
WAGE: An Authenticated Cipher

Submission to the NIST LWC Competition

Submitters/Designers:
Mark Aagaard, Riham AlTawy1, Guang Gong,

Kalikinkar Mandal∗, Raghvendra Rohit, and Nusa Zidaric
∗Corresponding submitter:

Email: kmandal@uwaterloo.ca
Tel: +1-519-888-4567 x45650

Communication Security Lab
Department of Electrical and Computer Engineering

University of Waterloo
200 University Avenue West

Waterloo, ON, N2L 3G1, CANADA

https://uwaterloo.ca/communications-security-lab/lwc/wage

September 27, 2019

1Currently with Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Rd,
Victoria, BC, V8P 5C2, CANADA

https://uwaterloo.ca/communications-security-lab/lwc/wage

Contents

1 Introduction 6
1.1 Notation . 7
1.2 Outline . 8

2 Specification of WAGE 9
2.1 WAGE AEAD Algorithm . 9
2.2 Recommended Parameter Set . 10
2.3 Description of the WAGE Permutation 10

2.3.1 Underlying finite field . 10
2.3.2 The LFSR . 11
2.3.3 The nonlinear components . 11
2.3.4 Description of the core permutation 12
2.3.5 Round constants . 13

2.4 WAGE-AE-128 Algorithm . 13
2.4.1 Rate and capacity part of state 14
2.4.2 Padding . 16
2.4.3 Loading key and nonce . 17
2.4.4 Initialization . 18
2.4.5 Processing associated data . 18
2.4.6 Encryption . 18
2.4.7 Finalization . 19
2.4.8 Decryption . 19

3 Security Claims 20

4 Design Rationale 21
4.1 Mode of Operation . 21
4.2 WAGE State Size . 22
4.3 Choice of Linear Layer . 22
4.4 Nonlinear Layer of WAGE . 23

4.4.1 The Welch-Gong permutation (WGP) 23
4.4.2 The 7-bit sbox (SB) . 23

4.5 Number of Rounds . 24

2

WAGE: Submission to the NIST LWC competition

4.6 Round Constants . 25
4.6.1 Generation of round constants 25

4.7 Loading and Tag Extraction . 26
4.8 Choice of Rate Positions . 28
4.9 Relationship to WG ciphers . 28
4.10 Statement . 28

5 Security Analysis 29
5.1 Security of WAGE Permutation . 29

5.1.1 Differential distinguishers . 29
5.1.2 Diffusion behavior . 29
5.1.3 Algebraic degree . 30
5.1.4 Self-symmetry based distinguishers 31

5.2 Security of WAGE-AE-128 . 31

6 Hardware Design And Analysis 32
6.1 Hardware Design Principles . 32
6.2 Interface and Top-level Module . 33

6.2.1 Interface protocol . 34
6.2.2 Protocol timing . 37
6.2.3 Control phases . 39

6.3 Hardware Implementation Details . 42
6.3.1 State machine . 42
6.3.2 The WAGE datapath . 47

6.4 Hardware Implementation Results . 50
6.4.1 Tool configuration and implementation technologies 52
6.4.2 Implementation results . 52

7 Software Efficiency Analysis 55
7.1 Software: Microcontroller . 55

A Test Vectors 61
A.1 WAGE Permutation . 61
A.2 WAGE-AE-128 . 61
A.3 Round Constants Conversion . 62

3

List of Figures

2.1 The state at i-th round of the WAGE permutation 14
2.2 Schematic diagram of the WAGE-AE-128 algorithm 16
2.3 Rate (shaded orange) and capacity (green) part of WAGE-AE-128. . . 17

4.1 The LFSR for generating WAGE round constants. 25
4.2 Generation of round constants . 26

6.1 Top-level WAGE module and the interface with the environment 34
6.2 Interface protocol . 35
6.3 Timing diagram: loading and initialization during WAGE-AE-128 . . . 37
6.4 Timing diagram: encryption during WAGE-AE-128 38
6.5 Timing of tag phase during WAGE-AE-128 38
6.6 Phases and datapath operations . 40
6.7 Control flow between phases . 43
6.8 Optimized control flow between phases 43
6.9 State machine . 45
6.10 WAGE datapath . 47
6.11 The wage lfsr with multiplexers XOR and AND gates 49
6.12 Area2 vs Throughput . 53

4

List of Tables

2.1 Recommended parameter set for WAGE-AE-128 10
2.2 Examples of conversion of the field elements to HEX 11
2.3 Hex representation of WGP . 12
2.4 Hex representation of SB . 13
2.5 Round constants of WAGE . 15

3.1 Security claims of WAGE-AE-128 (in bits) 20

4.1 Area implementation results for the defining polynomials fi(x) for F27 . 24
4.2 Loading into the shift register through data inputs D4, D3 and D0 . . . 27

5.1 Minimum number of active sboxes for different primitive polynomials . 30

6.1 Interface signals . 33
6.2 Modes of operation . 33
6.3 Control table for datapath based on phases from Figure 6.6 42
6.4 Control table for WAGE . 50
6.5 WAGE permutation hardware area estimate and implementation results 51
6.6 Tools and implementation technologies 52
6.7 ASIC implementation results . 54
6.8 FPGA implementation results . 54

7.1 Performance of WAGE on microcontrollers 56

A.1 Generation of the first five round constant pairs (rci1, rc
1
0) 62

5

Chapter 1

Introduction

WAGE is a 259-bit lightweight permutation based on the Welch-Gong (WG) stream
cipher [22, 23]. It is designed to achieve an efficient hardware implementation for
Authenticated Encryption with Associated Data (henceforth “AEAD”), while providing
sufficient security margins. To accomplish this, the WAGE components and mode of
operation are adopted from well known and analyzed cryptographic primitives. The
design of WAGE, its security properties, and features are described as follows.

• WAGE nonlinear layer: WG permutation over F27 and a new 7-bit Sbox. The
WG cipher, including the WG permutation, is a well-studied cryptographic prim-
itive and has low hardware cost.

• WAGE linear layer: An LFSR with low hardware cost and good resistance
against differential and linear cryptanalysis.

• WAGE security: Simple analysis and security bounds provided using automated
tools such as CryptoSMT solver [17] and Gurobi [14].

• Functionality: Authenticated Encryption with Associated Data.

• WAGE mode of operation: Unified sponge duplex mode [3] that has a stronger
keyed initialization and finalization phases.

• Security claims: Offers 128-bit security. Accepts a 128-bit key and 128-bit
nonce.

• Hardware performance: Efficient in hardware. Achieves a throughput of
517 Mbps and has an area of 2900 GE in a 65 nm ASIC. Implementation results
are presented for four ASIC libraries and two FPGAs along with parallel imple-
mentations.

• Microcontroller performance: WAGE is implemented on three different micro-
controller platforms, namely ATmega128, MSP430F2370, and LM3S9D96 (Cotex
M3). The best throughput for the permutation is achieved on LM3S9D96, which
is 286.78 Kbps.

6

WAGE: Submission to the NIST LWC competition

1.1 Notation

The following notation will be used throughout the document.

Notation Description

X � Y,X ⊕ Y,X||Y Bitwise AND, XOR and concatenation of X and Y

X ⊗ Y Finite field multiplication of X and Y

S 259 bit state of WAGE

Sj, Sj,k stage j of state S and k-th bit of stage Sj, where
j ∈ {0, . . . , 36} and k ∈ {0, . . . , 6}

Sr, Sc r-bit rate part and c-bit capacity part of S (r = 64, c = 195)

F27 Finite field F27

f, ω Defining polynomial for F27 and its root, i.e., f(ω) = 0

` LFSR feedback polynomial

WGP Welch-Gong permutation over F27

SB 7-bit Sbox

rci1, rc
i
0 7-bit round constants

K,N, T key, nonce and tag

k, n, t length of key, nonce and tag in bits (k = n = t = 128)

block a 64-bit string

AD,M,C associated data, plaintext and ciphertext (in blocksADi,Mi, Ci)

`X length of X in blocks where X ∈ {AD,M,C}
K̂j, N̂j, T̂j 7-bit tuple of key, nonce, and tag, j = 0, . . . , 17

WAGE-AE WAGE authenticated encryption algorithm

WAGE-E WAGE encryption

WAGE-D WAGE decryption

7

CHAPTER 1. INTRODUCTION

1.2 Outline

The rest of the document is organized as follows. In Chapter 2, we present the com-
plete specification of the WAGEand summarize the security claims of our submission in
Chapter 3. In Chapter 4, we present the rationale of our design choices and provide the
detailed security analysis in Chapter 5. The details of our hardware implementations
and performance results in ASIC and FPGA are provided in Chapter 6. In Chapter
7, we discuss the efficiency of WAGE on microcontroller implementations. Finally, we
conclude with references and test vectors in Appendix A.

8

Chapter 2

Specification of WAGE

2.1 WAGE AEAD Algorithm

WAGE is an iterative permutation with a state size of 259 bits inspired by the initial-
ization phase of the Welch-Gong (WG) cipher [22, 23]. It operates in a unified du-
plex sponge mode [3] to offer authenticated encryption with associated data (AEAD)
functionality. The AEAD algorithm (WAGE-AE-k) processes an r-bit data per call of
WAGE and is parameterized by the secret key size k. The WAGE-AE-k consists of two
algorithms, namely an authenticated encryption algorithm WAGE-E and a verified de-
cryption algorithm WAGE-D.

Encryption. The authenticated encryption algorithm WAGE-E takes as input a secret
key K of length k bits, a public message number N (nonce) of size n bits, a block
header AD (a.k.a, associated data) and a message M . The output of WAGE-E is an
authenticated ciphertext C of the same length as M , and an authentication tag T of
size t bits. Mathematically, WAGE-E is defined as

WAGE-E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
WAGE-E(K,N,AD,M) = (C, T).

Decryption. The decryption and verification algorithm takes as input the secret key
K, nonce N , associated data AD, ciphertext C and tag T , and outputs the plaintext
M of same length as C if the verification of tag is correct or ⊥ (error symbol) if the
tag verification fails. More formally,

WAGE-D(K,N,AD,C, T) ∈ {M,⊥}.

9

CHAPTER 2. SPECIFICATION OF WAGE

2.2 Recommended Parameter Set

In Table 2.1, we list the recommended parameter set for WAGE-AE-128. The length of
each parameter is given in bits and d denotes the amount of allowed data (including
both AD and M) before a re-keying is required.

Table 2.1: Recommended parameter set for WAGE-AE-128

Functionality Algorithm r k n t log2(d)

AEAD WAGE-AE-128 64 128 128 128 64

2.3 Description of the WAGE Permutation

WAGE is an iterative permutation and its round function is constructed by tweaking
the initialization phase of the WG cipher over F27 where an additional Welch-Gong
permutation (WGP) and four 7-bit sboxes (SB) are added to achieve faster confusion
and diffusion. We opt for a design based on a combination of an LFSR with WGP and
SB, which provides a good trade-off between security and hardware efficiency. The core
components of the round function are an LFSR, two WGPs and four SBs, which are
described below in detail.

2.3.1 Underlying finite field

WAGE operates over the finite field F27 , defined using the primitive polynomial f(x) =
x7 + x3 + x2 + x + 1. The elements of the finite field F27 are represented using the
polynomial basis PB = {1, ω, . . . , ω6}, and an element a ∈ F27 is given by

a =
6∑
i=0

aiω
i, ai ∈ F2

and its vector representation is

[a]PB = (a0, a1, a2, a3, a4, a5, a6).

To represent a 7-bit finite field element as a byte, a 0 is appended on the left. For
unambiguity, we include the conversion to binary as an intermediate step:

[a]PB = (a0, a1, a2, a3, a4, a5, a6)→ [a]b = (0, a0, a1, a2, a3, a4, a5, a6)→ [a]hex = (h1, h0)

Table 2.2 shows some examples of the conversion to HEX.

10

WAGE: Submission to the NIST LWC competition

Table 2.2: Examples of conversion of the field elements to HEX

27 26 25 24 23 22 21 20 161 160

a ∈ F27 0 a0 a1 a2 a3 a4 a5 a6 h1 h0

1 0 1 0 0 0 0 0 0 4 0

ω 0 0 1 0 0 0 0 0 2 0

1 + ω 0 1 1 0 0 0 0 0 6 0

1 + ω6 0 1 0 0 0 0 0 1 4 1

2.3.2 The LFSR

The internal state S of the permutation is composed of 37 stages and given by S =
(S36, · · · , S1, S0), where each Sj holds a 7-bit word considered as an element from the
finite field F27 represented using the PB, i.e., Sj = (Sj,0, Sj,1, Sj,2, Sj,3, Sj,4, Sj,5, Sj,6).
The WAGE LFSR is defined by the feedback polynomial

`(y) = y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω,

which is primitive over F27 . The linear feedback fb is computed as follows:

fb = S31 ⊕ S30 ⊕ S26 ⊕ S24 ⊕ S19 ⊕ S13 ⊕ S12 ⊕ S8 ⊕ S6 ⊕ (ω ⊗ S0).

2.3.3 The nonlinear components

In this subsection, we provide the details of the WGP and SB sboxes.

The Welch-Gong Permutation (WGP). The cryptographic properties of the WG
permutation and transformation have been widely investigated in the literature [13].
We use a decimated WGP with low differential uniformity and high nonlinearity. Using
the decimation d = 13, the differential uniformity for WGP is 6, and its nonlinearity is
42. The WGP7 over F27 is defined as

WGP7(x) = x+ (x+ 1)33 + (x+ 1)39 + (x+ 1)41 + (x+ 1)104, x ∈ F27 .

A decimated WG permutation with decimation d such that gcd(d, 2m−1) = 1 is defined
as

WGP7(xd) = xd + (xd + 1)33 + (xd + 1)39 + (xd + 1)41 + (xd + 1)104, x ∈ F27 .

We use the decimation d = 13 and denote it by WGP(x) = WGP7(x13). The maximum
algebraic degree of its components is 6. An Sbox representation of WGP is given in
Table 2.3 in a row-major order. The 7-bit finite field elements are represented in hex
using the technique provided in Table 2.2.

11

CHAPTER 2. SPECIFICATION OF WAGE

Table 2.3: Hex representation of WGP

00 12 0a 4b 66 0c 48 73 79 3e 61 51 01 15 17 0e
7e 33 68 36 42 35 37 5e 53 4c 3f 54 58 6e 56 2a
1d 25 6d 65 5b 71 2f 20 06 18 29 3a 0d 7a 6c 1b
19 43 70 41 49 22 77 60 4f 45 55 02 63 47 75 2d
40 46 7d 5c 7c 59 26 0b 09 03 57 5d 27 78 30 2e
44 52 3b 08 67 2c 05 6b 2b 1a 21 38 07 0f 4a 11
50 6a 28 31 10 4d 5f 72 39 16 5a 13 04 3c 34 1f
76 1e 14 23 1c 32 4e 7b 24 74 7f 3d 69 64 62 6f

SBox (SB). We construct a lightweight 7-bit Sbox in an iterative way. Let the input
be x = (x0, x1, x2, x3, x4, x5, x6). The nonlinear transformation Q is given by

Q(x0, x1, x2, x3, x4, x5, x6) = (x0⊕ (x2 ∧ x3), x1, x2, x3⊕ (x5 ∧ x6), x4, x5⊕ (x2 ∧ x4), x6).
The bit permutation P is given by

P (x0, x1, x2, x3, x4, x5, x6) = (x6, x3, x0, x4, x2, x5, x1).

One-round R of the Sbox SB is obtained by composing the nonlinear transformation Q
and the bit permutation P , and is given by R = P ◦Q where

R(x0, x1, x2, x3, x4, x5, x6) = (x6, x3⊕ (x5 ∧ x6), x0⊕ (x2 ∧ x3), x4, x2, x5⊕ (x2 ∧ x4), x1).
The 7-bit Sbox SB is constructed by iterating the function R 5 times, followed by ap-
plying Q once, and then complementing the 0th and 2nd components. Mathematically,

(x0, x1, x2, x3, x4, x5, x6)← R5(x0, x1, x2, x3, x4, x5, x6)

(x0, x1, x2, x3, x4, x5, x6)← Q(x0, x1, x2, x3, x4, x5, x6)

x0 ← x0 ⊕ 1

x2 ← x2 ⊕ 1.

SB has the differential uniformity of 8 and the nonlinearity of 44. The maximum
algebraic degree of its components is 6.

Although SB is defined bit-wise, the interpretation of the 7 bits is identical to the
interpretation of the coefficients of the finite field element represented in polynomial
basis. The hex representation of SB is provided in Table 2.4 and the conversion to hex
is the same as that of WGP.

2.3.4 Description of the core permutation

The WAGE permutation is a 259-bit permutation consisting of a 37-stage NLFSR defined
over F27 . It is based on the initialization phase of the WG cipher and utilizes 5 additional
sboxes to update the internal state. At the i-th iteration, the internal state is denoted
by Si = (Si36, S

i
35, · · · , Si1, Si0). The round function that updates 6 stages of the register

nonlinearly is viewed as

12

WAGE: Submission to the NIST LWC competition

Table 2.4: Hex representation of SB

2e 1c 6d 2b 35 07 7f 3b 28 08 0b 5f 31 11 1b 4d
6e 54 0d 09 1f 45 75 53 6a 5d 61 00 04 78 06 1e
37 6f 2f 49 64 34 7d 19 39 33 43 57 60 62 13 05
77 47 4f 4b 1d 2d 24 48 74 58 25 5e 5a 76 41 42
27 3e 6c 01 2c 3c 4e 1a 21 2a 0a 55 3a 38 18 7e
0c 63 67 56 50 7c 32 7a 68 02 6b 17 7b 59 71 0f
30 10 22 3d 40 69 52 14 36 44 46 03 16 65 66 72
12 0e 29 4a 4c 70 15 26 79 51 23 3f 73 5b 20 5c

• Updating with initialization of the WG cipher:

Si+1
36 ← WGP(Si36)⊕ Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si0)

• Updating one stage with WGP:

Si+1
18 ← Si19 ⊕WGP(Si18)

• Updating four stages with SB:

Si+1
4 ← Si5 ⊕ SB(Si8)

Si+1
10 ← Si11 ⊕ SB(Si15)

Si+1
23 ← Si24 ⊕ SB(Si27)

Si+1
29 ← Si30 ⊕ SB(Si34).

A schematic diagram of the round function is presented in Figure 2.1. A pair of 7-bit
round constants (rc1, rc0) is XORed with the pair of stages (36, 18) to destroy similarity
among state updates. On an input S0, an output of the permutation is obtained by
applying the round function, denoted by WAGE-StateUpdate, 111 times. An algorithmic
description of WAGE is provided in Algorithm 1.

2.3.5 Round constants

We use two 7-bit round constants at each round of WAGE. The round constants are
listed in Table 2.5. The interpretation of the hex values of round constants in terms of
polynomial basis is the same as for SB, and hence details are omitted.

2.4 WAGE-AE-128 Algorithm

WAGE uses the unified sponge duplex mode to provide the AEAD functionality [3]. A
WAGE instance is parametrized by a key of length k, denoted as WAGE-AE-k. Algorithm

13

CHAPTER 2. SPECIFICATION OF WAGE

Algorithm 1 WAGE permutation

1: Input : S0 = (S0
36, S

0
35, · · · , S0

1 , S
0
0)

2: Output : S111 = (S111
36 , S

111
35 , · · · , S111

1 , S111
0)

3: for i = 0 to 110 do:
4: Si+1 ← WAGE-StateUpdate(Si, rci1, rc

i
0)

5: return S111

6: Function WAGE-StateUpdate(Si):
7: fb = Si31 ⊕ Si30 ⊕ Si26 ⊕ Si24 ⊕ Si19 ⊕ Si13 ⊕ Si12 ⊕ Si8 ⊕ Si6 ⊕ (ω ⊗ Si0)
8: Si+1

4 ← Si5 ⊕ SB(Si8)
9: Si+1

10 ← Si11 ⊕ SB(Si15)
10: Si+1

18 ← Si19 ⊕WGP(Si18)⊕ rci0
11: Si+1

23 ← Si24 ⊕ SB(Si27)
12: Si+1

29 ← Si30 ⊕ SB(Si34)
13: Si+1

36 ← fb ⊕WGP(Si36)⊕ rci1
14: Si+1

j ← Sij+1, j ∈ {0, · · · , 36}\{4, 10, 18, 23, 29, 36}
15: return Si+1

2 presents a high-level overview of WAGE-AE-128. The encryption (WAGE-E) and
decryption (WAGE-D) of WAGE-AE-128 are shown in Figure 2.2. In what follows, we
first illustrate the rate and the capacity part of the state, and then the padding rule.
We then describe each phase of WAGE-E and WAGE-D.

2.4.1 Rate and capacity part of state

The internal state S of WAGE is divided into two parts, namely the rate part Sr
and the capacity part Sc. The 0-th bit of stage S36, i.e., S36,0, and all bits of stages
S35, S34, S28, S27, S18, S16, S15, S9 and S8 constitute Sr (shaded orange in Figure 2.3),

Si
36 Si

35 Si
34 Si

33 Si
32 Si

31 Si
30 Si

29 Si
28 Si

27 Si
26 Si

25 Si
24 Si

23 Si
22 Si

21 Si
20 Si

19

WGP SB SB

Si
17Si

18 Si
16 Si

15 Si
14 Si

13 Si
12 Si

11 Si
10 Si

9 Si
8 Si

7 Si
6 Si

5 Si
4 Si

3 Si
2 Si

1 Si
0

WGP SB SB

⊕
ω

rci1

rci0

Figure 2.1: The state at i-th round of the WAGE permutation

14

WAGE: Submission to the NIST LWC competition

Table 2.5: Round constants of WAGE

Round i Round constant (rci1, rc
i
0)

0 - 9 (3f, 7f) (0f, 1f) (03, 07) (40, 01) (10, 20) (04, 08) (41, 02) (30, 60) (0c, 18) (43, 06)
10 - 19 (50, 21) (14, 28) (45, 0a) (71, 62) (3c, 78) (4f, 1e) (13, 27) (44, 09) (51, 22) (34, 68)
20 - 29 (4d, 1a) (66, 73) (5c, 39) (57, 2e) (15, 2b) (65, 4a) (79, 72) (3e, 7c) (2f, 5f) (0b, 17)
30 - 39 (42, 05) (70, 61) (1c, 38) (47, 0e) (11, 23) (24, 48) (49, 12) (32, 64) (6c, 59) (5b, 36)
40 - 49 (56, 2d) (35, 6b) (6d, 5a) (7b, 76) (5e, 3d) (37, 6f) (0d, 1b) (63, 46) (58, 31) (16, 2c)
50 - 59 (25, 4b) (69, 52) (74, 3a) (6e, 5d) (3b, 77) (4e, 1d) (33, 67) (4c, 19) (53, 26) (54, 29)
60 - 69 (55, 2a) (75, 6a) (7d, 7a) (7f, 7e) (1f, 3f) (07, 0f) (01, 03) (20, 40) (08, 10) (02, 04)
70 - 79 (60, 41) (18, 30) (06, 0c) (21, 43) (28, 50) (0a, 14) (62, 45) (78, 71) (1e, 3c) (27, 4f)
80 - 89 (09, 13) (22, 44) (68, 51) (1a, 34) (66, 4d) (39, 73) (2e, 5c) (2b, 57) (4a, 15) (72, 65)
90 - 99 (7c, 79) (5f, 3e) (17, 2f) (05, 0b) (61, 42) (38, 70) (0e, 1c) (23, 47) (48, 11) (12, 24)
100 - 109 (64, 49) (59, 32) (36, 6c) (2d, 5b) (6b, 56) (5a, 35) (76, 6d) (3d, 7b) (6f, 5e) (1b, 37)
110 (46, 0d)

Algorithm 2 WAGE-AE-128 algorithm
1: Authenticated encryption WAGE-E(K,N,AD,M):

2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,C)← Encyption(S,M)

6: T ← Finalization(S,K)

7: return (C, T)

8: Initialization(N,K):

9: S ← load-AE(N,K)

10: S ←WAGE(S)

11: for i = 0 to 1 do:

12: S ← (Sr ⊕Ki, Sc)

13: S ←WAGE(S)

14: return S

15: Processing-Associated-Data(S,AD):

16: (AD0|| · · · ||AD`AD−1)← padr(AD)

17: for i = 0 to `AD − 1 do:

18: S ← (Sr ⊕ADi, Sc ⊕ 0c−7||1||06)

19: S ←WAGE(S)

20: return S

21: Encryption(S,M):

22: (M0|| · · · ||M`M−1)← padr(M)

23: for i = 0 to `M − 1 do:

24: Ci ←Mi ⊕ Sr

25: S ← (Ci, Sc ⊕ 0c−7||0||1||05)

26: S ←WAGE(S)

27: C`M−1 ← trunc-msb(C`M−1, |M | mod r)

28: C ← (C0, C1, . . . , C`M−1)

29: return (S,C)

30: padr(X):

31: X ← X||10r−1−(|X| mod r)

32: return X

33: trunc-lsb(X,n):

34: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption WAGE-D(K,N,AD,C, T):
2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,M)← Decyption(S,C)

6: T ′ ← Finalization(S,K)

7: if T ′ 6= T then:

8: return ⊥
9: else:

10: return M

11: Decryption(S,C):

12: (C0|| · · · ||C`C−1)← padr(C)

13: for i = 0 to `C − 2 do:

14: Mi ← Ci ⊕ Sr

15: S ← (Ci, Sc ⊕ 0c−7||0||1||05)

16: S ←WAGE(S)

17: M`C−1 ← Sr ⊕ C`C−1

18: C`C−1 ← trunc-msb(C`C−1, |C| mod r)||trunc-lsb(M`C−1, r − |C| mod r))

19: M`C−1 ← trunc-msb(M`C−1, |C| mod r)

20: M ← (M0,M1, . . . ,M`C−1)

21: S ←WAGE(C`C−1, Sc ⊕ 0c−7||0||1||05)

22: return (S,M)

23: Finalization(S,K):

24: for i = 0 to 1 do:

25: S ←WAGE(Sr ⊕Ki, Sc)

26: T ← tagextract(S)

27: return T

28: trunc-msb(X,n):

29: if n = 0 then:

30: return φ

31: else:

32: return (x0, x1, . . . , xn−1)

while all remaining bits in the state constitute Sc. The rationale for the choice of the
Sr positions is explained in Section 4.7. The rate part Sr of the state is used for both

15

CHAPTER 2. SPECIFICATION OF WAGE

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
Eload-AE(N,K)

c

r

tagextract(S)

t

0x00 0x00 0x01 0x01 0x02 0x02 0x02 0x00 0x00

K0 K1 AD0 ADlAD
− 1 K0 K1

M0 MlM−2 MlM−1

C0 ClM−2 ClM−1

Initialization Processing associated data Encryption Finalization

(a) Authenticated encryption algorithm WAGE-E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

W
A
G
E

load-AE(N,K)

c

r

tagextract(S)

t

0x00 0x00 0x01 0x01 0x02 0x02 0x02 0x00 0x00

K0 K1 AD0 ADlAD−1 K0 K1

M0 MlM−2 MlM−1

C0 ClM−2 ClM−1

Initialization Processing associated data Decryption Finalization

(b) Verified decryption algorithm WAGE-D

Figure 2.2: Schematic diagram of the WAGE-AE-128 algorithm

absorbing and squeezing.
For example, the 64-bit bits of a message block are absorbed into the Sr as follows:

S36 ← (m63, 0, . . . , 0) v D9 S18 ← (m28, . . . ,m34) v D4

S35 ← (m56, . . . ,m62) v D8 S16 ← (m21, . . . ,m27) v D3

S34 ← (m49, . . . ,m55) v D7 S15 ← (m14, . . . ,m20) v D2

S28 ← (m42, . . . ,m48) v D6 S9 ← (m7 , . . . ,m13) v D1

S27 ← (m35, . . . ,m41) v D5 S8 ← (m0 , . . . ,m6) v D0

The tuples above labeled with Dk, k = 0, . . . , 9, are used as data inputs to Sr;
they carry the associated data bits, the message bits during encryption, the cipher-
text bits during decryption, and the key bits during the initialization and finaliza-
tion phases. Figure 2.3 shows the XORing of Dk to the appropriate stages S111

j ,
j ∈ {36, 35, 34, 28, 27, 18, 16, 15, 9, 8}, shown in shaded orange. The two domain sep-
arator bits ds1 and ds0 are XORed to the first two bits of Sc, namely S111

0,1 and S111
0,0

respectively.

2.4.2 Padding

Padding is necessary when the length of the processed data is not a multiple of the
rate r value. Since the key size is a multiple of r, we get two key blocks K0 and
K1, so no padding is needed. Afterwards, the padding rule (10∗), denoting a single 1
followed by required number of 0’s, is applied to the message M so that its length after

16

WAGE: Submission to the NIST LWC competition

S111
36 ⊕ D9 S111

35 ⊕ D8 S111
34 ⊕ D7 S111

33 S111
32 S111

31 S111
30 S111

29 S111
28 ⊕ D6 S111

27 ⊕ D5 S111
26 S111

25 S111
24 S111

23 S111
22 S111

21 S111
20 S111

19

WGP SB SB

S111
17S111

18 ⊕ D4 S111
16 ⊕ D3 S111

15 ⊕ D2 S111
14 S111

13 S111
12 S111

11 S111
10 S111

9 ⊕ D1 S111
8 ⊕ D0 S111

7 S111
6 S111

5 S111
4 S111

3
S2111 S111

1 S111
0

WGP SB SB

⊕
ω

rc01

rc10

Figure 2.3: Rate (shaded orange) and capacity (green) part of WAGE-AE-128.

padding is a multiple of r. The resulting padded message is divided into `M r-bit blocks
M0‖ · · · ‖M`M−1. A similar procedure is carried out on the associated data AD which
results in `AD r-bit blocks AD0‖ · · · ‖AD`AD−1. In the case where no associated data is
present, no processing is necessary. We summarize the padding rules for the message
and associated data below.

padr(M) ←M‖1‖0r−1−(|M | mod r)

padr(AD) ←
{
AD‖1‖0r−1−(|AD| mod r) if |AD| > 0

φ if |AD| = 0

Note that in case of AD or M whose length is a multiple of r, an additional r-bit
padded block is appended to AD or M to distinguish between the processing of partial
and complete blocks.

2.4.3 Loading key and nonce

The state is loaded with 128-bit nonce N = (n0, . . . , n127) and 128-bit key K =
(k0, . . . , k127). The remaining three bits of S are set to zero. Both the nonce and
the key are divided into 7-bit tuples as follows:

• for 0 ≤ i ≤ 8, N̂i = (n7i, . . . , n7i+6) and K̂i = (k7i, . . . , k7i+6)

• for 9 ≤ i ≤ 17, N̂i = (n7i+1, . . . , n7i+7) and K̂i = (k7i+1, . . . , k7i+7)

• K̂∗18 = (k63, k127, n63, n127, 0, 0, 0)

17

CHAPTER 2. SPECIFICATION OF WAGE

The state S is initialized as follows:

S36,S35,S34,S33,S32,S31,S30,S29,S28 ← N̂16,N̂14,N̂12,N̂10,N̂8,N̂6,N̂4,N̂2,N̂0

S27,S26,S25,S24,S23,S22,S21,S20,S19 ← K̂17,K̂15,K̂13,K̂11,K̂9,K̂7,K̂5,K̂3,K̂1

S18,S17 ← K̂∗18,N̂15

S16,S15,S14,S13,S12,S11,S10,S9 ← N̂17,N̂13,N̂11,N̂9 , N̂7,N̂5,N̂3,N̂1

S8, S7, S6, S5, S4, S3, S2, S1, S0 ← K̂16,K̂14,K̂12,K̂10,K̂8,K̂6,K̂4,K̂2,K̂0

This loading scheme is further discussed in Section 4.7. We use load-AE(N,K)
to denote the process of loading the state with nonce N and key K in the positions
described above.

2.4.4 Initialization

The goal of this phase is to initialize the state S with the public nonce N and the secret
key K. The state is first loaded using load-AE(N,K) as described above, and then the
two key blocks K0 and K1, with K = K0||K1, are absorbed into the state, with the
WAGE permutation applied each time. The steps of the initialization are described as
follows.

S ← WAGE(load-AE(N,K))

S ← WAGE(Sr ⊕K0, Sc)

S ← WAGE(Sr ⊕K1, Sc)

2.4.5 Processing associated data

If there is associated data, then for each absorbed block of AD, a domain separator bit
is XORed to the current value of S0,0. Then the WAGE permutation is applied to the
whole state. This phase is defined in Algorithm 2.

S ← WAGE(Sr ⊕ ADi, Sc ⊕ 0c−7||1||06), i = 0, . . . , `AD − 1

2.4.6 Encryption

This phase is similar to the processing of associated data, however, the domain separator
bit is XORed to the current value of S0,1. In addition, each message block Mi, i =
0, . . . , `M − 1, is XORed to Sr part of the internal state as described in Section 2.4.1,
which gives the corresponding ciphertext block Ci, which is extracted from the Sr part
of the state as well. After that, the WAGE permutation is applied to the internal state
S.

Ci ← Sr ⊕Mi,

S ← WAGE(Ci, Sc ⊕ 0c−7||0||1||05), i = 0, · · · , `M − 1

18

WAGE: Submission to the NIST LWC competition

The last ciphertext block is truncated so that its length is equal to that of the last
unpadded message block. The details of this phase are given in Algorithm 2.

2.4.7 Finalization

After the extraction of the last ciphertext block, the domain separator is reset to zero.
First, the two 64-bit key blocks K = K0||K1 are absorbed into the state, with the
WAGE permutation applied each time. Then, the tag is extracted from the positions
of state which are used for loading the nonce during load-AE(N,K). The finalization
steps are mentioned below and illustrated in Algorithm 2.

S ← WAGE((Sr ⊕Ki), Sc), i = 0, 1

T ← tagextract(S).

The function tagextract(S) extracts the 128-bit tag T = T̂0||T̂1|| . . . ||T̂17||T̂ ∗18 from the
positions that were used to load the 7-bit tuples of the nonce N during load-AE(N,K),

namely stages S36 ,. . . , S28 and S18 . . .S9. The 7-bit T̂i tuples are given by:

T̂16,T̂14,T̂12,T̂10,T̂8,T̂6,T̂4, T̂2, T̂0 ← S36,S35,S34,S33,S32,S31,S30,S29,S28

T̂15,T̂13,T̂11,T̂9,T̂7,T̂5, T̂3, T̂1 ← S16,S15,S14,S13,S12,S11,S10,S9

T̂ ∗18,T̂17 ← S18,S17

where

T̂i = (t7i, . . . , t7i+6), for 0 ≤ i ≤ 17, and

T̂ ∗18 = (−,−, t126, t127,−,−,−).

Note that for T̂ ∗18, only the second two bits of stage S18 are used, the remaining
stage bits are discarded, as indicated by the sign “−”.

2.4.8 Decryption

The decryption procedure is symmetrical to encryption and illustrated in Algorithm 2.

19

Chapter 3

Security Claims

WAGE is designed to provide authenticated encryption with associated data function-
ality. We assume a nonce-respecting adversary and do not claim security in the event
of nonce reuse. If the verification procedure fails, the decrypted ciphertext and the
new tag should not be given as output. Moreover, we do not claim security for the
reduced-round versions of WAGE-AE-128. The security claims of WAGE-AE-128 are
summarized in Table 3.1. Note that the security for integrity in Table 3.1 includes the
integrity of nonce, plaintext and associated data.

Table 3.1: Security claims of WAGE-AE-128 (in bits)

Confidentiality Integrity Authenticity Data limit

128 128 128 264

20

Chapter 4

Design Rationale

WAGE is a hardware-oriented AE scheme. Our design philosophy for the WAGE permu-
tation is to reuse and adopt the initialization phase of the well-studied WG cipher. More
specifically, we use the initialization phase of the WG cipher over F27 . Feedback shift
registers (FSR) are widely used as basic building blocks in many cryptographic designs,
due to their simple architecture and efficient implementations. We choose a design for
a lightweight permutation based on word-oriented shift registers and substitution boxes
(sboxes).

Our parameter selection was aimed at reducing the hardware implementation cost.
First, we exhaustively collected pre place-and-route (pre-PAR) synthesis results for
the CMOS 65 nm area of the WGP for F2m , m ∈ {5, 7, 8, 10, 11, 13, 14, 16}, and all
polynomial bases, to find the balance between security and hardware implementation
area. Once the field was set, we searched for the sboxes based on their hardware
cost, differential uniformity and nonlinearity, and exhaustively searched for symmetric
feedback polynomials with a low number of nonzero terms, and with good security
properties.

4.1 Mode of Operation

WAGE adopts the sLiSCP sponge mode [3] as its mode of operation. The adopted mode
is a slight variation of well analyzed traditional sponge duplex mode [4] and offers the
following features.

• Provable security bounds when instantiated with an ideal permutation [5, 15].

• No key scheduling is required.

• Inverse free as the permutation is always evaluated in the forward direction.

• Encryption and decryption functionalities are identical and can be implemented
with the same hardware circuit (only r-bit MUXs are required to replace the rate
part of state).

21

CHAPTER 4. DESIGN RATIONALE

• The length of processed data is not required beforehand.

• Keyed initialization and finalization phases, where the key is absorbed in the state
using the XORs of the rate part. This ensures that key recovery is hard, even
if the internal state is recovered. Universal forgery with the knowledge of the
internal state is not practical.

• Domain separators are used for each processed data block and they are changed
with each new phase, rather than with last data block in the previous phase. This
leads to a more efficient hardware implementation. This method was shown to
be secure in [15].

4.2 WAGE State Size

Our main aim is to choose b (state size) that provides 128-bit AE security. For a b-bit
permutation with b = r + c (r-bit rate and c-bit capacity), operating in sponge duplex
mode, the best known bound is min{2b/2, 2c, 2k} [15]. This implies that, for k = 128,
the state size b ≥ 256. In Section 4.4.1 we choose the operating finite field as F27 and
accordingly b = 259. The values of r = 64 and c = 195 are chosen to have an efficient
and low-cost hardware implementation. Our choice of (b, r, c) satisfies the NIST-LWC
requirements [21] and 264 bits of data can be processed per key.

4.3 Choice of Linear Layer

The linear layer of WAGE is composed of 1) L1 : a feedback polynomial of degree 37,
which is primitive over F27 and 2) L2 : input and output tap positions of WGP and SB
sboxes. There exist many choices for L1 and L2, which results in a tradeoff between
security and efficient implementations. Thus, we restrict our search to ones which are
lightweight and offer good security bounds. Note that we can not have only L1 or
only L2 as the linear layer, because that would result in slower diffusion. The required
criteria for L1 and L2 are:

1. To have a lightweight L1 we look for a feedback polynomial of the form

`(y) = y37 +
36∑
j=1

cjy
j + ω, cj ∈ F2,

where ω is the root of the chosen field polynomial f(x), which is also a primitive
element of F27 . Including ω, we chose feedback polynomials with 10 nonzero tap
positions (cj = 1) that are symmetric and need only 70 XOR gates to imple-
ment in hardware. In order to allow hardware optimizations in the future, e.g.,
parallelization, we prefer polynomials that minimize the position j of the biggest
non-zero cj. This pushes the taps as far to the right as possible, therefore we fixed
the highest coefficients to zero.

22

WAGE: Submission to the NIST LWC competition

2. A combination of L1 and L2 for which computing the minimum number of active
sboxes is feasible and enable us to provide bounds for differential/linear distin-
guishers.

We found 23 symmetric polynomials with 10 non-zero taps (Table 5.1 in Sec-
tion 5)[12]. The first column shows the candidate polynomials listed with their nonzero
coefficients cj. We chose the one that provides the maximum resistance against crypt-
analytic attacks, such as differential and linear attacks. More precisely, we have:

L1 : y37 + y31 + y30 + y26 + y24 + y19 + y13 + y12 + y8 + y6 + ω,

L2 : {(36, 36), (34, 30), (27, 24), (18, 19), (15, 11), (8, 5)}
where (a, b) ∈ L2 denotes the (input, output) position of an Sbox (Figure 2.1).

4.4 Nonlinear Layer of WAGE

We now justify the choices for the components in the nonlinear layer of the WAGE
permutation. The nonlinear layer consists of two WGPs and four sboxes SB, specified
in Section 2.3.3. The number of WGPs and sboxes was chosen to achieve faster confusion
and diffusion.

4.4.1 The Welch-Gong permutation (WGP)

The natural choice of the finite field for low-cost hardware, while maintaining ease of
software implementations, is F28 . However, the pre-PAR hardware area for the WGP
defined over F28 , averaged over all irreducible polynomials, is 546 GE, which is bigger
than two F27 WGP hardware modules. Hence we choose the finite field F27 for WAGE.

The polynomial basis PBi = {1, ωi, . . . , ω6
i } was chosen for the representation of the

field elements, where ωi is a root of the defining polynomial fi(x), i.e., fi(ωi) = 0. The
polynomial fi(x) was chosen to minimize the hardware implementation area of WGP
with a decimation exponent 13 and of multiplication with the constant term of the LFSR
feedback polynomial. As we use the polynomial basis, the smallest area constant term is
ωi. To estimate the area of the constant term multiplier, we used the Hamming weight
of the matrix for multiplication by ωi w.r.t. to the basis PBi. The pre-PAR results for
CMOS 65 nm implementations of the WGP modules and the constant terms are listed in
Table 4.1: they show 18 primitive polynomials of degree 7, denoted fi(x). Each of the
fi has a different root ωi, which in turn gives a different PBi. Thus, the implementation
results change with the field defining polynomial. The smallest area for WGP and
constant term multiplier was found for the defining polynomial x7 + x3 + x2 + x+ 1.

4.4.2 The 7-bit sbox (SB)

The search for lightweight 7-bit sboxes varies with nonlinearity, differential uniformity
and the number of rounds, balancing with small hardware cost; the sboxes explored were

23

CHAPTER 4. DESIGN RATIONALE

in the range of 55 – 65 GE for their pre-PAR implementation area. While constructing
the 7-bit sboxes, we chose the nonlinear transformations Q that have efficient hardware
implementation and varied all 5040 (= 7!) bit permutations (P). The chosen Sbox SB,
described in Section 2.3.3, has differential uniformity 8 and nonlinearity 44, and can be
implemented with just 58 GE.

Table 4.1: Area implementation results for the defining polynomials fi(x) for F27

Defining polynomial constant term WGP sum†
fi(x) area [GE] area [GE] [GE]

x7 + x+ 1 2 258 260

x7 + x3 + 1 16 247 263

x7 + x3 + x2 + x+ 1 10 245 255

x7 + x4 + 1 23 243 266

x7 + x4 + x3 + x2 + 1 22 255 277

x7 + x5 + x2 + x+ 1 24 258 282

x7 + x5 + x3 + x+ 1 6 261 267

x7 + x5 + x4 + x3 + 1 16 264 280

x7 + x5 + x4 + x3 + x2 + x+ 1 19 251 270

x7 + x6 + 1 14 270 284

x7 + x6 + x3 + x+ 1 28 248 276

x7 + x6 + x4 + x+ 1 29 261 290

x7 + x6 + x4 + x2 + 1 27 265 292

x7 + x6 + x5 + x2 + 1 16 257 273

x7 + x6 + x5 + x3 + x2 + x+ 1 26 257 283

x7 + x6 + x5 + x4 + 1 31 259 290

x7 + x6 + x5 + x4 + x2 + x+ 1 20 254 274

x7 + x6 + x5 + x4 + x3 + x2 + 1 14 255 269

†Combined area of constant term and WGP implementation.

4.5 Number of Rounds

Our rationale for selecting the number of rounds (say nr) is to choose a value such
that the WAGE permutation is indistinguishable from a random permutation. We now
justify our choice of nr = 111 as follows.

24

WAGE: Submission to the NIST LWC competition

1. WAGE adopts a shift register based structure with 37 7-bit words, and hence
nr ≥ 37, otherwise the words will not be mixed among themselves properly,
which leads to meet/miss-in-the-middle attacks.

2. For nr = 74, the MEDCP of WAGE equals 2−4×59 = 2−236 > 2−259. Thus,
to push the MEDCP value below 2−259, nr ≥ 74. However, it is infeasible to
compute the value of MEDCP for nr ≥ 74. Thus, we expect that for nr = 111,
MEDCP << 2−259 (see Section 5.1.1).

4.6 Round Constants

The round constants are added to mitigate the self-symmetry based distinguishers as
mentioned in Section 2.3.5. We use a single 7-stage LFSR to generate a pair of constants
at each round. Our choice of the utilized LFSR polynomial ensures that each pair of such
constants does not repeat, due to the periodicity of the 8-tuple sequence constructed
from the decimated m-sequence of period 127. Below we provide the details of how to
generate the round constants.

4.6.1 Generation of round constants

We use an LFSR of length 7 with feedback polynomial x7 +x+ 1 to generate the round
constants of WAGE. To construct these constants, the same LFSR is run in a 2-way
parallel configuration, as illustrated in Figure 4.1. Let a denote the sequence generated
by the initial state (a0, a1, . . . , a6) of the LFSR without parallelization. The parallel
version of this LFSR outputs two sequences, both of them using decimation exponent
2. More precisely,

• rci0 corresponds to the sequence a with decimation 2

• rci1 corresponds to the sequence a shifted by 1, then decimated by 2

ai+6 ai+4 ai+2 ai

ai+5 ai+3 ai+1

ai+8

ai+7

Figure 4.1: The LFSR for generating WAGE round constants.

The computation of round constants does not need any extra circuitry, but rather
uses a feedback value ai+7 together with all 7 state bits, annotated in Figure 4.1. In

25

CHAPTER 4. DESIGN RATIONALE

Figure 4.2 we show how the 8 consecutive sequence elements are used to generate round
constants. The round constants are given by:

rci0 = ai+6‖ai+5‖ai+4‖ai+3‖ai+2‖ai+1‖ai
rci1 = ai+7‖ai+6‖ai+5‖ai+4‖ai+3‖ai+2‖ai+1

rci1︷ ︸︸ ︷
ai+7, ai+6, ai+5, ai+4, ai+3, ai+2, ai+1, ai︸ ︷︷ ︸

rci0

Figure 4.2: Two 7-bit round constants, generated from 8 consecutive sequence elements

We provide an example of the hex conversion of constants from LFSR sequence in
Appendix A.3. The first five round constant pairs are shown in Table A.1.

4.7 Loading and Tag Extraction

The 128-bit key K and 128-bit nonce N are divided into 7-bit tuples. In software we
work with bytes, and since WAGE is using 7-bit tuples, we have “left-over” bits k63 and
n63; instead of shifting all remaining key and nonce bits by 1, the bits n63 and k63 are
put into the last key block K̂∗18, which makes the loading phase and key absorption
efficient for the software implementation.

Loading regions. Recall the data inputs Dk, k = 0, . . . 9, in the shift register as shown
in Figure 2.1. In order to minimize the hardware overhead, we reuse the data inputs Dk

for loading. However, instead of XORing the Dk with previous stage content, the Dk

data is fed directly into the corresponding stage. We have 10 Dk inputs, but must load
the entire state, i.e., 37 stages. The stages without Dk inputs are loaded by shifting.
We divide the stages without Dk inputs into loading regions, e.g., the loading region
S8, . . . , S0 can be loaded through the data input D0 and has length 9, hence will require
9 shifts for loading. The loading region S8, . . . , S0 is the last part of the register in
Figure 2.3, and has a nonlinear input from the SB, which are disconnected during the
loading. The remaining 3 SB are grounded. By inspecting the shift register, we find
two other loading regions of length 9, namely region S27, . . . , S19 (loaded through D5)
and region S36, . . . , S28 (loaded through D9). We decided to split the remaining 10
consecutive stages into two regions, one of length 8 and another of length 2. The region
of length 8 are the stages S16, . . . , S9, loaded through D3, while the region of length 2
consists of stages S18, S17 and are loaded through D4. Note that there is no need to
disconnect the two WGPbecause they are automatically disabled by loading through
D9 and D4.

Loading sequence. The five loading regions, annotated with Dk used for loading,
are listed below in a way that reflects their respective lengths. The K̂i and N̂i tuples

26

WAGE: Submission to the NIST LWC competition

on the right show the contents of the stages Sj after the loading is complete. The
notations on the top denote the 64-bit loading blocks KN t. They are the formed by
lumping together tuples appearing in the same column. For example, during the first
shift we load the 64-bit block KN0 = N̂0||K̂1||07||07||K̂0 and during the last shift the

block KN8 = N̂16||K̂17||K̂∗18||N̂17||K̂16.

KN8 KN7 KN6 KN5 KN4 KN3 KN2 KN1 KN0

S36,S35,S34,S33,S32,S31,S30,S29,S28 ←D9 N̂16, N̂14, N̂12, N̂10, N̂8, N̂6, N̂4, N̂2, N̂0

S27,S26,S25,S24,S23,S22,S21,S20,S19 ←D5 K̂17, K̂15, K̂13, K̂11, K̂9, K̂7, K̂5, K̂3, K̂1

S18,S17 ←D4 K̂∗18, N15

S16,S15,S14,S13,S12,S11,S10,S9 ←D3 N̂17, N̂13, N̂11, N̂9, N̂7, N̂5, N̂3, N̂1

S8, S7, S6, S5, S4, S3, S2, S1, S0 ←D0 K̂16, K̂14, K̂12, K̂10, K̂8, K̂6, K̂4, K̂2, K̂0

The entire loading process for regions S18, . . . , S9 and S8, . . . , S0 is shown in Table 4.2.
The table shows the shifting of data through the registers in 9 shifts. The first column
shows which KN t is sent to the Dk inputs during the shift t+ 1. The stages are shown
in the second row of Table 4.2, and the values “-” in the table denote the old, unknown
values, which will be overwritten by the specified K̂i and N̂i blocks by the time the
loading is finished. The state of stages S18, . . . , S0 after shifting 9 times, i.e., after the
loading is finished, is visible from the last row.

Table 4.2: Loading into the shift register through data inputs D4, D3 and D0

KN t shift D4 D3 D0

block count S18,S17 S16, S15, S14, S13,S12,S11,S10,S9 S8, S7, S6, S5, S4, S3, S2, S1, S0

KN0 1 - - - - - - - - - - K̂0 - - - - - - - -

KN1 2 - - N̂1 - - - - - - - K̂2, K̂0 - - - - - - -

KN2 3 - - N̂3, N̂1 - - - - - - K̂4, K̂2, K̂0 - - - - - -

KN3 4 - - N̂5, N̂3, N̂1 - - - - - K̂6, K̂4, K̂2, K̂0 - - - - -

KN4 5 - - N̂7, N̂5, N̂3, N̂1 - - - - K̂8, K̂6, K̂4, K̂2, K̂0 - - - -

KN5 6 - - N̂9, N̂7, N̂5, N̂3, N̂1 - - - K̂10,K̂8, K̂6, K̂4, K̂2,K̂0 - - -

KN6 7 - - N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 - - K̂12,K̂10,K̂8, K̂6, K̂4,K̂2,K̂0 - -

KN7 8 N̂15 - N̂13,N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 - K̂14,K̂12,K̂10,K̂8, K̂6,K̂4,K̂2,K̂0 -

KN8 9 K̂18N̂15 N̂17,N̂13,N̂11,N̂9, N̂7, N̂5, N̂3, N̂1 K̂16,K̂14,K̂12,K̂10,K̂8,K̂6,K̂4,K̂2,K̂0

Tag extraction regions. The tag is extracted in a similar fashion, from the positions
that were loaded with nonce tuples. For example, the state region S16, . . . , S9, which
was loaded through D3, is extracted through the output that belongs to the D1 input.
Similarly, the state region S18, S17 is extracted through the output belonging to the D3

input and the region S36, . . . , S28 through the output belonging to the D6 input. The

27

CHAPTER 4. DESIGN RATIONALE

longest tag extraction region is also of length 9. Similar to KN t for the loading, the
7-bit tuples extracted during shift t+ 1 are lumped into a tag-extract block TEt .

4.8 Choice of Rate Positions

The internal state constitutes of a rate part and a capacity part in which the adversary
has freedom to inject messages into the state through the rate part. The rate positions in
the state, as given in Section 2.4.1, are chosen by considering the security and efficient
hardware implementation. From a security point of view, the chosen rate positions
allow the input bits to be processed by the six sboxes and diffused by the feedback
polynomial as soon as possible after absorbing the message into the state, thus faster
confusion and diffusion is achieved. Moreover, our choice ensures that any injected
differences will activate at least two sboxes in the first two rounds. This enhances
resistance to differential and linear cryptanalysis.

Exploiting the shifting property, the length of the process of updating the rate
positions is minimized. The current choice of rate positions also allows an efficient
loading and tag extraction within 9 consecutive clock cycles.

4.9 Relationship to WG ciphers

The WG cipher is a family of word-oriented stream ciphers based on an LFSR, a WG
transformation and a WG permutation module over an extension field. The first family
member, WG-29 [22], proceeded to Phase 2 of the eSTREAM competition [8]. Later, the
lightweight variants WG-5 [1], WG-7 [19] and WG-8 [10] were proposed for constrained
environments, e.g., RFID, and WG-16 [26, 11, 9] was proposed for 4G LTE.

We adopt the initialization phase of the WG cipher where we chose a decimated WG
permutation with good cryptographic properties and tweak it to construct the round
function of WAGE. Our proposed tweak brings faster confusion and diffusion in the
state update. We choose the decimated WG permutation with decimation d = 13 for
which its differential uniformity is 6 and nonlinearity 42 [20].

We make the tweak hardware efficient so that by disconnecting the second WGP
module and all four SB modules, and keeping the domain separator 0, the round function
of WAGE becomes identical to the WG initialization phase. So, the original WG stream
cipher can be enabled for certain applications which require guaranteed randomness
properties.

4.10 Statement

The authors declare that there are no hidden weaknesses in WAGE-AE-128.

28

Chapter 5

Security Analysis

5.1 Security of WAGE Permutation

In this section, we analyze the security of the WAGE permutation against generic dis-
tinguishers. Formally, we show that WAGE with 111 rounds is indistinguishable from a
random permutation. In the following, we denote the nonzero coefficients ci ∈ {0, 1} of
a degree 37 primitive polynomial l(y) = y37 +

∑36
i=1 ciy

i + ω ∈ F27 by the vector ~c.

5.1.1 Differential distinguishers

In WAGE, we use two distinct 7-bit sboxes namely, WGP and SB as the nonlinear
components. The differential probabilities of the sboxes are 2−4.42 and 2−4, respectively.
To evaluate the maximum expected differential characteristic probability (MEDCP), we
bound the minimum number of active sboxes using a Mixed Integer Linear Programming
(MILP) model that takes as input ~c, the position of sboxes and the number of rounds
r. It then computes the minimum number of active sboxes denoted by nr(~c). In Table
5.1, we list the values of nr(~c) for varying ~c and r ∈ {37, 44, 51, 58, 74}.

The MEDCP is then given by:

MEDCP = max(2−4.42, 2−4)nr(~c) = 2−4×nr(~c).

Note that for r = 74 and ~c = (31, 30, 26, 24, 19, 13, 12, 8, 6), we have MEDCP =
2−4×59 = 2−236 > 2−259. Since, the MILP solver [14] is unable to finish for r > 74,
we expect that for our choice of ~c, n111(~c) ≥ 65. This is because for each additional 7
rounds, the number of active sboxes increases by at least 6 (see row 10 in Table 5.1)
which implies MEDCP ≤ 2−260 < 2−259.

5.1.2 Diffusion behavior

To achieve full bit diffusion, i.e., each output bit of the permutation depends on all the
input bits, we need at least 21 rounds. This is because the 7 bits of S36 is shifted to S0 in
21 clock cycles. However, as the feedback function consists of 10 taps and all six sboxes

29

CHAPTER 5. SECURITY ANALYSIS

Table 5.1: Minimum number of active sboxes nr(~c) for different primitive polynomials.
Here − denotes that MILP optimization was too long and can not finish.

Primitive poly. coefficients Rounds r

~c 37 44 51 58 74

24, 23, 22, 21, 19, 6, 5, 4, 3 18 26 30 35 51
29, 27, 24, 23, 19, 11, 9, 6, 5 23 31 36 41 54
29, 28, 23, 22, 19, 11, 10, 5, 4 21 28 34 40 54
29, 28, 24, 20, 19, 11, 10, 6, 2 21 27 34 40 54
30, 28, 27, 21, 19, 12, 10, 9, 3 22 30 34 39 54
30, 29, 28, 26, 19, 12, 11, 10, 8 20 30 37 44 57
31, 25, 23, 21, 19, 13, 7, 5, 3 20 29 33 38 54
31, 26, 23, 20, 19, 13, 8, 5, 2 20 26 34 39 54
31, 28, 23, 21, 19, 13, 10, 5, 3 19 27 33 39 53
31, 30, 26, 24, 19, 13, 12, 8, 6 24 30 38 44 59
32, 25, 24, 21, 19, 14, 7, 6, 3 19 28 34 39 54
32, 29, 25, 22, 19, 14, 11, 7, 4 19 28 36 41 57
32, 29, 27, 22, 19, 14, 11, 9, 4 23 31 37 41 57
32, 29, 27, 24, 19, 14, 11, 9, 6 23 31 37 39 55
32, 30, 28, 24, 19, 14, 12, 10, 6 23 29 38 44 58
32, 31, 21, 20, 19, 14, 13, 3, 2 21 26 30 36 47
33, 27, 26, 20, 19, 15, 9, 8, 2 21 30 35 39 55
33, 29, 28, 21, 19, 15, 11, 10, 3 22 27 35 39 53
33, 30, 29, 26, 19, 15, 12, 11, 8 21 31 38 44 57
33, 31, 23, 22, 19, 15, 13, 5, 4 23 31 36 41 55
33, 31, 28, 23, 19, 15, 13, 10, 5 23 30 36 41 -
33, 31, 29, 22, 19, 15, 13, 11, 4 22 32 37 44 -
33, 31, 30, 25, 19, 15, 13, 12, 7 23 34 39 44 -

(2 WGP and 4 SB) individually have the full bit diffusion property, WAGE achieves the
full bit diffusion in at most 37 rounds. Accordingly, we claim that meet/miss-in-the
middle distinguishers may not cover more than 74 rounds as 74 rounds guarantee full
bit diffusion in both the forward and backward directions.

5.1.3 Algebraic degree

The WGP and SB sboxes have an algebraic degree of 6. Note that if we only have WGP
sbox at position S36 along with the feedback polynomial and exclude all other sboxes
and intermediate XORs, then we get the original WG stream cipher [22]. Such a stream
cipher is resistant to attacks exploiting the algebraic degree if non-linear feedback used
in the initialization phase is also used in the key generation phase [25, 24].

Given that WAGE has 6 sboxes and we use nonlinear feedback for all of them, we
expect that 111-round WAGE is secure against integral attacks.

30

WAGE: Submission to the NIST LWC competition

5.1.4 Self-symmetry based distinguishers

WAGE employs two 7-bit round constants, rc0 and rc1, which are XORed to S36 and
S18, respectively. The round constant tuple is distinct for each round, i.e., (rci0, rc

i
1) 6=

(rcj0, rc
j
1) for 0 ≤ i, j ≤ 110 and i 6= j. This property ensures that all the rounds of

WAGE are distinct and thwart attacks which exploit the symmetric properties of the
round function [7, 18].

5.2 Security of WAGE-AE-128
The security proofs of modes based on the sponge construction rely on the indistin-
guishability of the underlying permutation from a random one [4, 6, 5, 15]. In previous
sections, we have shown that for 111 rounds the WAGE permutation is indistinguishable
from a random permutation. Thus, the security bounds of the sponge duplex mode are
applicable to WAGE-AE-128. Moreover, we assume a nonce-respecting adversary, i.e,
for a fixed K, nonce N is never repeated during encryption queries. Then, considering
a data limit of 2d, the k-bit security is achieved if c ≥ k + d+ 1 and d� c/2 [5]. The
parameter set of WAGE (see Table 2.1) with actual effective capacity 193 (2 bits are
lost for domain separation) satisfies this condition, and hence WAGE-AE-128 provides
128-bit security for confidentiality, integrity and authenticity.

31

Chapter 6

Hardware Design And Analysis

In this chapter, we describe the hardware implementation of WAGE module, which
is a single module that supports both functionalities: authenticated encryption and
verified decryption using the same hardware circuit. Section 6.1 outlines some of the
principles underlying our hardware design. Section 6.2 describes the interface and top-
level WAGE module module. Section 6.3 goes into the details of the state machine and
datapath implementation. And, finally, Section 6.4 presents the implementation results
for four ASIC libraries and two FPGAs.

6.1 Hardware Design Principles

In this section, we describe the design principles and assumptions that we follow while
implementing WAGE and WAGE module.

1. Multi-functionality module. The system should support all operations, namely
authenticated encryption and verified decryption for WAGE, in a single module
(Figure 6.1), because lightweight applications generally cannot afford the extra
area for separate modules.

2. Single input/output ports. In small devices, ports can be expensive, and
optimizing the number of ports may require additional multiplexers and control
circuitry. To ensure that we are not biasing our design in favour of the system and
at the expense of the environment, the key, nonce, associated data, and message
all use a single data-input port (Table 6.1). Similarly, the output ciphertext, tag,
and hash all use a single output port (Table 6.1). This is agreed with the proposed
lightweight cryptography hardware API’s [16] use of separate public and private
data ports and will update implementations accordingly.

3. Valid-bit protocol and stalling capability. The environment may take an
arbitrarily long time to produce any piece of data. For example, a small micro-
processor could require multiple clock cycles to read data from memory and write

32

WAGE: Submission to the NIST LWC competition

it to the system’s input port. We use a single-phase valid-bit protocol, where
each input or output data signal is paired with a valid bit to denote when the
data is valid. The receiving entity must capture the data in a single clock cycle
(Figure 6.4), which is a simple and widely applicable protocol. The system shall
wait in an idle state, while signalling the environment that it is ready to receive.
In reality, the environment can stall as well. In the future, WAGE hardware im-
plementations will be updated to match the proposed lighweight crypto hardware
API’s use of a valid/ready protocol for both input and output ports.

4. Use a “pure register-transfer-level” implementation style. In particular,
use only registers, not latches; multiplexers, not tri-state buffers; synchronous, not
asynchronous reset; no scan-cell flip-flops; clock-gating is used for power and area
optimization. It is tempting to use scan-cell flip-flops to reduce area, because these
cells include a 2:1 multiplexer in the flip-flop which incurs less area than using
a separate multiplexer. However, using scan cells as part of the design would
prevent their insertion for fault-detection and hence, prevent the circuit from
being tested for manufacturing faults. Clock gating can save area by replacing a
flip-flop that has a chip-enable with a regular flip-flop and using a gated clock.
Clock gating was done with ASICs through the synthesis script, no change was
made to the hardware design.

6.2 Interface and Top-level Module

In Figure 6.1, we depict the block diagram of the top-level WAGE module. The descrip-
tion of each interface signal is given in Table 6.1.

Table 6.1: Interface signals

Input signal Meaning
reset resets the state machine
i mode mode of operation
i dom sep domain separator
i padding the last block is padded
i data input data
i valid valid data on i data

Output signal Meaning
o ready hardware is ready
o data output data
o valid valid data on o data

Table 6.2: Modes of operation

i mode Mode Datapath operation
0 WAGE-E Encryption
1 WAGE-D Decryption

WAGE-AE-128 performs two operations, namely authenticated encryption (WAGE-
E) and verified decryption (WAGE-D). We use the i mode input signal to distinguish
between the two operations.

The environment separates the associated data and the message/ciphertext, and
performs their padding if necessary, as specified in Section 2.4. The control input

33

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

FSM lfsr c

datapath

lfsr c en

lfsr c reset

control

con
st

o ready

o valid

o datai data

reset

i mode

i dom sep

i valid

i padding

2

64 70 6470

WAGE module

Figure 6.1: Top-level WAGE module and the interface with the environment

i padding is used to indicate that the last i data block is padded. The hardware is
unaware of the lengths of individual phases, hence no internal counters for the number
of processed blocks are needed. The domain separators are provided by the environment
and serve as an indication of the phase change, i.e., whether the input data for WAGE-
AE-128 is the key, associated data or plaintext/ciphertext.

WAGE is specified to operate on 64-bit blocks, hence 64-bit i data and o data interface
signals. However, since WAGE is operating over F27 , i data is internally fragmented into
7-bit tuples, with the last one 0-padded to form 70-bits, for the Dk, k = 0, . . . , 9, signals
that carry the data into the Sr stages of the internal state, as specified in Section 4.7.

6.2.1 Interface protocol

The top-level WAGE module is in constant interaction with the environment. We show
this interaction in a form of protocol in Figures 6.2a-6.2d for the WAGE-E example,
using the signal names from Figure 6.1. The environment is only allowed to send data
to the hardware when it is in the idle mode, which is indicated by the hardware using
the o ready signal. The only exception from this behaviour is the reset signal, which
will force the hardware module to reset its state machine and return to the idle state and
set the o ready signal. Figure 6.2a shows the environment (on the left) resetting the
WAGE module (on the right), waiting for the o ready to be asserted, then sending , as
specified in load-AE(N,K) in Sections 2.4 and 4.7. The loading messages are annotated
with KN t, t = 0, . . . , 8, values, the correctly fragmented and ordered key and the nonce
tuples K̂i and N̂i, specified in Section 4.7. Then WAGE module starts with the initial
WAGE permutation, as indicated on the right. After completing the permutation, the
hardware enters idle state and asserts o ready to signal to the environment that it
can accept new data. The environment proceeds with key block K0, accompanied by
the proper values for i mode and i dom sep. Loading and initialization is the same
for both WAGE-E and WAGE-D, which is why the interface signal i mode is omitted
from Figure 6.2a (see Table 6.2). The WAGE module performs the WAGE permutation
and asserts o ready, and the environment responds with the second key block K1.

Figure 6.2b shows the communication between the environment and the hardware for

34

WAGE: Submission to the NIST LWC competition

Environment Wage cipher

o_ready=1

i_valid=1, i_data=KN0

o_ready=1

i_valid=1, i_dom_sep=0, i_data=K0

i_valid=1, i_dom_sep=0, i_data=K1

o_ready=1

i_valid=1, i_data=KN2

i_valid=1, i_data=KN1

i_valid=1, i_data=KN8

i_valid=1, i_data=KN3

i_valid=1, i_data=KN7

i_valid=1, i_data=KN4
i_valid=1, i_data=KN5
i_valid=1, i_data=KN6

reset=1

WAGE

WAGE

Environment Wage cipher

o_ready=1

o_ready=1

i_valid=1, i_mode=0, i_dom_sep=1, i_data=AD0

i_valid=1, i_mode=0, i_dom_sep=1, i_data=AD1

WAGE

WAGE
o_ready=1

(a) Loading and initialization (b) Processing associated data

Environment Wage cipher

o_ready=1

o_ready=1

i_valid=1, i_mode=0, i_dom_sep=2, i_data=M
5

o_valid=1, o_data=C5

i_valid=1, i_mode=0, i_dom_sep=2, i_data=M
6

o_valid=1, o_data=C6

o_ready=1

WAGE

WAGE

Environment Wage cipher

WAGE

o_ready=1

i_valid=1, i_dom_sep=0, i_data=K0

i_valid=1, i_dom_sep=0, i_data=K1

o_ready=1

WAGE

o_valid=1, o_data=TE0

o_valid=1, o_data=TE1

o_valid=1, o_data=TE3

o_valid=1, o_data=TE3

o_valid=1, o_data=TE4

o_valid=1, o_data=TE5

o_valid=1, o_data=TE6

o_valid=1, o_data=TE7

o_valid=1, o_data=TE8

(c) Encryption (d) Finalization and tag generation

Figure 6.2: Interface protocol

35

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

the first two blocks of associated data AD0 and AD1. The environment sets i dom sep
to 1 and signals the arrival of a new AD block with i valid. After completing the
WAGE permutation, WAGE module asserts o ready. Figure 6.2c shows the handshake
signals for encryption of message blocks M5 and M6. The environment sends the plain-
texts along with i dom sep=2 and i mode=0. The WAGE module receives M5, en-
crypts it and immediately returns C5 together with asserted o valid, then starts the
WAGE permutation and asserts o ready upon its completion. With the exception of
the tag generation, encryption (decryption) is the only phase in which WAGE module
sends data to the environment.

Each time a data block is transmitted between the environment and WAGE module,
the valid-bit protocol is used: the environment asserts i valid, and WAGE module
asserts o valid. This naming convention is centred around the hardware module.
Another important part of the handshake between the environment and WAGE module
is the o ready signal: WAGE module sets this signal to 1 when it is ready to receive
new data from the environment, and to 0 when it is busy and wants the environment
to wait.

When all message blocks have been encrypted, finalization and tag generation begins
(Figure 6.2d). The environment changes i dom sep to 0 and starts sending the key
blocks. After receiving K0, WAGE module performs a WAGE permutation and asserts
o ready. After receiving K1, WAGE module again performs a WAGE permutation, but
this time replies to the environment with 9 messages containing the tag extract blocks
TEt, t = 0, . . . , 8, as specified in tagextract(S) in Sections 2.4 and 4.7. Each of the
messages is accompanied by o valid. Afterwards, the WAGE module returns to idle
and asserts o ready.

As was mentioned before, the WAGE module is unaware of the number of AD and
M blocks, and relies on the environment to set proper values for i dom sep. However,
the WAGE state machine is not completely free of counters: a small internal counter
is needed to keep track of the number of blocks received and transmitted during the
loading, initialization and finalization phase and the tag extraction. Another counter
is needed to keep track of the WAGE permutation, which requires 111 clock cycles to
complete. More details follow in Section 6.2.3.

In streaming applications, the total length of the data might not be known at the
time that the message begins streaming. Hence, each time data is sent to the cipher,
the environment informs the cipher what type of data is being sent. This information
is easily encoded using a mode signal to denote which operation is to be performed
(Encryption, Decryption) and the two-bit domain separator to denote the type of data
being processed (associated data, message, ciphertext). The hardware uses o ready
to signal that it is ready to receive new data, and the environment uses i valid to
signal that it is sending data to the hardware.

36

WAGE: Submission to the NIST LWC competition

6.2.2 Protocol timing

A more detailed representation of the events between the environment and WAGE module
is possible with the use of timing diagrams in Figures 6.3-6.5. In each diagram, the top
few lines show the interface signals (Table 6.1), which were already discussed as a part
of the communication protocol between the environment and the hardware module.
Signals i mode and i dom sep are omitted from the timing diagrams: their current
value is the same as shown in the corresponding protocol figure. The vertical ticks on
the horizontal lines represent the time: a single column shows the signal values within
the same clock period.
Loading and initialization during WAGE-AE-128. Figure 6.3 shows the loading
and the initialization up to the beginning of the second WAGE permutation; it corre-
sponds to the upper half of the protocol in Figure 6.2a. At the top, we can see the
interface signals reset, o ready, i valid and i data, followed by the internal sig-
nals count, pcount and phase, which are a part of the WAGE state machine. The
counter count is needed to keep track of the number of key/nonce blocks KN t. It is
then reused to count the number of key blocks processed during the rest of initialization
and during finalization, and for counting the number of messages containing the tag-
extract blocks TEt. The counter pcount keeps track of the 111 clock cycles needed
for one WAGE permutation. After the environment deasserts reset, WAGE module
enters the Load phase and asserts o ready. The environment responds with the first
message KN0, which contains the first key and nonce tuple, accompanied with asserted
i valid. The WAGE module stores the new data into its internal state and increments
count. While count is running, the WAGE LFSR is shifting. Figure 6.3 shows an ex-
ample when the response of the environment varies, e.g., the delay between KN0 and
KN1 is bigger than delay between KN1 and KN2. After receiving KN8, WAGE module
performs the first WAGE permutation, denoted LoadPerm: o ready is deasserted and
pcount increments every clock cycle. After LoadPerm is finished, the state machine
enters the Init phase and o ready is asserted while waiting for the first key block.
The arrival of the next i valid and K0 triggers the second WAGE permutation.

Load

i_valid

i_data

count

phase

0 1 2 3

reset

count stalls while

waiting for i_valid

LoadPerm

0

Init

K0

pcount 1 20 108109110 1 20

o_ready

N8KN2KN1KN0K

8

Figure 6.3: Timing diagram: loading and initialization during WAGE-AE-128

Encryption during WAGE-AE-128. Figure 6.4 shows the timing diagram during

37

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

the encryption of message blocks M5 and M6, corresponding to the protocol in Fig-
ure 6.2c. It clearly shows both sides of the valid-bit protocol. The first five lines show
the top-level interface signals and line six shows the value of the permutation counter
pcount. After completing the previous permutation, WAGE module asserts o ready.
The environment replies with a new message block M5 accompanied by i valid. The
hardware immediately encrypts, returns C5 and asserts o valid. In this clock cycle
the value M5 is stored into the Sr stages of the WAGE LFSR but the LFSR is not shifted.
The next clock cycle is the first round of a new WAGE permutation and o ready is
deasserted, indicating that the hardware is busy. When pcount is running, the WAGE
LFSR is shifting with every clock cycle. Figure 6.4 shows WAGE module remaining busy
(o ready = 0) for the duration of one WAGE permutation, then becoming idle and
ready to receive new input, in this case M6. The counter count is not being used.
Since processing of associated data is very similar to encryption, with exception of AD
blocks instead of M blocks and no output for o data and o valid, we do not show
a separate timing diagram.

i_valid

i_data

o_data

o_ready

pcount

M
5

0 1 2 109110

M
6

C
5

o_valid

C
6

0 1

Figure 6.4: Timing diagram: encryption during WAGE-AE-128

o_data

pcount 1 109110

TE0

o_valid

TE1

Finalphase Tag

0

i_data K1

i_valid

o_ready

Load

count 0 1

TE8

8

Figure 6.5: Timing of tag phase during WAGE-AE-128

Tag phase during WAGE-AE-128. Figure 6.5 shows a part of finalization, tag ex-
traction, and the return of the state machine into the loading phase, which corresponds
to the lower part of the protocol in Figure 6.2d. The timing diagram starts with the
completion of the WAGE permutation after block K0 was received, followed by K1 im-
mediately, which triggers the second WAGE permutation during finalization. This is
also the last WAGE permutation of WAGE-AE-128. After that, WAGE module sends 9
messages with tag extract blocks TEt to the environment. The counter count is used

38

WAGE: Submission to the NIST LWC competition

to return WAGE module to the Load phase, where it asserts o ready and awaits the
new key/nonce blocks KN t.

6.2.3 Control phases

In the previous subsection, we touched on the different phases of the control circuitry.
The phases are categorizations of the active connections between the WAGE LFSR and
the interface signals. For simplicity we show only stages S4, . . . , S9 of the LFSR. These
stages are enough to capture all possible interactions between the environment and
datapath operations. A very important notion is the shifting nature of the WAGE
LFSR. The six categories, of datapath operations are shown in Figure 6.6 and described
below. The roman numerals used to identify the different operations also appear in
the state machine (Figure 6.9) to denote the datapath operation that is done in each
transition between states.

• The first row shows Load (I). The domain separator is not used.

– Load phase: the WAGE LFSR is set to shifting and the non-linear inputs, e.g.,
the SB, are disconnected. The i data is fragmented into 7-bit tuples and
loaded through the data ports D0, D3, D4, D5, D9 as specified in Section 4.7.
The data i data0...6 is loaded into stage S8, and shifting is enabled for stages
S8 → S4. Stage S9 is disconnected from S8, because S9 belongs to a different
loading region — Activating the data ports D0, D3, D4, D5, D9 has the effect
of cutting the LFSR into loading regions. The data port D9 disconnects the
LFSR feedback in addition to the non-linear WGP. The values on the i data
port during Load are the key/nonce blocks KN t, t = 0, . . . , 8.

• The second row shows Permutation (II) and Init/ProcAD/Final (III).
During permutation, the domain separator is not used, and otherwise its value is
set to 1 for ProcAD and to 0 for Init and Final.

– Permutation phase: the WAGE LFSR is set to shifting, but the non-linear
inputs are active, e.g., the SBinput is XORed to the content of S5 and the
sum stored into S4, as shown in II. All data ports Dk, k = 0, . . . , 9 are dis-
connected from the LFSR while all the non-linear inputs, as well as the LFSR
feedback, are active. Functinally, the Permutation phase corresponds to
one round of the WAGE permutation.

– Init/ProcAD/Final phase: the i data is absorbed (XORed) to the Sr
portion of the internal state S before entering the WAGE permutation, i.e.,
between two consecutive WAGE permutations. In III, we show the 7-bit tuple
i data0...6 being absorbed into stage S8. The permutation phase is treated
as a single category of datapath operation from a hardware perspective,
because the state machine drives the control signals with the same value,
but from an algorithmic perspective this operation captures the behaviour
during the initialization, processing associated data and finalization phases.

39

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

Load

i_data0..6

S7S8 S4S9 S5S6

I

Permutation

S
B

S7S8 S4S9 S5S6

Init, ProcAD, Final

i_data0..6

S7S8 S4S9 S5S6

II III

Encrypt

i_data0..6 o_data0..6

S7S8 S4S9 S5S6

Decrypt

i_data0..6 o_data0..6

S7S8 S4S9 S5S6

IV V

Tag

o_data7..13

S7S8 S4S9 S5S6

VI

Figure 6.6: Phases and datapath operations

40

WAGE: Submission to the NIST LWC competition

Only the Sr stages of the LFSR are updated during this phase, all other
stages hold their previous value, as indicated by the lack of (shifting) arrows
between stages.

• The third row shows Encrypt (IV) and Decrypt (V). For both phases, the
domain separator is set to 2.

– textttEncrypt phase: received i data (plaintext) is XORed to the Sr stages
of the internal state S and the result of this operation (ciphertext) is passed
to the o data output. The i data (plaintext) is also absorbed (XORed)
into the Sr stages, i.e., the resulting ciphertext is stored, and becomes a part
of the internal state S when the next WAGE permutation begins. Only the
Sr stages of the LFSR are updated during this phase, all other stages hold
their previous value, as indicated by the lack of (shifting) arrows.

– Decrypt phase: received i data (ciphertext) is XORed with the Sr portion
of the internal state S and the result of this operation (plaintext) is passed to
the o data output. The resulting plaintext does not enter the next WAGE
permutation. Instead, the ciphertext from i data is used to replace the
Sr portion of the internal state before the next WAGE permutation begins.
Again, only the Sr stages of the LFSR are updated during this phase, all
other stages hold their previous value, as indicated by the lack of (shifting)
arrows.

• The last row shows the Tag phase (VI). The domain separator is not used.

– Tag phase: during tag extract, the o data is extracted through outputs
O1, O3, O6 that belong to inputs D1, D3, D6, see Section 4.7 for details. The
values passed on to the o data port during Tag are the tag-extract blocks
TEt, t = 0, . . . , 8. The WAGE LFSR is shifting and the non-linear inputs,
e.g., SB, are disconnected.

Note that in the datapath operations of III, IV and V, the LFSR in not shifting,
and only the Sr stages are updated (clocked). These datpath operations require in-
teraction with the environment. For example, in the timing diagram for encryption
(Figure 6.4), the clock cycle with blocks M5 and C5 corresponds to the Encrypt phase
(III). During the phases Load (I) and Tag (VI), WAGE LFSR is behaving as a simple
shift register, with all non-linear inputs and the LFSR feedback disconnected. Only dur-
ing the Permutation phase (II), is WAGE LFSR shifting and using all the non-linear
and linear elements that compose the WAGE permutation. In the timing diagram for
encryption (Figure 6.4), the permutation phase begins one clock cycle after the M5 and
C5 exchange, and repeats a total of 111 times.

Table 6.3 summarizes the datapath operations (Dp op) shown in Figure 6.6, and
specifies the exact input to the Sr stages of the WAGE LFSR and the output of WAGE module
for the environment, i.e., the o data value.

41

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

Table 6.3: Control table for datapath based on phases from Figure 6.6

Dp Input to Output to
Function i mode i dom sep Phase op Sr stages environment

– – – – Load I × ×
– – – – Permutation II Sr ×

En/De-crypt – 00 Init III Sr ⊕ i data ×
En/De-crypt – 01 ProcAD
En/De-crypt – 00 Final

Encrypt 0 10 Encrypt IV Sr ⊕ i data Sr ⊕ i data
Decrypt 1 10 Decrypt V i data Sr ⊕ i data

En/De-crypt – – – Tag VI × S28, S17, S9 of S
– stands for “don’t care” × stands for “not used”

6.3 Hardware Implementation Details

In this section, we describe the implementation details of WAGE module. Section 6.3.1
describes how the state machine is derived from the interface protocols (Figures 6.2a–
6.2d) and datapath phases (Figure 6.6). Section 6.3.2 describes the datapath.

6.3.1 State machine

Control flow between phases. Figure 6.7 shows all possible transitions between
the phases from Figure 6.6. After reset is asserted, we first enter Load, followed by a
single WAGE permutation in LoadPerm and initialization in Init. The choice of the
phase after Init depends on the value of i dom sep. When i dom sep=1, we begin
processing associated data (ProcAD), and there as long as i dom sep=1. Regardless
of whether the current state is Init or ProcAD, i dom sep=2 will trigger a transition
to either Encrypt or Decrypt, depending on the value of i mode. The FSM will
begin finalization (Final) when the domain separator changes to 0. The phase Final
is followed by tag extraction (Tag) and then an unconditional return to the reset state.
Optimized control flow between phases. Figure 6.8 shows the optimized control
flow from Figure 6.7. The optimization reduces the number of transitions in the system,
which is reflected the structure of the actual state machine that is implemented (Fig-
ure 6.9). The optimized figure is annotated with transient states (small solid circles) in
which the paths split or join. Transient states are syntactic sugar to reduce the number
of transitions in the system. Transient states do not indicate a clock cycle boundary,
while all other states do.
Summary of control flow. The high-level algorithm for WAGE (Figure 2.2) was
designed to simplify the state machine. Functionally, it is equivalent for the boundary
between phases to occur either before or after the permutation. The boundary was
placed after the permutation updates the state register. As will be demonstrated in
Section 6.3.2, with this structure the two-bit domain separator is sufficient to determine
the value of many of the multiplexer select lines and other control signals. All phases

42

WAGE: Submission to the NIST LWC competition

Load

Init

ProcAD

Encrypt Decrypt

Final

Tag

i_dom_sep=1

i_dom_sep=1

i_dom_sep=2

i_dom_sep=2

i_dom_sep=0

i_dom_sep=2

i_dom_sep=0

reset

LoadPerm

i_dom_sep=2

i_mode=1i_mode=0Encrypt Decrypt

Figure 6.7: Control flow between phases

Load

Init

reset

LoadPerm

Encrypt Decrypt

i_dom_sep=1

i_dom_sep=2i_dom_sep=0

ProcAD

Final

Tag

i_mode=1i_mode=0

Figure 6.8: Optimized control flow between phases

43

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

that have a domain separator of "00" have the same multiplexer select values. The
same also holds true for "01". Unfortunately, this cannot be achieved for "10",
because encryption and decryption require different control signal values, but the same
domain separator. Using the domain separator to signal the transition between phases
for encryption and decryption also simplified the control circuit.

A final note about the control flow diagrams in this section: only when the num-
ber of iterations in a certain phase depends on the length of the data, i.e., `X , X ∈
{AD,M,C}, which is indicated by the value change of interface signal i mode or
i dom sep, we show the transition to itself. While the phases Load, Init, Final
and Tag also take more than one iteration, the number of iterations is fixed by the
WAGE-AE-128 algorithm specified in Chapter 2 and hence not shown in the control
flow diagrams in Figures 6.7 and 6.8. However, this level of detail is included in the
state machine Figure 6.9.

Derivation of state machine from control flow. The implementation details for
the control flow from Figure 6.8 are shown as a state machine in Figure 6.9. Each
phase from the control flow is split into three states: iStateName, aStateName or
rStateName, and pStateName, where the prefix “i” stands for “idle”, “a” stands
for “absorb”, “r” stands for “replace” and “p” for “permutation”, and the state name
corresponds to the phase name. In the “idle” states, WAGE module is waiting for new
input from the environment, i.e., for i valid=1. The “absorb” and “replace” refer to
different interaction with the environment, e.g., the state aInit corresponds directly to
datapath operation III for the initialization phase in Figure 6.6. Similarly, rDecrypt
corresponds to Decryption (VI). In the “permutation” states, the WAGE permutation is
running and WAGE module is busy, i.e., o ready=0. The “permutation” states directly
correspond to the Permutation phase (II). The normal structure can be seen in the
iInit, aInit and pInit states in Figure 6.9. There are a few exceptions to the
normal structure:

• The Load phase receives multiple key/nonce blocks consecutively without running
a permutation. Hence, in addition to iLoad and pLoad states, there is a plain
Load state .

• The phase Tag can transmit multiple blocks consecutively without running a
permutation. Hence, there is no need for a p-state.

• The states iProcAD, iEncrypt and iDecrypt have the same behaviour for
idling, and so their idle states are merged into iAED.

• The states pProcAD, pEncrypt and pDecrypt have the same behaviour for
idling, and so their idle states are merged into pAED.

Each state is annotated with three circles to denote the three bits encoding the
current values on the interface signals i mode and i dom sep. An empty circle denotes
0, a filled circle denotes 1, and a circle with a dash is a “don’t care” value, meaning
the behaviour is independent of this bit. Each transition between a pair of states is

44

WAGE: Submission to the NIST LWC competition

State

Domain separator

Mode

0

1

Don’t care

Transient (instantaneous) state

Load

reset

pLoad

count < 8 count = 8

pcount = 110 pcount < 110

iLoad

i_valid=’0’
i_valid=’1’

I

II

pFinal

count < 1
count = 1

pcount = 110 pcount < 110

iFinal

i_valid=’0’i_valid=’1’

Tag

count < 8count = 8

III

VII

III

pInit

count < 1 count = 1

pcount = 110

pcount < 110

iInit

i_valid=’0’i_valid=’1’

i_valid=’0’
i_valid=’1’

i_dom_sep=1

i_dom_sep=2i_dom_sep = 0

iAED

pAED

pcount < 110pcount = 110

III

IV V

i_mode=1i_mode=0

II

II

II

VII

aInit

II

aFinal

II aProcAD

II

aEncrypt rDecrypt

II

Figure 6.9: State machine

45

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

annotated with a roman numeral from Figure 6.6 denoting the datapath operation to
be performed.
State machine: Loading. The loading part of the state machine is shown on the top
of Figure 6.9. Asserting reset places the state machine into the iLoad idle state,
where it awaits the first key/nonce block KN0. The environment sends 9 key/nonce
blocks, and the state machine uses an internal counter count to keep track of the load-
ing, i.e., to keep track of iterations back to state Load. This behaviour was explained in
the timing diagram for loading (Figure 6.3). After the key/nonce blocks are received,
the state machine enters the permutations state pLoad, which is controlled by the
counter pcount. After 111 rounds of pLoad, we first enter the iInit state, where
we observe the normal structure: at the arrival of the next i valid, we transition to
aInit. This transition is annotated with III, meaning that new data was absorbed
into Sr (see the datapath operations in Figure 6.6). Then we enter pInit 111 times
(counter pcount). The counter count is used to keep track of the number of received
key blocks, K0 and K1.
State machine: processing associated data, encryption and decryption. After
the second WAGE permutation in the Init phase is completed, we proceed to iAED,
a merged idle state for iProcAD, iEncrypt and iDecrypt. The next i valid
triggers the transition to aProcAD if i dom sep=01 or to the transient state on the
right if i dom sep=10, for either aEncrypt or rDecrypt, depending on i mode.
The transitions to the two “absorbing” states aProcAD and aEncrypt correspond to
the datapath operations (III) and (IV) in Figure 6.6 respectively. The transition to the
“replacing” state rDecrypt corresponds to (V). After any of these three states, the
WAGE permutation runs for 111 rounds, which is shown as a merged state pAED. After
completing a WAGE permutation, the state machine returns to the idle state iAED.

As an example of the correspondence between the timing diagrams and state ma-
chine behaviour, the encryption behaviour explained in Figure 6.4 corresponds to the
following state transitions:

iAED → aEncrypt → pAED → . . .→ pAED → iAED

The first iAED state in the sequence above corresponds to the clock cycles to the left
of M5 and C5 where o ready=1. When i valid=1, we move to the aEncrypt
state: this transition is annotated with the roman numeral IV, which tells us what the
datapath does just before absorbing M5 into Sr. Once in aEncrypt, we can go only
to pAED. This transition is annotated with II, indicating round 0 (pcount=0) of the
permutation, i.e., the clock cycle immediately after M5 and C5 column in the timing
diagram (Figure 6.4). When pcount reaches 110, we return to iAED, this corresponds
to the clock cycle in which o ready is set anew.
State machine: finalization. When we observe i dom sep=00, the state machine
will transition into aFinal and pFinal state and run the first WAGE permutation
in Final phase. Again, counter count is used to keep track of the two iterations.
The idle state iFinal is entered only once. Finally, the state machine enters the Tag
state, and WAGE module transmits 9 tag-extract blocks TEt to the environment. Again,

46

WAGE: Submission to the NIST LWC competition

counter count is used, but this time, no WAGE permutation is required. This was also
explained in the protocol (Figure 6.2d) and timing diagram (Figure 6.5) for finalization.
Summary of state machine. The state machine is responsible for the o valid and
o ready interface signals. It is also tasked with control signals for the multiplexers in
the WAGE datapath, which accommodate different interactions between WAGE module
and the environment, i.e., different phases from Figure 6.6. This will be discussed in
more detail in Section 6.3.2.

The state machine and encodings for control signals were designed to take advantage
of similarities in structure to enable optimizations in the control circuitry. The only
control-flow decision made within an idle state is to exit when i valid=’1’. This
reduces the number of idle states and facilitates combinational logic optimizations due
to the uniform structure of the control flow. Loading, initialization, finalization and tag
extraction all use the same one-hot counter to count their iterations. Also, all states that
perform the permutation have the same control structure, which provides opportunities
for logic synthesis optimizations, such as common subexpression elimination.

6.3.2 The WAGE datapath

In this Section we descrbe the implementation details of the WAGE datapath.

WGP

SB
en_lfsr

absorb

replace

repace_or_load

sb_off

is_tag

SB

i_data

i_dom_sep
wage_lfsr

WGP

SB

SB

o_data

round_const

Figure 6.10: WAGE datapath

Components of WAGE datapath. Because of the shifting nature of the LFSR, which
in turn affects loading, absorbing, replacing and tag-extraction, the WAGE datapath is
explained in two levels:

1. The wage lfsr treated as a black box in Figure 6.10.

• wage lfsr: The LFSR has 37 stages with 7 bits per stage, a feedback with 10
taps and a module for multiplication with ω. The internal state of wage lfsr
is also the internal state S of WAGE.

• WGP module implementing WGP7 (Section 2.3.3): For small fields like F27 ,
the WGP area, when implemented as a constant array in VHDL/Verilog,
i.e., as a look-up table, is smaller than when implemented using components

47

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

such as multiplication and exponentiation to powers of two [1]. However,
the WGP is not stored in hardware as a memory array, but rather as a net
of AND, OR and NOT gates, derived and optimized by the synthesis tools.

• SB module (Section 2.3.3): The SB is implemented in an unrolled fashion,
i.e., as purely combinational logic, composed of 5 copies of R, followed by a
Q and the final two NOT gates.

• lfsr c(Section 2.3.5): The lfsr c for generating the round constants was im-
plemented in a 2-way parallel fashion. It has only 7 1-bit stages and two
XOR gates for the two feedback computations.

2. The extra hardware for wage lfsr in sponge mode, i.e., the hardware allowing
us to switch between different phases in Figure 6.6. Figure 6.11 shows details
for stages S0, . . . , S10. A smaller and less detailed portion of Figure 6.11 was
shown in Figure 6.6. The grey line represents the path for normal operations
during the WAGE permutation, i.e., the Permutation phase II in Figure 6.6.
The additional hardware for the entire wage lfsr is listed below, with examples
referring to Figures 6.11 and datapath operations from Figure 6.6.

• The 64-bit signal i data is padded with zeros to 70 bits, then fragmented
into 7-bit wage lfsr inputs Dk, k = 0, . . . , 9, corresponding to the rate stages
Sr. For each data input Dk there is a corresponding 7-bit data output Ok. In
Figure 6.11 we show D1, O1 and D0, O0. The input tuple i data0...6 in Fig-
ure 6.6 is loaded through the input port D0 in Figure 6.11. Outputs O0 and
O1 in Figure 6.11 correspond to o data0...6 and o data7...13 in Figure 6.6.
The data moves to all of the Sc registers through shifting and non-linear
updates.

• 10 XOR gates must be added to the Sr stages to accommodate absorbing,
encryption and decryption (III, IV and V). These XORs are located at
stages S9,S8 in Figure 6.11).

• 10 multiplexers to switch between absorbing and normal operation. In Fig-
ure 6.11, we show Amux1 at S9 and Amux0 at S8. They are needed to choose
whether to shift in data from the previous stage (I, II, VI) or to absorb new
data into the Sr stages, while the remaining stages hold their previous values
(III, IV).

• An XOR and a multiplexer are needed to add the domain separator into the
internal state (Amux at S0 in Figure 6.11).

• To replace the contents of the Sr stages, 10 multiplexers are added. They
allow us to switch between replacing (V) and all other datapath operations.
An example of a replace multiplexer is Rmux1 at stage S9 in Figure 6.11.

• Instead of additional multiplexers for loading, the existing Rmuxk, k =
9, 5, 4, 3, 0, multiplexers are now controlled by replace or load and la-
belled RLmuxk. An example is RLmux0 on S8 in Figure 6.11, which corre-
sponds to the i datao...6 path in I and V.

48

WAGE: Submission to the NIST LWC competition

• During the datapath operations III, IV and V, all non-input stages must
keep their previous values, hence an enable signal lfsr en is needed. It is
set to 0 for phases III, IV and V, and to 1 in the other operations.
• Three 7-bit AND gates to turn off the inputs D6, D3 and D1 (see AND at
D1 in Figure 6.11). The output O1 is used for both tags (VII) as well as
ciphertext (IV) and plaintext (V). The AND gates allow to turn off the input
for tag extraction (VII) and turn on the input for encryption/decryption
(IV/V).
• 4 multiplexers are needed to turn off the SB during loading and tag ex-

traction (SBmux at S4). While the non-linear inputs are used only during
the Permutation phase (II), there is no need to disconnect them during
phases when only the Sr stages are updated (III, IV, V), since lfsr en
prevents any other register from shifting.

S
0

S
1

S
2

S
3

S
4

SB

S
5

S
6

S
7

S
9

S
10

D0 O0

replace
or load

absorb

S
8

D1 O1

replace

SB_off

not is_tag

absorb

i_dom_sep

RLmux0Rmux1

Amux1 Amux0 Amux

S
B

m
u
x

Figure 6.11: The wage lfsr stages S0, . . . , S10 with multiplexers, XOR and AND gates
for the sponge mode

Control signals for multiplexers. The extra circuitry described above (and shown
in Figure 6.11) needs the following control signals, which are set by the FSM:

• For Rmuxk, RLmuxk and Amuxk multiplexer control: load, absorb, and replace.
The control signal is always interpreted as follows: a value of 0 denotes the left
input to the mux and a value of 1 the right input.

• For SBmux multiplexer control: sb off. A signal value of 0 selects the bottom
mux input, and value 1 the top mux input.

• For AND gate: is tag

These signals are listed in Table 6.4. A final multiplexer is needed to decide whether
or not the Ok outputs are sent to the environment. Instead of showing this mux,
we include an extra “generate output” column in the table. The value of the control
signals is determined by the interface signals i mode and i dom sep, and the datapath
operation. The most common operation is permutation, so for simplicity all control

49

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

signals are set to 0 in this situation. The signal sb off, which turns off the non-linear
S-boxes, is asserted twice: during loading and tag extraction. The S-Boxes are not
used in datapath operations III, IV, and V, but sb off is not asserted, because, as
described above for SBmux, wage lfsr does not shift and so the output of the S-boxes
does not affect the stages.

Interface signals State D Op Generate Datapath control

i mode i dom sep (Fig. 6.9) (Fig 6.6) output

l
o
a
d

s
b
o
f
f

i
s
t
a
g

a
b
s
o
r
b

r
e
p
l
a
c
e

- – Load I no 1 1 0 0 0

- – pState II no 0 0 0 0 0

- 00 aInit
- 01 aProcAD III no 0 0 0 1 0
- 00 aFinal
0 10 aEncrypt IV yes 0 0 0 1 0

1 10 rDecrypt V yes 0 0 0 0 1

- – Tag VI yes 0 1 1 0 0

Table 6.4: Control table for WAGE

Estimated and synthesized cost of WAGE permutation. Table 6.5 provides the
estimated and actual area of the WAGE permutation for the ST Micro 65 nm ASIC
library. We use an estimate of 3.75 GE for a 1-bit register and 2.00 GE for a 2:1 mux
and 2-input XOR gate. We first calculate the area for the permutation without using
any multiplexers or additional XORs to load inputs or support the sponge mode. The
actual area for this circuit is just 2% smaller than the estimate. Next, we add the
circuity to support inputs, outputs, and spong-mode. We estimated that this would
require 536 GE, but the actual required area is approximately 200 GE greater, as can
be seen in the relative areas for the complete datapath. The complete cipher results
reported here are for logic synthesis (i.e., before place-and-route) with a sufficiently long
clock period to get a minimum area. This differs from the results in Table 6.7, where
the results are for physical synthesis (after place and route) and the selected result is
the one with the maximum performance over area-squared ratio (Section 6.4.2).

6.4 Hardware Implementation Results

In this section, we provide the ASIC and FPGA implementation results of WAGE
permutation and WAGE module. We first give the details of the synthesis and simulation
tools and then present the implementation results.

50

WAGE: Submission to the NIST LWC competition

Table 6.5: WAGE permutation hardware area estimate and implementation results

Component Estimate Count Estimate per
per unit [GE] component [GE]

State registers 3.75 259 971
Feedback XORs 2.00 70 140
Feedback multiplier 6
WGP† 258 2 516
SB† 58 4 227
constant LFSR† 45
other XORs 56 2 112
Permutation without muxes (estimate) 2022
Permutation without muxes (synthesized)† 1984

Absorb muxes 2.00 70 140
AED XORs 2.00 70 140
Dom-sep muxes 2.00 7 14
Dom-sep XORs 2.00 7 14
Replace muxes 2.00 70 140
Input-enable AND 1.50 21 32
Non-linear muxes 2.00 28 56
Extra circuitry for sponge mode 536
Complete datapath (estimate) 2557
Complete datapath (synthesized) 2753

FSM (synthesized) 228
Complete cipher (estimate) 2786
Complete cipher (synthesized)† 2981

† pre-PAR implementation results

51

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

Table 6.6: Tools and implementation technologies

Tools and libraries for ASICs

Logic synthesis Synopsys Design Compiler vN-2017.09

Physical synthesis Cadence Encounter 2014.13-s036 1

Simulation Mentor Graphics QuestaSim 10.5c

ASIC cell libraries 65 nm STMicroelectronics CORE65LPLVT, 1.25V
TSMC 65 nm tpfn65gpgv2od3 200c and tcbn65gplus 200a at 1.0V
ST Microelectronics 90 nm CORE90GPLVT and
CORX90GPLVT at 1.0V
IBM 130nm CMRF8SF LPVT with SAGE-X v2.0 standard cells
at 1.2V

Synthesis tools for FPGAs

Logic synthesis Mentor Graphics Precision 64-bit 2016.1.1.28 (for Intel/Altera)
ISE (for Xilinx)

Physical synthesis Altera Quartus Prime 15.1.0 SJ (for Intel/Altera)
ISE (for Xilinx)

6.4.1 Tool configuration and implementation technologies

Table 6.6 lists the configuration details of synthesis and simulation tools and libraries
for both ASIC and FPGA implementations. All area results are post place-and-route.
Energy results are computed through timing simulation of the post place-and-route
design at a clock speed of 10 MHz.

For ASICs, logic synthesis was done using the compile ultra command and clock
gating; and physical synthesis (place-and-route) was done with a density of 95%. By
selecting a target clock speed, synthesis for ASICs can exhibit a significant range in
tradeoffs between speed and area for the same RTL code. The results reported here
reflect the clock speed and area that obtained the highest ratio of performance over
area-squared. We used area squared, because area is a reasonable approximation of
power and is much less sensitive to the choice of the ASIC library than is power itself.

6.4.2 Implementation results

Figure 6.12, Table 6.7, and Table 6.8 present the hardware implementation results.
More details on the hardware implementation and results are available at [2].

Figure 6.12 shows area2 vs. throughput for ASICs with different degrees of paral-
lelization, denoted by A-p (p = 1, 2, 3, 4, 8). The throughput axis is scaled as log(Tput)
and the area axis is scaled as log(area2). The grey contour lines denote the relative
optimality of the circuits using Tput/area2. Throughput is increased by increasing
the degree of parallelization (unrolling), which reduces the number of clock cycles per
permutation round. Going from p= 1 to p= 8 results in a 1.72× area increase, and
optimality increases as parallelism increases from 1 to 8.

52

WAGE: Submission to the NIST LWC competition

As can be seen by the relative constant size of the shaded rectangles enclosing the
data points, the relative area increase with parallelization is relatively independent of
implementation technology.

12000100008000700060005000400030002500

Area (GE)

0.5

1.0

2.0

4.0

T
h
ro

u
g
h
p
u
t

(b
it

s
/

cy
cl

e
)

Rel
at

iv
e

op
tim

al
ity

0.
25

0.
35

0.
50

0.
71

1.
00

1.
41

2.
00

2.
82

W-1

W-3

W-4

W-2

W-8ST Micro 65 nm

TSMC 65 nm

ST Micro 90 nm

IBM 130 nm

Throughput is measured in bits per clock cycle (bpc), and plotted on a log scale axis.
The area axis is scaled as log(Area2).

Figure 6.12: Area2 vs Throughput

Table 6.7 represents the same data points as Figure 6.12 with the addition of maxi-
mum frequency (f, MHz) and energy per bit (E, nJ). Energy is measured as the average
value while performing all cryptographic operations over 8192 bits of data at 10 MHz.
As the WAGE throughput increases, energy per bit increases, because connecting more
WGPs in a combinational chain results in an exponential increase of the number of
glitches, which drastically increases power consumption.

53

CHAPTER 6. HARDWARE DESIGN AND ANALYSIS

Table 6.7: ASIC implementation results

ST Micro 65 nm TSMC 65nm ST Micro 90 nm IBM 130 nm

Label Tput A f E∗ A f E∗ A f E∗ A f E∗

[bpc] [GE] [MHz] [nJ] [GE] [MHz] [nJ] [GE] [MHz] [nJ] [GE] [MHz] [nJ]

W-1 0.57 2900 907 20.0 3290 1120 13.0 2540 940 39.2 2960 153 30.4

W-2 1.14 4960 590 19.1 5310 693 10.6 4280 493 34.4 5520 75.4 26.3

W-3 1.68 5480 397 20.4 5930 527 10.7 4770 414 31.2 5460 79.6 26.5

W-4 2.29 6780 307 24.0 7460 387 12.1 5790 277 32.9 6700 51.9 33.4

W-8 4.57 12150 192 38.5 11870 204 19.9 9330 137 49.9 10960 34.5 59.9

∗ Energy results done with timing simulation at 10Mhz.

Table 6.8: FPGA implementation results

Extract† Frequency # of # of # of

Module attribute [MHz] Slices FFs LUTs

Xilinx Spartan 3 (xc3s200-5ft256)

WAGE permutation
yes 145 139 161 168

no 160 282 237 313

WAGE module
yes 96 326 212 531

no 92 455 284 699

Xilinx Spartan 6 (xc6slx9-3ftg256)

WAGE permutation
yes 214 42 161 134

no 218 89 237 211

WAGE module
yes 129 144 232 367

no 134 149 281 431

Frequency # of # of # of

Module [MHz] LC FFs LUTs

Intel / Altera Stratix IV (EP4SGX70HF35M3)

WAGE permutation 92 195 195 129

WAGE module 73 372 372 259

† WAGE module includes a shift register wage lfsr and two constant array modules (WGPs) We set the attributes

SHREG EXTRACT, ROM EXTRACT and RAM EXTRACT to (dis)allow optimizations to shift-register configuration

LUTs and Block RAMs, hence there are two sets of implementation results. When memory is inferred, 1

RAMB16 is used for Spartan 3, and 1 RAMB8BWER for Spartan 6.

54

Chapter 7

Software Efficiency Analysis

The WAGE permutation is designed to be efficient on heterogeneous resource constrained
devices, which imposes the primitive to be efficient in hardware as well as in software.
We assess the efficiency of the WAGE permutation and its modes on three different
microcontroller platforms.

7.1 Software: Microcontroller

We implemented the WAGE permutation and WAGE-AE-128 on three distinct micro-
controller platforms. For WAGE-AE-128, we implement only encryption, because de-
cryption is the same as encryption, except updating the state with ciphertext. Our
codes are written in assembly language to achieve optimal performance. We choose:
1) the Atmel ATmega128, an 8-bit microcontroller with 128 Kbytes of programmable
flash memory, 4.448 Kbytes of RAM, and 32 general purpose registers of 8 bits, 2)
MSP430F2370, a 16-bit microcontroller from Texas Instruments with 2.3 Kbytes of
programmable flash memory, 128 Bytes of RAM, and 12 general purpose registers of 16
bits, and 3) ARM Cortex M3 LM3S9D96, a 32-bit microcontroller with 524.3 Kbytes
of programmable flash memory, 131 Kbytes of RAM, and 13 general purpose registers
of 32 bits. We focus on four key performance measures, namely throughput, code size
(Kbytes), energy (nJ), and RAM (Kbytes) consumption.

The scheme WAGE-E is instantiated with a random 128-bit key and a 128-bit nonce.
Note that the throughput of the WAGE-E , which includes processing of AD/M blocks,
is smaller than that of the WAGE permutation. For producing a ciphertext and a
tag, (5 + `) executions of the permutation are required where ` is the total number of
the 64-bit data blocks including the padded associated data and plaintext. We chose
two combinations of the numbers of the AD block (`AD) and the message block (`M),
which are: 1) (`AD, `M) = (0, 16), meaning empty AD and 1024-bit plaintext; and 2)
(`AD, `M) = (2, 16), meaning 128-bit AD and 1024-bit plaintext. Table 7.1 presents the
performance of the WAGE permutation and its modes for these two choices of AD and
message.

55

CHAPTER 7. SOFTWARE EFFICIENCY ANALYSIS

Table 7.1: Performance of WAGE on microcontrollers

Cryptographic Platform Clock freq. Memory usage [Bytes] Setup Throughput Energy/bit
primitive Device Bit [MHz] SRAM Flash [Cycles] [Kbps] [nJ]

WAGE Permutation ATmega128 8 16 802 4132 19011 217.98 568
WAGE Permutation MSP430F2370 16 16 4 5031 23524 176.16 135
WAGE Permutation LM3S9D96 32 16 3076 5902 14450 286.78 1162

WAGE-E (lAD = 0, lM = 16) ATmega128 8 16 808 4416 362888 45.15 2741
WAGE-E (lAD = 0, lM = 16) MSP430F2370 16 16 46 5289 433105 37.83 628
WAGE-E (lAD = 0, lM = 16) LM3S9D96 32 16 3084 6230 278848 58.76 5673
WAGE-E (lAD = 2, lM = 16) ATmega128 8 16 808 4502 397260 41.24 3001
WAGE-E (lAD = 2, lM = 16) MSP430F2370 16 16 46 5339 474067 34.56 687
WAGE-E (lAD = 2, lM = 16) LM3S9D96 32 16 3084 6354 305284 53.67 6210

56

Acknowledgment

The submitters would like to thank Marat Sattarov for his help in the part of hardware
implementation and Yunjie Yi for the microcontroller implementation.

57

Bibliography

[1] Aagaard, M. D., Gong, G., and Mota, R. K. Hardware implementations of
the WG-5 cipher for passive RFID tags. In Hardware-Oriented Security and Trust
(HOST), 2013 IEEE International Symposium on (2013), IEEE, pp. 29–34.

[2] Aagaard, M. D., Sattarov, M., and Zidarič, N. Hardware design and
analysis of the ACE and WAGE ciphers. To appear in NIST LWC Workshop 2019.
Also available at https://arxiv.org.

[3] AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong, G.
sLiSCP: Simeck-based permutations for lightweight sponge cryptographic primi-
tives. In SAC (2017), C. Adams and J. Camenisch, Eds., Springer, pp. 129–150.

[4] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Sponge
functions. In ECRYPT hash workshop (2007).

[5] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. On the
security of the keyed sponge construction. In Symmetric Key Encryption Workshop
(2011).

[6] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In SAC
(2012), A. Miri and S. Vaudenay, Eds., Springer, pp. 320–337.

[7] Biryukov, A., and Wagner, D. Slide attacks. In FSE (1999), L. Knudsen,
Ed., Springer, pp. 245–259.

[8] eSTREAM: the ecrypt stream cipher project. http://www.ecrypt.eu.org/
stream/.

[9] El-Razouk, H., Reyhani-Masoleh, A., and Gong, G. New hardware im-
plementationsof WG(29,11) and WG-16 streamciphers using polynomial basis.
IEEE Transactions on Computers 64, 7 (July 2015), 2020–2035.

[10] Fan, X., Mandal, K., and Gong, G. WG-8: A lightweight stream cipher for
resource-constrained smart devices. In Quality, Reliability, Security and Robustness
in Heterogeneous Networks (Berlin, Heidelberg, 2013), K. Singh and A. K. Awasthi,
Eds., Springer Berlin Heidelberg, pp. 617–632.

58

https://arxiv.org
http://www.ecrypt.eu.org/stream/
http://www.ecrypt.eu.org/stream/

WAGE: Submission to the NIST LWC competition

[11] Fan, X., Zidaric, N., Aagaard, M., and Gong, G. Efficient hardware
implementation of the stream cipher WG-16 with composite field arithmetic. In
Proceedings of the 3rd International Workshop on Trustworthy Embedded Devices
(New York, NY, USA, 2013), TrustED ’13, ACM, pp. 21–34.

[12] The GAP Group. GAP – Groups, Algorithms, and Programming, Version
4.10.0, 2018.

[13] Gong, G., and Youssef, A. M. Cryptographic properties of the Welch-Gong
transformation sequence generators. IEEE Transactions on Information Theory
48, 11 (Nov 2002), 2837–2846.

[14] Gurobi. The Gurobi MILP optimizer. http://www.gurobi.com/.

[15] Jovanovic, P., Luykx, A., and Mennink, B. Beyond 2c/2 security in sponge-
based authenticated encryption modes. In ASIACRYPT (2014), P. Sarkar and
T. Iwata, Eds., Springe, pp. 85–104.

[16] Kap, J., Diehl, W., Tempelmeier, M., Homsirikamol, E., and Gaj, K.
Hardware API for lightweight cryptography, 2019.

[17] Kölbl, S., Leander, G., and Tiessen, T. Observations on the Simon block
cipher family. In CRYPTO (2015), R. Gennaro and M. Robshaw, Eds., Springer,
pp. 161–185.

[18] Leander, G., Abdelraheem, M. A., AlKhzaimi, H., and Zenner, E. A
cryptanalysis of printcipher: The invariant subspace attack. In CRYPTO (2011),
P. Rogaway, Ed., Springer, pp. 206–221.

[19] Luo, Y., Chai, Q., Gong, G., and Lai, X. A lightweight stream cipher WG-7
for RFID encryption and authentication. In 2010 IEEE Global Telecommunications
Conference GLOBECOM 2010 (Dec 2010), pp. 1–6.

[20] Mandal, K., Gong, G., Fan, X., and Aagaard, M. Optimal parameters for
the WG stream cipher family. Cryptography Commun. 6, 2 (June 2014), 117–135.

[21] McKay, K., Bassham, L., Sönmez Turan, M., and Mouha, N. Report on
lightweight cryptography (NISTIR8114), 2017.

[22] Nawaz, Y., and Gong, G. The WG stream cipher. ECRYPT Stream Cipher
Project Report 2005 33 (2005).

[23] Nawaz, Y., and Gong, G. WG: A family of stream ciphers with designed
randomness properties. Inf. Sci. 178, 7 (Apr. 2008), 1903–1916.

[24] Rohit, R., AlTawy, R., and Gong, G. MILP-based cube attack on the
reduced-round WG-5 lightweight stream cipher. In Cryptography and Coding
(Cham, 2017), M. O’Neill, Ed., Springer International Publishing, pp. 333–351.

59

http://www.gurobi.com/

BIBLIOGRAPHY

[25] Rønjom, S. Improving algebraic attacks on stream ciphers based on linear feed-
back shift register over f2k . Des. Codes Cryptography 82, 1-2 (2017), 27–41.

[26] Zidaric, N., Aagaard, M., and Gong, G. Hardware optimizations and anal-
ysis for the WG-16 cipher with tower field arithmetic. IEEE Transactions on
Computers 68, 1 (Jan 2019), 67–82.

60

Appendix A

Test Vectors

A.1 WAGE Permutation

Input:000

Output:0FA82908FEA670F1B8609F00420FC3376A52DCA922061FED7C568F785C22B4A4C

A.2 WAGE-AE-128
Key : 00111122335588DD 00111122335588DD

Nonce : 111122335588DD00 111122335588DD00

Associated data : 1122335588DD0011 1122335588DD00

Plaintext : 335588DD00111122 335588DD001111

Ciphertext : 4B7CD23D07D75575 5EA2ADEC4FEFF3

Tag : D03CF7894D6D3697 C2B1758D41E78344

61

APPENDIX A. TEST VECTORS

A.3 Round Constants Conversion

Table A.1: Generation of the first five round constant pairs (rci1, rc
1
0)

clk. (current)
cycle LFSR state (current) subsequence bits HEX

a7 a6 a5 a4 a3 a2 a1 a0
0 1 1 1 1 1 1 1 1 1 1 1 7 F ← rc00

1 1 1 0 1 1 1 1 1 1 3 F ← rc01
a9 a8 a7 a6 a5 a4 a3 a2

1 0 1 1 1 0 0 1 1 1 1 1 1 F ← rc10
0 1 1 0 0 0 1 1 1 1 0 F ← rc11

a11 a10 a9 a8 a7 a6 a5 a4
2 0 0 1 1 0 0 0 0 1 1 1 0 7 ← rc20

0 0 1 0 0 0 0 0 1 1 0 3 ← rc21
a13 a12 a11 a10 a9 a8 a7 a6

3 0 0 0 1 0 0 0 0 0 0 1 0 1 ← rc30
0 0 0 1 0 0 0 0 0 0 4 0 ← rc31

a15 a14 a13 a12 a11 a10 a9 a8
4 0 0 0 0 1 0 0 0 0 0 2 0 ← rc40

1 0 0 0 0 1 0 0 0 0 1 0 ← rc41

The round constants are translated to HEX values as shown in Table 2.2.

62

	1 Introduction
	1.1 Notation
	1.2 Outline

	2 Specification of WAGE
	2.1 WAGE AEAD Algorithm
	2.2 Recommended Parameter Set
	2.3 Description of the WAGE Permutation
	2.3.1 Underlying finite field
	2.3.2 The LFSR
	2.3.3 The nonlinear components
	2.3.4 Description of the core permutation
	2.3.5 Round constants

	2.4 WAGE-AE-128 Algorithm
	2.4.1 Rate and capacity part of state
	2.4.2 Padding
	2.4.3 Loading key and nonce
	2.4.4 Initialization
	2.4.5 Processing associated data
	2.4.6 Encryption
	2.4.7 Finalization
	2.4.8 Decryption

	3 Security Claims
	4 Design Rationale
	4.1 Mode of Operation
	4.2 WAGE State Size
	4.3 Choice of Linear Layer
	4.4 Nonlinear Layer of WAGE
	4.4.1 The Welch-Gong permutation (WGP)
	4.4.2 The 7-bit sbox (SB)

	4.5 Number of Rounds
	4.6 Round Constants
	4.6.1 Generation of round constants

	4.7 Loading and Tag Extraction
	4.8 Choice of Rate Positions
	4.9 Relationship to WG ciphers
	4.10 Statement

	5 Security Analysis
	5.1 Security of WAGE Permutation
	5.1.1 Differential distinguishers
	5.1.2 Diffusion behavior
	5.1.3 Algebraic degree
	5.1.4 Self-symmetry based distinguishers

	5.2 Security of WAGE-AE-128

	6 Hardware Design And Analysis
	6.1 Hardware Design Principles
	6.2 Interface and Top-level Module
	6.2.1 Interface protocol
	6.2.2 Protocol timing
	6.2.3 Control phases

	6.3 Hardware Implementation Details
	6.3.1 State machine
	6.3.2 The wage datapath

	6.4 Hardware Implementation Results
	6.4.1 Tool configuration and implementation technologies
	6.4.2 Implementation results

	7 Software Efficiency Analysis
	7.1 Software: Microcontroller

	A Test Vectors
	A.1 WAGE Permutation
	A.2 WAGE-AE-128
	A.3 Round Constants Conversion

