

Lightweight Cryptography for RFID Systems

Guang Gong

Department of Electrical and Computer Engineering University of Waterloo CANADA

<http://comsec.uwaterloo.ca/~ggong>

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

December 12 - 15, 2010 1 / 31

Part III. Design of Authentication Protocols for RFID Systems

- Security and Privacy threats in RFID systems
- Lightweight Crypto Solutions to Authentication for RFIDs
- LPN Based Entity Authentication Protocol for RFIDs
- WG-7 Based Authentication Protocol for RFIDs

Security Threat Classification

- Information Leakage
- Privacy Violation
- Tag Impersonation Attack
- Relay Attack
- Denial of Service Attack
- Backward and Forward Traceability
- Server Impersonation Attack

< ロ > < 同 > < 回 > < 回 >

Information Leakage

Problem

An adversary should not be able to **obtain useful information** about the tagged object.

Attacking Method

The adversary can query the target tag or eavesdrop communications between the tag and readers.

Privacy Violation

Problem

An adversary should not be able to **track** the movement of a tagged item, and by extension, the person associated with it.

Attacking Method

The adversary can **query** the target tag and **correlate** data from multiple RFID readers.

Tag Impersonation Attack

Problem

An adversary should not be able to **impersonate** a tag.

Attacking Method

The adversary can query the target tag or eavesdrop communications between the tag and readers. Then the adversary tries to use the responses from the victim to fool a legitimate reader.

Replay Attack

Problem

An adversary should not be able to **reuse** the communications from **previous sessions** to perform a successful authentication between a tag and a reader.

Attacking Method

The adversary can **intercept** the valid authenticators from a **past transaction** and use them to finish the authentication.

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

Denial of Service Attack

Problem

An adversary should not be able to **disturb** the interactions between a tag and a reader.

Attacking Method

The adversary can **intercept** or **block** the transmitted messages which might lead to the **desynchronization** of the shared secret between a reader and a tag.

Backward and Forward Traceability

Problem

An adversary should not be able to **link** a tag with **past** and **future** actions performed on the tag, even after compromising the tag.

Attacking Method

The adversary can **compromise** a tag and try to track the victim's **past** and **future** transactions.

9/31

Server Impersonation Attack

Problem

An adversary should not be able to **impersonate** a legitimate server to the tag without knowledge of a tag's secret.

Attacking Method

The adversary can eavesdrop a valid session and block some messages from reaching the tag. Then the adversary initiates another session as an impersonated reader.

Physical Protection	Distance measurement, Faraday cage approach
Deactivation	Killing, sleeping, hash lock
Re-naming	Relabeling or effacing, minimalist cryptography, re- encryption
User-Oriented	Light Crypto based approaches
Proxy Or Filter	Watchdog tag, RFID guardian
Jamming	Blocking, soft-blocking tag
Entity authentication	PRG-based, hash-based, private authentication

G. Gong (University of Waterloo)

December 12 - 15, 2010

<ロ> <同> <同> <同> < 同> < 同>

11/31

3

Identification and Authentication

Identification Protocol

An identification protocol allows a reader to obtain the identity of a queried tag, but no proof is required.

- Primal goal of identification protocols is to provide functionality and privacy.
- Examples: Localization, stock management, etc.

イロト イポト イラト イラト

Authentication Protocol

An authentication protocol allows a reader to be convinced of the identity of a queried tag. Conversely, it can allow a tag to be convinced of the identity of a querying reader. If both properties are ensured, we speak of mutual authentication.

- Primal goal of authentication protocols is to provide security.
- Examples: Access control, e-documents, anti-clone, anti-counterfeiting, etc.

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

< ロ > < 同 > < 回 > < 回 > < 回 > <

Performance Requirements

- Low Computational Cost: The computational overhead of authentication protocols in the tag side should be small due to the limited power available to RFID tags.
- Low Communication Cost: The message transmitted in the authentication phase should be minimized because of the limited bandwidth available to RFID tags.
- Low Storage Requirement: The data stored in a RFID tag should be kept as small as possible since the tag memory is extremely constrained.
- Scalability: The back-end database should be able to efficiently identify an individual tag even though the tag population is huge.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Privacy-Preserving RFID Authentication Protocols

- Block Cipher Based Authentication Protocols
- Public-key Based Authentication Protocols
- HB-family Based Authentication Protocols

イロト イポト イラト イラト

15/31

Block Cipher based Authentication Protocols

Figure: Interleaved Challenge-Response Protocol Using AES [Feldhofer et al.'04]

- HF tags running at a frequency of 100KHz are considerted.
- The standard requires that a reponse must follow 320µs after a request. Otherwise, the tag has to stay quiet.
- AES is too slow (1032 cycles/block) to meet the requirement of the standard and therefore an interleaving authentication method is used.

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

Lightweight Identification Schemes based on Public-key Schemes

- The most commonly public-key schemes, such as those based on the difficulty of factorization, discrete logarithms, or elliptic curve discrete logrithms, are not suitable for RFID applications.
- The hardware implementations of public-key schemes usually require many tens of thousands of logical gates.
- Two types of identification schemes can provide public-key functionality to RFID tags at a low cost.
 - Use a variation of the Rabin cryptosystem (i.e., SQUASH [Shamir'08] and WIPR [Oren et al.'08])
 - Use a token (coupon)-based approach (i.e., cryptoGPS [Girault'07, Mcloone et al.'07])

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Public-key Based Authentication Protocols

Figure: The Elliptic Curve Variant of cryptoGPS [Mcloone et al.'07]

- The computation on the tag is simple.
- There are a variety of implementation trade-offs. For example, we can use a sparse challenge *c* to "change" multiplication into a small number of additions (but still cost).

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

HB⁺ Protocol [Juels & Weis '05]

=

Tag
$$(k_1, k_2)$$
 Reader (k_1, k_2)
 $b \in_R \{0, 1\}^m$
 b
 $v \in_R \{0, 1|\Pr[v = 1] = \eta\};$
 $a \in_R \{0, 1\}^m$
 $y = (a \cdot k_1) \oplus (b \cdot k_2) \oplus v$
 y
 $(a \cdot k_1) \oplus (b \cdot k_2) \stackrel{?}{=} y$

- Based on Learning Parity with Noise (LPN) problem
- k_1 and k_2 are two *m*-bit vectors as authentication key, $\eta \in (0, \frac{1}{2})$, **b** is a blinding vector, **a** is a challenge vector

イロト イポト イヨト イヨト

LCMQ Protocol (Li-Gong10)

Definition of Circulant-P2 Matrix

 $(m \times m)$ Square Circulant Matrix

$$\begin{bmatrix} \theta_0 & \theta_1 & \cdots & \theta_{m-1} \\ \theta_{m-1} & \theta_0 & \cdots & \theta_{m-2} \\ \vdots & \vdots & \ddots & \vdots \\ \theta_1 & \theta_2 & \cdots & \theta_0 \end{bmatrix}$$

Circulant-P2 Matrix

- *m* is a prime number satisfying that 2 is a primitive element of finite field *GF*(*m*).
- Square, landscape, and portrait: C_{θ} , $C_{\theta}^{[n \times m]}$, and $C_{\theta}^{[m \times n]}$

Lightweight Crypto for RFID: Part III

-

20/31

ヘロン 人間 とくほ とくほ とう

Linear Independence of Circulant-P2 Matrix

- All row vectors in a landscape circulant-P2 matrix (and all column vectors in a portrait circulant-P2 matrix) are linearly independent.
- A landscape circulant-P2 matrix always has a right inverse.
 Likewise, an portrait circulant-P2 matrix always has a left inverse.
- All *m* row vectors in a square circulant-P2 matrix C_θ are linearly independent if and only if the Hamming weight of θ is odd. Consequently, C_θ is invertible if only if the Hamming weight of θ is odd.

< ロ > < 同 > < 回 > < 回 > < 回 > <

A Secure Encryption Against Ciphertext-Only Attack

A symmetric-key encryption scheme

$$oldsymbol{z} = \mathsf{Enc}(oldsymbol{ heta}, oldsymbol{\kappa}) = oldsymbol{ heta} \circ \mathbf{C}^{[(m-1) imes m]}_{oldsymbol{\kappa}} \; \; ,$$

- Plaintext θ : (m-1)-bit random vector, $\theta \neq \mathbf{0}_{m-1}$
- Encryption key κ: randomly selected from S^e_m
- Ciphertext z: an element in S^e_m
- S_m: Set of all *m*-bit vectors except **0**_m and **1**_m
- \mathbb{S}_m^e : Set of all vectors in \mathbb{S}_m whose Hamming weights are even

LCMQ Protocol Specification

 $k_1 \stackrel{\$}{\leftarrow} \mathbb{S}_m$ and the parity of Hwt(k_1) is public, $k_2 \stackrel{\$}{\leftarrow} \mathbb{S}_m^e$, interaction expansionn < m, noise level $\eta \in (0, \frac{1}{2})$, integer pass-threshold $\tau \in (\eta n, \frac{n}{2})$

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

An LCMQ authentication system is denoted by a pair of probabilistic functions $(\mathcal{T}_{\mathbf{k}_1,\mathbf{k}_2,\eta,n}, \mathcal{R}_{\mathbf{k}_1,\mathbf{k}_2,n,\tau})$.

Definition (DET-Model)

Adversary A interacts q times with the tag $\mathcal{T}_{\mathbf{k}_1,\mathbf{k}_2,\eta,n}$.

Definition (MIM-model)

Adversary A manipulates any communications between the tag $\mathcal{T}_{\mathbf{k}_1,\mathbf{k}_2,\eta,n}$ and the reader $\mathcal{R}_{\mathbf{k}_1,\mathbf{k}_2,\eta,\tau}$ for q executions

LCMQ protocol is provably secure in both DET-model and MIM-model!

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

December 12 - 15, 2010

24/31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- According to the LCMQ security proofs in the DET model, m ≥ 81 would suffice to provide 80-bit security.
- Security proof in the MIM-model demands negligible false rates, ruling out too small choices of *m*.

Recommended Parameter Set for 80-bit Security

- $m = 163, n = 162, \eta = 0.08, \tau = 19$
- Key size: 326-bit

G. Gong (University of Waterloo)

- - E - - - E

WG-7 based Authentication Protocol (Luo-Qi-Gong-Lai 10)

A privacy-preserving challenge-response protocol

Lightweight Crypto for RFID: Part III

December 12 - 15, 2010

26/31

< ロ > < 同 > < 回 > < 回 >

• The protocol has the following privacy and security properties:

- Tag untraceability
- Tag impersonation
- Reader impersonation
- An adversary can obtain at most 160 consecutive keystream bits for a successful mutual authentication.
- For a **chosen IV attack**, the adversary can get at most 80 keystream bits for each IV, thus it is **impossible** for the adversary to obtain 224 consecutive keystream bits in this protocol.

Devices for Implementation

Devices Employed for Our Implementation

- 1. DPO7104 oscilloscope
- 2. USRP motherboard with two RFX900 daughterboards, in conjunction with software radio GNU Radio
- 3. A mini-guardrail antenna ٠ from Impinj
- 4. Two WISP tags from Intel **Research Seattle**
- 5. USB Debugger --MSP430-FET430UIF from Texas Intrument
- 6. A Volare UHE-USB reader as an auxulary reader to debug the WISP tags

< ロ > < 同 > < 三 > < 三

- RFID is one of the most promising technologies in the field of ubiquitous and pervasive computing.
- EPC standard has put forward austere challenge for designing security mechanisms for RFID systems.
- Lightweight cryptographic algorithms and protocols are crucial for RFID security.

Related Work

Z. Li and G. Gong

Secure and Efficient LCMQ Entity Authentication Protocol .

Centre for Applied Cryptographic Research (CACR) Technical Reports, CACR 2010-21, available at http://www.cacr.math.uwaterloo.ca/.

Y. Luo, Q. Chai, G. Gong, and X. Lai

A Lightweight Stream Cipher WG-7 for RFID Encryption and Authentication.

IEEE Global Communications Conference (IEEE GLOBECOM 2010), December 6-10, 2010, Mimami, Florida, USA.

The other references can be found in the above two papers.

< ロ > < 同 > < 回 > < 回 >

Questions?

G. Gong (University of Waterloo)

Lightweight Crypto for RFID: Part III

December 12 - 15, 2010

э

31/31

< ロ > < 回 > < 回 > < 回 > < 回 >