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Taj Krishna to Courtyard Marriott

Indocrypt’02 Hyderabad:
Programme Co-chairs: Alfred Menezes (UW) and Palash Sarkar (ISI).

Tutorial: Constructive applications of the Weil and Tate pairings. Speaker:
Alfred Menezes.

Today’s tutorial is based on what I learned from Palash and Alfred (and
my other teachers and colleagues at ISI and UW).
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In a nutshell

“Tutorials provide a wonderful way to share confusion and can convince
the attendants that they are not the only dumb people out there.”
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In a nutshell

“Tutorials provide a wonderful way to share confusion and can convince
the attendants that they are not the only dumb people out there.”

Feel free to have your siesta...
But don’t forget to put your mobile friend in the sleep mode.
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“Pairings for Cryptographers”

Many research papers in the field treat pairings as a black box

and then proceed to build various cryptographic schemes making
use of assumed properties of the pairings. This is not necessarily
a bad approach...
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“Pairings for Cryptographers”

Many research papers in the field treat pairings as a black box

and then proceed to build various cryptographic schemes making
use of assumed properties of the pairings. This is not necessarily
a bad approach...

However, if this approach is taken, then it is easy for authors to
make assumptions concerning the properties of pairings which
are not necessarily correct, and hence develop cryptographic
schemes which cannot be realized in practice, or which cannot be
implemented as efficiently as the authors assume.
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Our Agenda

Take a panoramic view of the interplay of functionality, security and
efficiency of cryptographic protocols employing bilinear pairing.
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Pairing in Cryptology

Pairing in Cryptology
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Pairing in Cryptology

“New Directions in Cryptography”

◮ Diffie-Hellman (1976)
◮ The (public) birth of Public-Key Cryptography.

◮ Two-party one-round key agreement protocol.
◮ A prime order group G = 〈P〉
◮ Â → B̂ : aP .
◮ B̂ → Â : bP .
◮ Shared secret: abP .

◮ A natural question:
◮ Design a three-party one-round key agreement protocol.
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Pairing in Cryptology

Intractability Assumptions

◮ Security of any public key cryptographic protocol is based on the
assumed hardness of some computational problem.

◮ Unconditional proof of security of a public-key protocol will imply
P 6= NP .

◮ Discrete logarithm problem (DLP).
◮ A classical problem in number theory.
◮ Given G = 〈P〉 and R ∈ G, find a such that R = aP .

◮ Security of Diffie-Hellman protocol is based on the Diffie-Hellman
Problem (DHP).

◮ Given 〈P〉, aP , bP , compute abP .
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Pairing in Cryptology

Elliptic Curve Cryptography

◮ Proposed (independently) by Koblitz and Miller (1985).

◮ No faster-than-squareroot generic algorithm to solve DLP over Elliptic
Curve groups.

◮ Several curve forms were suggested for cryptographic use.

◮ “Supersingular curves” was one of them.
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Pairing in Cryptology

Pairing: a black box intro

◮ Let n be a prime number.

◮ Let G = 〈P〉 be an additive group of order n.

◮ Let GT be a multiplicative group of order n.

A symmetric bilinear pairing on (G, GT ) is a function e : G×G → GT

such that:

1. Bilinearity: For all R , S ,T ∈ G:

e(R + S ,T ) = e(R ,T )e(S ,T )

e(R , S + T ) = e(R , S)e(R ,T )

2. Non-degeneracy: e(P ,P) 6= 1.

Known examples: Weil pairing, Tate pairing over supersingular elliptic
curves.
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Pairing in Cryptology

Pairing in crypto

e(aP , bP) = e(P ,P)ab

◮ Menezes-Okamoto-Vanstone (1991)
◮ Reducing elliptic curve logarithms to logarithms in a finite field.

◮ The MOV reduction:
◮ DLPG: Given P , aP ∈ G, find a.
◮ Compute α = e(P ,P), β = e(P , aP) = αa.

◮ a = log
α
β.

◮ Weil pairing was employed.
◮ Around 16 minutes to compute the pairing.

◮ Frey-Ruck (1994): used Tate pairing to reduce ECDLP to DLP in
finite field.
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Pairing in Cryptology

A curse for ECC?

e : G×G → GT

◮ Use faster algorithm in GT to solve the original DLP in G.

◮ Could be a problem for ECC if the parameters are not appropriately
chosen.

◮ Supersingular curves were (almost) abandoned...if not ECC
altogether.

◮ See [Koblitz-Koblitz-Menezes:2008] for the history of the acceptance of
ECC.
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Pairing in Cryptology

CDH vs. DDH

e(aP , bP) = e(P ,P)ab

◮ MOV/FR reduction: a partial utilization of the magic of bilinearity!

◮ Decision Diffie-Hellman problem in G:
◮ Given (P , aP , bP , cP) decide whether c = ab.
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Pairing in Cryptology

CDH vs. DDH

e(aP , bP) = e(P ,P)ab

◮ MOV/FR reduction: a partial utilization of the magic of bilinearity!

◮ Decision Diffie-Hellman problem in G:
◮ Given (P , aP , bP , cP) decide whether c = ab.

◮ DDH is easy in G if one can efficiently compute the pairing:

e(aP , bP)
?
= e(P , cP).
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Pairing in Cryptology

Come 2000!

◮ Sakai-Ohgishi-Kasahara ID-based key agreement protocol [SCIS’00].

◮ Joux’s three-party one round key agreement protocol [ANTS’00].

◮ Constructive use of pairing to solve two interesting cryptographic
problems.
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Pairing in Cryptology

Joux’s Protocol

user 1 user 2

user 3

aP bP
cP cP

aP

bP
secret a secret b

secret c
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Pairing in Cryptology

Joux’s Protocol

user 1 user 2

user 3

aP bP
cP cP

aP

bP
secret a secret b

secret c

K = e(P ,P)abc = e(bP , cP)a = e(aP , cP)b = e(aP , bP)c .
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Pairing in Cryptology

A blessing for cryptographers!

◮ Identity-Based Encryption (2001).
◮ Boneh and Franklin solved the open problem posed by Shamir in 1984.
◮ Presented in the language of provable security.
◮ Cited more than 3500 times.

◮ Short signature (2001).

◮ Hierarchical IBE (2002).

◮ Aggregate signatures, homomorphic encryption, broadcast encryption,
attribute-based encryption...

◮ Non-interactive zero knowledge proofs...

◮ Pairing – a new conference starting in 2007

◮ Pairing 2010: Dec. 13 to 15, 2010.
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Pairing in Cryptology

Identity-Based Cryptography
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Pairing in Cryptology

ID-based Non-interactive Key Distribution

◮ A and B with id IDA and IDB agree upon a common key without any
interaction among themselves.
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Pairing in Cryptology

ID-based Non-interactive Key Distribution

◮ A and B with id IDA and IDB agree upon a common key without any
interaction among themselves.

◮ A Private Key Generator (PKG) provides the private key
corresponding to each identity.
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Pairing in Cryptology

ID-NIKD based on pairing

[Sakai-Ohgishi-Kasahara:2000]

◮ e : G×G → GT , G = 〈P〉.

◮ H : {0, 1}∗ → G is a hash function.

◮ PKG chooses master secret s ∈R Zn and sets public key R = sP .

Key Extraction: The pvt. key dA of user A with identity IDA is
dA = sQA, where QA = H(IDA).
Key Agreement: A computes KA = e(dA,QB) = e(QA,QB)

s and B
computes KB = e(dB ,QA) = e(QB ,QA)

s .

Note: e(QA,QB) = e(QB ,QA) and hence KA = KB is the shared secret.
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Pairing in Cryptology

Identity-Based Encryption (IBE)

idA

idA

ciphertext

dA

PKG

BobAlice

PP
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Pairing in Cryptology

IBE (a little more formal)

Set-Up: The algorithm returns the system public parameters PP
together with the master secret key msk.

Key-Gen: Takes input an identity id ∈ I together with PP and msk
and returns a pvt. key did.

Encrypt: Takes input an identity id ∈ I, a message M ∈ M and PP
and produces a ciphertext C ∈ C.

Decrypt: Takes as input C ∈ C, id and a corresponding private key
did, PP. It returns the message M or ⊥ if the ciphertext cannot be
decrypted.

These set of algorithms must satisfy the standard soundness requirement.
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Pairing in Cryptology

BasicIdent of Boneh-Franklin (simplified)

e : G×G → GT , G = 〈P〉.
H : {0, 1}∗ → G

∗ is a hash function.

◮ Set-Up: msk: s ∈R Z
∗

n and set Ppub = sP .

◮ Key-Gen: Given ID ∈ {0, 1}∗, compute QID = H(ID) and set
dID = sQID.

◮ Encrypt: To encrypt M ∈ GT to ID compute QID = H(ID), choose
r ∈R Z

∗

n and set:

C = 〈rP ,M × e(QID,Ppub)
r 〉

◮ Decrypt: To decrypt C = 〈U,V 〉 using dID compute

V × e(dID,U)−1 = M.

e(dID,U) = e(sQID, rP) = e(QID, sP)
r = e(QID,Ppub)

r .
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Pairing in Cryptology

BasicIdent from SOK ID-NIKD
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Pairing in Cryptology

BasicIdent from SOK ID-NIKD

◮ Set-up and Key-Gen algorithms are same.

◮ Encrypt and Decrypt of BasicIdent can be obtained by slightly
tweaking the Key Agreement algorithm.

◮ Encrypt masks the message by
e(Ppub,QID)

r = e(rsP ,QID) = e(s(rP),QID) and rP is sent as part of
C .

◮ Recipient with pvt. key dID = sQID unmasks by computing
e(rP , dID) = e(s(rP),QID) = e(rP ,QID)

s .
◮ Think of rP as the hash of id of the sender.
◮ The shared secret in SOK ID-NIKD is transformed into the mask in C

of BasicIdent.
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Pairing in Cryptology

Security Model for IBE
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Pairing in Cryptology

Security Model for IBE

A game between an adversary (A) and a challenger (B).

◮ A can place
◮ Key-extraction query: adaptively corrupt users.
◮ Decryption query: obtain the decryption of a ciphertext under an id of

its choice.

◮ A chooses a target ID∗ and two messages M0 and M1.
◮ Receives an encryption of Mβ , β ∈R {0, 1}∗ under ID∗.

◮ Can continue with the key-extraction and decryption queries.

◮ A wins if it can predict β with prob. significantly away from 1/2.

CPA-security: Decryption queries are disallowed.
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Pairing in Cryptology

Security of BasicIdent

◮ Bilinear Diffie-Hellman Problem (BDH): Given 〈P , aP , bP , cP〉 for
unknown a, b, c ∈ Zp, compute e(P ,P)abc .

◮ Decision Bilinear Diffie-Hellman Problem (DBDH): Given
〈P , aP , bP , cP ,Z 〉 for unknown a, b, c ∈ Zp, decide whether
Z = e(P ,P)abc or Z is a random element of GT .

◮ Security of BasicIdent is based on the hardness of (D)BDH problem.
◮ Given A against BasicIdent construct an algorithm B that solves the

DBDH problem.
◮ A can corrupt users (other than the target).
◮ But cannot place any decryption query.
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Pairing in Cryptology

Reductionist Argument (simplified)

◮ DBDH instance: 〈P , aP , bP , cP ,Z 〉.

◮ Set Ppub = aP .

◮ Fix the target ID∗.

◮ H-query:
◮ For ID 6= ID∗, choose x ∈R Z

∗

p and set H(ID) = xP .
◮ Set H(ID∗) = bP .

◮ Pvt. key query on ID: return x(aP).

◮ Given M0,M1, choose β ∈R {0, 1} and set
◮ C = 〈cP ,Mβ × Z 〉.

◮ If Z = e(P ,P)abc then C is a proper ciphertext.

◮ Otherwise C statistically hides β.

◮ Advantage of A against BasicIdent can be converted into an
advantage to solve the DBDH instance.
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Pairing in Cryptology

CCA Security

◮ BasicIdent: insecure if A can obtain decryption of ciphertexts of its
choice.

◮ Given C = 〈rP ,Mβ × e(Ppub,QID)
r 〉.

◮ A asks for the decryption of

C ′ = 〈rP + r ′P ,Mβ × e(Ppub,QID)
r × e(Ppub,QID)

r ′〉.

◮ Receives Mβ!

◮ FullIdent: CCA-secure version of Boneh-Franklin IBE.
◮ Adapts the Fujisaki-Okamoto transformation to IBE.
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Pairing in Cryptology

Another look at BF-IBE

◮ [Galindo:2005] The security argument of FullIdent is flawed.
◮ The flaw creeps in due to ciphertext integrity check in decrypt.
◮ Transmits to several extensions of BF-IBE.
◮ Fortunately the flaw can be fixed.

◮ Galindo describes the protocol in asymmetric pairing setting.
◮ e : G1 ×G2 → GT .
◮ Helps to reduce the ciphertext overhead.

◮ Assumes
◮ One can hash efficiently into G2.
◮ An efficiently computable isomorphism ψ : G2 → G1.
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Pairing in Cryptology

Another look at BF-IBE

◮ [Galindo:2005] The security argument of FullIdent is flawed.
◮ The flaw creeps in due to ciphertext integrity check in decrypt.
◮ Transmits to several extensions of BF-IBE.
◮ Fortunately the flaw can be fixed.

◮ Galindo describes the protocol in asymmetric pairing setting.
◮ e : G1 ×G2 → GT .
◮ Helps to reduce the ciphertext overhead.

◮ Assumes
◮ One can hash efficiently into G2.
◮ An efficiently computable isomorphism ψ : G2 → G1.

◮ Unfortunately both cannot be achieved simultaneously! ...more about
this later.
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Pairing in Cryptology

Boneh-Lynn-Shacham Signature [2001]

◮ IBE to Signature: Naor’s observation
◮ The private key corresponding to an ID can serve as a signature on a

message (think ID as the message to be signed).

◮ BasicIdent yields BLS signature.

◮ The signature is an element of G.
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Pairing in Cryptology

Boneh-Lynn-Shacham Signature [2001]

◮ IBE to Signature: Naor’s observation
◮ The private key corresponding to an ID can serve as a signature on a

message (think ID as the message to be signed).

◮ BasicIdent yields BLS signature.

◮ The signature is an element of G.

◮ But we already have practical signature schemes.
◮ Can we have a short(er) signature?
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Asymmetric Pairings

Asymmetric Pairings
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Asymmetric Pairings

(Asymmetric) Pairings: (still) in abstract

Let G1 = 〈P1〉, G2 = 〈P2〉 and GT be groups of order n with G1 6= G2.

An asymmetric bilinear pairing on (G1,G2, GT ) is a function
e : G1 ×G2 → GT such that:

1. Bilinearity: For all Q1,Q2 ∈ G1, R1,R2 ∈ G2:

e(Q1 + Q2,R1) = e(Q1,R1)e(Q2,R1)

e(Q1,R1 + R2) = e(Q1,R1)e(Q1,R2).

2. Non-degeneracy: e(P1,P2) 6= 1.

Note: e(aU, bV ) = e(U,V )ab = e(bU, aV ) ∀U ∈ G1,V ∈ G2, a, b ∈ Z.

Known examples: Weil pairing, Tate pairing over ordinary elliptic curves.
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Asymmetric Pairings

Why Asymmetric Pairings?

◮ Symmetric pairings are restricted in the choice of curves.

◮ And significantly slower at higher security levels.

◮ Asymmetric pairings allow shorter representation of elements of G1.
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Asymmetric Pairings

BLS Short Signature

[Boneh-Lynn-Shacham:2001]

◮ Key generation: Private key: x ∈R Z
∗

n and
Public key: X = xP2 ∈ G2.

◮ Sign: To sign M ∈ {0, 1}∗:
◮ Compute H = Hash(M), where Hash : {0, 1}∗ → G1.
◮ Compute σ = xH ∈ G1.

The signature on M is σ.

◮ Verify: To verify (M, σ):

◮ Compute H = Hash(M).
◮ Accept iff e(σ,P2) = e(H,X ).

Correctness: e(σ,P2) = e(xH,P2) = e(H, xP2) = e(H,X ).
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Asymmetric Pairings

Security definition
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Asymmetric Pairings

Security definition

◮ Existential Unforgability under Chosen Message Attack.

◮ A game between a challenger (B) and an attacker A.
◮ A is provided with the public key and a signing oracle.
◮ A can adaptively ask for the signature on any message M of its

choosing.
◮ A’s task is to produce a valid message-signature pair (M∗, σ∗).

◮ Security is established through a reductionist argument.
◮ If A is successful then B solves some computational problem which is

believed to be hard.
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Asymmetric Pairings

BLS Security

co-DHP in (G1,G2): Given H ∈ G1 and X (= xP2) ∈ G2, compute xH.

Theorem: If co-DHP in (G1,G2) is hard and Hash is a random function,
then the BLS-2 signature scheme is secure.

Argument: Given X ∈ G2:

◮ The signing oracle is useless:
◮ Gives σ ∈ G1 s.t. e(σ,P2) = e(H ′,X ) for H ′ ∈R G1.
◮ But A can generate such (H ′, σ) pair itself – select y ∈R Z

∗

n and
compute H ′ = yP1 and σ = yψ(X ) = yxP1 = xH ′.

◮ So A’s problem is to compute σ = xH, given H ∈ G1 and X ∈ G2.
◮ This is precisely co-DHP in (G1,G2).
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Asymmetric Pairings

BLS Security

co-DHP in (G1,G2): Given H ∈ G1 and X (= xP2) ∈ G2, compute xH.

Theorem: If co-DHP in (G1,G2) is hard and Hash is a random function,
then the BLS-2 signature scheme is secure.

Argument: Given X ∈ G2:

◮ The signing oracle is useless:
◮ Gives σ ∈ G1 s.t. e(σ,P2) = e(H ′,X ) for H ′ ∈R G1.
◮ But A can generate such (H ′, σ) pair itself – select y ∈R Z

∗

n and
compute H ′ = yP1 and σ = yψ(X ) = yxP1 = xH ′.

◮ So A’s problem is to compute σ = xH, given H ∈ G1 and X ∈ G2.
◮ This is precisely co-DHP in (G1,G2).

What is ψ??
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Asymmetric Pairings

Type 2 and Type 3 Pairings

e : G1 ×G2 → GT

◮ If an efficiently-computable isomorphism ψ : G2 → G1 (ψ(P2) = P1),
is known, then e is called a Type 2 pairing.

◮ If no such isomorphism ψ is known, then e is called a Type 3 pairing.

◮ BLS-2: BLS employing Type 2 pairing.

◮ BLS-3: BLS employing Type 3 pairing.
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Asymmetric Pairings

BLS-3 Security

co-DHP∗ in (G1,G2): Given H, xP1(= X1) ∈ G1 and xP2(= X2) ∈ G2,
compute xH.

Theorem: If co-DHP∗ in (G1,G2) is hard and Hash is a random function,
then the BLS-3 signature scheme is secure.

Argument: Given X1 ∈ G1 and X2 ∈ G2 (Xi = xPi , i ∈ {1, 2}):

◮ The signing oracle is useless:
◮ Gives σ ∈ G1 s.t. e(σ,P2) = e(H ′,X ) for H ′ ∈R G1.
◮ But A can generate such (H ′, σ) pair itself – select y ∈R Z

∗

n and
compute H ′ = yP1 and σ = yX1.

◮ So A’s problem is to compute σ = xH, given H,X1 ∈ G1 and
X2 ∈ G2.

◮ This is precisely co-DHP∗ in (G1,G2)
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Asymmetric Pairings

BLS-2 or BLS-3?

◮ Boneh-Lynn-Shacham asserts:

◮ co-DHP∗ is a “stronger complexity assumption” than co-DHP.
◮ And hence there is no reason to use BLS-3.

◮ But BLS-3 is more efficient as it is implemented in the Type 3 setting.
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Asymmetric Pairings

A Concrete Situation

◮ Let E/Fp : Y 2 = X 3 + b where p = 36z4 + 36z3 + 24z2 + 6z + 1 for
some z ∈ Z.

◮ (E can also be viewed as an elliptic curve over any extension field of
Fp.)

◮ #E (Fp) = n, where n (= 36z4 + 36z3 + 18z2 + 6z + 1) is a prime.
◮ The embedding (MOV/FR) degree is k = 12.

◮ E [n] : Set of all order-n points P on E .
◮ |E [n]| = n2.
◮ E [n] ⊆ E (Fp12).

◮ Introduced by Barreto-Naehrig (2005).

◮ Ideal for the 128-bit security level.
◮ p and n are 256-bit primes.
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Asymmetric Pairings

Type 3 Pairing from BN Curves

◮ GT : order-n subgroup of Fp12 .

◮ G1 = E (Fp).

◮ G2: any other order-n subgroup of E [n].
◮ There are n such subgroups of E [n].

◮ To speedup computation, one sets G2 to be the “Trace-0” subgroup
of E [n].

◮ Call it T0.
◮ Elements of T0 are (essentially) defined over Fp2 (instead of Fp12).

◮ One of the fastest pairings is R-ate pairing e3 : G1 × T0 → GT .

◮ Type 3 pairing: no efficiently computable isomorphism ψ : T0 → G1 is
known.

Sanjit Chatterjee (IISc) Pairings-based crypto Indocrypt’10 40 / 89



Asymmetric Pairings

Type 2 Pairing

◮ Let P ′

2 ∈ E [n] such that P ′

2 /∈ G1 ∪ T0.

◮ Define G
′

2 = 〈P ′

2〉.

◮ Let e2 : G1 ×G
′

2 → GT .

◮ Type 2 pairing: there is an efficiently computable isomorphism from G
′

2

to G1.

◮ The task of computing e2 can be reduced to the task of computing e3
(with a little extra cost).
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Type 2 vs. Type 3 Pairings

Type 2 vs. Type 3 Pairings
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Type 2 vs. Type 3 Pairings

Why bother about Type 2 or Type 3?

e : G1 ×G2 → GT

◮ Functionality: Some pairing-based protocols use the map ψ in the
protocol itself.

◮ Security: Many protocols use the map ψ in their security proofs.

◮ Efficiency: Elements of G′

2 are defined over Fp12 and elements of T0

are defined over Fp2 .

◮ Computation: Arithmetic in G
′

2 is roughly 15 times as expensive as in
T0.

◮ Bandwidth: Elements of G′

2 are 6 times larger than elements of T0.
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Type 2 vs. Type 3 Pairings

Existing Status

◮ Over all Type 3 is a better choice in terms of efficiency.

◮ Protocols are usually first described in symmetric setting (with a
remark: can be instantiated in asymmetric setting).

◮ In asymmetric setting designers prefer Type 2 pairings instead of
Type 3.

◮ Perhaps due to the assertion [BLS:2001] that co-DHP∗ is a stronger
complexity assumption than co-DHP.

◮ Or assuming that the desired functionality cannot be achieved in
Type 3.
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Type 2 vs. Type 3 Pairings

Common belief

◮ [Pairings for cryptographers, 2008]: There exist many primitives in
pairing-based cryptography whose security proof does not apply if the
cryptosystem is implemented using a Type 3 pairing.

◮ Some researchers even assumed an oracle access to ψ for the security
proof to go through in Type 3 settings.
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Type 2 vs. Type 3 Pairings

Two Questions

◮ Can we make any efficiency gain in Type 2 settings?

◮ What exact role ψ plays as far as the question of functionality and
security of a protocol is concerned?
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Type 2 vs. Type 3 Pairings

Defining G1, T0 and G
′
2

◮ Let P ′

2 be a random point in E [n] \ (G1 ∪ T0), set G
′

2 = 〈P ′

2〉.

◮ Define P1 =
1
12Tr(P

′

2),

Tr(Z ) =
∑11

i=0 π
i (Z ) where π : (x , y) → (xp, yp).

◮ ψ : G′

2 → G1, Q → 1
12Tr(Q) is an efficiently computable

isomorphism.

◮ Set P2 = c−1(P ′

2 − P1) for some arbitrary c ∈ Z
∗

n.

◮ P2 ∈ T0 and the mapping

ρ : G′

2 → T0, Q → Q − ψ(Q)

is an efficiently-computable isomorphism with ρ(P ′

2) = cP2.
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Type 2 vs. Type 3 Pairings

New Representation for G′
2

◮ Given any Q ∈ G
′

2, one can efficiently compute Q1 = ψ(Q) and
Q2 = ρ(Q) = Q − Q1; so that Q = Q1 + Q2.

◮ Write D(Q) = (ψ(Q), ρ(Q)) and let H′

2 ⊆ G1 × T0 denote the range
of D.

◮ D : G′

2 → H
′

2 is an efficiently-computable isomorphism whose inverse is
also efficiently computable.

◮ Without loss of generality, any Q ∈ G
′

2 can be represented by a pair
of points (Q1,Q2) ∈ G1 × T0.

◮ Arithmetic in G
′

2 with this representation is component-wise.
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Type 2 vs. Type 3 Pairings

New Representation for G′
2

◮ Given any Q ∈ G
′

2, one can efficiently compute Q1 = ψ(Q) and
Q2 = ρ(Q) = Q − Q1; so that Q = Q1 + Q2.

◮ Write D(Q) = (ψ(Q), ρ(Q)) and let H′

2 ⊆ G1 × T0 denote the range
of D.

◮ D : G′

2 → H
′

2 is an efficiently-computable isomorphism whose inverse is
also efficiently computable.

◮ Without loss of generality, any Q ∈ G
′

2 can be represented by a pair
of points (Q1,Q2) ∈ G1 × T0.

◮ Arithmetic in G
′

2 with this representation is component-wise.

Efficiency: Arithmetic in G
′

2 is now only 4/3 times as expensive as in T0

– was roughly 15 times.
Bandwidth: G

′

2 elements are 1.5 times larger than T0 elements – was 6
times.
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Type 2 vs. Type 3 Pairings

Type 2 versus Type 3: DHP

◮ We have G
′

2 = 〈P ′

2〉, P2 = c−1ρ(P ′

2) and P1 =
1
12Tr(P

′

2).

◮ If c is known then co-DHP and co-DHP∗ are provably equivalent.

◮ co-DHP ≤ co-DHP∗:
◮ Given (Q, zP ′

2), compute c−1ρ(zP ′

2) = zP2 and zP ′

2 − czP2 = zP1.
◮ Use a co-DHP∗ solver to find the solution zQ of the co-DHP∗ instance

(Q, zP1, zP2).

◮ co-DHP∗ ≤ co-DHP: Similar argument.

◮ If c is unknown, then co-DHP and co-DHP∗ appear to be unrelated.
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Type 2 vs. Type 3 Pairings

Type 2 versus Type 3: BLS

◮ BLS-3 does not require a stronger complexity assumption as claimed
by the designers.

◮ With the new representation of G′

2, the only difference between
BLS-2 and BLS-3 is that the public key X in BLS-2 is slightly larger
as it includes an extra G1 component.

◮ This G1 component does not play any role in signature generation
and verification.

◮ Kind of an appendage – only role is to compute the map ψ.
◮ [New paradigms in signature schemes: Shacham, 2005]

“the map [ψ] isn’t merely a proof artifact”.
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Type 2 vs. Type 3 Pairings

Type 2 versus Type 3: BLS

◮ BLS-3 does not require a stronger complexity assumption as claimed
by the designers.

◮ With the new representation of G′

2, the only difference between
BLS-2 and BLS-3 is that the public key X in BLS-2 is slightly larger
as it includes an extra G1 component.

◮ This G1 component does not play any role in signature generation
and verification.

◮ Kind of an appendage – only role is to compute the map ψ.
◮ [New paradigms in signature schemes: Shacham, 2005]

“the map [ψ] isn’t merely a proof artifact”.

◮ ψ does not play any cryptographically significant role as far as the
BLS signature is concerned.
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Type 2 vs. Type 3 Pairings

BasicIdent in Type 2

e : G1 ×G
′

2 → GT , G1 = 〈P1〉 and G
′

2 = 〈P ′

2〉.
H : {0, 1}∗ → G

∗

1 is a hash function.

◮ Set-Up: msk: s ∈R Z
∗

p and set Ppub = sP ′

2.

◮ Key-Gen: Given ID ∈ {0, 1}∗, compute QID = H(ID) and set
dID = sQID.

◮ Encrypt: To encrypt M ∈ GT to ID compute QID = H(ID), choose
r ∈R Z

∗

p and set:

C = 〈rP ′

2,M × e(QID,Ppub)
r 〉

◮ Decrypt: To decrypt C = 〈U,V 〉 using dID compute

V × e(dID,U)−1 = M.

Correctness:

e(dID,U) = e(sQID, rP
′

2) = e(QID, sP
′

2)
r = e(QID,Ppub)

r .
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Type 2 vs. Type 3 Pairings

BasicIdent in Type 3

e : G1 × T0 → GT , G1 = 〈P〉 and T0 = 〈P2〉.
H : {0, 1}∗ → T

∗

0 is a hash function.

◮ Set-Up: msk: s ∈R Z
∗

p and set Ppub = sP1.

◮ Key-Gen: Given ID ∈ {0, 1}∗, compute QID = H(ID) and set
dID = sQID.

◮ Encrypt: To encrypt M ∈ GT to ID compute QID = H(ID), choose
r ∈R Z

∗

p and set:

C = 〈rP1,M × e(Ppub,QID)
r 〉

◮ Decrypt: To decrypt C = 〈U,V 〉 using dID compute

V × e(U, dID)
−1 = M.

Correctness:

e(U, dID) = e(rP1, sQID) = e(sP1,QID)
r = e(Ppub,QID)

r .
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Type 2 vs. Type 3 Pairings

BF-IBE in asymmetric setting

◮ Can be instantiated in both Type 2 and Type 3.
◮ Type 3 allows more efficient implementation.
◮ The underlying complexity assumption was thought to be “somewhat

unnatural”.
◮ So Type 2 settings was suggested for implementation.

◮ (D)BDH in Type 3 is at least as hard as in Type 2.
◮ Type 3 is overall a better choice for BF-IBE.
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Type 2 vs. Type 3 Pairings

Type 2 versus Type 3

More generally...

◮ Given any protocol, Protocol-2, described in Type 2 setting, and a
security argument for Protocol-2 wrt some hard problem P-2, there
is:

◮ A natural transformation of Protocol-2 to Protocol-3 that uses a
Type 3 pairing.

◮ A natural transformation of P-2 to P-3.
◮ A natural transformation of the security argument to one for

Protocol-3 wrt P-3.

◮ Protocol-3 is usually more efficient than Protocol-2.

◮ P-3 is at least as hard as P-2 (for appropriately chosen parameters).
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Type 2 vs. Type 3 Pairings

Role of ψ revisited

◮ It appears ψ does not play any significant role in terms of
◮ functionality
◮ security.

◮ Use of ψ may have a negative impact on efficiency.

◮ No reason to use Type 2 instead of Type 3 setting.
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Type 2 vs. Type 3 Pairings

Role of ψ revisited

◮ It appears ψ does not play any significant role in terms of
◮ functionality
◮ security.

◮ Use of ψ may have a negative impact on efficiency.

◮ No reason to use Type 2 instead of Type 3 setting.
◮ But we no longer have the scope to use one more Greek symbol in our

papers!
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Type 4 Pairings

Type 4 Pairings
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Type 4 Pairings

Type 4 Pairing

e : G1 ×G2 → GT

◮ G1 and GT are cyclic groups of prime order n.

◮ But G2 is a non-cyclic group of order n2.

◮ One can efficiently compute the homomorphism ψ : G2 → G1.

◮ One can hash onto G2.
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Type 4 Pairings

Why Type 4?

Consider the following ID-based Key Agreement Protocol [Scott]:

◮ Public hash function H : {0, 1}∗ → G2.

◮ PKG has a master secret s ∈R [1, n − 1].

◮ User A’s pub. key is QA = H(IDA) and PKG provides pvt. key
dA = sQA.

◮ Similarly, B’s pub. key is QB = H(IDB) and pvt. key dB = sQB .

◮ A and B exchange some messages and compute a shared secret

K = e(ψ(QA),QB)
sxy .
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Type 4 Pairings

Type 4 Pairing from BN Curves

◮ Let G1 = E (Fp) and GT be the order-n subgroup of F∗

p12
.

◮ e4 : G1 × E [n] → GT is a Type 4 pairing.

◮ Bitlength of (compressed) elements of G1: 257 and of E [n]: 3073.

◮ Tr(P) =
∑11

i=0 π
i (P) is an efficiently computable homomorphism

from E [n] to G1.

◮ π is the p-th power Frobenius.

◮ Hashing onto E [n] is possible but costly.
◮ Roughly 540 times the cost of a point multiplication in G1

[Chen-Cheng-Smart:2007].
◮ Type 3 Pairing is around 10-times the cost of a point multiplication.
◮ Hashing onto G1 is very cheap.
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Type 4 Pairings

The Trace-0 Subgroup (Recap.)

◮ E [n] contains n + 1 subgroups of order n.

◮ One of them is G1.

◮ Another is the “Trace-0” subgroup, T0.
◮ All points P ∈ E [n] satisfying Tr(P) =

∑11
i=0 π

i (P) = ∞.

◮ T0 can be viewed as having coordinates in Fp2 (instead of Fp12).

◮ Recall that we defined e3 : G1 × T0 → GT .
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Type 4 Pairings

Efficient Representation of E [n]

◮ Define ψ : E [n] → G1 by ψ(Q) = 1
12Tr(Q).

◮ Q − ψ(Q) ∈ T0 for all Q ∈ E [n].
◮ ρ : Q 7→ Q − ψ(Q) is a homomorphism from E [n] onto T0.

◮ Define φ : E [n] → G1 × T0 by φ(Q) = (ψ(Q), ρ(Q)).
◮ φ is an efficiently-computable isomorphism,
◮ The inverse mapping, given by (Q1,Q2) 7→ Q1 + Q2, is also efficiently

computable.

◮ Wlg, elements of E [n] can be represented as pairs of points
(Q1,Q2) ∈ G1 × T0.
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Type 4 Pairings

Hashing onto E [n]

◮ Define H : {0, 1}∗ → E [n] as H(m) = (H1(m),H2(m)).
◮ H1 : {0, 1}

∗ → G1.
◮ H2 : {0, 1}

∗ → T0.

◮ Significantly faster hashing onto E [n].
◮ Hashing onto G1 and T0 requires arithmetic in Fp and Fp2 .
◮ Less than 3 times as costly as a point multiplication in G1.

◮ Hashing into E [n] is 180 times less costly than previously estimated.

◮ If H1 and H2 are modeled as random oracles, then H is also a random
oracle.
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Type 4 Pairings

Type 4 Pairing from Type 3

◮ Let e3 : G1 × T0 → GT be a Type 3 pairing.

◮ Define e4 : G1 × E [n] → GT by e4(P ,Q) = e3(P , Q̂), where

Q̂ = Q − π6(Q).
◮ If Q = (Q1,Q2), then Q̂ = (∞, 2Q2).

◮ e4 is bilinear and can be computed in essentially the same time as e3.

◮ e4 is non-degenerate:

1. ∀P ∈ G1 \ {∞}, ∃Q ∈ E [n] s.t. e4(P ,Q) 6= 1.
2. ∀Q ∈ E [n] \G1, ∃P ∈ G1 s.t. e4(P ,Q) 6= 1.
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Type 4 Pairings

Comparison

E/Fp : Y 2 = X 2 + 3 with BN parameters z = 6000000000001F2D.

Type 3 Type 4
Bitlength of elements in G1 257 257

Bitlength of elements in T0/E [n] 513 770
Bitlength of elements in GT 1,024 1,024

Exponentiation in G1 1,533m 1,533m
Exponentiation in T0/E [n] 3,052m 4,585m

Hashing into G1 315m 315m
Hashing into T0/E [n] 3,726m 4,041m

Pairing 15,175m 15,175m

(Estimated costs are in terms of Fp multiplications.)
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Type 4 Pairings

Protocols in Type 4

◮ Consider Type 4 setting only when
◮ The protocol requires hashing into G2.
◮ Then apply ψ on the hash output.

◮ Remember G2 = E [n] has order n2.
◮ May affect functionality and security in a critical way.
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Type 4 Pairings

Group Signature

◮ Every member has a secret key but there is a single public key for the
whole group.

◮ Group signatures provide signer-anonymity.

◮ Revocation of a user may be critical for some applications.
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Type 4 Pairings

Boneh-Shacham Group Signature

◮ BS group signature allows a verifier to locally check whether the given
signature is generated by a revoked user.

◮ Verifier-local revocation (VLR) group signature.
◮ The signature length is short.
◮ Application: privacy preserving attestation.

◮ Can be implemented in Type 1 but not in Type 2 or Type 3.

◮ The first protocol for which Type 4 setting was introduced
[Shacham:2005].
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Type 4 Pairings

The BS-VLR Protocol

Some essentials:

◮ Employs a Type 4 pairing e4 : G1 × E [n] → GT .

◮ Two hash functions (treated as random oracle):

◮ H0 : {0, 1}
∗ → E [n]× E [n].

◮ H : {0, 1}∗ → [1, n − 1].

◮ Group public key, gpk = (P1,P2,W ) where P2 ∈R E [n], P1 = ψ(P2)
and W = γP2, γ ∈R [1, n − 1].

◮ Pvt. key of user i , gsk[i ] = (Ai , xi ), where xi ∈R [1, n − 1] and
Ai = (γ + xi )

−1P1.

◮ The corresponding revocation token is Ai .
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Type 4 Pairings

Signing and Verification

The protocol is quite involved.

◮ To sign i computes:
◮ (Û, V̂ ) = H0(gpk ,M, r) where M is the message and r ∈R [1, n − 1].
◮ U = ψ(Û) and V = ψ(V̂ ).
◮ T1 = αU and T2 = Ai + αV , where α ∈R [1, n − 1].
◮ Compute helper values R1,R2,R3.
◮ Challenge value, c = H(gpk ,M, r ,T1,T2,R1,R2,R3).
◮ σ contains r ,T1,T2, c and three randomizers (to rederive R1,R2,R3).

◮ σ is accepted as valid if c is a correct challenge and the signer is not
revoked.
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Type 4 Pairings

Revocation Check in BS-VLR Group Signature

◮ A list of revocation tokens (RL) corresponding to the revoked users is
publicly available.

◮ Suppose the signature (σ) is generated by a user i whose revocation
token Ai is in RL.

◮ The correctness of the protocol mandates that σ must be rejected.
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Type 4 Pairings

Revocation Check

◮ The protocol stipulates that σ will be rejected since:

e4(T2 − Ai , Û) = e4(T1, V̂ ) (1)

◮ (Û, V̂ ) = H0(gpk ,M, r) ∈ E [n]× E [n].
◮ T1 = αU and T2 = Ai + αV , where U = ψ(Û) and V = ψ(V̂ ).

◮ So Eqn. 1 can be rewritten as:

e4(αV , Û) = e4(αU, V̂ ) (2)

◮ Trivially holds if both Û, V̂ are from same order-n subgroup of E [n].
◮ Write Û = xV̂ (and U = xV ).
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Type 4 Pairings

Another Look at the Revocation Check

◮ But E [n] is a group of order n2!

◮ Û, V̂ are obtained through hashing into random elements of E [n].
◮ The probability that they belong to the same order-n subgroup of E [n]

is negligibly small.

◮ With overwhelming probability Eqn. 2 will not hold.

◮ A signature generated by a revoked user will be accepted as valid.
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Type 4 Pairings

Another Look at the Revocation Check

◮ But E [n] is a group of order n2!

◮ Û, V̂ are obtained through hashing into random elements of E [n].
◮ The probability that they belong to the same order-n subgroup of E [n]

is negligibly small.

◮ With overwhelming probability Eqn. 2 will not hold.

◮ A signature generated by a revoked user will be accepted as valid.

◮ The protocol is not secure!

◮ So also the protocols that extend the idea of BS-VLR group signature.
◮ Nakanishi and Funabiki [2006].
◮ Bringer et al. [2008].
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Type 4 Pairings

What’s Wrong with the Security Argument?

◮ Security mandates that the protocol satisfies correctness, traceability
and selfless-anonymity properties.

◮ Fails to satisfy the correctness property when we work in E [n].
◮ By implication the traceability property is violated.

◮ The arguments hold if we restrict to a order-n subgroup of E [n].
◮ Not instantiable in Type 2 or Type 3 settings.
◮ Can be instantiated in Type 1, but the signature is no longer short.
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Type 4 Pairings

Rescuing BS-VLR Scheme

Essential idea:

◮ For random Û, V̂ ∈ E [n] in general one cannot expect

e
(

αψ(V̂ ), Û
)

= e
(

αψ(Û), V̂
)

.

◮ But bilinearity of e ensures

e
(

αψ(V̂ ), Û
)

= e
(

ψ(V̂ ), αÛ
)

.

◮ Revocation check works properly if we send T̂1 = αÛ ∈ E [n] instead
of T1 ∈ G1 as part of σ.

◮ For each A ∈ RL check whether the following holds:

e(T2 − A, Û) = e(V , T̂1).
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Type 4 Pairings

Modified BS-VLR

◮ Key generation algorithm remains unchanged.

◮ Define H0 : {0, 1}
∗ → E [n]×G1.

◮ To sign, compute (Û,V ) = H0(gpk ,M, r) and T̂1 = αÛ.
◮ Use T̂1 and Û to compute R3 and T̂1 to compute c .
◮ Send T̂1 ∈ E [n] (not T1 ∈ G1) as part of σ.

◮ To verify:
◮ Use T̂1, Û to rederive R3.
◮ Use T1 = ψ(T̂1) to rederive R1.
◮ Use T̂1 to rederive c .
◮ Use T̂1 in revocation check.

◮ The signature now contains an element of E [n].
◮ With the new representation, the increase in signature length is only

513 bits.
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Type 4 Pairings

Is the Protocol Secure?

It appears so!

◮ Correctness is easy to check.

◮ The original argument concerning traceability should also carry over.

◮ But the selfless-anonymity argument requires some twists!

◮ The original argument is flawed.
◮ Concerns a proper simulation of H0.
◮ Must ensure that each query to H0 returns a random element from

E [n].

◮ The new representation of E [n] comes to the rescue.
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Type 4 Pairings

Selfless-Anonymity

Essential idea:

◮ Decision Linear problem:
Given (U0,U1, aU0, bU1,V ,Z ) where U0,U1 ∈R E [n],
a, b ∈R [1, n − 1], decide whether Z = (a+ b)V or Z ∈R G1.

◮ In the original argument, the RO output Û is restricted to the order-n
subgroup 〈U0〉.

◮ For a proper simulation Û must be a random element of E [n].

◮ Represent U0 = (U0,1,U0,2) ∈ G1 × T0.

◮ From U0 one can derive another random element in E [n] as
Ũ0 = (U0,1, xU0,2) where x ∈R [1, n − 1].

◮ Allows a proper simulation of the RO and also to patch the signature
component T̂1 appropriately.
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Beyond R/O

Protocols w/o Random Oracle
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Beyond R/O

Identity-Based Encryption

◮ Waters 2005:
◮ Security is based on DBDH.
◮ Rather large public parameters.
◮ Reduction is not tight.

◮ Gentry 2006:
◮ Simple construction with constant size public parameter.
◮ Tight security reduction...but based on non-static, non-standard

assumption (decisional q-ABDHE).
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Beyond R/O

Dual system encryption

[Waters 2009]

◮ Constant size public parameters.

◮ Security based on static assumptions (DBDH and DLIN).

◮ Reduction is not tight.

◮ Polynomial degradation for hierarchical IBE.
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Beyond R/O

A variant of Waters IBE

e : G×G → GT , G = 〈P〉

ID: ℓ blocks of k/ℓ-bits.

◮ Set-Up: Choose random x ∈ Z
∗

p and P ,P2,U
′U1, . . . ,Un from G.

Set xP = P1.
msk: xP2 and PP = (P ,P1,P2,U

′,U1, . . . ,Uℓ).

◮ Key-Gen: ID = (ID1, . . . , IDℓ), IDi is a block of k/ℓ-bits.

dID = (xP2 + rV , rP) where

V = U ′ +
ℓ

∑

i=1

IDiUi .
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Beyond R/O

Waters IBE (Contd.)

V (ID) = U ′ +
∑ℓ

i=1 idiUi ; ID = (id1, . . . , idℓ

◮ Encrypt: M ∈ GT encrypted for ID as

C = (e(P1,P2)
t ×M, tP , tV ).

◮ Decrypt: Decrypt C = (C1,C2,C3) using dID = (d1, d2) as

C1 ×
e(d2,C3)

e(d1,C2)
.

Correctness:

e(d2,C3)

e(d1,C2)
=

e(rP , tV )

e(xP2 + rV , tP)
=

1

e(P1,P2)t
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Beyond R/O

Signature

◮ Boneh-Boyen short signature [2004].

◮ Waters signature [2005].
◮ Obtained through Naor’s transformation on Waters IBE.
◮ Security is based on CDH.
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Beyond R/O

Boneh-Boyen Signature

◮ Key-Gen: P1 ∈R G1 and P2 ∈R G2, x , y ∈R Z
∗

n, compute U = xP2,
V = yP2 and Z = e(P1,P2). Pub. key: (P1,P2,U,V ,Z ) and sec.
key: (x , y).

◮ Signing: Given sk: (x , y) and mesg. m ∈ Z
∗

n; pick r ∈R Z
∗

n, compute
σ = 1/(x +m + yr)P1. The signature is (σ, r).

◮ Verication: Given pk = (P1,P2,U,V ,Z ), m ∈ Z
∗

n and (σ, r), accept
iff

e(σ,U +mP2 + rV ) = Z .

Correctness:
e(σ,U +mP2 + rV ) = e(1/(x +m + yr)P1, (x +m + ry)P2) = e(P1,P2).
Security is based on a non-static assumption: strong q-DH.
The question of equivalence...
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Conclusion

Pairing over composite order groups

e : G×G → GT

|G| = |GT | = pq, (p, q): secret (prime).

◮ Introduced by Boneh-Goh-Nissim [2005].
◮ Homomorphic encryption.
◮ Private Information Retrieval.

◮ Non-interactive zero knowledge [Groth-Sahai 2008].

◮ Hierarchical IBE [Lewko-Waters 2010].

◮ Traitor tracing, attribute-based encryption...
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Conclusion

Composite order setting

◮ Subgroup decision assumption:
◮ Given P ∈ G decide whether P is of order p.
◮ n(= pq) must be infeasible to factor.

◮ [Freeman:2010] A framework to convert protocols from composite to
prime order groups.

◮ [Meiklejohn-Shacham-Freeman:2010] Not all protocols can be so
converted.

◮ [Boneh-Rubin-Silverberg:2009] Composite order pairing-friendly
groups.

◮ [Kobliz:2010] “A Security Weakness in Composite-Order
Pairing-Based Protocols with Imbedding Degree k > 2.”
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Conclusion

Research directions

◮ Protocols
◮ Design new protocols, e.g., employ the dual-system encryption

paradigm.
◮ Improve existing ones.

◮ Introduce a new pairing or pairing-friendly curves.

◮ Efficient implementation of pairing (and protocols).
◮ From 16 min. to less than a millisecond...

◮ Analyse pairing-based protocols in terms of functionality, security and
efficiency.

◮ Move to higher genus.
◮ Some work has appeared for Genus-2 pairing.
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Conclusion

Still interested?
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Conclusion

Still interested?

◮ Rush to Yamanaka Hot Spring to attend Pairing 2010.
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◮ Talk to people at the sideline of Indocrypt 2010.
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Conclusion

Still interested?

◮ Rush to Yamanaka Hot Spring to attend Pairing 2010.

◮ Talk to people at the sideline of Indocrypt 2010.

◮ Sit back and relax...
◮ I guess there will be another tutorial on Pairing-Based Crypto at

Indocrypt 2018.
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Conclusion

In lieu of a conclusion

Where the mind is without fear and the head is held high
Where knowledge is free
Where the world has not been broken up into fragments
By narrow domestic walls
Where words come out from the depthsof truth
Where tireless striving stretches its arms towards perfection
Where the clear stream of reason has not lost its way
Into the dreary desert sand of dead habit
Where the mind is led forward by thee
Into ever-widening thought and action
Into that heaven of freedom, my Father, let my country awake.
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