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GH Public-key Cryptosystem 
(GH-PKC) Overview

• GH-PKC is based on the 3-rd order LFSR 
sequence with particular phase.  

• GH Diffie-Hellman (GH-DH) key agreement 
protocol published in proceeding of 
ChinaCrypto’1998.

• GH-DH / GH-DSA was published in  proceeding 
of the 8th Annual Workshop on Selected Areas in 
Cryptography, Aug 2001

• Security is based on the difficulty in solving DL 
problem in GF(q3) for q = p or q = p2

Third-Order Characteristic 
Sequence

• An irreducible polynomial f(x) of degree 3 over 
GF(p), where p is a prime number:

• Initial State:

• The sequence {sk} is called a 3rd-order characteristic 
sequence.

• Period of this sequence is:

• kth-state of the LFSR is sk = (sk, sk+1, sk+2)
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Reciprocal Sequence

• Given 

• The reciprocal polynomial is:

• Initial State:

• Sequence generated by f-1(x) is also a 3rd-order 
characteristic sequence 
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Example, p = 5

Algorithms for Computing 
Sequence Terms

• Three algorithms for computing sequence term 
in a 3rd order characteristic sequence:
– Dual-State Fast Evaluation Algorithm (DSEA)

• To compute the sk-1 state and its dual
– Computation of a Previous Sequence Term

• To compute s ±(k-1) using (sk, sk+1) and it dual
– Computation of Mixed term

• To compute s±u(k+v)

The DSEA Algorithm
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222• Binary rep of k:

• Let and
• For kj = 0 For kj = 1

• Interchange a and b and find the (st’+1, st’ , st’-1) 
terms in sequence generated by the reciprocal 
polynomial which are the (s-(t’+1), s-t’ , s-(t’-1)) terms in 
the original sequence
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Computation of Previous 
Sequence Term

• The 3rd order characteristic sequence has 
properties of duality and redundancy.

• Three elements in any state of the sequence are 
not independent.

• If any two consecutive elements are known in 
the sequence, the third remaining one can be 
uniquely determined.

(sk,sk+1)

(s-k,s-(k+1)) 

(sk-1,sk,sk+1)

(s-(k-1),s-k,s-(k+1)) 

Computation of Previous 
Sequence Term

• Given (sk, sk+1) and its dual
• Let

• Then s±(k-1) can be computed by:
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delta cannot 
be zero!   

Computation of Previous 
Sequence Term

• Consider delta:

• When delta equals zero, 

• Programs written in c++ and Maple are used to 
compute the value of delta for all sequence 
terms generated by all irreducible polynomial 
over GF(p) for prime p between 5 and 127.
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Computation of Previous 
Sequence Term

• It is found that for any prime p, 

• ie, if k equals to either p-1 or p, the product sk+1s-(k+1)
equals to a*b for any prime p.  This restriction is added 
to the signing key selection.

• If either a or b is zero, k will be more likely yield a zero 
delta.  Both a and b should be chosen as non-zero 
integers.

• As p increases, the percentage of delta that equals zero 
decreases.

• With the additional restrictions on a and b and the 
additional rules on k, it is reasonable to reduce 
bandwidth usage as a way of minimizing cost.
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Computation of Mixed Term 
s±u(k+v) with Known sk-1 State

• This algorithm is used to compute mixed terms 
s±u(k+v) with known (sk-1, sk, sk+1) and its dual.

• The procedure is as follows:
1. Compute the sequence terms s±(k+v)

2. Construct another irreducible polynomial as:

3. Compute the ±uth term of sequence generate by 
g(x)
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Computation of s±(k+v)

• s±(k+v) terms cannot be computed using the 
DSEA algorithm

• Instead, use a general result for LFSR 
sequence:
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Computation of s±(k+v)

• Two properties:
1.
2. if

• If , then

where 
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Computation of s±(k+v)

• Procedure for finding s(k+v) term using sk-1 state
1. Construct Matrix M0 and compute M0

-1

2. Compute (sv-1, sv, sv+1) terms generated by f(x) using 
DSEA algorithm 

3. Compute sv-2 and sv+2 terms and construct Matrix Mv

4. Compute s(k+v) term by:

In particular, the sk+v term is equal to sk-1 multiplied by 
the middle column of
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Computation of s±(k+v)

• Consider M0:

• Determinant of M0 is:

• It depends only on a and b.  By choosing a and 
b correspondingly, det(M0) can be guaranteed to 
be non-zero.
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GH-DSA

• ElGamal-like signature algorithm

• System Public Parameters:
Irreducible polynomial f(x) = x3 – ax2 + bx – 1 over 
GF(p), where p is a prime number, with period Q

• Alice:
Private Key: Choose x, with 0 < x < Q and gcd(x, Q) = 1
Public Key: The s±x terms generate by f(x)

GH-DSA: Signing Process

• Signing Process:
1. Randomly choose k, with 0 < k < Q and gcd(k,Q) = 1.  

Use DSEA algorithm to compute (sk-1, sk, sk+1) and its 
dual such that gcd(sk, Q) = 1.  r = sk

2. Compute h=h(m), where h() is a hash function
3. Solve for t in the signing equation: h ≡ xr + kt mod Q 

⇒ t ≡ k-1(h - rx) mod Q
• (r, t) is a digital signature of the message m.  

Alice sends Bob (m, r, t) together with (sk, sk+1) 
and its dual.

GH-DSA: Verification Process

• Signing Equation h ≡ xr + kt mod Q
• But, Bob can verify Sequence Terms
• Verification Process: 

Compute s±(k-1) using (sk, sk+1) and its dual
If gcd(t, Q) = 1 ⇒ Case 1, else ⇒ Case 2

• Case 1:
1. Compute u = -r-1t mod Q, v = -ht-1 mod Q
2. Compute mixed terms s±u(k+v)

3. Verify sequence terms

)()()( 111 vkukhttrkthrx ssss +±+−−±± === −−− �
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x and k are 
unknown to Bob
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GH-DSA: Verification Process

• Case 2:
1. Compute u = -r mod Q, v = -hr-1 mod Q
2. Compute mixed terms s±u(x+v)

3. Compute s±kt

4. Verify sequence terms 

)()()( 1 vxuxhrrrxhkt ssss +±+−−±± === −
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Software Design

• Signing Process:
1. Input private key x.  Compute (sx, s-x).  
2. Input signing key k.  Compute (sk-1, sk, sk+1) and it 

dual.  If gcd(sk, Q) ≠ 1, prompt user to choose another 
k.

3. If delta = 0, prompt user to pick another k.
4. Input message m to be signed.  Assume h = m.
5.r = sk, Compute t.
6. If t = 0, prompt user to choose another k.
7.Output (sx, s-x), (m, r, t), (sk, sk+1) and its dual

Software Design

• Verification Process:
1. Input (m, r, t), (sx, s-x), (sk, sk+1) and its dual.
2. Compute s±(k-1).
3. If gcd(t, Q) = 1, then

i. u = -r-1t mod Q, v = -ht-1 mod Q
ii. Compute s±u(k+v)
iii. Verify if s±u(k+v) = s±x

4. If gcd(t, Q) ≠ 1, then
i. u = -r mod Q, v = -hr-1 mod Q
ii. Compute s±u(x+v)
iii. Compute s ±kt
iv. Verify if s±u(x+v) = s±kt

5. Accept signature if sequence terms match

Design Issues

• Storage requirement for recursive iteration in 
DSEA algorithm
– Only six sequence terms need to be kept after each 

iteration.
• Delta cannot be zero

– k cannot be either p - 1 or p
– Both a and b should be non-zero integers

• Invertible Matrix M0
– This can be guaranteed by choosing a and b 

correspondingly such that det(M0) ≠ 0.
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Testing

• Toy Case
• Real System

Testing – Toy Case

• An irreducible polynomial f(x) over a small field 
is used to make it possible to verify all the 
sequence term computations including the ones 
in the intermediate steps.

• Irreducible polynomial f(x) over GF(5):

• Period of this sequence, Q:
1)( 3 −+= xxxf

311552 =++=Q

Testing – Toy Case

• All sequence terms are compared to the 
sequence terms generated by the recursive 
formula:

�,2,1,0,123 =+−= +++ iforsbsass jjjj

Testing – Real System

• Implement GH-PKC over GF(p)
• For 1024-bit security level, a 341-bit p is used.
• Parameters are chosen as:

1349561119624124585675888493695020291371647052193Q
338836162686373921929237068954035002939064817408829      
4508723659852278481087502454995444184759812062160226  b
115148708959383971091973307717976209148271493304907      
0732286415325478977791732361659946663453431009678462  a
107595209294400247294589262881884384364196408128163      
8178252812236620439442199864753480206509132524100142  p
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Testing – Real System

• NTL library is used in the implementation to 
handle the large numbers in c++.

• It is not practical to verify all the generated 
sequence terms as they are too big!

• Instead, two copies of the program are executed 
at the same time to simulate two users, Alice 
and Bob, to make sure the generated shared 
key pair is the same and the message can be 
successfully signed and verified.

Remarks

• The GH-DH key agreement protocol and the 
signature generation in the GH-DSA scheme are 
successfully implemented in c++ and are tested 
thoroughly.  

• The implementation of signature verification is 
still in progress.

• Several restrictions on system parameters and 
signing key selection are added to the system to 
increase system efficiency.

• Implement GH-PKC on constrained devices, 
such as blackberry, to analyze performance.
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