WAGE: An Authenticated Cipher Submission to the NIST LWC Competition

Submitters/DESIGNERS:
Mark Aagaard, Riham AlTawy ${ }^{1}$, Guang Gong, Kalikinkar Mandal*, Raghvendra Rohit, and Nusa Zidaric
*Corresponding submitter:
Email: kmandal@uwaterloo.ca
Tel: +1-519-888-4567 x45650
Communication Security Lab
Department of Electrical and Computer Engineering
University of Waterloo
200 University Avenue West
Waterloo, ON, N2L 3G1, CANADA
https://uwaterloo.ca/communications-security-lab/lwc/wage

September 27, 2019

[^0]
Contents

1 Introduction 6
1.1 Notation 7
1.2 Outline 8
2 Specification of WAGE 9
2.1 WAGE AEAD Algorithm 9
2.2 Recommended Parameter Set 10
2.3 Description of the WAGE Permutation 10
2.3.1 Underlying finite field 10
2.3.2 The LFSR 11
2.3.3 The nonlinear components 11
2.3.4 Description of the core permutation 12
2.3.5 Round constants 13
2.4 WAGE- $\mathcal{A E}$-128 Algorithm 13
2.4.1 Rate and capacity part of state 14
2.4.2 Padding 16
2.4.3 Loading key and nonce 17
2.4.4 Initialization 18
2.4.5 Processing associated data 18
2.4.6 Encryption 18
2.4.7 Finalization 19
2.4.8 Decryption 19
3 Security Claims 20
4 Design Rationale 21
4.1 Mode of Operation 21
4.2 WAGE State Size 22
4.3 Choice of Linear Layer 22
4.4 Nonlinear Layer of WAGE 23
4.4.1 The Welch-Gong permutation (WGP) 23
4.4.2 The 7-bit sbox (SB) 23
4.5 Number of Rounds 24
4.6 Round Constants 25
4.6.1 Generation of round constants 25
4.7 Loading and Tag Extraction 26
4.8 Choice of Rate Positions 28
4.9 Relationship to WG ciphers 28
4.10 Statement 28
5 Security Analysis 29
5.1 Security of WAGE Permutation 29
5.1.1 Differential distinguishers 29
5.1.2 Diffusion behavior 29
5.1.3 Algebraic degree 30
5.1.4 Self-symmetry based distinguishers 31
5.2 Security of WAGE- $\mathcal{A E}$-128 31
6 Hardware Design And Analysis 32
6.1 Hardware Design Principles 32
6.2 Interface and Top-level Module 33
6.2.1 Interface protocol 34
6.2.2 Protocol timing 37
6.2.3 Control phases 39
6.3 Hardware Implementation Details 42
6.3.1 State machine 42
6.3.2 The WAGE datapath 47
6.4 Hardware Implementation Results 50
6.4.1 Tool configuration and implementation technologies 52
6.4.2 Implementation results 52
7 Software Efficiency Analysis 55
7.1 Software: Microcontroller 55
A Test Vectors 61
A. 1 WAGE Permutation 61
A. 2 WAGE- $\mathcal{A E}$-128 61
A. 3 Round Constants Conversion 62

List of Figures

2.1 The state at i-th round of the WAGE permutation 14
2.2 Schematic diagram of the WAGE- $\mathcal{A E}$-128 algorithm 16
2.3 Rate (shaded orange) and capacity (green) part of WAGE- $\mathcal{A E}-128$ 17
4.1 The LFSR for generating WAGE round constants. 25
4.2 Generation of round constants 26
6.1 Top-level WAGE_module and the interface with the environment 34
6.2 Interface protocol 35
6.3 Timing diagram: loading and initialization during WAGE- $\mathcal{A E}$-128 37
6.4 Timing diagram: encryption during WAGE- $\mathcal{A E}$-128 38
6.5 Timing of tag phase during WAGE- $\mathcal{A E}$-128 38
6.6 Phases and datapath operations 40
6.7 Control flow between phases 43
6.8 Optimized control flow between phases 43
6.9 State machine 45
6.10 WAGE datapath 47
6.11 The wage_lfsr with multiplexers XOR and AND gates 49
6.12 Area ${ }^{2}$ vs Throughput 53

List of Tables

2.1 Recommended parameter set for WAGE- $\mathcal{A E}$-128 10
2.2 Examples of conversion of the field elements to HEX 11
2.3 Hex representation of WGP 12
2.4 Hex representation of SB 13
2.5 Round constants of WAGE 15
3.1 Security claims of WAGE- $\mathcal{A E}$-128 (in bits) 20
4.1 Area implementation results for the defining polynomials $f_{i}(x)$ for $\mathbb{F}_{2^{7}}$ 24
4.2 Loading into the shift register through data inputs D_{4}, D_{3} and D_{0} 27
5.1 Minimum number of active sboxes for different primitive polynomials 30
6.1 Interface signals 33
6.2 Modes of operation 33
6.3 Control table for datapath based on phases from Figure 6.6 42
6.4 Control table for WAGE 50
6.5 WAGE permutation hardware area estimate and implementation results 51
6.6 Tools and implementation technologies 52
6.7 ASIC implementation results 54
6.8 FPGA implementation results 54
7.1 Performance of WAGE on microcontrollers 56
A. 1 Generation of the first five round constant pairs $\left(r c_{1}^{i}, r c_{0}^{1}\right)$ 62

Chapter 1

Introduction

WAGE is a 259-bit lightweight permutation based on the Welch-Gong (WG) stream cipher [22, 23]. It is designed to achieve an efficient hardware implementation for Authenticated Encryption with Associated Data (henceforth "AEAD"), while providing sufficient security margins. To accomplish this, the WAGE components and mode of operation are adopted from well known and analyzed cryptographic primitives. The design of WAGE, its security properties, and features are described as follows.

- WAGE nonlinear layer: WG permutation over $\mathbb{F}_{2^{7}}$ and a new 7-bit Sbox. The WG cipher, including the WG permutation, is a well-studied cryptographic primitive and has low hardware cost.
- WAGE linear layer: An LFSR with low hardware cost and good resistance against differential and linear cryptanalysis.
- WAGE security: Simple analysis and security bounds provided using automated tools such as CryptoSMT solver [17] and Gurobi [14].
- Functionality: Authenticated Encryption with Associated Data.
- WAGE mode of operation: Unified sponge duplex mode [3] that has a stronger keyed initialization and finalization phases.
- Security claims: Offers 128-bit security. Accepts a 128-bit key and 128-bit nonce.
- Hardware performance: Efficient in hardware. Achieves a throughput of 517 Mbps and has an area of 2900 GE in a 65 nm ASIC. Implementation results are presented for four ASIC libraries and two FPGAs along with parallel implementations.
- Microcontroller performance: WAGE is implemented on three different microcontroller platforms, namely ATmega128, MSP430F2370, and LM3S9D96 (Cotex M3). The best throughput for the permutation is achieved on LM3S9D96, which is 286.78 Kbps .

1.1 Notation

The following notation will be used throughout the document.

Notation	Description	
$X \odot Y, X \oplus Y, X \\| Y$	Bitwise AND, XOR and concatenation of X and Y	
$X \otimes Y$	Finite field multiplication of X and Y	
S	259 bit state of WAGE	
$S_{j}, S_{j, k}$	stage j of state S and k-th bit of stage S_{j}, where $j \in\{0, \ldots, 36\}$ and $k \in\{0, \ldots, 6\}$	
S_{r}, S_{c}	r-bit rate part and c-bit capacity part of $S(r=64, c=195)$	
$\mathbb{F}_{2^{7}}$	Finite field $\mathbb{F}_{2^{7}}$	
f, ω	Defining polynomial for $\mathbb{F}_{2^{7}}$ and its root, i.e., $f(\omega)=0$	
ℓ	LFSR feedback polynomial	
WGP	Welch-Gong permutation over $\mathbb{F}_{2^{7}}$	
SB	7-bit Sbox	
$r c_{1}^{i}, r c_{0}^{i}$	7-bit round constants	
K, N, T	key, nonce and tag	
k, n, t	length of key, nonce and tag in bits ($k=n=t=128)$	
block	a 64-bit string	
$A D, M, C$	associated data, plaintext and ciphertext (in blocks $A D_{i}, M_{i}, C_{i}$)	
ℓ_{X}	length of X in blocks where $X \in\{A D, M, C\}$	
$\widehat{K}_{j}, \widehat{N}_{j}, \widehat{T}_{j}$	7-bit tuple of key, nonce, and tag, $j=0, \ldots, 17$	
WAGE- $\mathcal{A E}$	WAGE authenticated encryption algorithm	
WAGE-E	WAGE encryption	
WAGE-D	WAGE decryption	

1.2 Outline

The rest of the document is organized as follows. In Chapter 2, we present the complete specification of the WAGEand summarize the security claims of our submission in Chapter 3. In Chapter 4, we present the rationale of our design choices and provide the detailed security analysis in Chapter 5. The details of our hardware implementations and performance results in ASIC and FPGA are provided in Chapter 6. In Chapter 7, we discuss the efficiency of WAGE on microcontroller implementations. Finally, we conclude with references and test vectors in Appendix A.

Chapter 2

Specification of WAGE

2.1 WAGE AEAD Algorithm

WAGE is an iterative permutation with a state size of 259 bits inspired by the initialization phase of the Welch-Gong (WG) cipher [22, 23]. It operates in a unified duplex sponge mode [3] to offer authenticated encryption with associated data (AEAD) functionality. The AEAD algorithm (WAGE- $\mathcal{A E}$ - k) processes an r-bit data per call of WAGE and is parameterized by the secret key size k. The WAGE- $\mathcal{A E}-k$ consists of two algorithms, namely an authenticated encryption algorithm WAGE- \mathcal{E} and a verified decryption algorithm WAGE-D.

Encryption. The authenticated encryption algorithm WAGE-E takes as input a secret key K of length k bits, a public message number N (nonce) of size n bits, a block header $A D$ (a.k.a, associated data) and a message M. The output of WAGE-E is an authenticated ciphertext C of the same length as M, and an authentication tag T of size t bits. Mathematically, WAGE-E is defined as

$$
\text { WAGE-E : }\{0,1\}^{k} \times\{0,1\}^{n} \times\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*} \times\{0,1\}^{t}
$$

with

$$
\text { WAGE- } \mathcal{E}(K, N, A D, M)=(C, T)
$$

Decryption. The decryption and verification algorithm takes as input the secret key K, nonce N, associated data $A D$, ciphertext C and $\operatorname{tag} T$, and outputs the plaintext M of same length as C if the verification of tag is correct or \perp (error symbol) if the tag verification fails. More formally,

$$
\text { WAGE- } \mathcal{D}(K, N, A D, C, T) \in\{M, \perp\} .
$$

2.2 Recommended Parameter Set

In Table 2.1, we list the recommended parameter set for WAGE- $\mathcal{A E}$-128. The length of each parameter is given in bits and d denotes the amount of allowed data (including both $A D$ and M) before a re-keying is required.

Table 2.1: Recommended parameter set for WAGE- $\mathcal{A E}$-128

Functionality	Algorithm	r	k	n	t	$\log _{2}(d)$
AEAD	WAGE- $\mathcal{A E}-128$	64	128	128	128	64

2.3 Description of the WAGE Permutation

WAGE is an iterative permutation and its round function is constructed by tweaking the initialization phase of the WG cipher over $\mathbb{F}_{2^{7}}$ where an additional Welch-Gong permutation (WGP) and four 7-bit sboxes (SB) are added to achieve faster confusion and diffusion. We opt for a design based on a combination of an LFSR with WGP and SB, which provides a good trade-off between security and hardware efficiency. The core components of the round function are an LFSR, two WGPs and four SBs, which are described below in detail.

2.3.1 Underlying finite field

WAGE operates over the finite field $\mathbb{F}_{2^{7}}$, defined using the primitive polynomial $f(x)=$ $x^{7}+x^{3}+x^{2}+x+1$. The elements of the finite field $\mathbb{F}_{2^{7}}$ are represented using the polynomial basis $\mathrm{PB}=\left\{1, \omega, \ldots, \omega^{6}\right\}$, and an element $a \in \mathbb{F}_{2^{7}}$ is given by

$$
a=\sum_{i=0}^{6} a_{i} \omega^{i}, a_{i} \in \mathbb{F}_{2}
$$

and its vector representation is

$$
[a]_{\mathrm{PB}}=\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)
$$

To represent a 7 -bit finite field element as a byte, a 0 is appended on the left. For unambiguity, we include the conversion to binary as an intermediate step:

$$
[a]_{\mathrm{PB}}=\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \rightarrow[a]_{b}=\left(0, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right) \rightarrow[a]_{\text {hex }}=\left(h_{1}, h_{0}\right)
$$

Table 2.2 shows some examples of the conversion to HEX.

Table 2.2: Examples of conversion of the field elements to HEX

			2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}	16^{1}	16^{0}
a	\in	$\mathbb{F}_{2^{7}}$	0	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	a_{5}	a_{6}	h_{1}	h_{0}
1		0	1	0	0	0	0	0	0	4	0	
	ω		0	0	1	0	0	0	0	0	2	0
1	+	ω	0	1	1	0	0	0	0	0	6	0
1	+	ω^{6}	0	1	0	0	0	0	0	1	4	1

2.3.2 The LFSR

The internal state S of the permutation is composed of 37 stages and given by $S=$ $\left(S_{36}, \cdots, S_{1}, S_{0}\right)$, where each S_{j} holds a 7 -bit word considered as an element from the finite field $\mathbb{F}_{2^{7}}$ represented using the PB, i.e., $S_{j}=\left(S_{j, 0}, S_{j, 1}, S_{j, 2}, S_{j, 3}, S_{j, 4}, S_{j, 5}, S_{j, 6}\right)$. The WAGE LFSR is defined by the feedback polynomial

$$
\ell(y)=y^{37}+y^{31}+y^{30}+y^{26}+y^{24}+y^{19}+y^{13}+y^{12}+y^{8}+y^{6}+\omega
$$

which is primitive over $\mathbb{F}_{2^{7}}$. The linear feedback $f b$ is computed as follows:

$$
f b=S_{31} \oplus S_{30} \oplus S_{26} \oplus S_{24} \oplus S_{19} \oplus S_{13} \oplus S_{12} \oplus S_{8} \oplus S_{6} \oplus\left(\omega \otimes S_{0}\right)
$$

2.3.3 The nonlinear components

In this subsection, we provide the details of the WGP and SB sboxes.

The Welch-Gong Permutation (WGP). The cryptographic properties of the WG permutation and transformation have been widely investigated in the literature [13]. We use a decimated WGP with low differential uniformity and high nonlinearity. Using the decimation $d=13$, the differential uniformity for WGP is 6 , and its nonlinearity is 42. The WGP7 over $\mathbb{F}_{2^{7}}$ is defined as

$$
\operatorname{WGP} 7(x)=x+(x+1)^{33}+(x+1)^{39}+(x+1)^{41}+(x+1)^{104}, x \in \mathbb{F}_{2^{7}}
$$

A decimated WG permutation with decimation d such that $\operatorname{gcd}\left(d, 2^{m}-1\right)=1$ is defined as

$$
\operatorname{WGP} 7\left(x^{d}\right)=x^{d}+\left(x^{d}+1\right)^{33}+\left(x^{d}+1\right)^{39}+\left(x^{d}+1\right)^{41}+\left(x^{d}+1\right)^{104}, x \in \mathbb{F}_{2^{7}} .
$$

We use the decimation $d=13$ and denote it by $\operatorname{WGP}(x)=\operatorname{WGP} 7\left(x^{13}\right)$. The maximum algebraic degree of its components is 6. An Sbox representation of WGP is given in Table 2.3 in a row-major order. The 7-bit finite field elements are represented in hex using the technique provided in Table 2.2.

Table 2.3: Hex representation of WGP

00	12	0 a	4 b	66	0 c	48	73	79	3 e	61	51	01	15	17	0 e
7 e	33	68	36	42	35	37	5 e	53	4 c	3 f	54	58	6 e	56	2 a
1 d	25	6 d	65	5 b	71	2 f	20	06	18	29	3 a	0 d	7 a	6 c	1 b
19	43	70	41	49	22	77	60	4 f	45	55	02	63	47	75	2 d
40	46	7 d	5 c	7 c	59	26	0 b	09	03	57	5 d	27	78	30	2 e
44	52	3 b	08	67	2 c	05	6 b	2 b	1 a	21	38	07	0 f	4 a	11
50	6 a	28	31	10	4 d	5 f	72	39	16	5 a	13	04	3 c	34	1 f
76	1 e	14	23	1 c	32	4 e	7 b	24	74	7 f	3 d	69	64	62	6 f

SBox (SB). We construct a lightweight 7-bit Sbox in an iterative way. Let the input be $x=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)$. The nonlinear transformation Q is given by
$Q\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{0} \oplus\left(x_{2} \wedge x_{3}\right), x_{1}, x_{2}, \bar{x}_{3} \oplus\left(x_{5} \wedge x_{6}\right), x_{4}, \bar{x}_{5} \oplus\left(x_{2} \wedge x_{4}\right), x_{6}\right)$.
The bit permutation P is given by

$$
P\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{6}, x_{3}, x_{0}, x_{4}, x_{2}, x_{5}, x_{1}\right)
$$

One-round R of the Sbox SB is obtained by composing the nonlinear transformation Q and the bit permutation P, and is given by $R=P \circ Q$ where
$R\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right)=\left(x_{6}, \bar{x}_{3} \oplus\left(x_{5} \wedge x_{6}\right), x_{0} \oplus\left(x_{2} \wedge x_{3}\right), x_{4}, x_{2}, \bar{x}_{5} \oplus\left(x_{2} \wedge x_{4}\right), x_{1}\right)$.
The 7-bit Sbox SB is constructed by iterating the function $R 5$ times, followed by applying Q once, and then complementing the 0 th and 2nd components. Mathematically,

$$
\begin{aligned}
\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) & \leftarrow R^{5}\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) & \leftarrow Q\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}\right) \\
x_{0} & \leftarrow x_{0} \oplus 1 \\
x_{2} & \leftarrow x_{2} \oplus 1 .
\end{aligned}
$$

SB has the differential uniformity of 8 and the nonlinearity of 44 . The maximum algebraic degree of its components is 6 .

Although SB is defined bit-wise, the interpretation of the 7 bits is identical to the interpretation of the coefficients of the finite field element represented in polynomial basis. The hex representation of SB is provided in Table 2.4 and the conversion to hex is the same as that of WGP.

2.3.4 Description of the core permutation

The WAGE permutation is a 259-bit permutation consisting of a 37-stage NLFSR defined over $\mathbb{F}_{2^{7}}$. It is based on the initialization phase of the WG cipher and utilizes 5 additional sboxes to update the internal state. At the i-th iteration, the internal state is denoted by $S^{i}=\left(S_{36}^{i}, S_{35}^{i}, \cdots, S_{1}^{i}, S_{0}^{i}\right)$. The round function that updates 6 stages of the register nonlinearly is viewed as

WAGE: Submission to the NIST LWC competition

Table 2.4: Hex representation of SB

2 e	1 c	6 d	2 b	35	07	7 f	3 b	28	08	0 b	5 f	31	11	1 b	4 d
6 e	54	0 d	09	1 f	45	75	53	6 a	5 d	61	00	04	78	06	1 e
37	6 f	2 f	49	64	34	7 d	19	39	33	43	57	60	62	13	05
77	47	4 f	4 b	1 d	2 d	24	48	74	58	25	5 e	5 a	76	41	42
27	3 e	6 c	01	2 c	3 c	4 e	1 a	21	2 a	0 a	55	3 a	38	18	7 e
0 c	63	67	56	50	7 c	32	7 a	68	02	6 b	17	7 b	59	71	0 f
30	10	22	3 d	40	69	52	14	36	44	46	03	16	65	66	72
12	$0 e$	29	4 a	4 c	70	15	26	79	51	23	3 f	73	5 b	20	5 c

- Updating with initialization of the WG cipher:

$$
S_{36}^{i+1} \leftarrow \operatorname{WGP}\left(S_{36}^{i}\right) \oplus S_{31}^{i} \oplus S_{30}^{i} \oplus S_{26}^{i} \oplus S_{24}^{i} \oplus S_{19}^{i} \oplus S_{13}^{i} \oplus S_{12}^{i} \oplus S_{8}^{i} \oplus S_{6}^{i} \oplus\left(\omega \otimes S_{0}^{i}\right)
$$

- Updating one stage with WGP:

$$
S_{18}^{i+1} \leftarrow S_{19}^{i} \oplus \operatorname{WGP}\left(S_{18}^{i}\right)
$$

- Updating four stages with SB:

$$
\begin{aligned}
& S_{4}^{i+1} \leftarrow S_{5}^{i} \oplus \mathrm{SB}\left(S_{8}^{i}\right) \\
& S_{10}^{i+1} \leftarrow S_{11}^{i} \oplus \mathrm{SB}\left(S_{15}^{i}\right) \\
& S_{23}^{i+1} \leftarrow S_{24}^{i} \oplus \mathrm{SB}\left(S_{27}^{i}\right) \\
& S_{29}^{i+1} \leftarrow S_{30}^{i} \oplus \mathrm{SB}\left(S_{34}^{i}\right)
\end{aligned}
$$

A schematic diagram of the round function is presented in Figure 2.1. A pair of 7-bit round constants $\left(r c_{1}, r c_{0}\right)$ is XORed with the pair of stages $(36,18)$ to destroy similarity among state updates. On an input S^{0}, an output of the permutation is obtained by applying the round function, denoted by WAGE-StateUpdate, 111 times. An algorithmic description of WAGE is provided in Algorithm 1.

2.3.5 Round constants

We use two 7 -bit round constants at each round of WAGE. The round constants are listed in Table 2.5. The interpretation of the hex values of round constants in terms of polynomial basis is the same as for SB , and hence details are omitted.

2.4 WAGE- $\mathcal{A E}$-128 Algorithm

WAGE uses the unified sponge duplex mode to provide the AEAD functionality [3]. A WAGE instance is parametrized by a key of length k, denoted as WAGE- $\mathcal{A E}$ - k. Algorithm

```
Algorithm 1 WAGE permutation
    Input : \(S^{0}=\left(S_{36}^{0}, S_{35}^{0}, \cdots, S_{1}^{0}, S_{0}^{0}\right)\)
    Output : \(S^{111}=\left(S_{36}^{111}, S_{35}^{111}, \cdots, S_{1}^{111}, S_{0}^{111}\right)\)
    for \(i=0\) to 110 do:
        \(S^{i+1} \leftarrow\) WAGE-StateUpdate \(\left(S^{i}, r c_{1}^{i}, r c_{0}^{i}\right)\)
    return \(S^{111}\)
    Function WAGE-StateUpdate \(\left(S^{i}\right)\) :
        \(f b=S_{31}^{i} \oplus S_{30}^{i} \oplus S_{26}^{i} \oplus S_{24}^{i} \oplus S_{19}^{i} \oplus S_{13}^{i} \oplus S_{12}^{i} \oplus S_{8}^{i} \oplus S_{6}^{i} \oplus\left(\omega \otimes S_{0}^{i}\right)\)
        \(S_{4}^{i+1} \leftarrow S_{5}^{i} \oplus \mathrm{SB}\left(S_{8}^{i}\right)\)
        \(S_{10}^{i+1} \leftarrow S_{11}^{i} \oplus \mathrm{SB}\left(S_{15}^{i}\right)\)
        \(S_{18}^{i+1} \leftarrow S_{19}^{i} \oplus \operatorname{WGP}\left(S_{18}^{i}\right) \oplus r c_{0}^{i}\)
        \(S_{23}^{i+1} \leftarrow S_{24}^{i} \oplus \mathrm{SB}\left(S_{27}^{i}\right)\)
        \(S_{29}^{i+1} \leftarrow S_{30}^{i} \oplus \mathrm{SB}\left(S_{34}^{i}\right)\)
        \(S_{36}^{i+1} \leftarrow f b \oplus \operatorname{WGP}\left(S_{36}^{i}\right) \oplus r c_{1}^{i}\)
        \(S_{j}^{i+1} \leftarrow S_{j+1}^{i}, j \in\{0, \cdots, 36\} \backslash\{4,10,18,23,29,36\}\)
        return \(S^{i+1}\)
```

2 presents a high-level overview of WAGE- $\mathcal{A E}-128$. The encryption (WAGE-E $)$ and decryption (WAGE-D) of WAGE- $\mathcal{A E}-128$ are shown in Figure 2.2. In what follows, we first illustrate the rate and the capacity part of the state, and then the padding rule. We then describe each phase of WAGE-E and WAGE-D.

2.4.1 Rate and capacity part of state

The internal state S of WAGE is divided into two parts, namely the rate part S_{r} and the capacity part S_{c}. The 0 -th bit of stage S_{36}, i.e., $S_{36,0}$, and all bits of stages $S_{35}, S_{34}, S_{28}, S_{27}, S_{18}, S_{16}, S_{15}, S_{9}$ and S_{8} constitute S_{r} (shaded orange in Figure 2.3),

Figure 2.1: The state at i-th round of the WAGE permutation

Table 2.5: Round constants of WAGE

Round i	Round constant ($r c_{1}^{i}, r c_{0}^{i}$)										
$0-9$	(3f, 7f)	(0f, 1f)	$(03,07)$	$(40,01)$	$(10,20)$	$(04,08)$	(41	02)	$(30,60)$	(0c, 18)	$(43,06)$
$10-19$	$(50,21)$	$(14,28)$	$(45,0 a)$	$(71,62)$	(3c, 78)	(4f, 1e)	(13,	27)	$(44,09)$	$(51,22)$	$(34,68)$
$20-29$	(4d, 1a)	$(66,73)$	(5c, 39)	$(57,2 e)$	$(15,2 b)$	$(65,4 a)$	(79	72)	(3e, 7c)	(2f, 5f)	(0b, 17)
$30-39$	$(42,05)$	$(70,61)$	(1c, 38)	$(47,0 e)$	$(11,23)$	$(24,48)$	(49	12)	$(32,64)$	(6c, 59)	(5b, 36)
$40-49$	$(56,2 d)$	$(35,6 b)$	(6d, 5a)	(7b, 76)	(5e, 3d)	$(37,6 f)$	(0d,	1b)	$(63,46)$	$(58,31)$	$(16,2 c)$
$50-59$	$(25,4 \mathrm{~b})$	$(69,52)$	$(74,3 a)$	(6e, 5d)	(3b, 77)	(4e, 1d)	(33,	67)	$(4 \mathrm{c}, 19)$	$(53,26)$	$(54,29)$
$60-69$	$(55,2 \mathrm{a})$	$(75,6 a)$	(7d, 7a)	(7f, 7e)	(1f, 3f)	(07, 0f)	(01,	03)	$(20,40)$	$(08,10)$	$(02,04)$
$70-79$	$(60,41)$	$(18,30)$	$(06,0 c)$	$(21,43)$	$(28,50)$	$(0 a, 14)$	(62,	45)	$(78,71)$	(1e, 3c)	$(27,4 \mathrm{f})$
80-89	$(09,13)$	$(22,44)$	$(68,51)$	$(1 a, 34)$	$(66,4 d)$	$(39,73)$		5c)	$(2 \mathrm{~b}, 57)$	$(4 a, 15)$	$(72,65)$
$90-99$	(7c, 79)	(5f, 3e)	$(17,2 f)$	$(05,0 b)$	$(61,42)$	$(38,70)$			$(23,47)$	$(48,11)$	$(12,24)$
$100-109$	$(64,49)$	$(59,32)$	$(36,6 c)$	(2d, 5b)	$(6 \mathrm{~b}, 56)$	$(5 a, 35)$	(76,	6d)	(3d, 7b)	(6f, 5e)	(1b, 37)
110	$(46,0 d)$										

```
Algorithm 2 WAGE- \(\mathcal{A E}\)-128 algorithm
    Authenticated encryption WAGE- \(\mathcal{E}(K, N, A D, M)\) :
        \(S \leftarrow \operatorname{Initialization}(N, K)\)
        if \(|A D| \neq 0\) then:
            \(S \leftarrow\) Processing-Associated-Data \((S, A D)\)
        \((S, C) \leftarrow \operatorname{Encyption}(S, M)\)
        \(T \leftarrow\) Finalization \((S, K)\)
        return \((C, T)\)
    Initialization \((N, K)\) :
        \(S \leftarrow \operatorname{load}-\mathcal{A E}(N, K)\)
        \(S \leftarrow \operatorname{WAGE}(S)\)
        for \(i=0\) to 1 do:
            \(S \leftarrow\left(S_{r} \oplus K_{i}, S_{c}\right)\)
            \(S \leftarrow \operatorname{WAGE}(S)\)
        return \(S\)
        Processing-Associated-Data ( \(S, A D\) ):
        \(\left(A D_{0}\|\cdots\| A D_{\ell_{A D}-1}\right) \leftarrow \operatorname{pad}_{\mathrm{r}}(A D)\)
        for \(i=0\) to \(\ell_{A D}-1\) do:
            \(S \leftarrow\left(S_{r} \oplus A D_{i}, S_{c} \oplus 0^{c-7}\|1\| 0^{6}\right)\)
            \(S \leftarrow \operatorname{WAGE}(S)\)
        return \(S\)
            Verified decryption WAGE- \(\mathcal{D}(K, N, A D, C, T)\) :
        \(S \leftarrow \operatorname{Initialization}(N, K)\)
    if \(|A D| \neq 0\) then:
            \(S \leftarrow\) Processing-Associated-Data \((S, A D)\)
        \((S, M) \leftarrow \operatorname{Decyption}(S, C)\)
        \(T^{\prime} \leftarrow\) Finalization \((S, K)\)
        if \(T^{\prime} \neq T\) then:
            return \(\perp\)
        else:
            return \(M\)
            retin
    Decryption \((S, C)\) :
        \(\left(C_{0}\|\cdots\| C_{\ell_{C}-1}\right) \leftarrow \operatorname{pad}_{\mathrm{r}}(C)\)
        for \(i=0\) to \(\ell_{C}-2\) do:
            \(M_{i} \leftarrow C_{i} \oplus S_{r}\)
            \(S \leftarrow\left(C_{i}, S_{c} \oplus 0^{c-7}\|0\| 1 \| 0^{5}\right)\)
            \(S \leftarrow \operatorname{WAGE}(S)\)
        \(M_{\ell_{C}-1} \leftarrow S_{r} \oplus C_{\ell_{C}-1}\)
        \(C_{\ell_{C}-1} \leftarrow \operatorname{trunc}-\operatorname{msb}\left(C_{\ell_{C}-1},|C| \bmod r\right)| |\) trunc- \(\left.\operatorname{lsb}\left(M_{\ell_{C}-1}, r-|C| \bmod r\right)\right)\)
        \(C_{\ell_{C}-1} \leftarrow\) trunc-msb \(\left(C_{\ell_{C}-1},|C| \bmod r\right)|\mid t\)
\(M_{\ell_{C}-1} \leftarrow\) trunc-msb \(\left(M_{\ell_{C}-1},|C| \bmod r\right)\)
        \(M \leftarrow\left(M_{0}, M_{1}, \ldots, M_{\ell_{C}-1}\right)\)
        \(S \leftarrow \operatorname{WAGE}\left(C_{\ell_{C}-1}, S_{c} \oplus 0^{c-7}\|0\| 1 \| 0^{5}\right)\)
        return \((S, M)\)
    : Encryption \((S, M)\) :
        \(\left(M_{0}\|\cdots\| M_{\ell_{M}-1}\right) \leftarrow \operatorname{pad}_{r}(M)\)
    Finalization \((S, K)\) :
        for \(i=0\) to \(\ell_{M}-1\) do:
        for \(i=0\) to 1 do:
            \(C_{i} \leftarrow M_{i} \oplus S_{r}\)
            \(S \leftarrow \operatorname{WAGE}\left(S_{r} \oplus K_{i}, S_{c}\right)\)
            \(S \leftarrow\left(C_{i}, S_{c} \oplus 0^{c-7}\|0\| 1 \| 0^{5}\right)\)
            \(S \leftarrow \operatorname{WAGE}\left(S_{r} \oplus K_{i}, S_{c}\right)\)
            \(T \leftarrow \operatorname{tagextract}(S)\)
            \(S \leftarrow \operatorname{WAGE}(S)\)
        return \(T\)
        \(C_{\ell_{M}-1} \leftarrow \operatorname{trunc}-\operatorname{msb}\left(C_{\ell_{M}-1},|M| \bmod r\right)\)
        \(C \leftarrow\left(C_{0}, C_{1}, \ldots, C_{\ell_{M}-1}\right)\)
        nb \((X, n)\)
        return \((S, C)\)
    trunc-msb \((X, n)\) :
        if \(n=0\) then:
            return \(\phi\)
30: \(\operatorname{pad}_{\mathrm{r}}(X)\) :
        else:
        \(\quad X \leftarrow X\left|\mid 10^{r-1-(|X| \bmod r)}\right.\)
\(\quad\)
        return \(\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)\)
\(\begin{array}{ll}\text { 31: } & X \leftarrow X \| 10 \\ \text { 32: } & \\ \text { return } X\end{array}\)
33: trunc- \(\operatorname{lsb}(X, n)\) :
34: return \(\left(x_{r-n}, x_{r-n+1}, \ldots, x_{r-1}\right)\)
```

while all remaining bits in the state constitute S_{c}. The rationale for the choice of the S_{r} positions is explained in Section 4.7. The rate part S_{r} of the state is used for both

Figure 2.2: Schematic diagram of the WAGE- $\mathcal{A E}$-128 algorithm
absorbing and squeezing.
For example, the 64 -bit bits of a message block are absorbed into the S_{r} as follows:

$$
\begin{aligned}
& S_{36} \leftarrow\left(m_{63}, 0, \ldots, 0\right) \sim D_{9} \quad S_{18} \leftarrow\left(m_{28}, \ldots, m_{34}\right) \sim D_{4} \\
& S_{35} \leftarrow\left(m_{56}, \ldots, m_{62}\right) \sim D_{8} \quad S_{16} \leftarrow\left(m_{21}, \ldots, m_{27}\right) \backsim D_{3} \\
& S_{34} \leftarrow\left(m_{49}, \ldots, m_{55}\right) \sim D_{7} \quad S_{15} \leftarrow\left(m_{14}, \ldots, m_{20}\right) \sim D_{2} \\
& S_{28} \leftarrow\left(m_{42}, \ldots, m_{48}\right) \backsim D_{6} \quad S_{9} \leftarrow\left(m_{7}, \ldots, m_{13}\right) \backsim D_{1} \\
& S_{27} \leftarrow\left(m_{35}, \ldots, m_{41}\right) \backsim D_{5} \quad S_{8} \leftarrow\left(m_{0}, \ldots, m_{6}\right) \backsim D_{0}
\end{aligned}
$$

The tuples above labeled with $D_{k}, k=0, \ldots, 9$, are used as data inputs to S_{r}; they carry the associated data bits, the message bits during encryption, the ciphertext bits during decryption, and the key bits during the initialization and finalization phases. Figure 2.3 shows the XORing of D_{k} to the appropriate stages S_{j}^{111}, $j \in\{36,35,34,28,27,18,16,15,9,8\}$, shown in shaded orange. The two domain separator bits $d s_{1}$ and $d s_{0}$ are XORed to the first two bits of S_{c}, namely $S_{0,1}^{111}$ and $S_{0,0}^{111}$ respectively.

2.4.2 Padding

Padding is necessary when the length of the processed data is not a multiple of the rate r value. Since the key size is a multiple of r, we get two key blocks K_{0} and K_{1}, so no padding is needed. Afterwards, the padding rule (10^{*}), denoting a single 1 followed by required number of 0 's, is applied to the message M so that its length after

Figure 2.3: Rate (shaded orange) and capacity (green) part of WAGE- $\mathcal{A E}$-128.
padding is a multiple of r. The resulting padded message is divided into $\ell_{M} r$-bit blocks $M_{0}\|\cdots\| M_{\ell_{M}-1}$. A similar procedure is carried out on the associated data $A D$ which results in $\ell_{A D} r$-bit blocks $A D_{0}\|\cdots\| A D_{\ell_{A D}-1}$. In the case where no associated data is present, no processing is necessary. We summarize the padding rules for the message and associated data below.

$$
\begin{aligned}
\operatorname{pad}_{\mathrm{r}}(M) & \leftarrow M\|1\| 0^{r-1-(|M| \bmod r)} \\
\operatorname{pad}_{\mathrm{r}}(A D) & \leftarrow \begin{cases}A D\|1\| 0^{r-1-(|A D| \bmod r)} & \text { if }|A D|>0 \\
\phi & \text { if }|A D|=0\end{cases}
\end{aligned}
$$

Note that in case of $A D$ or M whose length is a multiple of r, an additional r-bit padded block is appended to $A D$ or M to distinguish between the processing of partial and complete blocks.

2.4.3 Loading key and nonce

The state is loaded with 128 -bit nonce $N=\left(n_{0}, \ldots, n_{127}\right)$ and 128 -bit key $K=$ $\left(k_{0}, \ldots, k_{127}\right)$. The remaining three bits of S are set to zero. Both the nonce and the key are divided into 7-bit tuples as follows:

- for $0 \leq i \leq 8, \widehat{N}_{i}=\left(n_{7 i}, \ldots, n_{7 i+6}\right)$ and $\widehat{K}_{i}=\left(k_{7 i}, \ldots, k_{7 i+6}\right)$
- for $9 \leq i \leq 17, \widehat{N}_{i}=\left(n_{7 i+1}, \ldots, n_{7 i+7}\right)$ and $\widehat{K}_{i}=\left(k_{7 i+1}, \ldots, k_{7 i+7}\right)$
- $\widehat{K}_{18}^{*}=\left(k_{63}, k_{127}, n_{63}, n_{127}, 0,0,0\right)$

The state S is initialized as follows:

$$
\begin{aligned}
S_{36}, S_{35}, S_{34}, S_{33}, S_{32}, S_{31}, S_{30}, S_{29}, S_{28} & \leftarrow \widehat{N}_{16}, \widehat{N}_{14}, \widehat{N}_{12}, \widehat{N}_{10}, \widehat{N}_{8}, \widehat{N}_{6}, \widehat{N}_{4}, \widehat{N}_{2}, \widehat{N}_{0} \\
S_{27}, S_{26}, S_{25}, S_{24}, S_{23}, S_{22}, S_{21}, S_{20}, S_{19} & \leftarrow \widehat{K}_{17}, \widehat{K}_{15}, \widehat{K}_{13}, \widehat{K}_{11}, \hat{K}_{9}, \widehat{K}_{7}, \widehat{K}_{5}, \widehat{K}_{3}, \widehat{K}_{1} \\
S_{18}, S_{17} & \leftarrow \widehat{K}_{18}^{*}, \widehat{N}_{15} \\
S_{16}, S_{15}, S_{14}, S_{13}, S_{12}, S_{11}, S_{10}, S_{9} & \leftarrow \widehat{N}_{17}, \widehat{N}_{13}, \widehat{N}_{11}, \widehat{N}_{9}, \widehat{N}_{7}, \widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1} \\
S_{8}, S_{7}, S_{6}, S_{5}, S_{4}, S_{3}, S_{2}, S_{1}, S_{0} & \leftarrow \widehat{K}_{16}, \widehat{K}_{14}, \widehat{K}_{12}, \widehat{K}_{10}, \widehat{K}_{8}, \widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}
\end{aligned}
$$

This loading scheme is further discussed in Section 4.7. We use load- $\mathcal{A E}(N, K)$ to denote the process of loading the state with nonce N and key K in the positions described above.

2.4.4 Initialization

The goal of this phase is to initialize the state S with the public nonce N and the secret key K. The state is first loaded using load- $\mathcal{A} \mathcal{E}(N, K)$ as described above, and then the two key blocks K_{0} and K_{1}, with $K=K_{0} \| K_{1}$, are absorbed into the state, with the WAGE permutation applied each time. The steps of the initialization are described as follows.

$$
\begin{aligned}
S & \leftarrow \operatorname{WAGE}(\text { load- } \mathcal{A E}(N, K)) \\
S & \leftarrow \operatorname{WAGE}\left(S_{r} \oplus K_{0}, S_{c}\right) \\
S & \leftarrow \operatorname{WAGE}\left(S_{r} \oplus K_{1}, S_{c}\right)
\end{aligned}
$$

2.4.5 Processing associated data

If there is associated data, then for each absorbed block of $A D$, a domain separator bit is XORed to the current value of $S_{0,0}$. Then the WAGE permutation is applied to the whole state. This phase is defined in Algorithm 2.

$$
S \leftarrow \operatorname{WAGE}\left(S_{r} \oplus A D_{i}, S_{c} \oplus 0^{c-7}\|1\| 0^{6}\right), i=0, \ldots, \ell_{A D}-1
$$

2.4.6 Encryption

This phase is similar to the processing of associated data, however, the domain separator bit is XORed to the current value of $S_{0,1}$. In addition, each message block $M_{i}, i=$ $0, \ldots, \ell_{M}-1$, is XORed to S_{r} part of the internal state as described in Section 2.4.1, which gives the corresponding ciphertext block C_{i}, which is extracted from the S_{r} part of the state as well. After that, the WAGE permutation is applied to the internal state S.

$$
\begin{aligned}
C_{i} & \leftarrow S_{r} \oplus M_{i}, \\
S & \leftarrow \operatorname{WAGE}\left(C_{i}, S_{c} \oplus 0^{c-7}\|0\| 1 \| 0^{5}\right), i=0, \cdots, \ell_{M}-1
\end{aligned}
$$

The last ciphertext block is truncated so that its length is equal to that of the last unpadded message block. The details of this phase are given in Algorithm 2.

2.4.7 Finalization

After the extraction of the last ciphertext block, the domain separator is reset to zero. First, the two 64 -bit key blocks $K=K_{0} \| K_{1}$ are absorbed into the state, with the WAGE permutation applied each time. Then, the tag is extracted from the positions of state which are used for loading the nonce during load- $\mathcal{A} \mathcal{E}(N, K)$. The finalization steps are mentioned below and illustrated in Algorithm 2.

$$
\begin{aligned}
S & \leftarrow \operatorname{WAGE}\left(\left(S_{r} \oplus K_{i}\right), S_{c}\right), i=0,1 \\
T & \leftarrow \operatorname{tagextract}(S) .
\end{aligned}
$$

The function tagextract (S) extracts the 128 -bit $\operatorname{tag} T=\widehat{T}_{0}\left\|\widehat{T}_{1}\right\| \ldots\left\|\widehat{T}_{17}\right\| \widehat{T}_{18}^{*}$ from the positions that were used to load the 7 -bit tuples of the nonce N during load- $\mathcal{A E}(N, K)$, namely stages S_{36}, \ldots, S_{28} and $S_{18} \ldots S_{9}$. The 7 -bit \widehat{T}_{i} tuples are given by:

$$
\begin{aligned}
\widehat{T}_{16}, \widehat{T}_{14}, \widehat{T}_{12}, \widehat{T}_{10}, \widehat{T}_{8}, \widehat{T}_{6}, \widehat{T}_{4}, \widehat{T}_{2}, \widehat{T}_{0} & \leftarrow S_{36}, S_{35}, S_{34}, S_{33}, S_{32}, S_{31}, S_{30}, S_{29}, S_{28} \\
\widehat{T}_{15}, \widehat{T}_{13}, \widehat{T}_{11}, \widehat{T}_{9}, \widehat{T}_{7}, \widehat{T}_{5}, \widehat{T}_{3}, \widehat{T}_{1} & \leftarrow S_{16}, S_{15}, S_{14}, S_{13}, S_{12}, S_{11}, S_{10}, S_{9} \\
\widehat{T}_{18}^{*}, \widehat{T}_{17} & \leftarrow S_{18}, S_{17}
\end{aligned}
$$

where

$$
\begin{aligned}
\widehat{T}_{i} & =\left(t_{7 i}, \ldots, t_{7 i+6}\right), \text { for } 0 \leq i \leq 17, \text { and } \\
\widehat{T}_{18}^{*} & =\left(-,-, t_{126}, t_{127},-,-,-\right)
\end{aligned}
$$

Note that for \widehat{T}_{18}^{*}, only the second two bits of stage S_{18} are used, the remaining stage bits are discarded, as indicated by the sign "-".

2.4.8 Decryption

The decryption procedure is symmetrical to encryption and illustrated in Algorithm 2.

Chapter 3

Security Claims

WAGE is designed to provide authenticated encryption with associated data functionality. We assume a nonce-respecting adversary and do not claim security in the event of nonce reuse. If the verification procedure fails, the decrypted ciphertext and the new tag should not be given as output. Moreover, we do not claim security for the reduced-round versions of WAGE- $\mathcal{A E}-128$. The security claims of WAGE- $\mathcal{A E}-128$ are summarized in Table 3.1. Note that the security for integrity in Table 3.1 includes the integrity of nonce, plaintext and associated data.

Table 3.1: Security claims of WAGE- $\mathcal{A E}$-128 (in bits)

Confidentiality	Integrity	Authenticity	Data limit
128	128	128	2^{64}

Chapter 4

Design Rationale

$\mathrm{W} \mathcal{A G E}$ is a hardware-oriented $\mathcal{A E}$ scheme. Our design philosophy for the WAGE permutation is to reuse and adopt the initialization phase of the well-studied WG cipher. More specifically, we use the initialization phase of the WG cipher over $\mathbb{F}_{2^{7}}$. Feedback shift registers (FSR) are widely used as basic building blocks in many cryptographic designs, due to their simple architecture and efficient implementations. We choose a design for a lightweight permutation based on word-oriented shift registers and substitution boxes (sboxes).

Our parameter selection was aimed at reducing the hardware implementation cost. First, we exhaustively collected pre place-and-route (pre-PAR) synthesis results for the CMOS 65 nm area of the WGP for $\mathbb{F}_{2^{m}}, m \in\{5,7,8,10,11,13,14,16\}$, and all polynomial bases, to find the balance between security and hardware implementation area. Once the field was set, we searched for the sboxes based on their hardware cost, differential uniformity and nonlinearity, and exhaustively searched for symmetric feedback polynomials with a low number of nonzero terms, and with good security properties.

4.1 Mode of Operation

WAGE adopts the sLiSCP sponge mode [3] as its mode of operation. The adopted mode is a slight variation of well analyzed traditional sponge duplex mode [4] and offers the following features.

- Provable security bounds when instantiated with an ideal permutation [5, 15].
- No key scheduling is required.
- Inverse free as the permutation is always evaluated in the forward direction.
- Encryption and decryption functionalities are identical and can be implemented with the same hardware circuit (only r-bit MUXs are required to replace the rate part of state).
- The length of processed data is not required beforehand.
- Keyed initialization and finalization phases, where the key is absorbed in the state using the XORs of the rate part. This ensures that key recovery is hard, even if the internal state is recovered. Universal forgery with the knowledge of the internal state is not practical.
- Domain separators are used for each processed data block and they are changed with each new phase, rather than with last data block in the previous phase. This leads to a more efficient hardware implementation. This method was shown to be secure in [15].

4.2 WAGE State Size

Our main aim is to choose b (state size) that provides 128 -bit AE security. For a b-bit permutation with $b=r+c$ (r-bit rate and c-bit capacity), operating in sponge duplex mode, the best known bound is $\min \left\{2^{b / 2}, 2^{c}, 2^{k}\right\}$ [15]. This implies that, for $k=128$, the state size $b \geq 256$. In Section 4.4 .1 we choose the operating finite field as $\mathbb{F}_{2^{7}}$ and accordingly $b=259$. The values of $r=64$ and $c=195$ are chosen to have an efficient and low-cost hardware implementation. Our choice of (b, r, c) satisfies the NIST-LWC requirements [21] and 2^{64} bits of data can be processed per key.

4.3 Choice of Linear Layer

The linear layer of WAGE is composed of 1) \mathcal{L}_{1} : a feedback polynomial of degree 37, which is primitive over $\mathbb{F}_{2^{7}}$ and 2) \mathcal{L}_{2} : input and output tap positions of WGP and SB sboxes. There exist many choices for \mathcal{L}_{1} and \mathcal{L}_{2}, which results in a tradeoff between security and efficient implementations. Thus, we restrict our search to ones which are lightweight and offer good security bounds. Note that we can not have only \mathcal{L}_{1} or only \mathcal{L}_{2} as the linear layer, because that would result in slower diffusion. The required criteria for \mathcal{L}_{1} and \mathcal{L}_{2} are:

1. To have a lightweight \mathcal{L}_{1} we look for a feedback polynomial of the form

$$
\ell(y)=y^{37}+\sum_{j=1}^{36} c_{j} y^{j}+\omega, \quad c_{j} \in \mathbb{F}_{2},
$$

where ω is the root of the chosen field polynomial $f(x)$, which is also a primitive element of $\mathbb{F}_{2^{7}}$. Including ω, we chose feedback polynomials with 10 nonzero tap positions $\left(c_{j}=1\right)$ that are symmetric and need only 70 XOR gates to implement in hardware. In order to allow hardware optimizations in the future, e.g., parallelization, we prefer polynomials that minimize the position j of the biggest non-zero c_{j}. This pushes the taps as far to the right as possible, therefore we fixed the highest coefficients to zero.
2. A combination of \mathcal{L}_{1} and \mathcal{L}_{2} for which computing the minimum number of active sboxes is feasible and enable us to provide bounds for differential/linear distinguishers.

We found 23 symmetric polynomials with 10 non-zero taps (Table 5.1 in Section 5)[12]. The first column shows the candidate polynomials listed with their nonzero coefficients c_{j}. We chose the one that provides the maximum resistance against cryptanalytic attacks, such as differential and linear attacks. More precisely, we have:

$$
\begin{aligned}
& \mathcal{L}_{1}: y^{37}+y^{31}+y^{30}+y^{26}+y^{24}+y^{19}+y^{13}+y^{12}+y^{8}+y^{6}+\omega, \\
& \mathcal{L}_{2}:\{(36,36),(34,30),(27,24),(18,19),(15,11),(8,5)\}
\end{aligned}
$$

where $(a, b) \in \mathcal{L}_{2}$ denotes the (input, output) position of an Sbox (Figure 2.1).

4.4 Nonlinear Layer of WAGE

We now justify the choices for the components in the nonlinear layer of the WAGE permutation. The nonlinear layer consists of two WGPs and four sboxes SB, specified in Section 2.3.3. The number of WGPs and sboxes was chosen to achieve faster confusion and diffusion.

4.4.1 The Welch-Gong permutation (WGP)

The natural choice of the finite field for low-cost hardware, while maintaining ease of software implementations, is $\mathbb{F}_{2^{8}}$. However, the pre-PAR hardware area for the WGP defined over $\mathbb{F}_{2^{8}}$, averaged over all irreducible polynomials, is 546 GE , which is bigger than two $\mathbb{F}_{2^{7}}$ WGP hardware modules. Hence we choose the finite field $\mathbb{F}_{2^{7}}$ for WAGE.

The polynomial basis $\mathrm{PB}_{i}=\left\{1, \omega_{i}, \ldots, \omega_{i}^{6}\right\}$ was chosen for the representation of the field elements, where ω_{i} is a root of the defining polynomial $f_{i}(x)$, i.e., $f_{i}\left(\omega_{i}\right)=0$. The polynomial $f_{i}(x)$ was chosen to minimize the hardware implementation area of WGP with a decimation exponent 13 and of multiplication with the constant term of the LFSR feedback polynomial. As we use the polynomial basis, the smallest area constant term is ω_{i}. To estimate the area of the constant term multiplier, we used the Hamming weight of the matrix for multiplication by ω_{i} w.r.t. to the basis PB_{i}. The pre-PAR results for CMOS 65 nm implementations of the WGP modules and the constant terms are listed in Table 4.1: they show 18 primitive polynomials of degree 7, denoted $f_{i}(x)$. Each of the f_{i} has a different root ω_{i}, which in turn gives a different PB_{i}. Thus, the implementation results change with the field defining polynomial. The smallest area for WGP and constant term multiplier was found for the defining polynomial $x^{7}+x^{3}+x^{2}+x+1$.

4.4.2 The 7-bit sbox (SB)

The search for lightweight 7-bit sboxes varies with nonlinearity, differential uniformity and the number of rounds, balancing with small hardware cost; the sboxes explored were
in the range of $55-65 \mathrm{GE}$ for their pre-PAR implementation area. While constructing the 7-bit sboxes, we chose the nonlinear transformations Q that have efficient hardware implementation and varied all $5040(=7!)$ bit permutations (P). The chosen Sbox SB, described in Section 2.3.3, has differential uniformity 8 and nonlinearity 44, and can be implemented with just 58 GE .

Table 4.1: Area implementation results for the defining polynomials $f_{i}(x)$ for $\mathbb{F}_{2^{7}}$

Defining polynomial $f_{i}(x)$	constant term area [GE]	$\begin{gathered} \text { WGP } \\ \text { area }[\mathrm{GE}] \end{gathered}$	$\begin{aligned} & \text { sum } \dagger \\ & {[\mathrm{GE}]} \end{aligned}$
$x^{7}+x+1$	2	258	260
$x^{7}+x^{3}+1$	16	247	263
$x^{7}+x^{3}+x^{2}+x+1$	10	245	255
$x^{7}+x^{4}+1$	23	243	266
$x^{7}+x^{4}+x^{3}+x^{2}+1$	22	255	277
$x^{7}+x^{5}+x^{2}+x+1$	24	258	282
$x^{7}+x^{5}+x^{3}+x+1$	6	261	267
$x^{7}+x^{5}+x^{4}+x^{3}+1$	16	264	280
$x^{7}+x^{5}+x^{4}+x^{3}+x^{2}+x+1$	19	251	270
$x^{7}+x^{6}+1$	14	270	284
$x^{7}+x^{6}+x^{3}+x+1$	28	248	276
$x^{7}+x^{6}+x^{4}+x+1$	29	261	290
$x^{7}+x^{6}+x^{4}+x^{2}+1$	27	265	292
$x^{7}+x^{6}+x^{5}+x^{2}+1$	16	257	273
$x^{7}+x^{6}+x^{5}+x^{3}+x^{2}+x+1$	26	257	283
$x^{7}+x^{6}+x^{5}+x^{4}+1$	31	259	290
$x^{7}+x^{6}+x^{5}+x^{4}+x^{2}+x+1$	20	254	274
$x^{7}+x^{6}+x^{5}+x^{4}+x^{3}+x^{2}+1$	14	255	269

\dagger Combined area of constant term and WGP implementation.

4.5 Number of Rounds

Our rationale for selecting the number of rounds (say n_{r}) is to choose a value such that the WAGE permutation is indistinguishable from a random permutation. We now justify our choice of $n_{r}=111$ as follows.

1. WAGE adopts a shift register based structure with 377 -bit words, and hence $n_{r} \geq 37$, otherwise the words will not be mixed among themselves properly, which leads to meet/miss-in-the-middle attacks.
2. For $n_{r}=74$, the MEDCP of WAGE equals $2^{-4 \times 59}=2^{-236}>2^{-259}$. Thus, to push the MEDCP value below $2^{-259}, n_{r} \geq 74$. However, it is infeasible to compute the value of MEDCP for $n_{r} \geq 74$. Thus, we expect that for $n_{r}=111$, MEDCP $\ll 2^{-259}$ (see Section 5.1.1).

4.6 Round Constants

The round constants are added to mitigate the self-symmetry based distinguishers as mentioned in Section 2.3.5. We use a single 7-stage LFSR to generate a pair of constants at each round. Our choice of the utilized LFSR polynomial ensures that each pair of such constants does not repeat, due to the periodicity of the 8 -tuple sequence constructed from the decimated m-sequence of period 127 . Below we provide the details of how to generate the round constants.

4.6.1 Generation of round constants

We use an LFSR of length 7 with feedback polynomial $x^{7}+x+1$ to generate the round constants of WAGE. To construct these constants, the same LFSR is run in a 2 -way parallel configuration, as illustrated in Figure 4.1. Let \underline{a} denote the sequence generated by the initial state $\left(a_{0}, a_{1}, \ldots, a_{6}\right)$ of the LFSR without parallelization. The parallel version of this LFSR outputs two sequences, both of them using decimation exponent 2. More precisely,

- $r c_{0}^{i}$ corresponds to the sequence \underline{a} with decimation 2
- $r c_{1}^{i}$ corresponds to the sequence \underline{a} shifted by 1 , then decimated by 2

Figure 4.1: The LFSR for generating WAGE round constants.

The computation of round constants does not need any extra circuitry, but rather uses a feedback value a_{i+7} together with all 7 state bits, annotated in Figure 4.1. In

Figure 4.2 we show how the 8 consecutive sequence elements are used to generate round constants. The round constants are given by:

$$
\begin{aligned}
& r c_{0}^{i}=a_{i+6}\left\|a_{i+5}\right\| a_{i+4}\left\|a_{i+3}\right\| a_{i+2}\left\|a_{i+1}\right\| a_{i} \\
& r c_{1}^{i}=a_{i+7}\left\|a_{i+6}\right\| a_{i+5}\left\|a_{i+4}\right\| a_{i+3}\left\|a_{i+2}\right\| a_{i+1} \\
& \overbrace{a_{i+7},}^{\underbrace{a_{i+6}, a_{i+5}, a_{i+4}, a_{i+3}, a_{i+2}, a_{i+1}}_{r c_{0}^{i}}, a_{i}}
\end{aligned}
$$

Figure 4.2: Two 7-bit round constants, generated from 8 consecutive sequence elements
We provide an example of the hex conversion of constants from LFSR sequence in Appendix A.3. The first five round constant pairs are shown in Table A.1.

4.7 Loading and Tag Extraction

The 128-bit key K and 128-bit nonce N are divided into 7 -bit tuples. In software we work with bytes, and since WAGE is using 7-bit tuples, we have "left-over" bits k_{63} and n_{63}; instead of shifting all remaining key and nonce bits by 1 , the bits n_{63} and k_{63} are put into the last key block \widehat{K}_{18}^{*}, which makes the loading phase and key absorption efficient for the software implementation.
Loading regions. Recall the data inputs $D_{k}, k=0, \ldots 9$, in the shift register as shown in Figure 2.1. In order to minimize the hardware overhead, we reuse the data inputs D_{k} for loading. However, instead of XORing the D_{k} with previous stage content, the D_{k} data is fed directly into the corresponding stage. We have $10 D_{k}$ inputs, but must load the entire state, i.e., 37 stages. The stages without D_{k} inputs are loaded by shifting. We divide the stages without D_{k} inputs into loading regions, e.g., the loading region S_{8}, \ldots, S_{0} can be loaded through the data input D_{0} and has length 9 , hence will require 9 shifts for loading. The loading region S_{8}, \ldots, S_{0} is the last part of the register in Figure 2.3, and has a nonlinear input from the SB, which are disconnected during the loading. The remaining 3 SB are grounded. By inspecting the shift register, we find two other loading regions of length 9 , namely region S_{27}, \ldots, S_{19} (loaded through D_{5}) and region S_{36}, \ldots, S_{28} (loaded through D_{9}). We decided to split the remaining 10 consecutive stages into two regions, one of length 8 and another of length 2. The region of length 8 are the stages S_{16}, \ldots, S_{9}, loaded through D_{3}, while the region of length 2 consists of stages S_{18}, S_{17} and are loaded through D_{4}. Note that there is no need to disconnect the two WGPbecause they are automatically disabled by loading through D_{9} and D_{4}.
Loading sequence. The five loading regions, annotated with D_{k} used for loading, are listed below in a way that reflects their respective lengths. The \widehat{K}_{i} and \widehat{N}_{i} tuples
on the right show the contents of the stages S_{j} after the loading is complete. The notations on the top denote the 64 -bit loading blocks $K N_{t}$. They are the formed by lumping together tuples appearing in the same column. For example, during the first shift we load the 64 -bit block $K N_{0}=\widehat{N}_{0}\left\|\widehat{K}_{1}\right\| 0^{7}\left\|0^{7}\right\| \widehat{K}_{0}$ and during the last shift the block $K N_{8}=\widehat{N}_{16}\left\|\widehat{K}_{17}\right\| \widehat{K}_{18}^{*}\left\|\widehat{N}_{17}\right\| \widehat{K}_{16}$.

$$
\begin{aligned}
& K N_{8} K N_{7} K N_{6} K N_{5} K N_{4} K N_{3} K N_{2} K N_{1} K N_{0} \\
& S_{36}, S_{35}, S_{34}, S_{33}, S_{32}, S_{31}, S_{30}, S_{29}, S_{28} \quad \leftarrow^{D 9} \quad \widehat{N}_{16}, \widehat{N}_{14}, \widehat{N}_{12}, \widehat{N}_{10}, \widehat{N}_{8}, \quad \widehat{N}_{6}, \widehat{N}_{4}, \quad \widehat{N}_{2}, \quad \widehat{N}_{0} \\
& S_{27}, S_{26}, S_{25}, S_{24}, S_{23}, S_{22}, S_{21}, S_{20}, S_{19} \quad \leftarrow^{D_{5}} \quad \widehat{K}_{17}, \widehat{K}_{15}, \widehat{K}_{13}, \widehat{K}_{11}, \widehat{K}_{9}, \quad \widehat{K}_{7}, \quad \widehat{K}_{5}, \quad \widehat{K}_{3}, \quad \widehat{K}_{1} \\
& S_{18}, S_{17} \leftarrow^{D_{4}} \quad \widehat{K}_{18}^{*}, N_{15} \\
& S_{16}, S_{15}, S_{14}, S_{13}, S_{12}, S_{11}, S_{10}, S_{9} \quad \leftarrow^{D_{3}} \quad \widehat{N}_{17}, \widehat{N}_{13}, \widehat{N}_{11}, \widehat{N}_{9}, \quad \widehat{N}_{7}, \quad \widehat{N}_{5}, \quad \widehat{N}_{3}, \quad \widehat{N}_{1} \\
& S_{8}, S_{7}, S_{6}, S_{5}, S_{4}, S_{3}, S_{2}, S_{1}, S_{0} \quad \leftarrow^{D_{0}} \quad \widehat{K}_{16}, \widehat{K}_{14}, \widehat{K}_{12}, \widehat{K}_{10}, \widehat{K}_{8}, \widehat{K_{6}}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}
\end{aligned}
$$

The entire loading process for regions S_{18}, \ldots, S_{9} and S_{8}, \ldots, S_{0} is shown in Table 4.2. The table shows the shifting of data through the registers in 9 shifts. The first column shows which $K N_{t}$ is sent to the D_{k} inputs during the shift $t+1$. The stages are shown in the second row of Table 4.2, and the values "-" in the table denote the old, unknown values, which will be overwritten by the specified \widehat{K}_{i} and \widehat{N}_{i} blocks by the time the loading is finished. The state of stages S_{18}, \ldots, S_{0} after shifting 9 times, i.e., after the loading is finished, is visible from the last row.

Table 4.2: Loading into the shift register through data inputs D_{4}, D_{3} and D_{0}

$K N_{t}$ block	shift count	$\begin{aligned} & D_{4} \\ & S_{18}, S_{17} \end{aligned}$	$\begin{aligned} & D_{3} \\ & S_{16}, S_{15}, S_{14}, S_{13}, S_{12}, S_{11}, S_{10}, S_{9} \end{aligned}$	$\begin{aligned} & D_{0} \\ & S_{8}, S_{7}, S_{6}, S_{5}, S_{4}, S_{3}, S_{2}, S_{1}, S_{0} \end{aligned}$
$K N_{0}$	1	- -	- - - - - -	\widehat{K}_{0}
$K N_{1}$	2	- -	\widehat{N}_{1}	$\widehat{K}_{2}, \widehat{K}_{0}$
$K N_{2}$	3	- -	$\widehat{N}_{3}, \widehat{N}_{1}$ -	$\widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}-$
$K N_{3}$	4	- -	$\widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1}-$	$\widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}-\cdots-$
$K N_{4}$	5	- -	$\widehat{N}_{7}, \widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1}-{ }^{-}$	$\widehat{K}_{8}, \widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0} \cdots \cdots-$
$K N_{5}$	6	- -	$\widehat{N}_{9}, \widehat{N}_{7}, \widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1}-$	$\widehat{K}_{10}, \widehat{K}_{8}, \widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}-$
$K N_{6}$	7	- -	$\widehat{N}_{11}, \widehat{N}_{9}, \widehat{N}_{7}, \widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1}-$	$\widehat{K}_{12}, \widehat{K}_{10}, \widehat{K}_{8}, \widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}$
$K N_{7}$	8	\widehat{N}_{15} -	$\widehat{N}_{13}, \widehat{N}_{11}, \widehat{N}_{9}, \widehat{N}_{7}, \widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1}$	$\widehat{K}_{14}, \widehat{K}_{12}, \widehat{K}_{10}, \widehat{K}_{8}, \widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}$
$K N_{8}$	9	$\widehat{K}_{18} \widehat{N}_{15}$	$\widehat{N}_{17}, \widehat{N}_{13}, \widehat{N}_{11}, \widehat{N}_{9}, \widehat{N}_{7}, \widehat{N}_{5}, \widehat{N}_{3}, \widehat{N}_{1}$	$\widehat{K}_{16}, \widehat{K}_{14}, \widehat{K}_{12}, \widehat{K}_{10}, \widehat{K}_{8}, \widehat{K}_{6}, \widehat{K}_{4}, \widehat{K}_{2}, \widehat{K}_{0}$

Tag extraction regions. The tag is extracted in a similar fashion, from the positions that were loaded with nonce tuples. For example, the state region S_{16}, \ldots, S_{9}, which was loaded through D_{3}, is extracted through the output that belongs to the D_{1} input. Similarly, the state region S_{18}, S_{17} is extracted through the output belonging to the D_{3} input and the region S_{36}, \ldots, S_{28} through the output belonging to the D_{6} input. The
longest tag extraction region is also of length 9 . Similar to $K N_{t}$ for the loading, the 7 -bit tuples extracted during shift $t+1$ are lumped into a tag-extract block $T E_{t}$.

4.8 Choice of Rate Positions

The internal state constitutes of a rate part and a capacity part in which the adversary has freedom to inject messages into the state through the rate part. The rate positions in the state, as given in Section 2.4.1, are chosen by considering the security and efficient hardware implementation. From a security point of view, the chosen rate positions allow the input bits to be processed by the six sboxes and diffused by the feedback polynomial as soon as possible after absorbing the message into the state, thus faster confusion and diffusion is achieved. Moreover, our choice ensures that any injected differences will activate at least two sboxes in the first two rounds. This enhances resistance to differential and linear cryptanalysis.

Exploiting the shifting property, the length of the process of updating the rate positions is minimized. The current choice of rate positions also allows an efficient loading and tag extraction within 9 consecutive clock cycles.

4.9 Relationship to WG ciphers

The WG cipher is a family of word-oriented stream ciphers based on an LFSR, a WG transformation and a WG permutation module over an extension field. The first family member, WG-29 [22], proceeded to Phase 2 of the eSTREAM competition [8]. Later, the lightweight variants WG-5 [1], WG-7 [19] and WG-8 [10] were proposed for constrained environments, e.g., RFID, and WG-16 [26, 11, 9] was proposed for 4G LTE.

We adopt the initialization phase of the WG cipher where we chose a decimated WG permutation with good cryptographic properties and tweak it to construct the round function of WAGE. Our proposed tweak brings faster confusion and diffusion in the state update. We choose the decimated WG permutation with decimation $d=13$ for which its differential uniformity is 6 and nonlinearity 42 [20].

We make the tweak hardware efficient so that by disconnecting the second WGP module and all four SB modules, and keeping the domain separator 0 , the round function of WAGE becomes identical to the WG initialization phase. So, the original WG stream cipher can be enabled for certain applications which require guaranteed randomness properties.

4.10 Statement

The authors declare that there are no hidden weaknesses in WAGE- $\mathcal{A E}$-128.

Chapter 5

Security Analysis

5.1 Security of WAGE Permutation

In this section, we analyze the security of the WAGE permutation against generic distinguishers. Formally, we show that WAGE with 111 rounds is indistinguishable from a random permutation. In the following, we denote the nonzero coefficients $c_{i} \in\{0,1\}$ of a degree 37 primitive polynomial $l(y)=y^{37}+\sum_{i=1}^{36} c_{i} y^{i}+\omega \in \mathbb{F}_{2^{7}}$ by the vector \vec{c}.

5.1.1 Differential distinguishers

In WAGE, we use two distinct 7-bit sboxes namely, WGP and SB as the nonlinear components. The differential probabilities of the sboxes are $2^{-4.42}$ and 2^{-4}, respectively. To evaluate the maximum expected differential characteristic probability (MEDCP), we bound the minimum number of active sboxes using a Mixed Integer Linear Programming (MILP) model that takes as input \vec{c}, the position of sboxes and the number of rounds r. It then computes the minimum number of active sboxes denoted by $n_{r}(\vec{c})$. In Table 5.1, we list the values of $n_{r}(\vec{c})$ for varying \vec{c} and $r \in\{37,44,51,58,74\}$.

The MEDCP is then given by:

$$
\mathrm{MEDCP}=\max \left(2^{-4.42}, 2^{-4}\right)^{n_{r}(\vec{c})}=2^{-4 \times n_{r}(\vec{c})} .
$$

Note that for $r=74$ and $\vec{c}=(31,30,26,24,19,13,12,8,6)$, we have MEDCP $=$ $2^{-4 \times 59}=2^{-236}>2^{-259}$. Since, the MILP solver [14] is unable to finish for $r>74$, we expect that for our choice of $\vec{c}, n_{111}(\vec{c}) \geq 65$. This is because for each additional 7 rounds, the number of active sboxes increases by at least 6 (see row 10 in Table 5.1) which implies MEDCP $\leq 2^{-260}<2^{-259}$.

5.1.2 Diffusion behavior

To achieve full bit diffusion, i.e., each output bit of the permutation depends on all the input bits, we need at least 21 rounds. This is because the 7 bits of S_{36} is shifted to S_{0} in 21 clock cycles. However, as the feedback function consists of 10 taps and all six sboxes

Table 5.1: Minimum number of active sboxes $n_{r}(\vec{c})$ for different primitive polynomials. Here - denotes that MILP optimization was too long and can not finish.

Primitive poly. coefficients	Rounds r				
	37	44	51	58	74
$24,23,22,21,19,6,5,4,3$	18	26	30	35	51
$29,27,24,23,19,11,9,6,5$	23	31	36	41	54
$29,28,23,22,19,11,10,5,4$	21	28	34	40	54
$29,28,24,20,19,11,10,6,2$	21	27	34	40	54
$30,28,27,21,19,12,10,9,3$	22	30	34	39	54
$30,29,28,26,19,12,11,10,8$	20	30	37	44	57
$31,25,23,21,19,13,7,5,3$	20	29	33	38	54
$31,26,23,20,19,13,8,5,2$	20	26	34	39	54
$31,28,23,21,19,13,10,5,3$	19	27	33	39	53
$31,30, \mathbf{2 6}, \mathbf{2 4}, 19,13,12, \mathbf{8}, \mathbf{6}$	24	30	38	44	59
$32,25,24,21,19,14,7,6,3$	19	28	34	39	54
$32,29,25,22,19,14,11,7,4$	19	28	36	41	57
$32,29,27,22,19,14,11,9,4$	23	31	37	41	57
$32,29,27,24,19,14,11,9,6$	23	31	37	39	55
$32,30,28,24,19,14,12,10,6$	23	29	38	44	58
$32,31,21,20,19,14,13,3,2$	21	26	30	36	47
$33,27,26,20,19,15,9,8,2$	21	30	35	39	55
$33,29,28,21,19,15,11,10,3$	22	27	35	39	53
$33,30,29,26,19,15,12,11,8$	21	31	38	44	57
$33,31,23,22,19,15,13,5,4$	23	31	36	41	55
$33,31,28,23,19,15,13,10,5$	23	30	36	41	-
$33,31,29,22,19,15,13,11,4$	22	32	37	44	-
$33,31,30,25,19,15,13,12,7$	23	34	39	44	-

(2 WGP and 4 SB) individually have the full bit diffusion property, WAGE achieves the full bit diffusion in at most 37 rounds. Accordingly, we claim that meet/miss-in-the middle distinguishers may not cover more than 74 rounds as 74 rounds guarantee full bit diffusion in both the forward and backward directions.

5.1.3 Algebraic degree

The WGP and SB sboxes have an algebraic degree of 6 . Note that if we only have WGP sbox at position S_{36} along with the feedback polynomial and exclude all other sboxes and intermediate XORs, then we get the original WG stream cipher [22]. Such a stream cipher is resistant to attacks exploiting the algebraic degree if non-linear feedback used in the initialization phase is also used in the key generation phase [25, 24].

Given that WAGE has 6 sboxes and we use nonlinear feedback for all of them, we expect that 111-round WAGE is secure against integral attacks.

5.1.4 Self-symmetry based distinguishers

WAGE employs two 7 -bit round constants, $r c_{0}$ and $r c_{1}$, which are XORed to S_{36} and S_{18}, respectively. The round constant tuple is distinct for each round, i.e., $\left(r c_{0}^{i}, r c_{1}^{i}\right) \neq$ $\left(r c_{0}^{j}, r c_{1}^{j}\right)$ for $0 \leq i, j \leq 110$ and $i \neq j$. This property ensures that all the rounds of WAGE are distinct and thwart attacks which exploit the symmetric properties of the round function [7, 18].

5.2 Security of WAGE- $\mathcal{A E}$-128

The security proofs of modes based on the sponge construction rely on the indistinguishability of the underlying permutation from a random one [4, 6, 5, 15]. In previous sections, we have shown that for 111 rounds the WAGE permutation is indistinguishable from a random permutation. Thus, the security bounds of the sponge duplex mode are applicable to WAGE- $\mathcal{A E}-128$. Moreover, we assume a nonce-respecting adversary, i.e, for a fixed K, nonce N is never repeated during encryption queries. Then, considering a data limit of 2^{d}, the k-bit security is achieved if $c \geq k+d+1$ and $d \ll c / 2$ [5]. The parameter set of WAGE (see Table 2.1) with actual effective capacity 193 (2 bits are lost for domain separation) satisfies this condition, and hence WAGE- $\mathcal{A E}$-128 provides 128-bit security for confidentiality, integrity and authenticity.

Chapter 6

Hardware Design And Analysis

In this chapter, we describe the hardware implementation of WAGE_module, which is a single module that supports both functionalities: authenticated encryption and verified decryption using the same hardware circuit. Section 6.1 outlines some of the principles underlying our hardware design. Section 6.2 describes the interface and toplevel WAGE_module module. Section 6.3 goes into the details of the state machine and datapath implementation. And, finally, Section 6.4 presents the implementation results for four ASIC libraries and two FPGAs.

6.1 Hardware Design Principles

In this section, we describe the design principles and assumptions that we follow while implementing WAGE and WAGE_module.

1. Multi-functionality module. The system should support all operations, namely authenticated encryption and verified decryption for WAGE, in a single module (Figure 6.1), because lightweight applications generally cannot afford the extra area for separate modules.
2. Single input/output ports. In small devices, ports can be expensive, and optimizing the number of ports may require additional multiplexers and control circuitry. To ensure that we are not biasing our design in favour of the system and at the expense of the environment, the key, nonce, associated data, and message all use a single data-input port (Table 6.1). Similarly, the output ciphertext, tag, and hash all use a single output port (Table 6.1). This is agreed with the proposed lightweight cryptography hardware API's [16] use of separate public and private data ports and will update implementations accordingly.
3. Valid-bit protocol and stalling capability. The environment may take an arbitrarily long time to produce any piece of data. For example, a small microprocessor could require multiple clock cycles to read data from memory and write
it to the system's input port. We use a single-phase valid-bit protocol, where each input or output data signal is paired with a valid bit to denote when the data is valid. The receiving entity must capture the data in a single clock cycle (Figure 6.4), which is a simple and widely applicable protocol. The system shall wait in an idle state, while signalling the environment that it is ready to receive. In reality, the environment can stall as well. In the future, WAGE hardware implementations will be updated to match the proposed lighweight crypto hardware API's use of a valid/ready protocol for both input and output ports.
4. Use a "pure register-transfer-level" implementation style. In particular, use only registers, not latches; multiplexers, not tri-state buffers; synchronous, not asynchronous reset; no scan-cell flip-flops; clock-gating is used for power and area optimization. It is tempting to use scan-cell flip-flops to reduce area, because these cells include a 2:1 multiplexer in the flip-flop which incurs less area than using a separate multiplexer. However, using scan cells as part of the design would prevent their insertion for fault-detection and hence, prevent the circuit from being tested for manufacturing faults. Clock gating can save area by replacing a flip-flop that has a chip-enable with a regular flip-flop and using a gated clock. Clock gating was done with ASICs through the synthesis script, no change was made to the hardware design.

6.2 Interface and Top-level Module

In Figure 6.1, we depict the block diagram of the top-level WAGE_module. The description of each interface signal is given in Table 6.1.

Table 6.1: Interface signals

Input signal	Meaning
reset	resets the state machine
i_mode	mode of operation
i_dom_sep	domain separator
i_padding	the last block is padded
i_data	input data
i_valid	valid data on i_data
Output signal	Meaning
O_ready	hardware is ready
o_data	output data
o_valid	valid data on o_data

Table 6.2: Modes of operation

i_mode	Mode	Datapath operation
0	WAGE-E	Encryption
1	WAGE-D	Decryption

WAGE- $\mathcal{A E}$-128 performs two operations, namely authenticated encryption (WAGE$\mathcal{E})$ and verified decryption (WAGE- \mathcal{D}). We use the i_mode input signal to distinguish between the two operations.

The environment separates the associated data and the message/ciphertext, and performs their padding if necessary, as specified in Section 2.4. The control input

Figure 6.1: Top-level WAGE_module and the interface with the environment
i_padding is used to indicate that the last i_data block is padded. The hardware is unaware of the lengths of individual phases, hence no internal counters for the number of processed blocks are needed. The domain separators are provided by the environment and serve as an indication of the phase change, i.e., whether the input data for WAGE$\mathcal{A E}-128$ is the key, associated data or plaintext/ciphertext.

WAGE is specified to operate on 64-bit blocks, hence 64-bit i_data and o_data interface signals. However, since WAGE is operating over $\mathbb{F}_{2^{7}}$, i_data is internally fragmented into 7 -bit tuples, with the last one 0 -padded to form 70 -bits, for the $D_{k}, k=0, \ldots, 9$, signals that carry the data into the S_{r} stages of the internal state, as specified in Section 4.7.

6.2.1 Interface protocol

The top-level WAGE_module is in constant interaction with the environment. We show this interaction in a form of protocol in Figures 6.2a-6.2d for the WAGE-E example, using the signal names from Figure 6.1. The environment is only allowed to send data to the hardware when it is in the idle mode, which is indicated by the hardware using the o_ready signal. The only exception from this behaviour is the reset signal, which will force the hardware module to reset its state machine and return to the idle state and set the o_ready signal. Figure 6.2a shows the environment (on the left) resetting the WAGE_module (on the right), waiting for the o_ready to be asserted, then sending, as specified in load- $\mathcal{A E}(N, K)$ in Sections 2.4 and 4.7. The loading messages are annotated with $K N_{t}, t=0, \ldots, 8$, values, the correctly fragmented and ordered key and the nonce tuples \widehat{K}_{i} and \widehat{N}_{i}, specified in Section 4.7. Then WAGE_module starts with the initial WAGE permutation, as indicated on the right. After completing the permutation, the hardware enters idle state and asserts o_ready to signal to the environment that it can accept new data. The environment proceeds with key block K_{0}, accompanied by the proper values for i_mode and i_dom_sep. Loading and initialization is the same for both WAGE-E and WAGE-D, which is why the interface signal i mode is omitted from Figure 6.2a (see Table 6.2). The WAGE_module performs the WAGE permutation and asserts o_ready, and the environment responds with the second key block K_{1}.

Figure 6.2 b shows the communication between the environment and the hardware for

Figure 6.2: Interface protocol
the first two blocks of associated data $A D_{0}$ and $A D_{1}$. The environment sets i_dom_sep to 1 and signals the arrival of a new $A D$ block with i_valid. After completing the WAGE permutation, WAGE_module asserts o_ready. Figure 6.2c shows the handshake signals for encryption of message blocks M_{5} and M_{6}. The environment sends the plaintexts along with i_dom_sep $=2$ and i_mode $=0$. The WAGE_module receives M_{5}, encrypts it and immediately returns C_{5} together with asserted o_valid, then starts the WAGE permutation and asserts o_ready upon its completion. With the exception of the tag generation, encryption (decryption) is the only phase in which WAGE_module sends data to the environment.

Each time a data block is transmitted between the environment and WAGE_module, the valid-bit protocol is used: the environment asserts i_valid, and WAGE_module asserts o_valid. This naming convention is centred around the hardware module. Another important part of the handshake between the environment and WAGE_module is the o_ready signal: WAGE_module sets this signal to 1 when it is ready to receive new data from the environment, and to 0 when it is busy and wants the environment to wait.

When all message blocks have been encrypted, finalization and tag generation begins (Figure 6.2d). The environment changes i_dom_sep to 0 and starts sending the key blocks. After receiving K_{0}, WAGE_module performs a WAGE permutation and asserts o_ready. After receiving K_{1}, WAGE_module again performs a WAGE permutation, but this time replies to the environment with 9 messages containing the tag extract blocks $T E_{t}, t=0, \ldots, 8$, as specified in tagextract (S) in Sections 2.4 and 4.7. Each of the messages is accompanied by o_valid. Afterwards, the WAGE_module returns to idle and asserts o_ready.

As was mentioned before, the WAGE_module is unaware of the number of $A D$ and M blocks, and relies on the environment to set proper values for i_dom_sep. However, the WAGE state machine is not completely free of counters: a small internal counter is needed to keep track of the number of blocks received and transmitted during the loading, initialization and finalization phase and the tag extraction. Another counter is needed to keep track of the WAGE permutation, which requires 111 clock cycles to complete. More details follow in Section 6.2.3.

In streaming applications, the total length of the data might not be known at the time that the message begins streaming. Hence, each time data is sent to the cipher, the environment informs the cipher what type of data is being sent. This information is easily encoded using a mode signal to denote which operation is to be performed (Encryption, Decryption) and the two-bit domain separator to denote the type of data being processed (associated data, message, ciphertext). The hardware uses o_ready to signal that it is ready to receive new data, and the environment uses i_valid to signal that it is sending data to the hardware.

6.2.2 Protocol timing

A more detailed representation of the events between the environment and WAGE_module is possible with the use of timing diagrams in Figures 6.3-6.5. In each diagram, the top few lines show the interface signals (Table 6.1), which were already discussed as a part of the communication protocol between the environment and the hardware module. Signals i_mode and i_dom_sep are omitted from the timing diagrams: their current value is the same as shown in the corresponding protocol figure. The vertical ticks on the horizontal lines represent the time: a single column shows the signal values within the same clock period.
Loading and initialization during WAGE- $\mathcal{A E}$-128. Figure 6.3 shows the loading and the initialization up to the beginning of the second WAGE permutation; it corresponds to the upper half of the protocol in Figure 6.2a. At the top, we can see the interface signals reset, o_ready, i_valid and i_data, followed by the internal signals count, pcount and phase, which are a part of the WAGE state machine. The counter count is needed to keep track of the number of key/nonce blocks $K N_{t}$. It is then reused to count the number of key blocks processed during the rest of initialization and during finalization, and for counting the number of messages containing the tagextract blocks $T E_{t}$. The counter pcount keeps track of the 111 clock cycles needed for one WAGE permutation. After the environment deasserts reset, WAGE_module enters the Load phase and asserts o_ready. The environment responds with the first message $K N_{0}$, which contains the first key and nonce tuple, accompanied with asserted i_valid. The WAGE_module stores the new data into its internal state and increments count. While count is running, the WAGE LFSR is shifting. Figure 6.3 shows an example when the response of the environment varies, e.g., the delay between $K N_{0}$ and $K N_{1}$ is bigger than delay between $K N_{1}$ and $K N_{2}$. After receiving $K N_{8}$, WAGE_module performs the first WAGE permutation, denoted LoadPerm: o_ready is deasserted and pcount increments every clock cycle. After LoadPerm is finished, the state machine enters the Init phase and o_ready is asserted while waiting for the first key block. The arrival of the next i_valid and K_{0} triggers the second WAGE permutation.

Figure 6.3: Timing diagram: loading and initialization during WAGE- $\mathcal{A E}$-128

Encryption during WAGE- $\mathcal{A E}$-128. Figure 6.4 shows the timing diagram during
the encryption of message blocks M_{5} and M_{6}, corresponding to the protocol in Figure 6.2c. It clearly shows both sides of the valid-bit protocol. The first five lines show the top-level interface signals and line six shows the value of the permutation counter pcount. After completing the previous permutation, WAGE_module asserts o_ready. The environment replies with a new message block M_{5} accompanied by i_valid. The hardware immediately encrypts, returns C_{5} and asserts o_valid. In this clock cycle the value M_{5} is stored into the S_{r} stages of the WAGE LFSR but the LFSR is not shifted. The next clock cycle is the first round of a new WAGE permutation and o_ready is deasserted, indicating that the hardware is busy. When pcount is running, the WAGE LFSR is shifting with every clock cycle. Figure 6.4 shows WAGE_module remaining busy (o_ready $=0$) for the duration of one WAGE permutation, then becoming idle and ready to receive new input, in this case M_{6}. The counter count is not being used. Since processing of associated data is very similar to encryption, with exception of $A D$ blocks instead of M blocks and no output for o_data and o_valid, we do not show a separate timing diagram.

Figure 6.4: Timing diagram: encryption during WAGE- $\mathcal{A E}$-128

Figure 6.5: Timing of tag phase during WAGE- $\mathcal{A E}$-128

Tag phase during WAGE- $\mathcal{A E}$-128. Figure 6.5 shows a part of finalization, tag extraction, and the return of the state machine into the loading phase, which corresponds to the lower part of the protocol in Figure 6.2d. The timing diagram starts with the completion of the WAGE permutation after block K_{0} was received, followed by K_{1} immediately, which triggers the second WAGE permutation during finalization. This is also the last WAGE permutation of WAGE- $\mathcal{A E}-128$. After that, WAGE_module sends 9 messages with tag extract blocks $T E_{t}$ to the environment. The counter count is used
to return WAGE_module to the Load phase, where it asserts o_ready and awaits the new key/nonce blocks $K N_{t}$.

6.2.3 Control phases

In the previous subsection, we touched on the different phases of the control circuitry. The phases are categorizations of the active connections between the WAGE LFSR and the interface signals. For simplicity we show only stages S_{4}, \ldots, S_{9} of the LFSR. These stages are enough to capture all possible interactions between the environment and datapath operations. A very important notion is the shifting nature of the WAGE LFSR. The six categories, of datapath operations are shown in Figure 6.6 and described below. The roman numerals used to identify the different operations also appear in the state machine (Figure 6.9) to denote the datapath operation that is done in each transition between states.

- The first row shows Load (I). The domain separator is not used.
- Load phase: the WAGE LFSR is set to shifting and the non-linear inputs, e.g., the SB , are disconnected. The i_data is fragmented into 7-bit tuples and loaded through the data ports $D_{0}, D_{3}, D_{4}, D_{5}, D_{9}$ as specified in Section 4.7. The data i_dat $a_{0 \ldots 6}$ is loaded into stage S_{8}, and shifting is enabled for stages $S_{8} \rightarrow S_{4}$. Stage S_{9} is disconnected from S_{8}, because S_{9} belongs to a different loading region - Activating the data ports $D_{0}, D_{3}, D_{4}, D_{5}, D_{9}$ has the effect of cutting the LFSR into loading regions. The data port D_{9} disconnects the LFSR feedback in addition to the non-linear WGP. The values on the i_data port during Load are the key/nonce blocks $K N_{t}, t=0, \ldots, 8$.
- The second row shows Permutation (II) and Init/ProcAD/Final (III). During permutation, the domain separator is not used, and otherwise its value is set to 1 for ProcAD and to 0 for Init and Final.
- Permutation phase: the WAGE LFSR is set to shifting, but the non-linear inputs are active, e.g., the SBinput is XORed to the content of S_{5} and the sum stored into S_{4}, as shown in II. All data ports $D_{k}, k=0, \ldots, 9$ are disconnected from the LFSR while all the non-linear inputs, as well as the LFSR feedback, are active. Functinally, the Permutation phase corresponds to one round of the WAGE permutation.
- Init/ProcAD/Final phase: the i_data is absorbed (XORed) to the S_{r} portion of the internal state S before entering the WAGE permutation, i.e., between two consecutive WAGE permutations. In III, we show the 7-bit tuple i_data $a_{0 . . .6}$ being absorbed into stage S_{8}. The permutation phase is treated as a single category of datapath operation from a hardware perspective, because the state machine drives the control signals with the same value, but from an algorithmic perspective this operation captures the behaviour during the initialization, processing associated data and finalization phases.

Figure 6.6: Phases and datapath operations

Only the S_{r} stages of the LFSR are updated during this phase, all other stages hold their previous value, as indicated by the lack of (shifting) arrows between stages.

- The third row shows Encrypt (IV) and Decrypt (V). For both phases, the domain separator is set to 2 .
- textttEncrypt phase: received i_data (plaintext) is XORed to the S_{r} stages of the internal state S and the result of this operation (ciphertext) is passed to the o_data output. The i_data (plaintext) is also absorbed (XORed) into the S_{r} stages, i.e., the resulting ciphertext is stored, and becomes a part of the internal state S when the next WAGE permutation begins. Only the S_{r} stages of the LFSR are updated during this phase, all other stages hold their previous value, as indicated by the lack of (shifting) arrows.
- Decrypt phase: received i_data (ciphertext) is XORed with the S_{r} portion of the internal state S and the result of this operation (plaintext) is passed to the o_data output. The resulting plaintext does not enter the next WAGE permutation. Instead, the ciphertext from i_data is used to replace the S_{r} portion of the internal state before the next WAGE permutation begins. Again, only the S_{r} stages of the LFSR are updated during this phase, all other stages hold their previous value, as indicated by the lack of (shifting) arrows.
- The last row shows the Tag phase (VI). The domain separator is not used.
- Tag phase: during tag extract, the o_data is extracted through outputs O_{1}, O_{3}, O_{6} that belong to inputs D_{1}, D_{3}, D_{6}, see Section 4.7 for details. The values passed on to the o_data port during Tag are the tag-extract blocks $T E_{t}, t=0, \ldots, 8$. The WAGE LFSR is shifting and the non-linear inputs, e.g., SB , are disconnected.

Note that in the datapath operations of III, IV and V, the LFSR in not shifting, and only the S_{r} stages are updated (clocked). These datpath operations require interaction with the environment. For example, in the timing diagram for encryption (Figure 6.4), the clock cycle with blocks M_{5} and C_{5} corresponds to the Encrypt phase (III). During the phases Load (I) and Tag (VI), WAGE LFSR is behaving as a simple shift register, with all non-linear inputs and the LFSR feedback disconnected. Only during the Permutation phase (II), is WAGE LFSR shifting and using all the non-linear and linear elements that compose the WAGE permutation. In the timing diagram for encryption (Figure 6.4), the permutation phase begins one clock cycle after the M_{5} and C_{5} exchange, and repeats a total of 111 times.

Table 6.3 summarizes the datapath operations (Dp op) shown in Figure 6.6, and specifies the exact input to the S_{r} stages of the WAGE LFSR and the output of WAGE_module for the environment, i.e., the o_data value.

Table 6.3: Control table for datapath based on phases from Figure 6.6

Function	i_mode	i_dom_sep	Phase	Dp op	Input to S_{r} stages	Output to environment
-	-	--	Load	I	\times	\times
-	-	--	Permutation	II	S_{r}	\times
En/De-crypt	-	00	Init	III	$S_{r} \oplus$ i_data	\times
En/De-crypt	-	01	ProcAD			
En/De-crypt	-	00	Final			
Encrypt	0	10	Encrypt	IV	$S_{r} \oplus$ i_data	$S_{r} \oplus$ i_data
Decrypt	1	10	Decrypt	V	i_data	$S_{r} \oplus$ i_data
En/De-crypt	-	--	Tag	VI	\times	S_{28}, S_{17}, S_{9} of S
stands for "don't care"						

6.3 Hardware Implementation Details

In this section, we describe the implementation details of WAGE_module. Section 6.3.1 describes how the state machine is derived from the interface protocols (Figures 6.2a6.2d) and datapath phases (Figure 6.6). Section 6.3.2 describes the datapath.

6.3.1 State machine

Control flow between phases. Figure 6.7 shows all possible transitions between the phases from Figure 6.6. After reset is asserted, we first enter Load, followed by a single WAGE permutation in LoadPerm and initialization in Init. The choice of the phase after Init depends on the value of i_dom_sep. When i_dom_sep=1, we begin processing associated data (ProcAD), and there as long as i_dom_sep=1. Regardless of whether the current state is Init or ProcAD, i_dom_sep=2 will trigger a transition to either Encrypt or Decrypt, depending on the value of i_mode. The FSM will begin finalization (Final) when the domain separator changes to 0 . The phase Final is followed by tag extraction (Tag) and then an unconditional return to the reset state. Optimized control flow between phases. Figure 6.8 shows the optimized control flow from Figure 6.7. The optimization reduces the number of transitions in the system, which is reflected the structure of the actual state machine that is implemented (Figure 6.9). The optimized figure is annotated with transient states (small solid circles) in which the paths split or join. Transient states are syntactic sugar to reduce the number of transitions in the system. Transient states do not indicate a clock cycle boundary, while all other states do.
Summary of control flow. The high-level algorithm for WAGE (Figure 2.2) was designed to simplify the state machine. Functionally, it is equivalent for the boundary between phases to occur either before or after the permutation. The boundary was placed after the permutation updates the state register. As will be demonstrated in Section 6.3.2, with this structure the two-bit domain separator is sufficient to determine the value of many of the multiplexer select lines and other control signals. All phases

Figure 6.7: Control flow between phases

Figure 6.8: Optimized control flow between phases
that have a domain separator of "00" have the same multiplexer select values. The same also holds true for "01". Unfortunately, this cannot be achieved for "10", because encryption and decryption require different control signal values, but the same domain separator. Using the domain separator to signal the transition between phases for encryption and decryption also simplified the control circuit.

A final note about the control flow diagrams in this section: only when the number of iterations in a certain phase depends on the length of the data, i.e., $\ell_{X}, X \in$ $\{A D, M, C\}$, which is indicated by the value change of interface signal i_mode or i_dom_sep, we show the transition to itself. While the phases Load, Init, Final and Tag also take more than one iteration, the number of iterations is fixed by the WAGE- $\mathcal{A E}$-128 algorithm specified in Chapter 2 and hence not shown in the control flow diagrams in Figures 6.7 and 6.8. However, this level of detail is included in the state machine Figure 6.9.

Derivation of state machine from control flow. The implementation details for the control flow from Figure 6.8 are shown as a state machine in Figure 6.9. Each phase from the control flow is split into three states: iStateName, aStateName or rStateName, and pStateName, where the prefix "i" stands for "idle", "a" stands for "absorb", "r" stands for "replace" and "p" for "permutation", and the state name corresponds to the phase name. In the "idle" states, WAGE_module is waiting for new input from the environment, i.e., for i_valid=1. The "absorb" and "replace" refer to different interaction with the environment, e.g., the state a Init corresponds directly to datapath operation III for the initialization phase in Figure 6.6. Similarly, rDecrypt corresponds to Decryption (VI). In the "permutation" states, the WAGE permutation is running and WAGE_module is busy, i.e., o_ready $=0$. The "permutation" states directly correspond to the Permutation phase (II). The normal structure can be seen in the iInit, aInit and pInit states in Figure 6.9. There are a few exceptions to the normal structure:

- The Load phase receives multiple key/nonce blocks consecutively without running a permutation. Hence, in addition to iLoad and pLoad states, there is a plain Load state .
- The phase Tag can transmit multiple blocks consecutively without running a permutation. Hence, there is no need for a p-state.
- The states iProcAD, iEncrypt and iDecrypt have the same behaviour for idling, and so their idle states are merged into iAED.
- The states pProcAD, pEncrypt and pDecrypt have the same behaviour for idling, and so their idle states are merged into pAED.

Each state is annotated with three circles to denote the three bits encoding the current values on the interface signals i_mode and i_dom_sep. An empty circle denotes 0 , a filled circle denotes 1 , and a circle with a dash is a "don't care" value, meaning the behaviour is independent of this bit. Each transition between a pair of states is

Figure 6.9: State machine
annotated with a roman numeral from Figure 6.6 denoting the datapath operation to be performed.
State machine: Loading. The loading part of the state machine is shown on the top of Figure 6.9. Asserting reset places the state machine into the iLoad idle state, where it awaits the first key/nonce block $K N_{0}$. The environment sends 9 key/nonce blocks, and the state machine uses an internal counter count to keep track of the loading, i.e., to keep track of iterations back to state Load. This behaviour was explained in the timing diagram for loading (Figure 6.3). After the key/nonce blocks are received, the state machine enters the permutations state pLoad, which is controlled by the counter pcount. After 111 rounds of pLoad, we first enter the iInit state, where we observe the normal structure: at the arrival of the next i_valid, we transition to aInit. This transition is annotated with III, meaning that new data was absorbed into S_{r} (see the datapath operations in Figure 6.6). Then we enter pInit 111 times (counter pcount). The counter count is used to keep track of the number of received key blocks, K_{0} and K_{1}.
State machine: processing associated data, encryption and decryption. After the second WAGE permutation in the Init phase is completed, we proceed to iAED, a merged idle state for iProcAD, iEncrypt and iDecrypt. The next i_valid triggers the transition to aProcAD if i_dom_sep=01 or to the transient state on the right if i_dom_sep=10, for either aEncrypt or rDecrypt, depending on i_mode. The transitions to the two "absorbing" states aProcAD and aEncrypt correspond to the datapath operations (III) and (IV) in Figure 6.6 respectively. The transition to the "replacing" state rDecrypt corresponds to (V). After any of these three states, the WAGE permutation runs for 111 rounds, which is shown as a merged state pAED. After completing a WAGE permutation, the state machine returns to the idle state iAED.

As an example of the correspondence between the timing diagrams and state machine behaviour, the encryption behaviour explained in Figure 6.4 corresponds to the following state transitions:

$$
\text { iAED } \rightarrow \text { aEncrypt } \rightarrow \text { pAED } \rightarrow \ldots \rightarrow \text { pAED } \rightarrow \text { iAED }
$$

The first iAED state in the sequence above corresponds to the clock cycles to the left of M_{5} and C_{5} where o_ready $=1$. When i_valid=1, we move to the aEncrypt state: this transition is annotated with the roman numeral IV, which tells us what the datapath does just before absorbing M_{5} into S_{r}. Once in aEncrypt, we can go only to PAED. This transition is annotated with II, indicating round 0 (pcount=0) of the permutation, i.e., the clock cycle immediately after M_{5} and C_{5} column in the timing diagram (Figure 6.4). When pcount reaches 110, we return to iAED, this corresponds to the clock cycle in which o_ready is set anew.
State machine: finalization. When we observe i_dom_sep $=00$, the state machine will transition into aFinal and pFinal state and run the first WAGE permutation in Final phase. Again, counter count is used to keep track of the two iterations. The idle state iFinal is entered only once. Finally, the state machine enters the Tag state, and WAGE_module transmits 9 tag-extract blocks $T E_{t}$ to the environment. Again,
counter count is used, but this time, no WAGE permutation is required. This was also explained in the protocol (Figure 6.2d) and timing diagram (Figure 6.5) for finalization. Summary of state machine. The state machine is responsible for the o_valid and o_ready interface signals. It is also tasked with control signals for the multiplexers in the WAGE datapath, which accommodate different interactions between WAGE_module and the environment, i.e., different phases from Figure 6.6. This will be discussed in more detail in Section 6.3.2.

The state machine and encodings for control signals were designed to take advantage of similarities in structure to enable optimizations in the control circuitry. The only control-flow decision made within an idle state is to exit when i_valid='1'. This reduces the number of idle states and facilitates combinational logic optimizations due to the uniform structure of the control flow. Loading, initialization, finalization and tag extraction all use the same one-hot counter to count their iterations. Also, all states that perform the permutation have the same control structure, which provides opportunities for logic synthesis optimizations, such as common subexpression elimination.

6.3.2 The WAGE datapath

In this Section we descrbe the implementation details of the WAGE datapath.

Figure 6.10: WAGE datapath
Components of WAGE datapath. Because of the shifting nature of the LFSR, which in turn affects loading, absorbing, replacing and tag-extraction, the WAGE datapath is explained in two levels:

1. The wage_lfsr treated as a black box in Figure 6.10.

- wage_Ifsr: The LFSR has 37 stages with 7 bits per stage, a feedback with 10 taps and a module for multiplication with ω. The internal state of wage_Ifsr is also the internal state S of WAGE.
- WGP module implementing WGP7 (Section 2.3.3): For small fields like $\mathbb{F}_{2^{7}}$, the WGP area, when implemented as a constant array in VHDL/Verilog, i.e., as a look-up table, is smaller than when implemented using components
such as multiplication and exponentiation to powers of two [1]. However, the WGP is not stored in hardware as a memory array, but rather as a net of AND, OR and NOT gates, derived and optimized by the synthesis tools.
- SB module (Section 2.3.3): The SB is implemented in an unrolled fashion, i.e., as purely combinational logic, composed of 5 copies of R, followed by a Q and the final two NOT gates.
- Ifsr_c(Section 2.3.5): The Ifsr_c for generating the round constants was implemented in a 2 -way parallel fashion. It has only 7 1-bit stages and two XOR gates for the two feedback computations.

2. The extra hardware for wage_lfsr in sponge mode, i.e., the hardware allowing us to switch between different phases in Figure 6.6. Figure 6.11 shows details for stages S_{0}, \ldots, S_{10}. A smaller and less detailed portion of Figure 6.11 was shown in Figure 6.6. The grey line represents the path for normal operations during the WAGE permutation, i.e., the Permutation phase II in Figure 6.6. The additional hardware for the entire wage_lfsr is listed below, with examples referring to Figures 6.11 and datapath operations from Figure 6.6.

- The 64-bit signal i_data is padded with zeros to 70 bits, then fragmented into 7 -bit wage_lfsr inputs $D_{k}, k=0, \ldots, 9$, corresponding to the rate stages S_{r}. For each data input D_{k} there is a corresponding 7 -bit data output O_{k}. In Figure 6.11 we show D_{1}, O_{1} and D_{0}, O_{0}. The input tuple i_data $a_{0 \ldots 6}$ in Figure 6.6 is loaded through the input port D_{0} in Figure 6.11. Outputs O_{0} and O_{1} in Figure 6.11 correspond to o_dat $a_{0 \ldots 6}$ and o_data $a_{7 \ldots 13}$ in Figure 6.6. The data moves to all of the S_{c} registers through shifting and non-linear updates.
- 10 XOR gates must be added to the S_{r} stages to accommodate absorbing, encryption and decryption (III, IV and V). These XORs are located at stages S_{9}, S_{8} in Figure 6.11).
- 10 multiplexers to switch between absorbing and normal operation. In Figure 6.11, we show Amux1 at S_{9} and Amux0 at S_{8}. They are needed to choose whether to shift in data from the previous stage (I, II, VI) or to absorb new data into the S_{r} stages, while the remaining stages hold their previous values (III, IV).
- An XOR and a multiplexer are needed to add the domain separator into the internal state (Amux at S_{0} in Figure 6.11).
- To replace the contents of the S_{r} stages, 10 multiplexers are added. They allow us to switch between replacing (\mathbf{V}) and all other datapath operations. An example of a replace multiplexer is Rmux1 at stage S_{9} in Figure 6.11.
- Instead of additional multiplexers for loading, the existing Rmuxk, $k=$ $9,5,4,3,0$, multiplexers are now controlled by replace or load and labelled RLmuxk. An example is RLmux 0 on S_{8} in Figure 6.11, which corresponds to the i_dat $a_{o \ldots 6}$ path in \mathbf{I} and \mathbf{V}.

WAGE: Submission to the NIST LWC competition

- During the datapath operations III, IV and V, all non-input stages must keep their previous values, hence an enable signal lfsr_en is needed. It is set to 0 for phases III, IV and \mathbf{V}, and to 1 in the other operations.
- Three 7-bit AND gates to turn off the inputs D_{6}, D_{3} and D_{1} (see AND at D_{1} in Figure 6.11). The output O_{1} is used for both tags (VII) as well as ciphertext (IV) and plaintext (V). The AND gates allow to turn off the input for tag extraction (VII) and turn on the input for encryption/decryption (IV/V).
- 4 multiplexers are needed to turn off the SB during loading and tag extraction (SBmux at S_{4}). While the non-linear inputs are used only during the Permutation phase (II), there is no need to disconnect them during phases when only the S_{r} stages are updated (III, IV, V), since lfsr_en prevents any other register from shifting.

Figure 6.11: The wage_Ifsr stages S_{0}, \ldots, S_{10} with multiplexers, XOR and AND gates for the sponge mode

Control signals for multiplexers. The extra circuitry described above (and shown in Figure 6.11) needs the following control signals, which are set by the FSM:

- For Rmuxk, RLmux k and Amux k multiplexer control: load, absorb, and replace. The control signal is always interpreted as follows: a value of 0 denotes the left input to the mux and a value of 1 the right input.
- For SBmux multiplexer control: sb_off. A signal value of 0 selects the bottom mux input, and value 1 the top mux input.
- For AND gate: is_tag

These signals are listed in Table 6.4. A final multiplexer is needed to decide whether or not the O_{k} outputs are sent to the environment. Instead of showing this mux, we include an extra "generate output" column in the table. The value of the control signals is determined by the interface signals i_mode and i_dom_sep, and the datapath operation. The most common operation is permutation, so for simplicity all control
signals are set to 0 in this situation. The signal sb_off, which turns off the non-linear S-boxes, is asserted twice: during loading and tag extraction. The S-Boxes are not used in datapath operations III, IV, and V, but sb_off is not asserted, because, as described above for SBmux, wage_Ifsr does not shift and so the output of the S-boxes does not affect the stages.

Interface signals			D Op	Generate	Datapath control				
i mode	i_dom_sep	(Fig. 6.9)	(Fig 6.6)	output	$\begin{aligned} & \text { ס } \\ & 0 \\ & 0 \\ & -1 \end{aligned}$		$\begin{aligned} & \text { O } \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & -1 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { O } \\ & 0 \\ & 0 \\ & \text { in } \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -1 \end{gathered}$
-	-	Load	I	no	1	1	0	0	0
-	-	pState	II	no	0	0	0	0	0
-	00	aInit							
-	01	aProcAD	III	no	0	0	0	1	0
-	00	aFinal							
0	10	aEncrypt	IV	yes	0	0	0	1	0
1	10	rDecrypt	V	yes	0	0	0	0	1
-	-	Tag	VI	yes	0	1	1	0	0

Table 6.4: Control table for WAGE

Estimated and synthesized cost of WAGE permutation. Table 6.5 provides the estimated and actual area of the WAGE permutation for the ST Micro 65 nm ASIC library. We use an estimate of 3.75 GE for a 1-bit register and 2.00 GE for a $2: 1$ mux and 2-input XOR gate. We first calculate the area for the permutation without using any multiplexers or additional XORs to load inputs or support the sponge mode. The actual area for this circuit is just 2% smaller than the estimate. Next, we add the circuity to support inputs, outputs, and spong-mode. We estimated that this would require 536 GE , but the actual required area is approximately 200 GE greater, as can be seen in the relative areas for the complete datapath. The complete cipher results reported here are for logic synthesis (i.e., before place-and-route) with a sufficiently long clock period to get a minimum area. This differs from the results in Table 6.7, where the results are for physical synthesis (after place and route) and the selected result is the one with the maximum performance over area-squared ratio (Section 6.4.2).

6.4 Hardware Implementation Results

In this section, we provide the ASIC and FPGA implementation results of WAGE permutation and WAGE_module. We first give the details of the synthesis and simulation tools and then present the implementation results.

Table 6.5: WAGE permutation hardware area estimate and implementation results

Component	Estimate per unit [GE]	Count	Estimate per component [GE]
State registers	3.75	259	971
Feedback XORs	2.00	70	140
Feedback multiplier			6
WGP †	58	2	516
SB †		4	227
constant LFSR			

Absorb muxes	2.00	70	140
AED XORs	2.00	70	140
Dom-sep muxes	2.00	7	14
Dom-sep XORs	2.00	7	14
Replace muxes	2.00	70	140
Input-enable AND	1.50	21	32
Non-linear muxes	2.00	28	56
Extra circuitry for sponge mode		536	
Complete datapath (estimate)	$\mathbf{2 5 5 7}$		
Complete datapath (synthesized)	2753		

FSM (synthesized)		228
Complete cipher (estimate)	$\mathbf{2 7 8 6}$	
Complete cipher (synthesized) †	2981	

\dagger pre-PAR implementation results

Table 6.6: Tools and implementation technologies
Tools and libraries for ASICs

Logic synthesis	Synopsys Design Compiler vN-2017.09
Physical synthesis	Cadence Encounter 2014.13-s036_1
Simulation	Mentor Graphics QuestaSim 10.5c
ASIC cell libraries	65 nm STMicroelectronics CORE65LPLVT, 1.25 V
	TSMC 65 nm tpfn65gpgv2od3 200c and tcbn65gplus 200a at 1.0 V
	ST Microelectronics 90 nm CORE90GPLVT and
	CORX90GPLVT at 1.0 V
	IBM 130nm CMRF8SF LPVT with SAGE-X v2.0 standard cells at 1.2 V

Synthesis tools for FPGAs

Logic synthesis	Mentor Graphics Precision 64-bit 2016.1.1.28 (for Intel/Altera)
	ISE (for Xilinx)
Physical synthesis	Altera Quartus Prime 15.1.0 SJ (for Intel/Altera)
	ISE (for Xilinx)

6.4.1 Tool configuration and implementation technologies

Table 6.6 lists the configuration details of synthesis and simulation tools and libraries for both ASIC and FPGA implementations. All area results are post place-and-route. Energy results are computed through timing simulation of the post place-and-route design at a clock speed of 10 MHz .

For ASICs, logic synthesis was done using the compile_ultra command and clock gating; and physical synthesis (place-and-route) was done with a density of 95%. By selecting a target clock speed, synthesis for ASICs can exhibit a significant range in tradeoffs between speed and area for the same RTL code. The results reported here reflect the clock speed and area that obtained the highest ratio of performance over area-squared. We used area squared, because area is a reasonable approximation of power and is much less sensitive to the choice of the ASIC library than is power itself.

6.4.2 Implementation results

Figure 6.12, Table 6.7, and Table 6.8 present the hardware implementation results. More details on the hardware implementation and results are available at [2].

Figure 6.12 shows area ${ }^{2}$ vs. throughput for ASICs with different degrees of parallelization, denoted by $\mathrm{A}-p(p=1,2,3,4,8)$. The throughput axis is scaled as \log (Tput) and the area axis is scaled as $\log \left(\mathrm{area}^{2}\right)$. The grey contour lines denote the relative optimality of the circuits using Tput/area ${ }^{2}$. Throughput is increased by increasing the degree of parallelization (unrolling), which reduces the number of clock cycles per permutation round. Going from $p=1$ to $p=8$ results in a $1.72 \times$ area increase, and optimality increases as parallelism increases from 1 to 8 .

As can be seen by the relative constant size of the shaded rectangles enclosing the data points, the relative area increase with parallelization is relatively independent of implementation technology.

Throughput is measured in bits per clock cycle (bpc), and plotted on a log scale axis. The area axis is scaled as $\log \left(\right.$ Area $\left.^{2}\right)$.

Figure 6.12: Area 2 vs Throughput

Table 6.7 represents the same data points as Figure 6.12 with the addition of maximum frequency (f, MHz) and energy per bit (E, nJ). Energy is measured as the average value while performing all cryptographic operations over 8192 bits of data at 10 MHz . As the WAGE throughput increases, energy per bit increases, because connecting more WGPs in a combinational chain results in an exponential increase of the number of glitches, which drastically increases power consumption.

Table 6.7: ASIC implementation results

Label	Tput [bpc]	ST Micro 65 nm			TSMC 65 nm			ST Micro 90 nm			IBM 130 nm		
		$\begin{gathered} \mathrm{A} \\ {[\mathrm{GE}]} \end{gathered}$	$\begin{gathered} \mathrm{f} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{gathered} \mathrm{E}^{*} \\ {[\mathrm{~nJ}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{GE}]} \end{gathered}$	$\begin{gathered} \mathrm{f} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{E}^{*} \\ {[\mathrm{~nJ}]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{GE}]} \end{gathered}$	$\begin{gathered} \mathrm{f} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{E}^{*} \\ {[\mathrm{~nJ}]} \\ \hline \end{array}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{GE}]} \end{gathered}$	$\begin{gathered} \mathrm{f} \\ {[\mathrm{MHz}]} \end{gathered}$	$\begin{array}{\|l} \hline \mathrm{E}^{*} \\ {[\mathrm{~nJ}]} \end{array}$
W-1	0.57	2900	907	20.0	3290	1120	13.0	2540	940	39.2	2960	153	30.4
W-2	1.14	4960	590	19.1	5310	693	10.6	4280	493	34.4	5520	75.4	26.3
W-3	1.68	5480	397	20.	5930	527	10.7	4770	414	31.2	5460	79.6	26.5
W-4	2.29	6780	307	24.0	7460	387	12.1	5790	277	32.9	6700	51.9	33.4
W-8	4.57	12150	192	38.5	11870	204	19.9	9330	137	49.9	10960	34.5	59.9

* Energy results done with timing simulation at 10 Mhz .

Table 6.8: FPGA implementation results

Module	Extract \dagger attribute	Frequency [MHz]	\# of Slices	\# of FFs	\# of LUTs
Xilinx Spartan 3 (xc3s200-5ft256)					
WAGE permutation	yes	145	139	161	168
	no	160	282	237	313
WAGE_module	yes	96	326	212	531
	no	92	455	284	699
Xilinx Spartan 6 (xc6slx9-3ftg256)					
WAGE permutation	yes	214	42	161	134
	no	218	89	237	211
WAGE_module	yes	129	144	232	367
	no	134	149	281	431

Module	Frequency [MHz]	\# of LC	\# of FFs	\# of LUTs
Intel / Altera Stratix IV (EP4SGX70HF35M3)				
WAGE permutation	92	195	195	129
WAGE_module	73	372	372	259

\dagger WAGE_module includes a shift register wage_lfsr and two constant array modules (WGPs) We set the attributes SHREG_EXTRACT, ROM_EXTRACT and RAM_EXTRACT to (dis)allow optimizations to shift-register configuration LUTs and Block RAMs, hence there are two sets of implementation results. When memory is inferred, 1 RAMB16 is used for Spartan 3, and 1 RAMB8BWER for Spartan 6.

Chapter 7

Software Efficiency Analysis

The WAGE permutation is designed to be efficient on heterogeneous resource constrained devices, which imposes the primitive to be efficient in hardware as well as in software. We assess the efficiency of the WAGE permutation and its modes on three different microcontroller platforms.

7.1 Software: Microcontroller

We implemented the WAGE permutation and WAGE- $\mathcal{A E}$-128 on three distinct microcontroller platforms. For WAGE- $\mathcal{A E}-128$, we implement only encryption, because decryption is the same as encryption, except updating the state with ciphertext. Our codes are written in assembly language to achieve optimal performance. We choose: 1) the Atmel ATmega128, an 8-bit microcontroller with 128 Kbytes of programmable flash memory, 4.448 Kbytes of RAM, and 32 general purpose registers of 8 bits, 2) MSP430F2370, a 16-bit microcontroller from Texas Instruments with 2.3 Kbytes of programmable flash memory, 128 Bytes of RAM, and 12 general purpose registers of 16 bits, and 3) ARM Cortex M3 LM3S9D96, a 32-bit microcontroller with 524.3 Kbytes of programmable flash memory, 131 Kbytes of RAM, and 13 general purpose registers of 32 bits. We focus on four key performance measures, namely throughput, code size (Kbytes), energy (nJ), and RAM (Kbytes) consumption.

The scheme WAGE- \mathcal{E} is instantiated with a random 128 -bit key and a 128 -bit nonce. Note that the throughput of the WAGE-E , which includes processing of AD / M blocks, is smaller than that of the WAGE permutation. For producing a ciphertext and a tag, $(5+\ell)$ executions of the permutation are required where ℓ is the total number of the 64 -bit data blocks including the padded associated data and plaintext. We chose two combinations of the numbers of the AD block $\left(\ell_{A D}\right)$ and the message block $\left(\ell_{M}\right)$, which are: 1) $\left(\ell_{A D}, \ell_{M}\right)=(0,16)$, meaning empty AD and 1024 -bit plaintext; and 2$)$ $\left(\ell_{A D}, \ell_{M}\right)=(2,16)$, meaning 128 -bit AD and 1024-bit plaintext. Table 7.1 presents the performance of the WAGE permutation and its modes for these two choices of AD and message.

Table 7.1: Performance of WAGE on microcontrollers

Cryptographic primitive	Platform		Clock freq. [MHz]	Memory usage [Bytes]		Setup [Cycles]	Throughput [Kbps]	$\begin{gathered} \text { Energy/bit } \\ {[\mathrm{nJ}]} \end{gathered}$
	Device	Bit		SRAM	Flash			
WAGE Permutation	ATmega128	8	16	802	4132	19011	217.98	568
WAGE Permutation	MSP430F2370	16	16	4	5031	23524	176.16	135
WAGE Permutation	LM3S9D96	32	16	3076	5902	14450	286.78	1162
WAGE-E $\left(l_{A D}=0, l_{M}=16\right)$	ATmega128	8	16	808	4416	362888	45.15	2741
WAGE- $\mathcal{E}\left(l_{A D}=0, l_{M}=16\right)$	MSP430F2370	16	16	46	5289	433105	37.83	628
WAGE-E $\left(l_{A D}=0, l_{M}=16\right)$	LM3S9D96	32	16	3084	6230	278848	58.76	5673
WAGE-E $\left(l_{A D}=2, l_{M}=16\right)$	ATmega128	8	16	808	4502	397260	41.24	3001
WAGE- $\mathcal{E}\left(l_{A D}=2, l_{M}=16\right)$	MSP430F2370	16	16	46	5339	474067	34.56	687
WAGE-E $\left(l_{A D}=2, l_{M}=16\right)$	LM3S9D96	32	16	3084	6354	305284	53.67	6210

Acknowledgment

The submitters would like to thank Marat Sattarov for his help in the part of hardware implementation and Yunjie Yi for the microcontroller implementation.

Bibliography

[1] Aagaard, M. D., Gong, G., and Mota, R. K. Hardware implementations of the WG-5 cipher for passive RFID tags. In Hardware-Oriented Security and Trust (HOST), 2013 IEEE International Symposium on (2013), IEEE, pp. 29-34.
[2] Aagaard, M. D., Sattarov, M., and Zidarič, N. Hardware design and analysis of the ACE and WAGE ciphers. To appear in NIST LWC Workshop 2019. Also available at https://arxiv.org.
[3] Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong, G. sLiSCP: Simeck-based permutations for lightweight sponge cryptographic primitives. In $S A C$ (2017), C. Adams and J. Camenisch, Eds., Springer, pp. 129-150.
[4] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Sponge functions. In ECRYPT hash workshop (2007).
[5] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. On the security of the keyed sponge construction. In Symmetric Key Encryption Workshop (2011).
[6] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Duplexing the sponge: Single-pass authenticated encryption and other applications. In SAC (2012), A. Miri and S. Vaudenay, Eds., Springer, pp. 320-337.
[7] Biryukov, A., and Wagner, D. Slide attacks. In FSE (1999), L. Knudsen, Ed., Springer, pp. 245-259.
[8] eSTREAM: the ecrypt stream cipher project. http://www.ecrypt.eu.org/ stream/.
[9] El-Razouk, H., Reyhani-Masoleh, A., and Gong, G. New hardware implementationsof $\mathrm{WG}(\mathbf{2 9}, \mathbf{1 1})$ and WG-16 streamciphers using polynomial basis. IEEE Transactions on Computers 64, 7 (July 2015), 2020-2035.
[10] Fan, X., Mandal, K., and Gong, G. WG-8: A lightweight stream cipher for resource-constrained smart devices. In Quality, Reliability, Security and Robustness in Heterogeneous Networks (Berlin, Heidelberg, 2013), K. Singh and A. K. Awasthi, Eds., Springer Berlin Heidelberg, pp. 617-632.
[11] Fan, X., Zidaric, N., Aagaard, M., and Gong, G. Efficient hardware implementation of the stream cipher WG-16 with composite field arithmetic. In Proceedings of the 3rd International Workshop on Trustworthy Embedded Devices (New York, NY, USA, 2013), TrustED '13, ACM, pp. 21-34.
[12] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.10.0, 2018.
[13] Gong, G., And Youssef, A. M. Cryptographic properties of the Welch-Gong transformation sequence generators. IEEE Transactions on Information Theory 48, 11 (Nov 2002), 2837-2846.
[14] Gurobi. The Gurobi MILP optimizer. http://www.gurobi.com/.
[15] Jovanovic, P., Luykx, A., and Mennink, B. Beyond $2^{c / 2}$ security in spongebased authenticated encryption modes. In ASIACRYPT (2014), P. Sarkar and T. Iwata, Eds., Springe, pp. 85-104.
[16] Kap, J., Diehl, W., Tempelmeier, M., Homsirikamol, E., and Gaj, K. Hardware API for lightweight cryptography, 2019.
[17] Kölbl, S., Leander, G., and Tiessen, T. Observations on the Simon block cipher family. In CRYPTO (2015), R. Gennaro and M. Robshaw, Eds., Springer, pp. 161-185.
[18] Leander, G., Abdelraheem, M. A., AlKhzaimi, H., and Zenner, E. A cryptanalysis of printcipher: The invariant subspace attack. In CRYPTO (2011), P. Rogaway, Ed., Springer, pp. 206-221.
[19] Luo, Y., Chai, Q., Gong, G., and Lai, X. A lightweight stream cipher WG-7 for RFID encryption and authentication. In 2010 IEEE Global Telecommunications Conference GLOBECOM 2010 (Dec 2010), pp. 1-6.
[20] Mandal, K., Gong, G., Fan, X., and Aagaard, M. Optimal parameters for the WG stream cipher family. Cryptography Commun. 6, 2 (June 2014), 117-135.
[21] McKay, K., Bassham, L., Sönmez Turan, M., and Mouha, N. Report on lightweight cryptography (NISTIR8114), 2017.
[22] Nawaz, Y., and Gong, G. The WG stream cipher. ECRYPT Stream Cipher Project Report 200533 (2005).
[23] Nawaz, Y., and Gong, G. WG: A family of stream ciphers with designed randomness properties. Inf. Sci. 178, 7 (Apr. 2008), 1903-1916.
[24] Rohit, R., AlTawy, R., and Gong, G. MILP-based cube attack on the reduced-round WG-5 lightweight stream cipher. In Cryptography and Coding (Cham, 2017), M. O’Neill, Ed., Springer International Publishing, pp. 333-351.
[25] Rønjom, S. Improving algebraic attacks on stream ciphers based on linear feedback shift register over $f_{2^{k}}$. Des. Codes Cryptography 82, 1-2 (2017), 27-41.
[26] Zidaric, N., Aagaard, M., and Gong, G. Hardware optimizations and analysis for the WG-16 cipher with tower field arithmetic. IEEE Transactions on Computers 68, 1 (Jan 2019), 67-82.

Appendix A

Test Vectors

A. 1 WAGE Permutation

Input:000 Output:0FA82908FEA670F1B8609F00420FC3376A52DCA922061FED7C568F785C22B4A4C

A. 2 WAGE- $\mathcal{A E}$-128

Key	$: 00111122335588 D D 00111122335588 D D$
Nonce	$: 111122335588 D D 00$ 1111223355588DD00
Associated data	$: 1122335588 D D 00111122335588 D 00$
Plaintext	$:$ 335588DD00111122 335588DD001111
Ciphertext	$:$ 4B7CD23D07D75575 5EA2ADEC4FEFF3
Tag	$:$ D03CF7894D6D3697 C2B1758D41E78344

A. 3 Round Constants Conversion

Table A.1: Generation of the first five round constant pairs $\left(r c_{1}^{i}, r c_{0}^{1}\right)$

clk. cycle	(current) LFSR state	(current) subsequence bits								HEX
0	$\begin{array}{llll}1 & 1 & 1 & 1 \\ & 1 & 1 & 1\end{array}$		$\begin{gathered} a_{6} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \hline a_{5} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \hline a_{4} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \hline a_{3} \\ 1 \\ 1 \end{gathered}$	a_{2} 1 1 1	a_{1} 1 1	a_{0} 1	7 3
1	$\begin{array}{llll}0 & 1 & 1 & 1 \\ & 0 & 1 & 1\end{array}$		$\begin{gathered} a_{8} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{7} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{6} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} a_{5} \\ 1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} a_{4} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} a_{3} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} a_{2} \\ 1 \end{gathered}$	1 0
2	$\begin{array}{llll}0 & 0 & 1 & 1 \\ & 0 & 0 & 1\end{array}$	$\begin{gathered} a_{11} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} a_{10} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{9} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \hline a_{8} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \hline a_{7} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{6} \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} a_{5} \\ 1 \\ 1 \end{gathered}$	a_{4} 1	0 0
3	$\begin{array}{llll}0 & 0 & 0 & 1 \\ & 0 & 0 & 0\end{array}$		$\begin{gathered} a_{12} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \hline a_{11} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{10} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{9} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{8} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{7} \\ 0 \\ 0 \end{gathered}$	a_{6}	0 4
4	$\begin{array}{llll} 0 & 0 & 0 & \\ & 1 & 0 & 0 \end{array}$	$\begin{gathered} a_{15} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} a_{14} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{13} \\ 1 \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} a_{12} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \hline a_{11} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{10} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} a_{9} \\ 0 \\ 0 \end{gathered}$	a_{8} 0	2 1

The round constants are translated to HEX values as shown in Table 2.2.

[^0]: ${ }^{1}$ Currently with Department of Electrical and Computer Engineering, University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, CANADA

