
1

Gong-Harn
Digital Signature Algorithm

Susana Sin
October 7, 2003

Outline

• Gong-Harn Public-key Cryptosystem Overview
• Third-order characteristic sequence
• Reciprocal sequence
• Algorithms for computing sequence terms
• GH-DSA
• Implementation
• Remarks

GH Public-key Cryptosystem
(GH-PKC) Overview

• GH-PKC is based on the 3-rd order LFSR
sequence with particular phase.

• GH Diffie-Hellman (GH-DH) key agreement
protocol published in proceeding of
ChinaCrypto’1998.

• GH-DH / GH-DSA was published in proceeding
of the 8th Annual Workshop on Selected Areas in
Cryptography, Aug 2001

• Security is based on the difficulty in solving DL
problem in GF(q3) for q = p or q = p2

Third-Order Characteristic
Sequence

• An irreducible polynomial f(x) of degree 3 over
GF(p), where p is a prime number:

• Initial State:

• The sequence {sk} is called a 3rd-order characteristic
sequence.

• Period of this sequence is:

• kth-state of the LFSR is sk = (sk, sk+1, sk+2)

1)(23 −+−= bxaxxxf

basass 2,,3 2
210 −===

1, 2 ++ ppQPeriod

2

Reciprocal Sequence

• Given

• The reciprocal polynomial is:

• Initial State:

• Sequence generated by f-1(x) is also a 3rd-order
characteristic sequence

1)(231 −+−=− axbxxxf

absbss 2,,3 2
210 −===

1)(23 −+−= bxaxxxf

Example, p = 5

Algorithms for Computing
Sequence Terms

• Three algorithms for computing sequence term
in a 3rd order characteristic sequence:
– Dual-State Fast Evaluation Algorithm (DSEA)

• To compute the sk-1 state and its dual
– Computation of a Previous Sequence Term

• To compute s ±(k-1) using (sk, sk+1) and it dual
– Computation of Mixed term

• To compute s±u(k+v)

The DSEA Algorithm

n
nnin

n

i
i kkkkk +++== −−

=
∑ �

1
10

0
222• Binary rep of k:

• Let and
• For kj = 0 For kj = 1

• Interchange a and b and find the (st’+1, st’ , st’-1)
terms in sequence generated by the reciprocal
polynomial which are the (s-(t’+1), s-t’ , s-(t’-1)) terms in
the original sequence

kTTkTkT njjj =+=== − ,2,1 100

)1(11'

2
'

)1(11'

2

+−−−−

−

−−−++

+−=
−=

+−=

ttttt

ttt

ttttt

sbssss
sss

sassss

ttt

ttttt

ttt

sss

sassss
sss

−−

−−−+

+−++

−=

+−=

−=

2

2

2
1'

)1(1'

)1(
2

11'

jj TtTt == − ',1

s0
s1

s2s-1
s-2 s0s1

s2 s-1
s-2

3

Computation of Previous
Sequence Term

• The 3rd order characteristic sequence has
properties of duality and redundancy.

• Three elements in any state of the sequence are
not independent.

• If any two consecutive elements are known in
the sequence, the third remaining one can be
uniquely determined.

(sk,sk+1)

(s-k,s-(k+1))

(sk-1,sk,sk+1)

(s-(k-1),s-k,s-(k+1))

Computation of Previous
Sequence Term

• Given (sk, sk+1) and its dual
• Let

• Then s±(k-1) can be computed by:

11)1(1 −+−+ −= ssssdelta kk

delta
esseDs

delta
eDses

s

k
k

k
k

11
)1(

1)1(
1

)(

)(

−
=

−
=

+
−−

−+−
−

)1(
22

2

1111

211

)(3

)(
)(

+−−

−+

−

−

−+−=

−=
+−=

=

kkk

kk

kk

sabssc

ssssc
ccDse

ssD

delta cannot
be zero!

Computation of Previous
Sequence Term

• Consider delta:

• When delta equals zero,

• Programs written in c++ and Maple are used to
compute the value of delta for all sequence
terms generated by all irreducible polynomial
over GF(p) for prime p between 5 and 127.

11)1(1 −+−+ −= ssssdelta kk

abss kk =+−+)1(1

Computation of Previous
Sequence Term

• It is found that for any prime p,

• ie, if k equals to either p-1 or p, the product sk+1s-(k+1)
equals to a*b for any prime p. This restriction is added
to the signing key selection.

• If either a or b is zero, k will be more likely yield a zero
delta. Both a and b should be chosen as non-zero
integers.

• As p increases, the percentage of delta that equals zero
decreases.

• With the additional restrictions on a and b and the
additional rules on k, it is reasonable to reduce
bandwidth usage as a way of minimizing cost.

pp

pp

sbs
sas

−+

+−

==

==

1

)1(

4

Computation of Mixed Term
s±u(k+v) with Known sk-1 State

• This algorithm is used to compute mixed terms
s±u(k+v) with known (sk-1, sk, sk+1) and its dual.

• The procedure is as follows:
1. Compute the sequence terms s±(k+v)

2. Construct another irreducible polynomial as:

3. Compute the ±uth term of sequence generate by
g(x)

1)()(
2

)(
3 −+−= +−+ xsxsxxg vkvk

Computation of s±(k+v)

• s±(k+v) terms cannot be computed using the
DSEA algorithm

• Instead, use a general result for LFSR
sequence:

Transitional Matrix = , State Matrix =
















−=
a
bA

10
01

100

















=

++

+−

−−

21

11

12

nnn

nnn

nnn

n

sss
sss
sss

M

() () 1213122 ,,
10
01

100
,, +++++++ =+−=

















−⋅=⋅ kkkkkkkkkk sasbssss
a
bsssAs

Computation of s±(k+v)

• Two properties:
1.
2. if

• If , then

where

1
1

2
2

1
10 AsAsAsAss v

vvv
v ⋅==⋅=⋅=⋅= −

−−
�

v
vv

v MMAAMM ⋅=⇒⋅= −1
00 () 0det 0 ≠M

()


















































⋅=⋅⋅=⋅=

++

+−

−−
−

−

−−
−

+

21

11

12
1

210

101

012
1

0

vvv

vvv

vvv

kvk
v

kvk

sss
sss
sss

sss
sss
sss

sMMsAss

112 −++ +−= vvvv sbsass
112 −+− +−= vvvv bsasss

() 0det 0 ≠M

Computation of s±(k+v)

• Procedure for finding s(k+v) term using sk-1 state
1. Construct Matrix M0 and compute M0

-1

2. Compute (sv-1, sv, sv+1) terms generated by f(x) using
DSEA algorithm

3. Compute sv-2 and sv+2 terms and construct Matrix Mv

4. Compute s(k+v) term by:

In particular, the sk+v term is equal to sk-1 multiplied by
the middle column of

()vk
v

kvk MMsAss ⋅⋅=⋅= −
−−+−

1
0111

()vMM ⋅−1
0

Can be done offline

5

Computation of s±(k+v)

• Consider M0:

• Determinant of M0 is:

• It depends only on a and b. By choosing a and
b correspondingly, det(M0) can be guaranteed to
be non-zero.

















−

−
=

















= −

−−

baa
ab

bab

sss
sss
sss

M
23

3
32

2

2

210

101

012

0

() () ()[] ()[] [] 033332232det 2222
0 ≠⋅−+−−−−−−= abababbabaabM

GH-DSA

• ElGamal-like signature algorithm

• System Public Parameters:
Irreducible polynomial f(x) = x3 – ax2 + bx – 1 over
GF(p), where p is a prime number, with period Q

• Alice:
Private Key: Choose x, with 0 < x < Q and gcd(x, Q) = 1
Public Key: The s±x terms generate by f(x)

GH-DSA: Signing Process

• Signing Process:
1. Randomly choose k, with 0 < k < Q and gcd(k,Q) = 1.

Use DSEA algorithm to compute (sk-1, sk, sk+1) and its
dual such that gcd(sk, Q) = 1. r = sk

2. Compute h=h(m), where h() is a hash function
3. Solve for t in the signing equation: h ≡ xr + kt mod Q

⇒ t ≡ k-1(h - rx) mod Q
• (r, t) is a digital signature of the message m.

Alice sends Bob (m, r, t) together with (sk, sk+1)
and its dual.

GH-DSA: Verification Process

• Signing Equation h ≡ xr + kt mod Q
• But, Bob can verify Sequence Terms
• Verification Process:

Compute s±(k-1) using (sk, sk+1) and its dual
If gcd(t, Q) = 1 ⇒ Case 1, else ⇒ Case 2

• Case 1:
1. Compute u = -r-1t mod Q, v = -ht-1 mod Q
2. Compute mixed terms s±u(k+v)

3. Verify sequence terms

)()()(111 vkukhttrkthrx ssss +±+−−±± === −−− �

)(vkux ss +±± =

x and k are
unknown to Bob

6

GH-DSA: Verification Process

• Case 2:
1. Compute u = -r mod Q, v = -hr-1 mod Q
2. Compute mixed terms s±u(x+v)

3. Compute s±kt

4. Verify sequence terms

)()()(1 vxuxhrrrxhkt ssss +±+−−±± === −
�

)(vkukt ss +±± =

Software Design

• Signing Process:
1. Input private key x. Compute (sx, s-x).
2. Input signing key k. Compute (sk-1, sk, sk+1) and it

dual. If gcd(sk, Q) ≠ 1, prompt user to choose another
k.

3. If delta = 0, prompt user to pick another k.
4. Input message m to be signed. Assume h = m.
5.r = sk, Compute t.
6. If t = 0, prompt user to choose another k.
7.Output (sx, s-x), (m, r, t), (sk, sk+1) and its dual

Software Design

• Verification Process:
1. Input (m, r, t), (sx, s-x), (sk, sk+1) and its dual.
2. Compute s±(k-1).
3. If gcd(t, Q) = 1, then

i. u = -r-1t mod Q, v = -ht-1 mod Q
ii. Compute s±u(k+v)
iii. Verify if s±u(k+v) = s±x

4. If gcd(t, Q) ≠ 1, then
i. u = -r mod Q, v = -hr-1 mod Q
ii. Compute s±u(x+v)
iii. Compute s ±kt
iv. Verify if s±u(x+v) = s±kt

5. Accept signature if sequence terms match

Design Issues

• Storage requirement for recursive iteration in
DSEA algorithm
– Only six sequence terms need to be kept after each

iteration.
• Delta cannot be zero

– k cannot be either p - 1 or p
– Both a and b should be non-zero integers

• Invertible Matrix M0
– This can be guaranteed by choosing a and b

correspondingly such that det(M0) ≠ 0.

7

Testing

• Toy Case
• Real System

Testing – Toy Case

• An irreducible polynomial f(x) over a small field
is used to make it possible to verify all the
sequence term computations including the ones
in the intermediate steps.

• Irreducible polynomial f(x) over GF(5):

• Period of this sequence, Q:
1)(3 −+= xxxf

311552 =++=Q

Testing – Toy Case

• All sequence terms are compared to the
sequence terms generated by the recursive
formula:

�,2,1,0,123 =+−= +++ iforsbsass jjjj

Testing – Real System

• Implement GH-PKC over GF(p)
• For 1024-bit security level, a 341-bit p is used.
• Parameters are chosen as:

1349561119624124585675888493695020291371647052193Q
338836162686373921929237068954035002939064817408829
4508723659852278481087502454995444184759812062160226 b
115148708959383971091973307717976209148271493304907
0732286415325478977791732361659946663453431009678462 a
107595209294400247294589262881884384364196408128163
8178252812236620439442199864753480206509132524100142 p

=

=

=

=

8

Testing – Real System

• NTL library is used in the implementation to
handle the large numbers in c++.

• It is not practical to verify all the generated
sequence terms as they are too big!

• Instead, two copies of the program are executed
at the same time to simulate two users, Alice
and Bob, to make sure the generated shared
key pair is the same and the message can be
successfully signed and verified.

Remarks

• The GH-DH key agreement protocol and the
signature generation in the GH-DSA scheme are
successfully implemented in c++ and are tested
thoroughly.

• The implementation of signature verification is
still in progress.

• Several restrictions on system parameters and
signing key selection are added to the system to
increase system efficiency.

• Implement GH-PKC on constrained devices,
such as blackberry, to analyze performance.

References

• Papers on GH-PKC:
– G. Gong and L. Harn, A new approach for public key

distribution, Proceedings of China-Crypto'98, May
1998, Chengdu, China

– G. Gong and L. Harn, The GH public-key
cryptosystems, the Proceedings of the 8th Annual
Workshop on Selected Areas in Cryptography,
Toronto, Aug 16-18, 2001

• NTL Library is available for download at:
www.shoup.net/ntl

