
Software Implementation of
Gong-Harn Public-key Cryptosystem

and Analysis

by

Susana Sin

A thesis

presented to the University of Waterloo

in fulfilment of the

thesis requirement for the degree of

Master of Applied Science

in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2004

c©Susana Sin, 2004



I hereby declare that I am the sole author of this thesis.

I authorize the University of Waterloo to lend this thesis to other institutions or individ-

uals for the purpose of scholarly research.

Susana Sin

I further authorize the University of Waterloo to reproduce this thesis by photocopying

or other means, in total or in part, at the request of other institutions or individuals for

the purpose of scholarly research.

Susana Sin

iii



The University of Waterloo requires the signatures of all persons using or photocopying

this thesis. Please sign below, and give address and date.

iv



Abstract

With the emergence of the 3G (third-generation) networks for mobile communications,

data security becomes ever more important. Designing cryptosystems that meet both

power constraints and computing constraints of mobile units is very challenging. The

Gong-Harn Public-Key Cryptosystem (GH-PKC) reduces the size of the modulus and

speeds up the computations with the same degree of security as existing cryptosystems.

This thesis focuses on the software implementation of the GH-PKC and provides an

analysis of its performance over the existing cryptosystems. The GH Diffie-Hellman

(GH-DH) key agreement protocol and the GH digital signature algorithm (GH-DSA)

is implemented in both C++ and Java. The Diffie-Hellman key agreement protocol

and Digital Signature Scheme have also been implemented in Java for comparison. To

analyze the performance on constrained devices, RIM’s Blackberry handheld is chosen

as a platform.
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Chapter 1

Introduction

With the emergence of the third generation network for mobile communication, while

speech transmission is still dominating the airway, the demands for fax, short messages

and data transmissions are growing rapidly. Combined with the rapid development of

Internet applications, data security becomes even more important. Designing cryptosys-

tems that meet both power constraints and computing constraints of mobile units is very

challenging.

In traditional cryptography, encryption and decryption are performed using the same

secret key. This method is known as secret key or symmetric cryptography. The main

challenge is getting the sender and the receiver to agree on the secret key without anyone

else finding out. When the sender and the receiver are physically apart, they agree on

the secret key through a trusted third party to prevent the disclosure of the secret key.

1



2 CHAPTER1. INTRODUCTION

An example of secret key cryptography can be found in Global System for Mobile

Communication (GSM) networks. In a GSM network, an 128-bit secret key, ki, is shared

between a mobile device and the system which is used for both authentication and cipher

key generation. The algorithms for authentication and cipher key generation are A3 and

A8 respectively. Both algorithms take in the same input: the subscriber’s ki and a 128-bit

random challenge sent by the Mobile Switching Center (MSC), they are combined into

a single algorithm known as COMP128 [2]. Several attacks have already been done on

the algorithm, which allow the retrieval of the full 128-bit ki in as few as seven chosen

plaintext attacks [21].

Public-key cryptography, however, resolves the key management problem. The the-

oretical concept of public-key cryptography was developed by Diffie and Hellman [5] in

1976. In a public-key cryptosystem (PKC), each user gets a pair of keys: private key and

public key. As implied by the name, the public key is published whereas the private key is

kept secret. The private key is used to generate the public key, but the public key cannot

be used to determine what the associated private key is. Diffie and Hellman proposed

the Diffie-Hellman (DH) key agreement protocol [5] which allows users to exchange secret

keys over an insecure channel without any prior shared secret. This protocol provides

the basic operation for Internet Key Exchange (IKE) protocol [4]. The security of DH is

based on intractability of discrete logarithm (DL) problem in GF(p) and all operations

are performed in GF(p). The parameter p in DH key agreement protocol is called a

modulus. An increase in modulus by n bits contributes to an increase in security by n

bits. Public-key cryptography is mainly applied in encryption/decryption schemes and

digital signature schemes. The fourth-generation (4G) mobile network is already being

designed to utilize public key cryptography.
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For encryption purposes, a sender only needs to know the receiver’s public key in order

to encrypt a message. This encrypted message can only be decrypted by the designated

receiver using the private key. The RSA scheme was developed by Rivest, Shamir and

Adleman [27] in 1978. The security is based on intractability of integer factorization of

the parameter n. A year later, Rabin developed the Rabin scheme [26] as an alternative

to the RSA. The security is based on the intractability of factoring and the computational

equivalence of square root and factoring.

Digital signature schemes are designed to provide the digital counterpart to hand-

written signatures. They provide data integrity, data origin authentication, and non-

repudiation. A digital signature is generated based on the content of the message being

signed and some secrets known only to the signer including the private key and the sign-

ing key. It must be verifiable by any user in the system without accessing the signer’s

secret information.

Digital signature schemes are classified according to the underlying mathematical

problem which provides the basis for their security in IEEE Standard Specifications for

Public Key Cryptography [14]:

1. Discrete Logarithm schemes: security is based on the intractability of the DL prob-

lem in a finite field. Examples include ElGamal [6], DSS [20], Schnorr [30] and

Nyberg-Rueppel [24, 25] signature schemes.

2. Integer Factorization (IF) schemes: security is based on the intractability of the

integer factorization problem. Examples include RSA [27] and Rabin [26] signature

schemes.
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3. Elliptic Curve (EC) schemes: security is based on the intractability of the elliptic

curve DL problem. Examples include Elliptic Curve Digital Signature Algorithm

[15, 18, 1].

A sequence generated by linear feedback shift register (LFSR) with a specific initial

state is called a characteristic sequence. Cryptosystems that make use of characteris-

tic sequences have the benefit in reducing the size of the modulus while speeding up

the computations with the same degree of security as existing cryptosystems. These

cryptosystems are desirable as they can minimize computational cost.

In 1994, Smith and Skinner proposed the LUC Public-key cryptosystem [32, 33] which

is based on second-order characteristic sequences over GF(p), where p is a prime num-

ber. The security is based on the intractability of DL problem in GF(p2) while all the

operations are performed in GF(p). In 1999, Gong and Harn proposed the Gong-Harn

Public-key Cryptosystem (GH-PKC) [10, 11] which is based on third-order characteristic

sequences over GF(q), where q equals to p or p2. The security is based on the intractabil-

ity of DL problem in GF(q3) while all the operations are performed in GF(q). In 2000,

Lenstra and Verheul proposed the XTR Cryptosystem [16, 17] which is based on third-

order characteristic sequences over GF(p2) with a special polynomial. The security is

based on the intractability of DL problems in GF(p6) while all the operations are per-

formed in GF(p2). Note that both the GH-PKC and the XTR cryptosystem are based on

third-order characteristic sequences, and thus, are very similar. The difference between

the two cryptosystems is that XTR requires a special polynomial to generate third-order

characteristic sequences. In 2003, Giuliani and Gong proposed a cryptosystem which ana-

logues to both the GH and XTR cryptosystems using fifth-order characteristic sequences
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over GF(q) where q equals to p or p2 [8, 9]. The security is based on the intractability

of DL problem in GF(q5) while all the operations are performed in GF(q). Therefore, an

increase in p by n bits contributes to an increase in security by 2n bits for LUC, 3n bits

or 6n bits for GH, 6n bits for XTR and 5n or 10n bits for the public-key cryptosystem

based on quintic finite field extensions [8, 9]. Note that LUC, GH, XTR and the public-

key cryptosystem based on quintic finite field extensions are non-standardized public-key

algorithms.

Gong and Harn proposed the GH Diffie-Hellman (GH-DH) key agreement protocol in

[10] and the GH Digital Signature Algorithm (GH-DSA) in [11]. GH-DH key agreement

protocol and GH-DSA, like DH and DSS, belong to the DL class of PKC. They aim to

improve the performance over existing DH and DSS systems while maintaining the same

level of security. The goal of this research is to implement the GH-DH key agreement

protocol and the GH-DSA in software over GF(p) with 1024-bit security. Some design

issues that encountered during the course of this implementation is presented in the

thesis. Experiments have been done for bandwidth saving problem in the GH-DSA,

which provide a certain guidance for theoretically solving this problem. This thesis also

includes an implementation of DH and DSS systems. Analysis and comparisons are done

based on the author’s own implementation as existing commercial implementations of

DH and DSS are heavily optimized. Timing analysis is done on a personal computer as

well as on a constrained device.

This thesis is organized as follows. Chapter 2 reviews the Diffie-Hellman key agree-

ment protocol and the Digital Signature Standard. It also explains the third-order char-

acteristic sequences and the concept of reciprocal sequences. Three algorithms for com-

puting sequence terms in third-order characteristic sequences are provided in Chapter 3.
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Chapter 4 presents the GH-PKC, including the GH Diffie-Hellman key agreement proto-

col and the GH digital signature algorithm. Chapter 5 explains the design issues for the

software design. Chapter 6 provides the details about software implementation including

design, testing, parameters, platforms and problems encountered. Timing analysis are

shown and discussed in Chapter 7. Finally, Chapter 8 provides concluding remarks and

discussion about future research.

Note that RSA and EC cryptosystems are the two other popular public-key cryp-

tosystems to provide key exchange and digital signature. In this thesis, only the DH

and DSS are used for comparison because the exponentiation in DH and DSS can be

considered as the kth term generated by a first-order characteristic sequence.



Chapter 2

Public-key Cryptosystems and

Third-order Characteristic

Sequences

First we consider Diffie-Hellman (DH) key agreement protocol [5] and Digital Signature

Standard (DSS) [20]. To have 1024-bit security, both DH and DSS require a 1024-bit

prime p. Exponentiations are performed using the square-and-multiply algorithm.

The GH-PKC makes use of third-order characteristic sequences. Elements required

to generate a third-order characteristic sequence will also be explained in this chapter.

In order to understand the arithmetic in the next chapter, the idea of reciprocal sequence

[10] will also be illustrated here.

7



8 CHAPTER 2. PKC AND THIRD-ORDER CHARACTERISTIC SEQUENCES

2.1 Diffie-Hellman Key Agreement Protocol

The Diffie-Hellman (DH) key agreement protocol was developed by Diffie and Hellman

in 1976 [20]. The protocol allows two users to agree on a secret key over an insecure

medium without any prior shared secret.

System parameters for the DH key agreement protocol are public and are used by all

users in the system. The system parameters include a prime number, p, and a primitive

element, α, in GF(p). A primitive element α of GF(p) for a given p is an integer between

1 and p− 1 that satisfies the following property: for every number n between 1 and p− 1

inclusively, there is a power k of α such that n = αk (mod p).

Suppose Alice and Bob want to agree on a shared key using the DH key agreement

protocol. First, each user selects his/her private key from the set {1, . . . , p− 1} which is

co-prime with p− 1. In other words, Alice and Bob choose their private keys xA and xB

that satisfy:

0 < xA, xB < p− 1, gcd(xA, p− 1) = 1 and gcd(xB, p− 1) = 1.

Then they derive their public keys yA and yB using the system parameters p and α as:

yA = αxA (mod p) and yB = αxB (mod p).

The private keys are used for public key generation only, and must be kept secret.

To initiate a session, Alice sends her public key to Bob. Bob replies by sending his
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public key to Alice. Then Alice and Bob can compute their shared secret key as follows:

Alice : yB
xA (mod p) = (αxB)xA (mod p) = αxAxB (mod p)

Bob : yA
xB (mod p) = (αxA)xB (mod p) = αxAxB (mod p).

This shared key secret key is generated using their public keys transmitted through an

insecure channel. Figure 2.1 summarizes this protocol.

yA = αxA mod p

and gcd(xA, p− 1) = 1

Shared Secret
Key:

yB
xA mod p

= (αxB )xA mod p

yA
xB mod p

= (αxA)xB mod p

Bob

xB , with 0 < xB < p− 1
and gcd(xB , p− 1) = 1

yB = αxB mod p

yA

yB

System Parameters:

p, a prime number
α, a primitive element in GF(p)

Secret Key:

Alice

Public Key:

xA, with 0 < xA < p− 1

Figure 2.1: DH Key Agreement Protocol
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2.2 Digital Signature Standard

Digital Signature Algorithm was proposed by the US National Institute of Standards and

Technology (NIST) in August 1991 and was specified as Digital Signature Standard(DSS)

in a US Government Federal Information Processing Standards FIBS 186 [20] in May

1994. The DSS can be viewed as a variant of the ElGamal signature scheme [6].

System parameters for DSS are also public and are used by all users in the system.

The system parameters include p which is the same as in the previous section. Another

system parameter q is required which is a prime factor of p−1. According to the National

Institute of Standards and Technology (NIST) standards [20], q should be a 160-bit prime.

Instead of using the primitive element in the previous section, an element, g, in GF(p)

with order q is used. It can be selected in the following way:

For an integer u with 0 < u < p, if

u
p−1

q (mod p) 6= 1

then set g equals to

g = u
p−1

q (mod p)

such that

gq (mod p) = 1.

This is derived from the fact that every number u between 1 and p− 1 inclusively must

satisfy:

up−1 (mod p) = 1.
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2.2.1 DSS Signature Generation

Suppose Alice would like to sign a message using DSS and send it to Bob. Alice first

selects her private key, x, such that:

0 < x < q and gcd(x, q) = 1

and computes her public key, y, using the system parameters p and g as:

y = gx (mod p).

Then Alice randomly chooses a signing key, k, that satisfies:

0 < k < q and gcd(k, q) = 1

and computes

r = αk (mod p).

Both the private key x and signing key k are used for signature generation only, and

must be kept secret. The private key x can be used for a period of time. However, the

signing key k must be regenerated for each signature.

Instead of signing the whole message m, she signs the hashed value of m instead. She

computes:

h = h(m)

where h(·) is a hash function, such as MD5 [28] and SHA-1 [19], that Alice and Bob agree

upon. Then, Alice solves for t in the signing equation:

h = kt + xr (mod q).
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Then (r, t) is a digital signature of the message m. The signing process is summarized

below:

1. Randomly choose k, with 0 < k < q and gcd(k, q) = 1.

2. Compute r = gk (mod p) (mod q).

3. Compute h = h(m), where h(·) is a hash function and m is the message to be

signed.

4. Solve for t in the signing equation h = xr + kt (mod q).

Digital signature of message m is (r, t).

2.2.2 DSS Signature Verification

Bob verifies Alice’s signature by checking if the signing equation is true. Since x and k

are unknown to Bob, he cannot verify the equation simply by checking each parameters.

Instead, he put both sides of the equation as powers of g as follows:

gh = grx+kt

= grxgkt

= yrrt

where g is one of the public system parameters, y is Alice’s public key, h is the hashed

value of message m and (r, t) is the digital signature of m. These parameters are known

to Bob. The above equation involves three exponentiations. To minimize the number of
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exponentiation, consider the equation as:

gh = yrrt

ghy−r = rt

ght−1

y−rt−1

= r

which involves only two exponentiations. Bob accepts Alice’s signature only if the above

equation is true.

Notice that the private and public keys used in the DH key agreement protocol are

different from the ones used in DSS. The private key x in the DH key agreement protocol

is taken from the set {1, . . . , p − 1} and the public key is computed as αx (mod p),

whereas in DSS, the private key x is taken from the set {1, . . . , q − 1} and the public

key is computed as gx (mod p). Therefore, each user has to keep two sets of private and

public keys for DH key agreement protocol and for DSS respectively.

2.3 Third-order Characteristic Sequences

A third-order characteristic sequence is a sequence generated by an irreducible polyno-

mial f(x) of degree three over GF(p), where p is a prime, using specific initial states.

This sequence can also be regarded as a linear feedback shift register (LFSR) sequence

generated by f(x).

An irreducible polynomial f(x) of degree three over GF(p) has the form:

f(x) = x3 − ax2 + bx− 1
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where the coefficients a and b are elements in GF(p). A third-order characteristic sequence

{sk(a, b)}, or just {sk} if its context is clear, generated by f(x) is defined as:

sk+3 = ask+2 − bsk+1 + sk, for all k ≥ 0

where the initial state is chosen as:

s0 = 3, s1 = a, s2 = a2 − 2b.

Thus, sk denotes the kth term in the sequence. The kth state is denoted as:

sk = (sk, sk+1, sk+2).

The period of this characteristic sequence, Q, is a factor of p2 + p + 1 and the maximum

period is:

Q = p2 + p + 1.

Any polynomial which has the form:

fk(x) = x3 − sk(a, b)x2 + s−k(a, b)x− 1

is also an irreducible polynomial with the same period as f(x) if and only if k and Q are

co-prime.

2.4 Reciprocal Sequences

Given the irreducible polynomial f(x) in Section 2.3, the reciprocal polynomial is:

f−1(x) = x3 − bx2 + ax− 1.
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By choosing the corresponding initial states as given in Section 2.3, the sequence gener-

ated by f−1(x) is also a third-order characteristic sequence and it is denoted as {sk(b, a)}.
This sequence is the reciprocal sequence of {sk(a, b)}. The kth term in the reciprocal se-

quence {sk(b, a)} is the same as the −kth term in the sequence {sk(a, b)}. An example

of third-order characteristic sequence is shown in Figure 2.2, where

sk+3 = −sk+1 + sk and s−(k+3) = s−(k+1) + s−k, for k = 0, 1, . . . , 30

and the initial states are:

(s0, s1, s2) = (3, 0, 3) and (s0, s−1, s−2) = (3, 1, 1).
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Figure 2.2: A third-order characteristic sequence



Chapter 3

Algorithms for Computing Sequence

Terms

Three algorithms for computing the sequence terms in a third-order characteristic se-

quence given in references [10] and [11] are shown in this chapter.

3.1 Dual-State Fast Evaluation Algorithm (DSEA

Algorithm)

The DSEA algorithm is an efficient algorithm for computing the ±kth terms in a third-

order characteristic sequence generated by an irreducible polynomial f(x) over GF(p).

17
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Basically, there are two sets of equations to be used depending on the bits in the binary

representation of k.

First, express k in binary representation:

k =
n∑

i=0

ki2
n−i = k02

n + k12
n−1 + · · ·+ kn

where n + 1 is the number of bits required to represent k in the binary form and n can

be calculated as:

n = blog2kc.

A set of variable Tj is defined as follows:

T0 = k0 = 1, Tj = kj + 2Tj−1, for 1 ≤ j ≤ n.

Since T0 equals to k0, which is the most significant bit in the binary representation of k,

it must have the value of 1. Using the recursive equation given above to compute Tj, for

j from 1 to n, the last value Tn equals to k.

To make it easier to see the terms in the two sets of equations in the algorithm, two

variables are defined as:

t = Tj−1, t′ = Tj.

The two sets of equations to be used that depend on the bits in the binary represen-

tation of k are:

For kj = 0:

st′+1 = stst+1 − as−t + s−(t−1)

st′ = s2
t − 2s−t

st′−1 = stst−1 − bs−t + s−(t+1).
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For kj = 1:

st′+1 = s2
t+1 − 2s−(t+1)

st′ = stst+1 − as−t + s−(t−1)

st′−1 = s2
t − 2s−t.

By having a for-loop for j from 1 to n, depending on the value of kj, the corresponding

set of equations will be chosen in the iteration to compute (st′+1, st′ , st′−1) terms. Notice

that in the two sets of equations, there are some terms that belong to the reciprocal

sequence {sk(b, a)} such as s−t. The st term used in the jth iteration is the st′ term

computed in the (j − 1)th iteration. Similarly, the s−t term used in the jth iteration is

the s−t′ term computed in the (j − 1)th iteration. The s−t′ term can be computed by

interchanging a and b to form the reciprocal polynomial f−1(x) and by interchanging all

sk terms with s−k terms. Therefore, in each iteration, the corresponding set of equations

need to be executed twice to obtain the (st′+1, st′ , st′−1) and (s−(t′+1), s−t′ , s−(t′−1)) terms.

After the last iteration is performed, the st′ and the s−t′ terms are the sk and the s−k

terms respectively.

The corresponding set of equations are executed twice in each iteration and there are

n iterations in total. The number of multiplications in the sets of equations corresponding

to kj equals 0 and kj equals 1 are five and four respectively. On average, the probability

that kj equals 0 or 1 is 1
2
. Therefore, on average, the total number of multiplications in

GF(p) to obtain s±k is:

2 · n · [Pr(kj = 0) · 5 + Pr(kj = 1) · 4] = 2 · blog2kc ·
(

1

2
· 5 +

1

2
· 4

)
= 9blog2kc.
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3.2 Computation of a Previous Sequence Term

In paper [11], it is proven that the third-order characteristic sequence has the properties

of duality and redundancy. Three elements in any state of the third-order characteristic

sequence are not independent. If any two consecutive elements are known, the third

remaining one can be uniquely determined as follows.

Let

∆ = sk+1s−(k+1) − s1s−1.

Then s±(k−1) can be computed as:

sk−1 =
es−(k+1) − s−1D(e)

∆

s−(k−1) =
D(e)sk+1 − s1e

∆

where

D(sk) = s−k

e = −s−1D(c1) + c2

c1 = s1sk+1 − s−1sk

c2 = s2
k − 3s−k + (b2 − a)s−(k+1).

Since ∆ appears in the denominator in the above equations, ∆ cannot be zero.
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3.3 Computation of a Mixed Term

The procedure to compute a mixed term s±u(k+v) with known s±(k−1) state requires the

basics of sequence theory. First, compute the sequence term sk+v. Then, construct

another irreducible polynomial as:

g(x) = x3 − sk+vx
2 + s−(k+v)x− 1

and compute the ±uth sequence terms generated by g(x) using the DSEA algorithm.

This gives s±u(k+v) terms in the sequence generated by f(x).

In the paper about GH-DSA[11], it is stated that s±(k+v) terms can be computed

using the DSEA algorithm. However, it is not true. In order to compute s±(k+v) terms,

general results of LFSR sequences should be used. The algorithm for computing sk+v

terms is given in reference [12].

Define a transitional matrix, matrix A, as:

A =




0 0 1

1 0 −b

0 1 a


 .

When the kth state is multiplied by matrix A, it gives:

sk · A = (sk, sk+1, sk+2) ·




0 0 1

1 0 −b

0 1 a




= (sk+1, sk+2, sk − bsk+1 + ask+2)

= sk+1
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which is the next state of the LFSR.

Define a state matrix, matrix Mn, as:

Mn =




sn−2 sn−1 sn

sn−1 sn sn+1

sn sn+1 sn+2


 .

The following properties are given in reference [12]:

1. sv = s0 · Av = s1 · Av−1 = · · · = sv−1 · A, v = 1, 2, . . . .

2. Mv = M0 · Av ⇒ Av = M−1
0 ·Mv, if det(M0) 6= 0.

In general,

sk+v = sk · Av = sk · (M−1
0 ·Mv)

= sk ·







s−2 s−1 s0

s−1 s0 s1

s0 s1 s2




−1

·




sv−2 sv−1 sv

sv−1 sv sv+1

sv sv+1 sv+2





 , if det(M0) 6= 0.

In particular, the sk+v term is equal to sk multiplies to the first column of (M−1
0 ·Mv).

Since state sk−1 is known instead of state sk, the sk+v term is equal to sk−1 multiplied

by the middle column of (M−1
0 ·Mv). To construct the matrix Mv, sv−2, sv−1, sv, sv+1

and sv+2 are required. Sequence terms (sv−1, sv, sv+1) can be obtained using the DSEA

algorithm. The terms sv−2 and sv+2 can be obtained by:

sv+2 = asv+1 − bsv + sv−1

sv−2 = sv+1 − asv + bsv−1.
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Similarly, it can be done for the s−(k+v) term.

The mixed term algorithm is summarized below:

1. Compute sv−1 state and its dual generated by f(x) using the DSEA algorithm.

2. Construct Matrix M0 and compute M−1
0 .

3. Compute sv−2 and sv+2 terms and construct Matrix Mv.

4. Compute sk+v term by multiplying sk−1 by the middle column of M−1
0 ·Mv.

5. Repeat step 2 to 4 to compute s−(k+v) term.

6. Construct g(x) = x3−sk+vx
2 +s−(k+v)x−1 and compute the ±uth terms generated

by g(x) using the DSEA algorithm.



Chapter 4

Gong-Harn Public-Key

Cryptosystem

The GH-PKC is explained in this chapter including GH Diffie-Hellman key agreement

protocol and GH digital signature algorithm.

4.1 GH Diffie-Hellman (GH-DH) Key Agreement Pro-

tocol

The GH-DH key agreement protocol is basically a Diffie-Hellman-like key agreement

protocol using sequence terms. The DSEA algorithm was developed to compute these

24
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sequence terms efficiently. A pair of common keys between two users is generated by

polynomials using each other’s public key pair as coefficients.

The system parameters include a prime number p and an irreducible polynomial

f(x) = x3 − ax2 + bx − 1 over GF(p) which are public and are used by all users in the

system.

Suppose Alice and Bob want to agree on a shared key using the GH-DH key agreement

protocol. First, they choose their own private keys xA and xB that satisfy:

0 < xA, xB < p2 + p + 1, gcd(xA, p2 + p + 1) = 1 and gcd(xB, p2 + p + 1) = 1

to ensure the polynomial they generate later is also irreducible over GF(p) with the same

period as the period of the sequence generated by f(x).

Alice and Bob compute the ±xth
A and ±xth

B sequence terms generated by f(x), namely

s±xA
and s±xB

, as their public keys using the DSEA algorithm.

They send their public keys to each other to form polynomials fA(x) and fB(x) using

the received public keys as the coefficients. The ±xth
A and ±xth

B terms in the sequences

generated by fA(x) and fB(x) respectively are the common key pair between the two

users. For example, Alice forms a polynomial:

fA(x) = x3 − s+xB
x2 + s−xB

x− 1

and generates the common key pair by computing the ±xth
A terms in the sequence gen-

erated by fA(x), namely s±xA
(sxB

, s−xB
). Figure 4.1 summarizes this protocol.
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s±xA
(sxB

, s−xB
) = s±xB

(sxA
, s−xA

)

System Parameters:

f(x) = x3 − ax2 + bx− 1, an irreducible polynomial over GF(p), where p is a prime number
Q = p2 + p + 1

Secret Key:

Alice

and gcd(xA, Q) = 1
xA, with 0 < xA < Q

Bob

xB , with 0 < xB < Q

gcd(xB , Q) = 1

Public Key Pair:

Polynomial
generated using
the received
public key pair:

Common Key Pair:

fA(x) = x3 − sxB
x2 + s−xB

x− 1

±xA terms generated by fA(x) is
s±xA(sxB , s−xB )

(sxA
, s−xA

) (sxB
, s−xB

)

fB(x) = x3 − sxA
x2 + s−xA

x− 1

±xB terms generated by fB(x) is
s±xB (sxA , s−xA)

(sxA
, s−xA

)

(sxB
, s−xB

)

Figure 4.1: GH-DH Key Agreement Protocol

4.2 GH Digital Signature Algorithm (GH-DSA)

The GH-DSA is similar to the ElGamal signature algorithm. In this thesis, Alice is

assumed to be the signer and Bob is assumed to be the verifier. The system parameters

p, a and b are the same as the last section. Q for the GH-DSA is taken as a factor of

p2 + p + 1. Alice chooses her private key, x, that satisfies:

0 < x < Q and gcd(x,Q) = 1

and computes her public key pair as detailed in the last section.
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4.2.1 Signing Process

Alice randomly chooses a signing key, k, that satisfies:

0 < k < Q and gcd(k, Q) = 1

and computes (sk−1, sk, sk+1) and its dual using the DSEA algorithm, such that sk is

co-prime with Q. If sk is not co-prime with Q, Alice should select another k.

To sign a message, m, Alice computes the hash value of m:

h = h(m)

where h(·) is a hash function, such as MD5 [28] and SHA-1 [19], that Alice and Bob agree

upon. Then, Alice solves for t in the signing equation:

h = kt + xr (mod Q)

where r equals to the sequence term sk. Then (r, t) is a digital signature of the message

m.

Alice sends Bob (m, r, t), together with (sx, sx+1), (sk, sk+1) and their duals. Notice

that only (sk, sk+1) are sent instead of (sk−1, sk, sk+1). Since the previous sequence term

can be computed using the two consecutive sequence terms as described in Section 3.2, it

is not necessary for Alice to send all three terms to the verifier. Therefore, only (sk, sk+1)

are sent to minimize the use of bandwidth.

The signing procedure is summarized below:

1. Compute public keys.
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2. Randomly choose a signing key k with 0 < k < Q and gcd(k, Q) = 1. Compute

(sk−1, sk, sk+1) and its dual using the DSEA algorithm. Set r = sk if gcd(sk, Q) = 1.

3. Compute h = h(m) where m is the message and h(·) is a hash function.

4. Compute t = k−1(h− rx) (mod Q).

Digital signature of message m is (r, t).

4.2.2 Verification Procedure

In the verification procedure, there are two different cases in verifying Alice’s signature

that Bob has to choose from depending on whether t and Q are co-prime.

Case 1: gcd(t, Q) = 1.

In the signing equation, k and x are unknown to Bob, therefore, Bob cannot simply

verify the equation by checking each parameter. However, Bob has Alice public key pair

(sx, s−x). Instead of verifying each parameter in the signing equation, Bob can put both

sides of the signing equation as sequence term indices and verify to see if these sequence

terms match:

sr−1(h−kt) = sx and s−r−1(h−kt) = s−x.

Let

u = −r−1t (mod Q) and v = −ht−1 (mod Q)

where h is the hash value of m using the same hash function as in the signing process.
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Then,

sx = s−r−1t(k−ht−1) = su(k+v) and s−x = sr−1t(k−ht−1) = s−u(k+v).

Bob first computes s±(k−1) terms using the algorithm given in Section 3.2. Then

he computes u and v as shown above. By using the mixed term algorithm given in

Section 3.3, he can compute s±u(k+v) sequence terms and verify to see if they are the

same as s±x. If they match, then Bob accepts Alice’s signature. Case 1 is summarized

as:

1. Compute s±(k−1) using (sk, sk+1) and its duals.

2. Compute u = −r−1t (mod Q) and v = −ht−1 (mod Q).

3. Compute s±u(k+v).

4. Accept signature if s±u(k+v) = s±x.

Case 2: gcd(t, Q) 6= 1.

If t and Q are not co-prime, t−1 (mod Q) does not exist; therefore, Bob cannot use

the same algorithm as in Case 1. Instead, Bob can verify to see if these sequence terms

match:

sh−rs = skt and s−(h−rs) = s−kt.

Let

u = −r (mod Q) and v = −r−1h (mod Q)

where h is the hash value of m using the same hash function as in the signing process.
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Then,

skt = su(x+v) = s−r(x−r−1k) and s−kt = s−u(x+v) = sr(x−r−1k).

Bob first computes s±(x−1) terms using the algorithm given in Section 3.2. Then he

computes u, v as shown above. By using the mixed term algorithm given in Section 3.3,

Bob can compute s±u(x+v) and s±kt sequence terms. If these sequence terms match, then

Bob accepts Alice’s signature. Case 2 is summarized as:

1. Compute s±(x−1) using (sx, sx+1) and its duals.

2. Compute u = −r (mod Q) and v = −r−1h (mod Q).

3. Compute s±u(x+v).

4. Compute s±kt.

5. Accept signature if s±u(x+v) = s±kt.

Similarly to that described at the end of Section 2.2, the private and the public keys

used in the GH-DH key agreement protocol are different from the ones used in the GH-

DSA. The private key x in GH-DH is taken from the set {1, . . . , p2 + p}, whereas in

GH-DSA, the private key x is taken from the set {1, . . . , Q − 1} and Q is a factor of

p2 + p + 1. Therefore, each user has to keep two sets of private and public keys for

GH-DH key agreement protocol and for GH-DSA.



Chapter 5

Design Issues

Three design issues arise during the process of software design: the storage requirement

for recursive iterations in the DSEA algorithm, the percentage of zero ∆ and the matrix

inverse.

5.1 Storage Requirement for DSEA Algorithm

As stated in Section 3.1, since a for-loop from 1 to n is needed to choose the corresponding

set of equations to use depending on the value of kj, it is necessary to consider the storage

requirement for this for-loop. In the two sets of equations as shown in Section 3.1, the six

sequence terms to be computed in each iteration are (s±(t′+1), s±t′ , s±(t′−1)) which require

the use of sequence terms (s±(t+1), s±t, s±(t−1)), which are the six sequence terms generated

31
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in the previous iteration. Therefore, after the sequences terms (s±(t′+1), s±t′ , s±(t′−1)) are

computed, the terms (s±(t+1), s±t, s±(t−1)) can be discarded as they will not be used in

proceeding iterations. Hence, instead of storing the whole sequence, only six values need

to be kept after each iteration.

5.2 The Percentage of Zero ∆

As described in Section 4.2.1, the signer, Alice, only sends (sk, sk+1) and its dual to the

verifier, Bob, in order to reduce the use of bandwidth. Bob should computethe s±(k−1)

terms using the algorithm described in Section 3.2. Alice, as the signer, is responsible

for choosing a value for k such that ∆ is not zero. It is important to investigate the

percentage of ∆ that equals zero to see the tradeoff between bandwidth usage and time

required to choose a valid k. Since there is no theoretical result about the distribution

of zero delta, experiments are performed for this investigation.

Programs written in C++ and Maple are used to compute the value of ∆ for all

sequence terms generated by all irreducible polynomials of degree three over GF(p) for a

given p. When ∆ equals zero, it means that:

sk+1s−(k+1) = s1s−1 = ab.

If sequence terms are organized in two rows as shown in Figure 5.1, the product sk+1s−(k+1)

for a given k is the product of the two sequence terms in the same column. For example,

if k equals to 2, the product sk+1s−(k+1) is:

s3s−3 = s3sQ−3 = sQ−3s−(Q−3)
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which is the same product for k equals to (Q− 4). Therefore, it is sufficient to compute

∆ for k from 1 to (Q− 1)/2 only.

Prime numbers, p, between 5 and 127 are used in the testing and the results are

analyzed. Results for prime p between 5 and 17 are provided in Table 5.1- 5.8. The

percentage of ∆ equals zero for p between 5 and 127 is summarized in Table 5.9.

It is found that for any prime p,

sp = a = s−(p+1)

sp+1 = b = s−p.

In other words, if k equals to either p− 1 or p, the product sk+1s−(k+1) equals to a · b for

any prime p. This restriction is added to the signing key selection.

Besides, if either a or b is zero, k will more likely to yield a zero ∆. This is due to

the fact that a · b equals zero if either a or b is zero. A zero ∆ will result if either sk+1 or

s−(k+1) equals zero. To avoid this, system parameters should be chosen such that both

a and b are non-zero integers. However, if either a or b equals zero, the total number

of multiplications in the DSEA algorithm explained in Section 3.1 can be reduced to

7blog2kc and 8blog2kc respectively. This is a tradeoff between computational cost and

bandwidth usage. If the computational cost is more expensive than the bandwidth usage,

either a or b should be chosen to be zero. In that case, the restriction on k such that ∆

does not equal to zero can be removed as the signer sends (sk−1, sk, sk+1) and its duals

to the receiver.

Moreover, from the result, as p increases, the percentage of ∆ that equals zero de-
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creases in most cases. The percentage of zero ∆ for p = 127 is only 0.08%. The percentage

is low enough to conclude that the cost of re-selecting values for k is lower than the cost

associated with increasing the bandwidth usage. Some of the sequences have a short pe-

riod for certain p, such as p = 19, which causes an increase in the percentage of ∆ being

zero. In choosing system parameters a and b, the sequence period should be considered

to minimize the chance of ∆ equalling zero.

With the additional restrictions on system parameters and the additional rules on

selecting k, it is reasonable to reduce bandwidth usage as a way of minimizing the cost.

5.3 The Matrix Inverse

The algorithm for computing mixed term given in Section 3.3 requires the inverse of

Matrix M0. However, not all matrices are invertible. Matrices are invertible if and only

if their determinants do not equal to zero.

The matrix M0 is:

M0 =




s−2 s−1 s0

s−1 s0 s1

s0 s1 s2


 =




b2 − 2a b 3

b 3 a

3 a a2 − 2b




which is invertible if and only if its determinant is not zero, i.e.:

det(M0) = (b2 − 2a)[3(a2 − 2b)− a2]− b[b(a2 − 2b)− 3a] + 2[ab− 3 · 3] 6= 0.

Since it depends only on a and b, the determinant of M0 can be guaranteed to be non-zero

by choosing a and b correspondingly.
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s1

sQ−1 sQ−(Q−1)/2sQ−(k+1)sQ−3sQ−2 · · · · · ·

s3s2 sk+1 s(Q−1)/2· · · · · ·

E
q
u
iv

al
en

t

s0 s1

s−1 s−2

s2 s3

s−3 · · · s−(Q−1)/2· · ·s−(k+1)

· · · sk+1 · · · s(Q−1)/2

E
q
u
iv
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en

t

s0

sQ−1

s−(Q−1) s−(Q−2) s−(Q−3) · · · s−[Q−(k+1)] · · ·

sQ−(Q−1)/2sQ−2 sQ−3 · · · sQ−(k+1) · · ·

s−[Q−(Q−1)/2]

s0

Figure 5.1: Organizing Sequence Terms
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Table 5.1: Distribution of Zero ∆ for p = 5
(a, b) Seq Period k values Percentage of zero ∆

( 4, 1) 31 4 5 13.33

( 4, 3) 31 4 5 13.33

( 0, 2) 31 4 5 7 8 13 33.33

( 0, 1) 31 3 4 5 6 10 33.33

( 1, 4) 31 4 5 13.33

( 3, 1) 31 4 5 13.33

( 1, 0) 31 3 4 5 6 10 33.33

( 3, 4) 31 4 5 13.33

( 2, 0) 31 4 5 7 8 13 33.33

( 1, 3) 31 4 5 13.33

Table 5.2: Distribution of Zero ∆ for p = 7
(a, b) Seq Period k values Percentage of zero ∆

( 4, 0) 57 6 7 10 11 17 19 25 26 28.57

( 2, 6) 57 6 7 11 17 26 17.86

( 4, 3) 19 6 7 22.22

( 6, 4) 57 6 7 7.14

( 5, 1) 57 6 7 7.14

( 3, 1) 19 6 7 22.22

( 0, 4) 57 6 7 10 11 17 19 25 26 28.57

( 2, 5) 57 6 7 7.14

( 1, 0) 57 6 7 10 11 17 19 25 26 28.57

( 0, 2) 19 6 7 22.22

( 1, 3) 19 6 7 22.22

( 6, 2) 57 6 7 11 17 26 17.86

( 1, 5) 57 6 7 7.14

( 5, 2) 57 6 7 7.14

( 3, 4) 19 6 7 22.22

( 4, 6) 57 6 7 7.14

( 2, 0) 19 6 7 22.22

( 0, 1) 57 6 7 10 11 17 19 25 26 28.57
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Table 5.3: Distribution of Zero ∆ for p = 11
(a, b) Seq Period k values Percentage of zero ∆

( 5, 8) 133 10 11 3.03

( 9,10) 133 10 11 3.03

( 8,10) 133 10 11 3.03

( 6, 5) 133 10 11 3.03

( 8, 0) 133 4 10 11 15 39 40 42 51 54 58 59 16.67

( 0, 7) 133 9 10 11 12 17 22 26 30 49 57 64 16.67

( 8, 6) 19 6 7 22.22

( 4, 2) 133 10 11 3.03

( 0, 4) 133 7 10 11 17 28 36 44 49 50 52 64 16.67

( 9, 6) 133 10 11 3.03

( 8, 5) 133 10 11 3.03

( 8, 9) 19 6 7 22.22

( 9, 3) 133 10 11 3.03

( 1, 7) 133 10 11 3.03

( 7, 6) 133 10 11 3.03

( 3, 5) 133 10 11 3.03

( 4, 6) 7 1 2 66.67

( 3, 7) 133 10 11 3.03

( 6, 9) 133 10 11 3.03

(10, 9) 133 10 11 3.03

( 3, 1) 133 10 11 3.03

( 2,10) 19 6 7 22.22

( 0, 5) 133 7 8 10 11 24 29 33 36 38 44 63 16.67

( 9, 2) 133 10 11 3.03

( 4, 0) 133 7 10 11 17 28 36 44 49 50 52 64 16.67

( 9, 8) 19 6 7 22.22

(10, 8) 133 10 11 3.03

( 6,10) 133 10 11 3.03

( 2, 4) 133 10 11 3.03

( 7, 3) 133 10 11 3.03

( 3, 9) 133 10 11 3.03

( 5, 6) 133 10 11 3.03

( 6, 8) 19 6 7 22.22

( 6, 4) 7 1 2 66.67

( 1, 3) 133 10 11 3.03

( 7, 1) 133 10 11 3.03

( 0, 8) 133 4 10 11 15 39 40 42 51 54 58 59 16.67

( 7, 0) 133 9 10 11 12 17 22 26 30 49 57 64 16.67

( 5, 3) 133 10 11 3.03

( 2, 9) 133 10 11 3.03

(10, 2) 19 6 7 22.22

( 6, 7) 133 10 11 3.03

( 5, 0) 133 7 8 10 11 24 29 33 36 38 44 63 16.67

(10, 6) 133 10 113 3.03
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Table 5.4: Distribution of Zero ∆ for p = 13
(a, b) Seq Period k values Percentage of zero ∆

( 1, 6) 183 12 13 47 59 74 5.49

( 2, 8) 183 12 13 2.20

(12, 6) 61 12 13 6.67

( 1, 8) 183 12 13 18 63 82 5.49

( 9,11) 183 12 13 2.20

( 2,12) 61 12 13 6.67

( 1, 4) 183 12 13 2.20

(11,10) 183 12 13 2.20

( 7, 3) 61 12 13 6.67

( 7,12) 183 12 13 2.20

( 2, 1) 183 12 13 2.20

( 6,10) 61 12 13 6.67

( 6, 1) 183 12 13 47 59 74 5.49

(10, 0) 183 12 13 46 47 59 61 73 74 8.79

( 6, 4) 183 12 13 47 59 74 5.49

( 4, 8) 61 12 13 6.67

( 4, 5) 183 12 13 46 61 73 5.49

(12, 0) 183 12 13 46 47 59 61 73 74 8.79

( 5, 3) 61 12 13 6.67

( 2,10) 183 12 13 46 61 73 5.49

(10, 5) 183 12 13 2.20

( 3,10) 61 12 13 6.67

(10, 6) 61 12 13 6.67

( 8, 2) 183 12 13 2.20

(12, 9) 183 12 13 2.20

( 9, 6) 183 12 13 2.20

( 5,11) 61 12 13 6.67

( 2, 4) 183 12 13 19 76 85 5.49

( 7, 6) 183 12 13 2.20

( 0, 4) 61 12 13 6.67

( 1, 2) 183 12 13 2.20

( 0,10) 183 12 13 46 47 59 61 73 74 8.79

( 6,12) 61 12 13 6.67

(12, 5) 183 12 13 47 59 74 5.49

( 9, 5) 183 12 13 2.20

( 2, 3) 61 12 13 6.67

(12, 7) 183 12 13 2.20

(10, 3) 61 12 13 6.67

( 4, 6) 183 12 13 47 59 74 5.49

( 8, 1) 183 12 13 18 63 82 5.49
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Table 5.5: Distribution of Zero ∆ for p = 13 (cont.)
(a, b) Seq Period k values Percentage of zero ∆

( 3, 7) 61 12 13 6.67

( 5,10) 183 12 13 2.20

( 9,12) 183 12 13 2.20

( 8, 4) 61 12 13 6.67

(11, 9) 183 12 13 2.20

(10,11) 183 12 13 2.20

(10, 2) 183 12 13 46 61 73 5.49

( 4, 0) 61 12 13 6.67

( 6, 9) 183 12 13 2.20

( 5, 4) 183 12 13 46 61 73 5.49

(12, 2) 61 12 13 6.67

( 4, 1) 183 12 13 2.20

( 3, 5) 61 12 13 6.67

( 6, 7) 183 12 13 2.20

( 5,12) 183 12 13 47 59 74 5.49

(11, 5) 61 12 13 6.67

( 0,12) 183 12 13 46 47 59 61 73 74 8.79

( 4, 2) 183 12 13 19 76 85 5.49

( 3, 2) 61 12 13 6.67

( 5, 9) 183 12 13 2.20
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Table 5.6: Distribution of Zero ∆ for p = 17
(a, b) Seq Period k values Percentage of zero ∆

( 1, 5) 307 16 17 1.31

( 8, 6) 307 5 16 17 101 107 3.27

( 6,11) 307 16 17 1.31

( 1, 3) 307 16 17 1.31

(13,10) 307 16 17 1.31

(14, 7) 307 16 17 1.31

( 1,11) 307 16 17 1.31

(12, 7) 307 16 17 45 92 138 3.27

( 4,14) 307 16 17 1.31

(13, 6) 307 16 17 1.31

( 5, 6) 307 16 17 19 32 52 3.27

(12, 4) 307 2 16 17 50 53 3.27

( 0, 3) 307 5 13 14 16 17 36 42 51 54 61 68 101 107 111 116 132 146 11.11

(13, 0) 307 6 7 12 16 17 20 29 49 70 72 73 85 103 118 125 135 143 11.11

( 8, 1) 307 16 17 1.31

(11, 8) 307 16 17 1.31

( 5, 1) 307 16 17 1.31

( 4,10) 307 16 17 1.31

( 5, 9) 307 16 17 1.31

(13, 9) 307 16 17 1.31

( 9,12) 307 16 17 1.31

( 0, 9) 307 7 16 17 21 22 24 66 79 83 88 94 106 117 131 135 142 143 11.11

( 2, 8) 307 16 17 1.31

(11, 9) 307 16 17 1.31

( 1,12) 307 16 17 38 48 87 3.27

(16, 8) 307 16 17 1.31

( 5, 3) 307 16 17 1.31

(11, 2) 307 16 17 1.31

( 2,15) 307 16 17 45 92 138 3.27

( 3, 8) 307 11 16 17 90 102 3.27

( 8,11) 307 16 17 1.31

( 6, 8) 307 5 16 17 101 107 3.27

( 3,13) 307 16 17 1.31

(13, 7) 307 16 17 1.31

( 1,13) 307 16 17 1.31

( 7, 3) 307 16 17 1.31

(15, 9) 307 16 17 1.31

(15, 4) 307 16 17 1.31

(15,14) 307 16 17 1.31

( 6, 7) 307 16 17 1.31
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Table 5.7: Distribution of Zero ∆ for p = 17 (cont.)
(a, b) Seq Period k values Percentage of zero ∆

(14, 8) 307 16 17 1.31

(16,13) 307 16 17 1.31

( 1, 8) 307 16 17 1.31

(10, 4) 307 16 17 1.31

(11, 6) 307 16 17 1.31

( 2,16) 307 16 17 1.31

( 9,14) 307 16 17 1.31

(15,16) 307 16 17 1.31

( 6,14) 307 16 17 19 32 52 3.27

( 8, 0) 307 12 16 17 39 40 60 65 72 78 82 85 105 112 114 115 123 129 11.11

(10, 2) 307 16 17 1.31

(10, 7) 307 16 17 1.31

( 0,13) 307 6 7 12 16 17 20 29 49 70 72 73 85 103 118 125 135 143 11.11

( 8, 3) 307 11 16 17 90 102 3.27

( 9, 5) 307 16 17 1.31

( 3, 1) 307 16 17 1.31

( 2,12) 307 16 17 26 127 151 3.27

( 0,10) 307 2 16 17 28 41 43 44 50 53 91 99 110 120 128 133 141 150 11.11

( 0,11) 307 9 16 17 24 29 61 73 78 103 111 112 114 117 126 132 136 142 11.11

( 2, 6) 307 16 17 62 93 149 3.27

( 3, 0) 307 5 13 14 16 17 36 42 51 54 61 68 101 107 111 116 132 146 11.11

(15, 2) 307 16 17 45 92 138 3.27

(13, 3) 307 16 17 1.31

( 9,13) 307 16 17 1.31

(10,13) 307 16 17 1.31

( 9, 1) 307 16 17 1.31

( 4,12) 307 2 16 17 50 53 3.27

( 2,11) 307 16 17 1.31

(13,16) 307 16 17 1.31

( 7,13) 307 16 17 1.31

(12, 9) 307 16 17 1.31

( 7,14) 307 16 17 1.31

( 6, 5) 307 16 17 19 32 52 3.27

( 3, 5) 307 16 17 1.31

( 8,14) 307 16 17 1.31

(16, 2) 307 16 17 1.31

(13, 1) 307 16 17 1.31

( 9, 0) 307 7 16 17 21 22 24 66 79 83 88 94 106 117 131 135 142 143 11.11

(11, 1) 307 16 17 1.31

( 6,13) 307 16 17 1.31
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Table 5.8: Distribution of Zero ∆ for p = 17 (cont.)
(a, b) Seq Period k values Percentage of zero ∆

( 8,16) 307 16 17 1.31

( 7, 6) 307 16 17 1.31

( 7,10) 307 16 17 1.31

(14, 9) 307 16 17 1.31

( 3, 7) 307 16 17 1.31

( 8, 2) 307 16 17 1.31

( 7,12) 307 16 17 45 92 138 3.27

(14, 4) 307 16 17 1.31

(12, 1) 307 16 17 38 48 87 3.27

(14,15) 307 16 17 1.31

( 2,10) 307 16 17 1.31

(12, 2) 307 16 17 26 127 151 3.27

(16,15) 307 16 17 1.31

( 9,15) 307 16 17 1.31

( 9,11) 307 16 17 1.31

( 4,15) 307 16 17 1.31

( 0, 8) 307 12 16 17 39 40 60 65 72 78 82 85 105 112 114 115 123 129 11.11

( 6, 2) 307 16 17 62 93 149 3.27

(10, 0) 307 2 16 17 28 41 43 44 50 53 91 99 110 120 128 133 141 150 11.11

(14, 6) 307 16 17 19 32 52 3.27

(11, 0) 307 9 16 17 24 29 61 73 78 103 111 112 114 117 126 132 136 142 11.11

( 1, 9) 307 16 17 1.31
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Table 5.9: The Average Percentage of Zero ∆
p Average percentage of zero ∆

5 21.33

7 18.12

11 11.02

13 4.89

17 2.85

19 3.82

23 2.86

29 1.90

31 1.33

37 1.79

41 0.54

43 0.58

47 0.77

53 0.62

59 0.29

61 0.68

67 0.83

71 0.21

73 0.26

79 0.58

83 0.26

89 0.13

97 0.16

101 0.11

103 0.14

107 0.28

109 0.22

113 0.15

127 0.08



Chapter 6

Software Implementation

The software design, testing process and problems encountered are explained in this

chapter. Implementation is done in C++, Java and RIM Blackberry Java Development

Environment (JDE). Complete code listings are provided in Appendices A.1 to A.3.

6.1 Software Design

The first step in the program is to set up the system parameters. This involves setting

the values of a, b and p, with a and b being the coefficient of the irreducible polynomial

f(x) over GF(p) with period Q, where Q is a factor of p2 + p + 1. Since the system

parameters should remain constant, they can be hard-coded in the program.

44
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The program will then display a menu for the user to choose which operation to

perform: to compute a shared key pair, to sign a message, to verify a signature or to

terminate the program. Flowcharts of these operations except program termination are

illustrated in Figure 6.1, Figure 6.2 and Figure 6.3.

6.1.1 GH-DH Shared Key Computation

The program will prompt the initiator, Alice, to choose her private key from 0 to Q =

p2 + p + 1. After Alice has entered the secret key, x, the program will check to see if x is

valid by testing if it is co-prime with p2 + p + 1 and if x is less than p2 + p + 1. If any of

these cases fails, the program will prompt Alice to choose another value for the private

key. After validating the choice of private key, the program will express x in its binary

form and compute the ±xth terms of the sequence generated by f(x) according to the

DSEA algorithm. The pair (sx, s−x) is Alice’s public key pair.

In setting up a session with Bob, Alice will send her public key pair to Bob and Bob

will response by sending his public key pair to Alice. The program will prompt Alice

to enter the received public key pair. These received public keys will be used to set up

another irreducible polynomial fA(x) over GF(p) and the ±xth terms of the sequence

generated by fA(x) will be the shared key pair between Alice and Bob. This can be done

by setting a and b equal to the keys in the received key pair and by using the DSEA

algorithm for computing the ±xth terms of the sequence generated by f(x). This is the

key pair shared between Alice and Bob.
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GH-DH Shared

Key Pair
Compute

Key Pair
Output Public

(sx, s−x)
Key Pair
Output Shared

(sxy, s−xy)

N

Y

End
Pri flag = 0

Private Key
x

N

Y

Pri flag = 1?

gcd(x,Q) = 1

0 < x < Q
and

System Setup:

Q = p2 + p + 1
Pri flag = 1

a, b, and p

Public Key Pair
Enter Received
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Figure 6.1: Flowchart Diagram of GH-DH Shared Key Computation
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6.1.2 GH-DSA Signature Generation

Since signature generation requires the public key pair of the user, the program will

prompt the signer, Alice, to choose her private key as in the first part of Section 6.1.1.

However, in Case 2 of signature verification process as explained in Section 4.2.2, the

verifier, Bob, needs to compute s±(x−1) using (sx, sx+1) and its duals. Therefore, Alice

should select her private key x such that ∆ does not equal to zero. The program will

compute ∆ for the x and will ask Alice to choose another x if the condition is not satisfied.

After computing the public key pair, the program will prompt Alice to enter a value

for the signing key, k, with the restrictions described in Section 4.2.1. The program

computes (sk−1, sk, sk+1) and its duals after a valid k value is entered. However, this is

not the final validation of the signing key choice yet.

As describe in the signing equation in Section 4.2.1, the parameter r equals to the

sequence term sk and it should be co-prime with Q. Therefore, the program will perform

the co-prime test on r and Q after sk is computed. To compute a previous sequence

term as describe in Section 3.2, ∆ must be a non-zero number. This algorithm would

be used in signature verification as Bob has to compute s±(k−1) using (sk, sk+1) and its

duals. Therefore, in the signing process, the program should also compute ∆ and check

to see if it equals zero. If any of these tests fails, the program will prompt Alice to select

another value for k.

The program will then ask Alice to enter the message that she needs to sign. The

hash function is only implemented in Java since two commonly used hash functions

MD5 [28] and SHA-1 [19] are available in java.security package. In other programming
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environments, the hashed value, h, is set to be the same as the message, m. The program

will compute the parameter t according to the signing equation. If t equals zero, x will

be compromised as the term with t in the signing equation disappears. Therefore, t must

be a non-zero number. If t is zero, the program will prompt Alice to select another value

for k.

After the tests on r, t and ∆, the choice of k is now validated, and the program will

output (m, r, t) as the signed message. It will also output (sx, sx+1), (sk, sk+1) and their

duals.

6.1.3 GH-DSA Signature Verification

The program will prompt the verifier, Bob, to entered all the received data including

(m, r, t), (sx, sx+1), (sk, sk+1) and theirs dual. Depending whether t is co-prime with Q,

the program first computes either s±(k−1) using (sk, sk+1) and its dual or s±(x−1) using

(sx, sx+1) and its dual. It will then determine the corresponding u and v as described

in Section 4.2.2 and compute either s±u(k+v) or s±u(x+v) terms using the mixed term

algorithm given in Section 3.3.

If t is co-prime with Q, then the program will compare to see if s±u(k+v) equals s±x.

If t is not co-prime with Q, then the program will compute s±kt terms using the mixed

term algorithm. Then, it will compare to see if s±u(x+v) equals s±kt. Again, the signature

is valid if and only if these sequence terms match.
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Figure 6.2: Flowchart Diagram of GH-DSA Signature Generation
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6.2 Testing and Parameters

Two cases, toy case and real system case, are used to verify the coding. The testing and

parameter selection of these two cases are described below.

6.2.1 Toy Case

In the initial phase of testing, an irreducible polynomial f(x) over a small field is used.

Working in small field makes it possible to verify all the sequence term computations

including the intermediate ones.

In order to verify that all computed sequence terms are correct, a program is written

in C++ to generate all the terms in one period of the third-order characteristic sequence

as shown at the end of this section. Sequence terms are computed using a recursive

formula:

sj+3 = asj+2 − bsj+1 + sj, for i = 0, 1, 2, . . .

which is derived from f(x). This program can display any ±kth terms in the sequence.

An irreducible polynomial in GF(5) is chosen for the initial phase of testing:

f(x) = x3 + x− 1.

The maximum period of the third-order characteristic sequence generated by any
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irreducible polynomial f(x) over GF(5) is:

Q = 52 + 5 + 1 = 31.

All computed sequence terms, such as public key pairs, shared key pairs and r in the

signing equation are compared to the sequence terms generated by the recursive formula

to ensure there is no mismatch.

Sequence term Generation

/************************************************************************

* This program calculates the period of a third-order characteristic

* sequence generated by a given irreducible polynomial.

*

* Susana Sin

************************************************************************/

#include<iostream.h>

int LFSR(int s[],int n,int p, int g[]) {

bool flag = 0;

int i = 0;

while (flag == 0) {

s[i + n] = (s[i] * g[0] + s[i + 1] * g[1] + s[i + 2] * g[2]) % p;

if (s[i + n] < 0) s[i + n] = s[i + n] + p;

if ((i >= 3) && (s[i +n- 2] == s[0]) && (s[i +n- 1] == s[1]) && (s[i+n] == s[2])) flag = 1;

i++;

}

return i; // period of sequence

}

int main(){

const int n = 3;

const int p = 5;

int a = 0, b = 1;

int q = p * p + p + 1, per = 0, k = 1;

int g[n] = {1, -b, a};

int s[q + n];

/*Initial State*/

s[0] = 3;

s[1] = a;

s[2] = (a * a - 2 * b) % p;

if (s[2] < 0) s[2] = s[2] + p;
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per = LFSR(s, n, p, g);

cout << "Period of sequence generated by f(x) = x^3 - " << a << "x^2 + ";

cout << b << "x - 1 over GH(" << p << ") is " << per << endl << endl;

cout << "To display the +/-(k-1)th state of the sequence: (Enter 0 to stop)" << endl;

while (k > 0) {

cout << "Enter value of k" << endl << "k = ";

cin >> k;

if (k <= 0) break;

if (k > per) k = k % per;

cout << "(s" << (k - 1) << ", s" << k << ", s" << (k + 1) << ") = (";

cout << s[k - 1] << ", " << s[k] << ", " << s[k + 1]<< ")" << endl;

cout << "(s" << -(k - 1) << ", s" << -k << ", s" << -(k + 1) << ") = (";

cout << s[per-(k-1)] << ", " << s[per-k] << ", " << s[per-(k+1)]<< ")" << endl;

}

return 0;

}

6.2.2 Real System Case

Since the security of the GH-PKC is based on the intractability of DL problem in GF(p3),

to implement a GH-PKC with 1024-bit security, a 340-bit prime p is required. The

parameter Q in GH-DSA is equivalent to the parameter q in the DSS standardized by

NIST [20], which is standardized to be 160-bit prime factor of p−1. The parameter Q in

GH-DSA should also be chosen as a 160-bit prime factor of p2 + p + 1. In that case, the

verification process can be simplified to only Case 1 as t is always co-prime with Q. The

condition on x such that ∆ does not equal to zero is not required in the signing process.

The 340-bit prime p should be chosen such that p2 + p + 1 has a 160-bit prime factor

which is Q.
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System parameters are chosen as:

p = 252410014280206509131998647534662043944278252812238164081281638438436

4195892628818440024729407595209291

a = 100967846246663453437323616599547897779132286415320714933049077620914

8279733077179938397109115148708951

b = 206216022644184759815024549954227848108708723659854548174088293500293

9062370689540637392192938836162683

Q = 1647052193950202913767588849369624124585134956111.

To test this “Real System” it is not practical to verify all the generated sequence

terms as there are too many terms in one period. As all the sequence terms were verified

in the “Toy Case”, there is no need to verify these terms again here. Instead, to see if the

program is correctly implemented, two copies of the program are executed at the same

time to simulate two user Alice and Bob, namely Program A and Program B respectively.

By feeding random private keys xA and xB to Program A and Program B respectively,

the programs should return their public key pairs. After the public key pairs have been

generated, the public key pair from Program B is entered into Program A to simulate

Alice receiving the public key from Bob. Similarly, copying the public key pair from

Program A to Program B simulates Bob receiving the public key from Alice. Then each

program outputs a common key pair that is the common key pair shared between Alice

and Bob, and the output key pairs in the two programs are verified to be the same.

Similar testing would be done to the signature scheme.
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6.3 Platforms

The GH-PKC is implemented on a personal computer (PC) and on a RIM Blackberry

device. Specifications of these platforms are given in this section.

6.3.1 PC

A Pentium 4 PC with 2.4 GHz processor and 512 MB of RAM is used for the implemen-

tation. C++ and Java versions are implemented and are ran under Windows XP.

6.3.2 Blackberry

A RIM Blackberry 6210 wireless handheld is chosen as a constrained device for the

implementation. This handheld is a data and voice-enabled wireless handheld which

operates on 900/1900 MHz GSM/GPRS wireless network. The Blackberry consists of a

32-bit microprocessor with 16MB flash memory plus 2MB SRAM.

A docking cradle is used to connect the device to a Universal Serial Bus (USB) port

of a PC. Software for Microsoft Windows is provided by RIM to transfer information

between the device and the PC.

New application can be developed using RIM’s Blackberry Java Development En-

vironment (JDE) which is freely available [22]. It provides a integrated development
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environment and simulation tools for building Java 2 Micro Edition (J2ME) applica-

tions. After the application is successfully compiled in Blackberry JDE, a .cod file is

generated. The .cod can be loaded to the handheld through the docking cradle by using

the following command in the command prompt:

JavaLoader -usb load filename.cod

where filename is the name of the application. To delete the application from the hand-

held, use the following command:

JavaLoader -usb erase [-f] filename.cod

where the -f option forces removal of the application even if it is in use.

6.4 Problems Encountered

To facilitate the handling and calculation of these large integers, ZZ, BigInteger and

CryptoInteger data types are used in C++, Java and RIM Blackberry Java Development

Environment (JDE) respectively. These data type provides basic mathematical operators

as well as other mathematical functions such as GCD(·) for use with large integers.

Different problems are encountered in different programming environments.
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6.4.1 Implementation in C++

The NTL library [31], written by Victor Shoup, is used in this implementation. This C++

library provides data structures and algorithms for arbitrary length integers, vectors,

matrices and polynomials over finite fields. ZZ class represents large signed integer, ZZ

p class represents large integer mod p and vec ZZ p class represents an array of ZZ p.

Before ZZ p and vec ZZ p classes can be used, the modulus, p, should be first initialized:

ZZ p = to ZZ(“5”); // 5 is in decimal

ZZ p::init(p); // p is used to initialize the modulus for ZZ p class allows

// arithmetics done in mod p

ZZ p x = to ZZ p(“3”);

vec ZZ p s;

s.SetLength(6);

6.4.2 Implementation in Java

The BigInteger class is used in standard Java and can be found in java.math application

program interface (API) in JavaTM Platform. It provides data structures and algorithms

for arbitrary length integers. There are several constructors for BigInteger:

BigInteger x = new BigInteger(“3”); // 3 is in decimal

BigInteger [] s = new BigInteger[6];
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Binary arithmetic methods in BigInteger class, however, do not include modulo op-

erations. In order to perform a modulo operation, the mod(·) method should be used.

6.4.3 Implementation in RIM Blackberry JDE

RIM Blackberry JDE does not support the BigInteger class. Instead of using BigInteger

class, CryptoInteger class is used and can be found in the net.rim.device.api.crypto API.

A modulo operation is available for any binary operation. CryptoIntegers are constructed

as follows:

CryptoInteger x = new CryptoInteger(“03”); // 03 is in hexadecimal

CryptoInteger [] s = new CryptoInteger[6];

6.4.4 Licensing Problem on Blackberry Handheld

Unfortunately, the net.rim.device.api.crypto API is a controlled API, and in order to use

controlled APIs in an application on the handheld, the application must be signed using

keys provided by RIM before the application can be loaded on to the handheld. Moreover,

the CryptoInteger class is one of the classes that make use of Certicom technology. A

Certicom license is required to use these classes, and registration with RIM alone does

not allow access to these classes. Fortunately, signing application is not required to run

application using the JDE simulator. Analysis is performed in the simulator instead of

the handheld to avoid licensing issues.
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Without running the application on the handheld, it is not possible to analyze the

amount of power consumed by the application. Because the process time varies directly

with the power consumption, analysis is done based on the processing time.
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Analysis

Time analysis is performed on PC (Java only) and Blackberry simulator. The results

are provided in Table 7.1-6. Key length affects the process time since both the DSEA

algorithm and the square-and-multiply algorithm look at the binary representation of

a key bit-by-bit. Therefore, choosing a reasonable length of keys is essential for time

analysis.

7.1 Key Agreement Protocol

Private keys with average and maximum lengths are used in the analysis as the length

of the private keys affect the processing time to a great extent. The GH-DH private

key x are chosen between 0 and p2 + p + 1, resulting in a maximum and average length
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of 680-bit and 340-bit x respectively for a 340-bit p. The DH private key x are chosen

between within 0 and p− 1, resulting in a maximum and average 1024-bit and 512-bit x

respectively for a 1024-bit p.

From the process time results, it can be seen that GH-DH key agreement protocol

with average and maximum private key lengths on both PC and Blackberry simulator

are about 60% and 40% faster than DH key agreement protocol. This is expected as the

lengths of the private key in the GH-DH key agreement protocol is only two-third of that

in the DH key agreement protocol.
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Table 7.1: Key Agreement Process Time on PC in Java using BigInteger

GH-DH Key DH Key

340-bit x 680-bit x 512-bit x 1024-bit x

70ms 150ms 110ms 261ms

70ms 151ms 120ms 250ms

90ms 150ms 110ms 250ms

70ms 150ms 121ms 250ms

70ms 150ms 111ms 260ms

80ms 150ms 121ms 250ms

80ms 150ms 120ms 251ms

70ms 150ms 110ms 251ms

70ms 150ms 120ms 251ms

80ms 160ms 111ms 250ms

80ms 151ms 130ms 250ms

70ms 150ms 110ms 250ms

70ms 150ms 110ms 250ms

70ms 150ms 120ms 250ms

80ms 151ms 110ms 250ms

70ms 160ms 120ms 251ms

80ms 160ms 120ms 250ms

70ms 151ms 120ms 261ms

70ms 150ms 110ms 250ms

70ms 160ms 110ms 251ms

Maximum 90ms 160ms 130ms 261ms

Minimum 70ms 150ms 110ms 250ms

Average 74ms 152ms 116ms 252ms
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Table 7.2: Key Agreement Process Time on Blackberry in JDE using CryptoInteger

GH-DH Key DH Key

340-bit x 680-bit x 512-bit x 1024-bit x

8480ms 17840ms 11800ms 23550ms

8590ms 17260ms 11730ms 23870ms

8470ms 17260ms 11730ms 23550ms

8970ms 17300ms 11700ms 23550ms

8470ms 17750ms 11670ms 24080ms

8520ms 17560ms 12100ms 23510ms

8490ms 17320ms 11700ms 23880ms

8530ms 17320ms 11730ms 23560ms

9080ms 17300ms 11730ms 23570ms

8500ms 17700ms 11710ms 23920ms

8520ms 17330ms 11700ms 23580ms

8490ms 17310ms 11720ms 23940ms

8540ms 17330ms 11720ms 23540ms

8550ms 17340ms 11690ms 23820ms

8510ms 17810ms 11720ms 23550ms

8900ms 17380ms 11700ms 23570ms

8460ms 17400ms 11920ms 23850ms

8540ms 17390ms 11720ms 23560ms

8530ms 17720ms 11690ms 23840ms

8650ms 17350ms 11700ms 23620ms

Maximum 9080ms 17840ms 12100ms 24080ms

Minimum 8460ms 17620ms 11670ms 23410ms

Average 8590ms 17449ms 11745ms 23691ms
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7.2 Signing Procedure

The key length of the signing key k affects the digital signature generation time. Signing

key with average and maximum lengths are considered in the analysis. The GH-DSA

signing key k are chosen between 0 and Q, where Q is a 160-bit prime factor of p2 +p+1

with a 340-bit p. The DSS signing key k are chosen between 0 and q, where q is a 160-bit

prime factor of p − 1 with a 1024-bit p. Since both Q and q are 160-bit, same signing

keys can be used for both cases with maximum length being 160-bit and average length

being 80-bit.

From the results, the GH-DSA signature generation is only slightly faster than the

DSS signature generation on both PC implementation and Blackberry implementation.

Although improvement cannot be seen clearly, GH-DSA signature generation time is still

comparable with the DSS signature generation time.

The difference in the two signature schemes is the way r in which is computed. The

GH-DSA uses the DSEA algorithm to compute r whereas the DSS uses the square-and-

multiply algorithm to compute r. In the DSEA algorithm, for each bit of binary repre-

sentation of k there are on average 9 multiplications in GF(p) where p is a 340-bit prime.

In the square-and-multiply algorithm, however, there is only 1 multiplication in GF(p),

where p is a 1024-bit prime. To compare the complexity between the two algorithms, the

number of multiplications with the same length of operands is examined instead. Each

1024-bit operand requires three 340-bit variables to store the number. In order to per-

form a multiplication on two 1024-bit numbers based on 340-bit long operands, a total

of 9 multiplications in GF(p) with 1024-bit p is required. Both algorithms require the
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same number of multiplications with 340-bit operands. However, the modulus length in

the DSEA algorithm is only one-third that of the square-and-multiply algorithm. This

improvement can be seen more easily in a hardware implementation.

In the software implementations, operations are done using facilities provided in Big-

Integer class in Java and CryptoInteger class in Blackberry JDE as explained in Sec-

tion 6.4.2 and 6.4.3. The performance of these classes play an important role in the

processing time.
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Table 7.3: Signature Generation Time on PC in Java using BigInteger

GH-DSA Sign DSS Sign

80-bit k 160-bit k 80-bit k 160-bit k

10ms 20ms 20ms 20ms

20ms 20ms 20ms 20ms

10ms 20ms 10ms 30ms

10ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 30ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

20ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 20ms 20ms 20ms

10ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 20ms 10ms 20ms

10ms 10ms 20ms 20ms

10ms 10ms 10ms 20ms

10ms 30ms 10ms 20ms

10ms 20ms 10ms 20ms

Maximum 20ms 30ms 20ms 30ms

Minimum 10ms 10ms 10ms 20ms

Average 11ms 20ms 12ms 21ms
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Table 7.4: Signature Generation Time on Blackberry in JDE using CryptoInteger

GH-DSA Sign DSS Sign

80-bit k 160-bit k 80-bit k 160-bit k

1050ms 2030ms 1170ms 2280ms

1080ms 2110ms 1170ms 2240ms

1050ms 2080ms 1170ms 2230ms

1100ms 2070ms 1170ms 2220ms

1110ms 2070ms 1160ms 2240ms

1100ms 2080ms 1160ms 2220ms

1030ms 2100ms 1150ms 2260ms

1080ms 2080ms 1140ms 2230ms

1100ms 2070ms 1130ms 2230ms

1050ms 2090ms 1120ms 2230ms

1100ms 2070ms 1150ms 2270ms

1050ms 2080ms 1120ms 2230ms

1100ms 2070ms 1130ms 2230ms

1110ms 2100ms 1130ms 2230ms

1080ms 2080ms 1130ms 2230ms

1100ms 2030ms 1130ms 2220ms

1100ms 2080ms 1120ms 2270ms

1110ms 2070ms 1140ms 2230ms

1100ms 2090ms 1130ms 2230ms

1080ms 2040ms 1130ms 2220ms

Maximum 1110ms 2110ms 1170ms 2280ms

Minimum 1030ms 2030ms 1120ms 2220ms

Average 1084ms 2075ms 1143ms 2237ms
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7.3 Signature Verification

The signatures generated in the previous section are used as test data for signature

verification. From the results, the GH-DSA signature verification is slightly faster than

the DSS signature verification on the Blackberry implementation and is about 20% faster

on the PC implementation.

The verifier needs to compute s±u(k+v) as described in Section 4.2.2 for the GH-DSA

and compute ght−1
and y−rt−1

as described in Section 2.2 for the DSS.

The computation of s±u(k+v) terms in GH-DSA is done using the mixed term al-

gorithm described in Section 3.3. The mixed term algorithm makes use of the DSEA

algorithm twice: one to compute the s±(v−1) states generated by f(x) and the other

one to compute the ±uth terms generated g(x). Parameters u and v are computed as

described in Section 4.2.2 and they are both 160-bit long.

The exponentiations ght−1
and y−rt−1

in DSS are done using the square-and-multiply

algorithm. Since g is an element in GF(p) with order q, the exponents should be modulo

q. As a result, the exponents are 160-bit numbers.

Both the GH-DSA and the DSS signature verification schemes take twice as long as

their corresponding signing procedure with a 160-bit signing key as the signing procedures

utilize the DSEA algorithm and the square-and-multiply algorithm only once.

As described in the previous section, the DSEA algorithm has a lower complexity

compared to the square-and-multiply algorithm. Improvement can be seen more easily
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in a hardware implementation.
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Table 7.5: Signature Verification Time on PC in Java using BigInteger

GH-DSA Verify DSS Verify

80-bit k 160-bit k 80-bit k 160-bit k

40ms 40ms 50ms 50ms

30ms 30ms 50ms 50ms

40ms 40ms 41ms 40ms

40ms 30ms 40ms 50ms

40ms 40ms 51ms 40ms

30ms 41ms 40ms 40ms

40ms 30ms 50ms 50ms

30ms 40ms 40ms 50ms

30ms 30ms 40ms 40ms

40ms 40ms 50ms 40ms

30ms 31ms 40ms 40ms

40ms 30ms 40ms 41ms

40ms 40ms 50ms 40ms

40ms 30ms 40ms 40ms

40ms 40ms 40ms 40ms

40ms 40ms 40ms 40ms

30ms 40ms 51ms 40ms

40ms 40ms 50ms 40ms

30ms 30ms 50ms 40ms

40ms 40ms 50ms 50ms

Maximum 40ms 41ms 51ms 50ms

Minimum 30ms 30ms 40ms 40ms

Average 37ms 36ms 45ms 43ms
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Table 7.6: Signature Verification Time on Blackberry in JDE using CryptoInteger

GH-DSA Verify DSS Verify

80-bit k 160-bit k 80-bit k 160-bit k

4020ms 4220ms 4540ms 4540ms

4060ms 4230ms 4520ms 4520ms

4290ms 4250ms 4530ms 4530ms

4310ms 4220ms 4530ms 4560ms

4290ms 4240ms 4520ms 4600ms

4320ms 4230ms 4570ms 4750ms

4230ms 4250ms 4520ms 4560ms

4300ms 4240ms 4570ms 4510ms

4280ms 4250ms 4540ms 4540ms

4260ms 4250ms 4510ms 4570ms

4240ms 4250ms 4530ms 4520ms

4230ms 4260ms 4600ms 4510ms

4240ms 4280ms 4520ms 4560ms

4230ms 4240ms 4530ms 4530ms

4270ms 4240ms 4570ms 4510ms

4240ms 4240ms 4530ms 4540ms

4260ms 4260ms 4530ms 4540ms

4240ms 4240ms 4630ms 4550ms

4250ms 4240ms 4720ms 4520ms

4270ms 4280ms 4550ms 4520ms

Maximum 4320ms 4280ms 4720ms 4750ms

Minimum 4230ms 4220ms 4510ms 4510ms

Average 4263ms 4246ms 4553ms 4549ms
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Conclusions and Future Work

8.1 Summary and Conclusions

The GH-DH key agreement protocol and the GH-DSA are implemented in software in

C++ and Java over GF(p) with 1024-bit security. Timing analysis is done with Java

implementation on PC and on the Blackberry simulator. The main contributions of this

thesis are summarized as follows.

1. This is the first software implementation of the GH-DH key agreement protocol

and GH-DSA to see the feasibility of implementing the system in software. The

GH-DH and the GH-DSA aimed to improve the performance over existing DH and

DSS systems by decreasing the size of modulus to speed up the computations while

maintaining the same level of security. This is desirable especially on constrained
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device as there is limited power and time for computations. Blackberry is chosen

as a constrained platform for comparison in this thesis.

2. The implementation of GH-DH and GH-DSA are done faithfully according to the

algorithms provided in the original papers on GH-PKC [10, 11] except for the

algorithm used in computing the s±(k+v) terms. To compute the s±(k+v) terms, the

general result of LFSR sequences is used as discussed in Section 3.3 instead of using

the DSEA algorithm as stated in the paper [11].

3. Design issues and the choice of system parameters are summarized below:

(a) In each step of the iteration in the DSEA algorithm provided in Section 3.1,

sequence terms (s±(t′+1), s±t′ , s±(t′−1)) are computed using the six sequence

terms generated in the previous iteration, (s±(t+1), s±t, s±(t−1)). Therefore,

instead of storing all the sequence terms computed in all iterations, only the

six newly generated ones (s±(t′+1), s±t′ , s±(t′−1)) are kept as they are the only

ones used in the next iteration.

(b) In order to reduce the bandwidth usage, a signer has to choose a value for the

signing key k such that ∆ does not equal to zero as discussed in Section 5.2.

Since there is no theoretical result available about the distribution of zero

∆, experiments are performed to determine the tradeoff between bandwidth

usage and the time required to choose a valid k. Based on the experimental

data, k cannot be taken as either p− 1 or p as these values always cause ∆ to

be zero. Besides, the probability of ∆ being zero is minimized by choosiong
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both a and b to be non-zero integers. However, by choosing either a or b to

be zero, the number of multiplications in the DSEA algorithm explained in

Section 3.1 can be reduced to 7blog2kc and 8blog2kc respectively. This is a

tradeoff between computational cost and bandwidth usage. Moreover, as p

increases, the percentage of ∆ being zero decreases. The percentage is low

enough to conclude that the cost of re-selecting values for k is lower than the

cost of increasing the bandwidth usage.

(c) The algorithm for computing mixed term given in Section 3.3 requires the

inverse of Matrix M0. A matrix is invertible if and only if its determinant does

not equal zero. Since the determinant of matrix M0 depends on only a and b,

matrix M0 is guaranteed to be invertible by choosing a and b correspondingly.

(d) The parameter Q in GH-DSA is a factor of p2 + p + 1. The paper on GH-

DSA [11] does not specify the size of Q. It includes two cases for signature

verification depending on whether t is co-prime with Q. The parameter Q

is equivalent to the parameter q in DSS, which is a standard 160-bit prime

factor of p − 1 as set by NIST. Therefore Q in GH-DSA is chosen to be a

160-bit prime factor of p2 + p + 1. Since Q is a prime, signature verification is

simplified to Case 1 as t is always co-prime with Q. The condition on x such

that ∆ does not equal to zero as discussed in Section 6.1.2 is removed as only

Case 2 of the signature verification requires the computation of s±(x−1) terms.

The system parameter p is chosen to be a 340-bit prime such that p2 + p + 1

has a 160-bit prime factor.
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4. Problems are identified in the thesis. The first problem is in facilitating the handling

and calculations of large integers, and different data classes are used in different

coding environments. Another problem is the licensing issues. In order to use

CryptoInteger class on the Blackberry handheld, a Certicom license needs to be

obtained and registration needs to be completed with RIM. To avoid licensing

issues, analysis is done on the Blackberry simulator instead.

5. Comparisons are done based on the author’s own implementations of DH and DSS

utilizing square-and-multiply method to perform exponentiation without any opti-

mization. A performance improvement of the GH-DH key agreement protocol over

the DH key agreement protocol can be seen clearly in the software implementation

as the length of the private key in the GH-DH key agreement protocol is reduced

to only two-third of that of the DH key agreement protocol. Processing time of

GH-DSA is comparable to that of DSS although improvement cannot be seen eas-

ily in the software implementation. The performance of the BigInteger and the

CryptoInteger classes play an important role in the processing time as well.

8.2 Recommendations for Future Work

Recommendations for future research are listed below.

• Software optimization: The software implementation of GH-DH key agreement

protocol and GH-DSA can be further optimized for better performance. One can

also implement a data class to facilitate the handling and calculations of large
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numbers so that the GH-PKC can be loaded on to any platforms such as mobile

headsets and other constrained devices.

• Exponentiation algorithm for DH and DSS: Square-and-multiply method

based on binary representation of k is used to perform exponentiation in the au-

thor’s own implementation of DH and DSS without any optimization. Tricks can

be utilized to alternate the binary representation of k in order to speed up the

exponentiation algorithm by decreasing the number of multiplications, such as us-

ing non-adjacent form (NAF) and minimal hamming weight representation [13].

Moreover, since the exponentiations in DH and DSS are done using fixed bases α

and g respectively, pre-computations can be done once and re-used for many ex-

ponentiations. This idea was first introduced by Brickell, Gordon, McCurley and

Wilson and it is known as the BGMW method [3]. Future research can focus on

comparing GH-DH and GH-DSA to DH and DSS using improved exponentiation

algorithms.

• Bandwidth saving: In order to minimize the bandwidth usage, the signing

key k should be chosen such that ∆ does not equal zero. There is no theoretical

result available about the distribution of zero ∆. One can theoretically prove the

probability of ∆ being zero.

• Comparisons with other cryptosystems: Another extension to this research

is to compare GH-PKC to RSA and EC cryptosystems. RSA is already available

commercially on mobile headsets including Ericsson [7] and Motorola [29] and EC-

DSA is already available commercially on the Blackberry handheld [23]. Therefore,
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future research would require software optimization for the mobile headsets and

the Blackberry platform to allow for better comparisons.

• Hardware implementation: The modulus length in the GH-PKC is only one-

third of that of existing DH and DSS with the same level of security. This is

beneficial in hardware implementation as the hardware complexity can be reduced

significantly. Future research can focus on the improvement of GH-PKC over DH

and DSS in hardware implementations.
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