s}_{k+1}
\end{aligned}
$$

> Note:
> Two properties:
. $\underline{s}_{v}=\underline{s}_{0} \cdot A^{\nu}=\underline{s}_{1} \cdot A^{n-1}=\underline{s}_{2} \cdot A^{n-2}=\cdots=\underline{s}_{v-1} \cdot A^{1}$
i. $M_{v}=M_{0} \cdot A^{v} \Rightarrow A^{v}=M_{0}^{-1} \cdot M_{v}$, if $\operatorname{det}\left(M_{0}\right) \neq 0$

If $\operatorname{det}\left(M_{0}\right) \neq 0$, then $\underline{s}_{k+v}=\underline{s}_{k} \cdot A^{v}=s_{k} \cdot\left(M_{0}^{-1} \cdot M_{v}\right)=\underline{s}_{k}$

Where $(\mathrm{s}, \mathrm{S}$, and its dual can be computed using DSEA algorithm and ${ }_{s_{d}}=$

$$
\begin{aligned}
& a_{v-2}=s_{v+1}-a s_{v}+b s_{v-1} \\
& s_{v+2}=a s_{v+1}-b s_{v}+s_{v-1}
\end{aligned}
$$

In particular, the $s_{k+2} v$ term is equal to \underline{s}_{k-1} multiplied by the In particular, the s_{krv} term
middle column of $M_{0}^{-1} \cdot M^{2}$
For Matrix M0 to be invertible, we need $\operatorname{det}\left(M_{0}\right) \neq 0$ $\operatorname{det}\left(M_{0}\right)=\left(b^{2}-2 a\right)\left[3\left(a^{2}-2 b\right)-a^{2}\right]-b\left[b\left(a^{2}-2 b\right)-3 a\right]+3[a b-3 \cdot 3] \neq 0$

* By choosing a and b correspondingly, $\operatorname{det}\left(M_{0}\right)$ can be guaranteed to be non-zero!

2. Compute $\mathrm{s}_{ \pm u}\left(\mathrm{~s}_{(k+v)}, \mathrm{s}_{-(k+v)}\right)$ using DSEA algorithm

GH Digital Signature Algorithm (GH DSA)

ElGamal-like signature algorithm
Alice:

- Private Key: Choose x, with $0<x<Q$ and $\operatorname{gcd}(x, Q)=1$
- Public Key: The $s_{ \pm x}$ terms generate by $f(x)$

Signing Process:

1. Randomly choose k , with $0<k<Q$ and $\operatorname{gcd}(k, Q)=1$. Use DSEA algorithm to compute (s_{k-1}, s_{k}, s_{k+1}) and its dual such that $\operatorname{gcd}\left(s_{k}, Q\right)=1 . r=s_{k}$
2. Compute $h=h(m)$, where $h()$ is a hash function
3. Solve for t in the signing equation: $h \equiv x r+k t \bmod Q \Rightarrow$ $\equiv k^{-1}(h-r x) \bmod Q$
(r, t) is the digital signature of the message m . Alice sends Bob (m, r, t) together with $\left(s_{x}, s_{x+1}\right),\left(s_{k}, s_{k+1}\right)$ and their duals.

Signature Verification

Verifying Process:

1. Compute $s_{ \pm(x-1)}$ and $s_{ \pm(k-1)}$ using $\left(s_{x}, s_{x+1}\right),\left(s_{k}, s_{k+1}\right)$ and their duals.
2. If $\operatorname{gcd}(t, Q)=1 \Rightarrow$ Case 1 , else \Rightarrow Case 2

Case 1: To verify

$$
S_{ \pm x}=S_{ \pm r^{-1}(h-k t)}=S_{\mp r^{-1} t\left(-h t^{-1}+k\right)}=S_{ \pm u(k+v)}
$$

i. Compute $u=-r^{1} t \bmod Q, v=-h t^{-1} \bmod Q$
ii. Compute mixed terms $s_{ \pm u(k+v)}$
iii. Verify sequence terms

Case 2: To verify

$$
s_{ \pm k t}=s_{ \pm(h-r x)}=s_{\mp r\left(-h r^{-1}+x\right)}=s_{ \pm u(x+v)}
$$

i. Compute $u=-r \bmod Q, v=-h r^{1} \bmod Q$
ii. Compute mixed terms $s_{ \pm u(x+v)}$
iii. Compute $s_{\text {tkt }}$
iv. Verify sequence terms

References:

- G. Gong and L. Harn, A new approach for public key distribution, Proceedings of China-Crypto'98, May 1998, Chengdu, China
G. Gong and L. Harn, The GH public-key cryptosystems, the Proceedings of the 8th Annual Workshop on Selected Areas in Cryptography, Toronto, Aug 16-18, 2001

