The WG Stream Cipher

Yassir Nawaz and Guang Gong

Department of Electrical and Computer Engineering
University of Waterloo
Waterloo, ON, N2L 3G1, CANADA
ynawaz@engmail .uwaterloo.ca, G.Gong@ece.uwaterloo.ca

Abstract. In this paper we propose a new synchronous stream cipher, called WG ci-
pher. The cipher is based on WG (Welch-Gong) transformations. The WG cipher has
been designed to produce keystream with guaranteed randomness properties, i.e., bal-
ance, long period, large and exact linear complexity, 3-level additive autocorrelation,
and ideal 2-level multiplicative autocorrelation. It is resistant to Time/Memory/Data
tradeoff attacks, algebraic attacks and correlation attacks. The cipher can be imple-
mented with a small amount of hardware.

1 Introduction

A synchronous stream cipher consists of a keystream generator which produces a
sequence of binary digits. This sequence is called the running key or simply the
keystream. The keystream is added (XORed) to the plaintext digits to produce
the ciphertext. A secret key K is used to initialize the keystream generator and
each secret key corresponds to a generator output sequence. Since the secret key is
shared between the sender and the receiver, an identical keystream can be generated
at the receiving end. The addition of this keystream with the ciphertext recovers
the original plaintext.

Stream ciphers can be divided into two major categories: bit-oriented stream ci-
phers and word-oriented stream ciphers. The bit-oriented stream ciphers are usually
based on binary linear feedback shift registors (LFSRs) (regularly clocked or irregu-
larly clocked) together with filter or combiner functions. They can be implemented
in hardware very efficiently. However due to their bit-oriented nature their software
implementations are very slow. To address this drawback recently many word ori-
ented stream ciphers have been proposed [1-7]. Most of these stream ciphers are also
based on LFSRs but they operate on words instead of bits. This results in a very
high throughput in software. While these word oriented stream ciphers are fast in
software and can also provide high security, they usually do not provide guaranteed
keystream properties such as exact measure of linear complexity and ideal two-level
autocorrelation etc.. These properties might be desirable in certain communications
applications.

The desirable keystream properties are provided in bit-oriented cipher design by
well developed theory of sequence design and boolean functions. Many bit oriented
stream ciphers such as A5 [10], Ey [9], and LILI-128 [8] exist that are fast and can be
implemented with a small amount of hardware. However they all suffer from various
cryptanalytic attacks and do not provide properties such as exact period, linear

complexity and good statistical properties, such as ideal two-level (multiplicative)
autocorrelation.

In this paper we propose a new stream cipher, WG, which generates a keystream
with guaranteed keystream properties and also offers high level of security. The
cipher is based on WG (Welch-Gong) transformations which have proven crypto-
graphic properties [11]. The cipher has been designed to produce a keystream which
has all the cryptographic properties of WG transformation sequences, is resistant
to Time/Memory/Data tradeoff attacks, algebraic attacks and correlation attacks,
and can also be implemented in hardware efficiently.

The rest of the paper is organized as follows. In Sections 2 and 3 we describe the
WG cipher. In Section 4 we describe the key initialization process and operation of
the cipher. The security of the cipher including the randomness properties of the
keystream are discussed in Section 5. In Section 6 we give the rationale behind the
chosen design parameters, and the implementation aspects are discussed in Section

7.

2 Preliminaries

In this section we define and explain the terms and notations that will be used in
this document to describe the WG cipher and its operation.

— F9 = GF(2), finite field with 2 elements: 0 and 1.

— Fg20 = GF(22Y), extension field of GF(2) with 2% elements. Each element in this
field is represented as a 29 bit binary vector.

— Tr(z) =z + 22+ 2% + - + 22 the trace function from Fyze — Fy
Trys*?(x) = = + 22 4+ 422" the trace function from Foiixze — Faao.

— Polynomial basis of Fy20: Let « be the root of the primitive polynomial that
generates Fy2o. Then {1, a,a?,- - -,a?®} is the polynomial basis of Fy20 over Fa.

— Normal basis of Fy29: Let be an element of Fq29 such that {, N2 A2 7228}
is a basis of Fy29 over Fy. Then {7,721,722,- . -,7228} is a normal basis of Fy2o
over Fsy.

3 WG Cipher

In this section we provide a detailed description of the WG cipher. The WG cipher
can be used with keys of length 80, 96, 112 and 128 bits. An initial vector (IV)
of size 32 or 64 bits can be used with any of the above key lengths. To increase
security, IVs of the same length as the secret key can also be used. WG cipher
is a synchronous stream cipher which consists of a WG keystream generator. A
simple block diagram of the WG keystream generator is shown in Figure 1. The
keystream produced by the generator is added bitwise to the plaintext to produce
the ciphertext. We now describe the WG keystream generator. As shown in figure 1
the keystream generator consists of a 11 stage linear feedback shift register(LFSR)
over Fy29. The feedback polynomial of the LFSR is primitive over Fq20 and produces
a maximal length sequence (m-sequence) over Fy2. This m-sequence is filtered by

| ?4 {f ?
1) S2) ... §(11)

WG
Transformation

1 J{ running key

Fig. 1. Block diagram of WG Keystream generator

a nonlinear WG transformation, Fy2o — Fo, to produce the keystream. All the
elements of Fy29 are represented in normal basis and all the finite field computations
are in normal basis as well. The feedback polynomial of the LFSR is given by

px) =zt +20 4+ 2% 2P 2 x4y (1)

where Fo29 is generated by the primitive polynomial

g(x) = 22 o2 42 p e 2?0 9 18 g T
g 12 1y 10 T 6y (2)

over Fy, and y = 464739077 where 3 is a root of g(z). We define S(1),5(2), S(3), ..,
S(11) € Fg20 to be the state of the LFSR and the internal state of the WG cipher.
We denote the output of the LFSR as b; = S(11 —1),i = 0,1, ..,10. Then for ¢ > 11,
we have

bi=bi—1+bi—2+bi_5+bi_g+bi—10+ybi—11,7 > 11 (3)

where the above computations are in Fy20. We now give a mathematical description
of the WG transformation:

3.1 Mathematical Description of WG Transformation

Consider Fy29 generated by the primitive polynomial g(x) with 3 as its root. Let

10 19, 59 19_ 59 19, 510 _
tx) = a4 a? THp a2 T g2 T2 4 272 € B, (4)

» ()
210+1
1 > (.) 1
Input Output
194 99,
— s > ()2 Tr(.) —F>
29 1
219_29+1
> ()
219_+_210_1
> ()

Fig. 2. Block diagram of WG transformation: Fy29 — Fo

Then the function defined by
fx)=Tr(t(z+1)+1),2 € Fyao (5)

is the WG transfromation from Fy29 — Fo. Figure 2 illustrates the above trans-
formation. The 29 bit input to the WG tranformation function is regarded as an
element of Fy2o represented in normal basis. All the computations shown in Figure
1 and 2 (addition, exponentiation, multiplication and inversion) are normal basis
computations. This normal basis of Fy2, which is defined by g(z), is generated by
the element v € Fy20 and 7 is given above by v = #464730077 In polynomial form ~
is represented as

7:ﬁ1+ﬁ2+B3+/B4+/B5+ﬁ6+ﬁ7+610+611+Bl2+
Bl3+514+/615_l_/BlG_’_/617_'_/620_’_/823_’_/624_’_/626_’_/627‘ (6)

The normal basis can now be defined as {7,720, 722, ce 7228}.

We now state a few facts about computation in Fo2e when field elements are
represented in normal basis. We will use these facts to give a simple and more
specific description of WG transformation in the next section.

— If the field elements are represented in a normal basis, exponentiation can be
done by right cyclic shift, i.e., if 2 € Fy2 is represented as a 29 bit vector, then
22" can be obtained by simply shifting the bits of = cyclically to right by i steps.

*—— >>9

— >>19
input
> O o> >>9
29
—| >>10

Fig. 3. Block diagram of the implementation of WG transformation: Fo2o — Fo

— If v is the generator of the normal basis then 1 = Z?io 7%, i.e., the 29 bit vector
representing 1 is all one vector. Therefore addition of a field element, in normal
basis representation, with 1 can be done by simply inverting the bits of that
element. '

— The trace of all the basis elements is one, i.e., Tr(y>) = 1 where 0 < i < 28.
Therefore the trace of any field element represented as a 29 bit vector can be
obtained by adding all the bits of the elements over Fa (i.e., XOR).

3.2 Block Diagram Description of WG Transformation

To facilitate the implementation of the WG transformation in hardware and software
we provide a more specific description in Figure 3. From the figure the output of
the WG transformation can be written as

output = P (>(a1 © (2 ® (a3 P (92 © 1))))) (7)

where
a=I>9)x((I>19xI)

p=T'1>90((I>19)I)
i =I"1®(I>19)® (I > 10)
u=UI>10)®1
I = > (input).

The notation ® y means normal basis multiplication of x and y in Fy20 defined by
g(z). Similarly (z)~! means the normal basis inversion of in Fy20 defined by g(z).
x @y represents the bitwise addition (XOR) of words x and y, and x > ¢ represents
the cyclic shift of x, ¢ stages to the right where ¢ is a positive integer. The symbol
>>(x) means all the 29 bits of « are complemented and €(x) means the addition of

the 29 bits of x over Fy (XOR) i.e., for z = (2o, .., z23), P(z) = Z?ﬁo x; mod 2.

4 Key Initialization and Operation

In this section we describe the key initialization process and operation of the WG
cipher. Note that according to the ECRYPT NoE requirements for the Proposals
in profile 2, an Initial Vector (IV) length of 32 bits or 64 bits must be accommo-
dated [12]. However due to the recent developments regarding Time/Memory/Data
tradeoff attacks by Hong and Sarcar [13] and subsequent comments by Canniere,
Lano and Preneel [14], it is highly recommended that IV’s which have the same
length as the secret key itself are used. Therefore we provide two key initialization
mechanisms: One for 32-bit and 64-bit long IVs and the second for the IVs that
have the same length as the secret key.

4.1 Key Initialization (32-bit and 64-bit IVs)

The recommended key sizes for WG cipher are 80, 96, 112 and 128 bits. An Ini-
tialization Vector (IV) of size 32 or 64 bits can be used with any of the above key
sizes. To initialize the cipher the key bits and IV bits are loaded into the LFSR.
Now we describe how to load the key and IV bits into the LFSR. The state of the
LFSR is represented as S(1),S5(2),5(3),..,S(11) € Fs. We represent each stage
S(i) € Fog, as S1,.29(7), where 1 < ¢ < 11. Similarly we represent the key bits as
ki,.5,1 <j <128 and IV bits as IV, 1 < m < 64.

The key bits are divided into blocks of 16 bits and each block is loaded into the
LFSR as follows:

— 80 bits key is loaded as

S1,.16(1) = k1,16 S1,.16(2) = k17,32 S1,.16(3) = k33,.. 48
S1,.16(4) = kag,.. 64 S1,.16(5) = kes,.80 S1,..16(9) = k1,16
S1,.16(10) = k17,3001 S, 16(11) = ka3, 48

— 96 bits key is loaded as

) =Fi, 16 51,.16(2) = k17,32 51,.16(3) = k33,48
S1,.16(4) = kag,.6a S1,.16(5) = ke5,.. 80 S1,.16(6) = ks1,...96
S1,.16(9) = k1,16 51,.16(10) = ki7,30®1 S1,.16(11) = k3348

ol 1 1 T3

WG
Transformation

29

Fig. 4. Key initialization phase of WG cipher

— 112 bits key is loaded as

S1,.16(1) = k1,16 S1,.16(2) = k17,32 S1,.16(3) = k33,48
S1,.16(4) = kag,. 64 S1,.16(5) = kes,.80 S1,.16(6) = ks1,...96
S1,.16(7) = kor,. 112 S1,.,16(9) = k1,16 51,.,16(10) = k17,320 ® 1

S1,.,16(11) = k33, 48

Si,.16(1) = k1,16 S1,.16(2) = k17,32 S1,.16(3) = k33, a8
S1,.16(4) = kag,._ 64 S1,.16(5) = kes,...80 S1,.16(6) = ks1,...96
S1,.16(7) = kor,. 112 S1,.16(8) = k113,128 S1,..16(9) = k1,16

S1,.16(10) = k17,3001 51

The IV bits are divided into blocks of 8 bits and each block is loaded into the
LFSR as follows:

— 32 bits IV is loaded as

Si7,.201) =1Vi g Si7,24(2) =1Vy 16 Si7,.24(3) = IVi7, 24
Si7,.24(4) = IV25, 32

— 64 bits IV is loaded as

S17,.24(1) = 1Vy. 8 S17,.24(2) = IVy, . 16 S17,.24(3) = IVi7,. 24
S17,.04(4) =1Vas, .30 Si17,24(5) =1IV33 40 Si7,..24(6) = IV, 48
S17,.24(7) = IVag, .56 S17,.24(8) = IV57,. 64

All the remaining bits of the LFSR are set to zero. Once LFSR has been loaded
with the key and IV, the keystream generator is run for 22 clock cycles. This is the
key initialization phase of the cipher operation. During this phase the 29 bit vector,
given by

keyinitvec = >(q1 & (g2 ® (g3 ® q1))) (8)

in Figure 3, is added to the feedback of the LFSR which is then used to update
the LFSR. The key initialization process is shown in Figure 4. Once the key has
been initialized the LFSR is clocked once and the 1 bit output of the WG trans-
formation gives the first bit of the running keystream. Since the linear complexity
of the keystream is slightly more than 2> (see Sec 5.1) the maximum length of the
keystream allowed to be generated with a single key and IV is 2%°. After this the
cipher must be reinitialized with a new IV or a new key or both.

4.2 Key Initialization (Same Length Keys and IVs)

We keep the notation introduced in Sec 4.1, i.e., S(1),5(2),5(3),..,5(11) € Fyao;
Each stage S(i) € Fa2, is represented as S1,. 29(7) where 1 < ¢ < 11. Similarly we
represent the key bits as k1 j,1 < j <128 and IV bits as IV, 1 <m < 128.

— 80 bits key and IV are loaded as

S1,.16(1) = k1,16 S17,.04(1) =1V1,. 8 51,.8(2) = k17,04
So,.24(2) = 1Vy, 24 S1,.16(3) = ko540 S17,.24(3) = IVas5, 32
S1,.8(4) = ka1, 48 So,.24(4) =1V33..48 S1,.16(5) = kuag,...64
517 24(5) =1Vag . 56 S1,.8(6) = kes,.. 72 S9,.24(6) = IVs7,_ 72
Sl,..S() = k3. 80 S17,.24(7) = 1Vz3, 80

— 96 bits key and IV are loaded as

S1,.16(1) = k1,16 S17,.04(1) =1V1, 8 51,.8(2) = k17,24
So,.24(2) = IVy,. 24 S1,.16(3) = kos,.. 40 S17,.24(3) = IVas, . 32
S1,.8(4) = ka1, 48 So,.24(4) = 1V33,.. 48 S1,.16(5) = kuag,.. .64
S17,.24(5) =1Vag 56 S1,.8(6) = kes,..72 S9,.24(6) = IVs7,.72
S1,.16(7) = k73,88 S17,.24(7) =1Vz3. 80 51,.8(8) = ksg,.. 96

)
So,.24(8) = IV31,...96

— 112 bits key and IV are loaded as

S1,.16(1) = k1,16 S17,.04(1) =1Vy,. g 51,.8(2) = k17,24
So,.24(2) = 1Vy,. 24 S51,.16(3) = ko5, 40 517 24(3) = 1Vas,. 32
S1,.8(4) = k41,48 So,..24(4) = IV33,.. 48 S1,.16(5) = kag,.. .64
S17,.24(5) =1Viag, .56 S1,.8(6) = kes,...72 S9,.24(6) = IVs7,.. 72
S1,.16(7) = k73,88 517 24(7)=1Vz3.80 S51,.8(8) = ks, 06
So,.24(8) = 1V3s1,. 96 51,..16(9) = ko7, 112 S17,.24(9) = IVoy7, . 104
So,..16(10) = IVips5,. 112

— 128 bits key and IV are loaded as

S1,.16(1) = k1,16 S17,.04(1) =1V1, .8 51,.8(2) = k17,04
So,.24(2) = IVy,. 24 S1,.16(3) = ko5, 40 S17,.24(3) = IVas5,.. 32
S1,.8(4) = ka1, 48 So,.24(4) = 1V33,.. 48 S1,.16(5) = kag,.. 64
S17,24(5) =IVig 56 S1,.8(6) = kes,..72 So,.24(6) = IVs7,. 72
S1,.16(7) = k73,88 S17,.24(7) = 1Vz3, . 80 S1,.8(8) = kgo,...96
So,.24(8) = IV31,...96 51,..16(9) = kg7, 112 S17,.24(9) = IVo7, 104

S1,.8(10) = k113,120 S9,.24(10) = IVig5,.120 S1,.8(11) = k121,128
S17,.24(11) = IVi21, 198

The remaining bits in the LFSR are all set to zero. Once the key and the IV have
been loaded, the keystream generator is run for 22 clock cycles. This initialization
process is identical to the one described in Section 4.1.

4.3 Operation of the Cipher

Once the cipher has been initialized, the contents of the LFSR constitute the internal
state of the cipher. To produce the running keystream LFSR is clocked once and
the contents of the stage S(11) are fed into the WG transformation block which
produces a single bit of the runnig keystream. The LFSR is clocked again and the
updated contents of S(11) are again fed to WG transformation block thus producing
the next bit of the keystream and so on. This running keystream is added bitwise
(XORed) to the plaintext to produce the ciphertext.

5 Security of the Cipher

5.1 Randomness Properties of the Keystream

The WG keystream {a; }is generated by filtering a maximal length sequence over Fo29
by a WG transformation. Therefore we can represent the output of the generator as

a; = f(bi),i=0,1,--
u(x) = f o Trig’ (x), (9)

i.e., u(x) is the composition of Tris’(x) and f where {b;} is the m-sequence gen-
erated by the LFSR over Fy with the trace representation Tr3s’(x) and f is the

WG transformation. The sequence corresponding to u(z) is also referred to as the
generalized GMW sequence in the literature [15]. We will use the properties of f
and (9) to derive the properties of the keystream generated by the WG keystream
generator.

5.2

Period: The WG keystream generator has an 11 stage LFSR over Fg20 with
a primitive feedback polynomial which generates a maximal length sequence of
period 21%29 — 1 over Fq2. Therefore the period of the keystream generated by
the cipher is 2319 — 1.

Balance: Since the m-sequence {b;} over Fg29 is balanced and the WG is a
balanced boolean function from Fj20 — Fa, the keystream is also balanced.
There are 2318 1’s and 23!® — 1 0’s in one period of the keystream.

Two-level autocorrelation: The WG transformation is an orthogonal func-
tion and the corresponding WG transformation sequence has 2-level autocorre-
lation [11]. We now consider (9): It is proved in [15] that if f is an orthogonal
function then the sequence that corresponds to u has 2-level autocorrelation.
Therefore the keystream generated by the WG keystream generator has 2-level
autocorrelation.

t-tuple distribution: Since {b;} is an m-sequence over Fy29 of degree 11 and
f is a balanced boolean function from Fg2o — Fy, then according to [15] the
keystream {a;} has ideal ¢-tuple distribution where 1 <t < 11.

Linear Complexity: Due to (9) the linear complexity of the keystream can be
determined exactly and is given by the following formula:

LS =29 x Z 11%(0) A 945.0415 10)
iel

where w(7) is the hamming weight of ¢ and
I=1Uls,

where
L={2Y+2"4+24+i0<i<2”-3},

L={224+3+2i[0<i<2”—2}.
For more details on the calculation of linear complexity the reader is referred

to [15].

WG Transformation

The WG transformation form Fy29 — Fg can be regarded as a boolean function
in 29 variables. The exact boolean representation depends on the basis used for
computation in Fg29. The normal basis provided in previous selections has been
selected in such a way so that the corresponding boolean representation of WG
transformation is 1-order resilient. It has degree 11 and its nonlinearity is 228 —214 =
268419072. For more detail on the selection of resilient bases see [11].

10

5.3 Security Against Attacks

In this section we analyze the security of the WG cipher against some well known
attacks on stream ciphers. The types of attacks considered are Time/Memory/Data
tradeoff attacks, algebraic attacks and correlation attacks.

Time/Memory/Data tradeoff attacks: Let’s first consider the Time/Memory/Data
tradeoff attack on stream ciphers. This kind of attack has two phases: During pre-
computation phase the attacker exploits the structure of the stream cipher and
summarizes his findings in large tables. During the attack phase, the attacker uses
these tables and the observed data to determine the secret key or the internal state
of the stream cipher. The size of the tables in the pre-computation stage, the re-
quired keystream, and the computational effort required to recover the secret key
determine the feasibility of this attack. A tradeoff TM?D? = N? for D> < T < N,
was presented in [16] where T is the time required for the attack, M is the mem-
ory required to store the tables, D represents the realtime data or the keystream
required, and N is the size of the search space. A simple way to provide security
against this attack in stream ciphers is to increase the search space. This can be
done by increasing the size of the internal state and using random IVs along with
the secret key. In WG stream cipher the size of the inner state in 23! which is
more than twice the size of the largest possible keysize. If a random IV of the same
length as the secret key is selected, the cipher is secure against Time/Memory/Data
tradeoff attacks.

Algebraic attacks: Now we consider algebraic attacks that have been used recently
to break many well known stream ciphers [17-20]. Courtois in [18] has shown that
the complexity of these attack depends on the nonlinear filter and the number of
outputs generated by the cipher. If the nonlinear filter can be approximated by a
multivariate equation of low degree this complexity can be reduced significantly. The
boolean function representation of WG has 29 inputs, one output and has degree
11. According to [18] a nonlinear filter with 29 inputs and 1 output must have a
multivariate approximation of degree 14. However this degree is greater than 11,
the degree of the WG transformation. The meaningful approximations to the WG
transformation should have degree less than 11. Assuming that there are no approx-
imations of WG with degree less than 11, the cipher can be reduced to a system

of approximately (31119) linear equations. The complexity of solving such a system

. . logaT S .
is approximately 7/64 - (31119) 2" ~ 2182 1If an approximation of WG with degree

less than 11 is found the complexity of the attack will be reduced. According to the
assertion in [19] and our experimental results on WG transformation we conjecture
that the probability of the existence of such an approximation is negligible. We have
verified that WG transformations in 11, 13 and 14 variables(which have degrees 5,
6 and 6 respectively) do not have approximations with degrees less than the de-
gree of the WG transformations themselves. Since both the boolean and polynomial
representations of WG transformation have large number of monomial terms with
high degrees it is not possible to remove higher degree terms without significantly
affecting the output of the transformation. The property that WG transformation

11

has a large number of monomial terms in its polynomial and boolean representation
provides adequate security against algebraic attacks.

Correlation attacks: Another powerful attack against stream ciphers is the corre-
lation attack. Several correlation attacks have been proposed in the literature [21-
23]. These attacks exploit any correlation that may exist between the keystream and
the output of the LFSR in the cipher. In these attacks the keystream is regarded
as a distorted or noisy version of the the LFSR output. This reduces the problem
of finding the internal state of the LFSR to a decoding problem where keystream
is the received codeword and LFSR internal state, the original message. The WG
transformation used in WG cipher is 1-order resilient, i.e., the output of the WG
transformation or the keystream is not correlated to any single input bit of the LFSR
output.This suggests that WG cipher is secure against correlation attacks. However
we must consider the case where WG transformation is approximated by linear func-
tions. These linear approximations can be used to derive a generator matrix of a
linear code. The decoding can then be performed by a Maximum Likelihood (ML)
decoding algorithm to recover the internal state of LFSR. We now use some of the
theoretical bounds given in [23] to estimate the complexity of these attacks on the
WG cipher. Let f’ be the boolean function representation of WG transformation
and [be a linear function with minimum hamming distance to f’. Then

229 _ (228 _ 214)

P(f'(z) = l(z)) = 5% = 0.5000305. (11)

Using the results given in [23] with parameter ¢ = 3, the amount of keystream
required for a successful attack is given by

N~ (k-12-1n2)/3 . 2. 975 (12)
and decoding complexity is given by
2In2
Cec = 2k k- (26)67 (13)

where € = P(f'(x) = I(z)) — 0.5 = 0.0000305 and k is the number of LFSR internal
state bits recovered. If we choose k to be very small, i.e., & = 5, the amount of
keystream required for the attack is approximately 2'33, which is not a realistic
amount to collect. Moreover the complexity of pre-computation phase is more than
2266 Since the maximum keystream that can be produced with a single key and IV
is 24 we choose k = 274 to reduce N to this number. Now the complexity of the
decoding phase is approximately 2366, This analysis shows that the WG cipher is
secure against this kind of correlation attacks.

6 Design Rationale

The WG keystream generator has been designed as an efficient and secure stream
cipher with desired keystream properties i.e., balance, long period, large linear com-
plexity, ideal ¢-tuple distribution 1 < t < 11, 3-level additive autocorrelation [35]

12

and 2 level (multiplicative) autocorrelation. The cipher is intended for hardware ap-
plications however it can be used in software applications if the keystream with the
above statistical properties is desired. To obtain the desired keystream properties,
WG transformation has been chosen as the nonlinear filter since it has all the de-
sired cryptographic properties. The WG transformation sequences have large linear
complexities and ideal 2-level (multiplicative) autocorrelation. The size of the WG
transforamation from Fo20 — F3 has been chosen to facilitate a practical hardware
implementation.

The WG transformation Fon — F9 only exist for n = 3k — 1 and n = 3k — 2,
where k is an integer. It involves finite field operations (exponentiation and inversion)
over the extension field Fon. The exponentiation is an expensive operation if the
elements of the field are represented in polynomial basis. However if the elements
are represented in normal basis the exponentiations in WG tranformation can be
achieved by simple cyclic shifts and a few multiplications. Since raising an element
to the power of 2 is free and inversion can be implemented with multiplications, the
complexity of the transformation depends mostly on the complexity of the normal
basis multiplier. There are more than one normal basis in an extension filed and
the complexity of a normal basis multiplier depends on the choice of the normal
basis. The normal basis for which this complexity is minimum is known as optimal
normal basis [24]. However optimal normal basis does not exist for every extension
field Fon. For Fg29 optimal normal basis as well as the WG tranformation exist.
Therefore Fo29 has been chosen to facilitate an efficient hardware implementation of
WG tranformation. Moreover Fo20 does not have any subfields and this elliminates
the possibility of a subfield attack. The elements of Fo29 can also be represented with
a single word in 32 bit processors which leads to an efficient software implementation.

The LFSR has been chosen to generate the maximal length sequence over Fo2o
and the length of the LFSR has been chosen to obtain high linear complexity of the
keystream and a large internal state of the cipher.

7 Implementation of WG Cipher

In this section we discuss the implementation aspects of WG cipher in hardware and
software.

7.1 Hardware Implementation

The inversion and normal basis multiplication in Fy20 are the two most expensive
operations in the hardware implementation of the cipher. The WG transformation
requires one inversion and six multiplications for each output. Depending on the
type and number of multipliers used, a wide variety of area versus speed tradeoffs
are possible. An implementation can range from using a single serial normal basis
multiplier to multiple parallel normal basis multipliers. While the underlying plat-
form and speed requirements will dictate an implementation, we suggest an obvious
implementation which can achieve high speed with relatively less amount of hard-
ware. The best normal basis inversion algorithm known to the authors requires 6

13

clock cycles to compute the inverse in Fy29, provided a parallel normal basis mul-
tiplier is available [25]. A parallel normal basis multiplier multiplies two elements
in normal basis and produces the result in one clock cycle. Therefore we suggest
using 2 parallel normal basis multipliers. In Figure 3, one multiplier can be used
to compute the inverse while the second can be used to compute ¢; and ¢o. After
the inverse has been calculated the remaining 3 multiplications can be done in 2
clock cycles by the 2 multipliers. Therefore it will take a total of 8 clock cycles to
produce a keystream bit. Note that the cyclic shifts can be done by rearranging the
connections to the registers or the inputs of multipliers.

Several normal basis multipliers have been proposed in the literature [26-32].
As stated earlier the hardware complexity of a normal basis multiplier depends
on the basis used to represent the field elements. More precisely it depends on the
multiplication matrix Cy of the chosen normal basis [24]. The complexity is directly
proportional to the number of ones in the C matrix. To facilitate the hardware
implementation of a normal basis multiplier for WG transformation we provide the
Cn matrix that corresponds to the chosen optimal normal basis of Fg29 in Appendix
A.

To estimate the throughput that WG cipher can achieve we consider the delays of
various operations in the cipher implementation. The operation with the maximum
propagation delay is the normal basis multiplication. Most of the parallel normal
basis multipliers in literature have propagation delay given by

delay = Ta + [log2Cn | Tx (14)

where T4 is the delay of an AND gate, Tx is the delay of an XOR, gate and Cy is
number of ones in the multiplication matrix of the chosen normal basis. In case of
optimal normal basis in Fon, Cy = 2 x n. This means that for a parallel normal basis
multiplier over Fq20 the propagation delay is equal to 7 gate delays. The maximum
clock frequency that can be used depends on the ASIC technology and the maximum
propagation delay. For example with current ASIC technology clock frequency of 1
GHz can be used when the propagation delay equals 7 gate delays. This will result in
the overall cipher throughput of 125 Mbps. The hardware complexity of the cipher
depends on the type of multiplier chosen for implementation. For example a basic
parallel normal basis multiplier given in [26] over Fy2o requires 841 AND gates
and 1653 XOR gates. Other implementations can provide even better hardware
complexities.

Note that LFSR feedback has a normal basis multiplication with a constant ~.
This can be done by either dedicated hardware in the feedback loop or by using one
of the existing normal basis multiplier in WG transformation.

7.2 Software Implementation

The software implementation of the WG cipher is straight forward. Since the ele-
ments of Fy20 can be represented within a single word of a 32 bit processor, each of
the addition, negation and shift operations can be performed by a single instruction.
The time consuming operations in software are the normal basis multiplications.

14

The exact implementation of the multiplier depends on the multiplication matrix.
Several algorithms exist for performing normal basis multiplication in software effi-
ciently [33,34]. We provide a C implementation of the normal basis multiplication
algorithm for the optimal normal basis over Fo20 in Appendix D. In Appendix E
we also provide the C implementation of the inversion algorithm given in [25] . The
implementations are provided as examples and we do not claim them to be the most
efficient. Any normal basis multiplication and inversion algorithm can be used for
the software implementation of the cipher.

Since the cipher involves finite field operations over Fq29, a software implemen-
tation for a general purpose processor is not very fast. Our simulations, which use
an un-optimized C implementation on a 2.0 Ghz Pentium 4 PC using 512 Mbyte
RAM result in a throughput of 0.22 Mbps.

8 Conclusions

We proposed a new stream cipher, WG cipher, suitable for hardware implementa-
tions. The cipher generates a keystream with guaranteed randomness properties and
offers high level of security. The cipher can be implemented with relatively small
amount of hardware while achieving speeds in excess of 100 Mbps. We believe that
exhaustive key search is the most efficient way to recover the secret key or internal
state of the cipher. We claim that we have not inserted any hidden weakness in the
design of the WG cipher.

Acknowledgements: The authors would like to thank Dr. Kishan Gupta for his
help in finding the primitive polynomials and Mr. NamYul Yu for generating WG
sequences for algebraic testing.

15

References

1. R. Rivest, The RC4 Encryption Algorithm, RSA Data Security, Inc., Mar. 1992.

2. P. Rogaway, and D. Coppersmith, A Software Optimized Encryption Algorithm, Journal of
Cryptology, 11(4):273-287, 1998.

3. P. Hawkes, and G. Rose, Primitive Specification and Support Documentation for SOBER-t16
Submission to NESSIE, Proceedings of First NESSIE Workshop, Heverlee, Belgium, 2000.

4. P. Hawkes, and G. Rose, Primitive Specification and Support Documentation for SOBER-t32
Submission to NESSIE, Proceedings of First NESSIE Workshop, Heverlee, Belgium, 2000.

5. P. Ekdahl, and T. Johansson, SNOW-A New Stream Cipher, Proceedings of First NESSIE Work-
shop, Heverlee, Belgium, 2000.

6. P. Ekdahl, and T. Johansson, SNOW-A New Version of the Stream Cipher SNOW, Selected
Areas in Cryptography, 2002, LNCS 2595, pp. 47-61, SPringer-Verlag 2003.

7. D. Watanabe, S. Furuya, H. Yoshida, and B. Preneel, A New Keystream Generator MUGI, Fast
Software Encryption 2002, LNCS 2365, pp. 179-194, Springer-Verlag, 2002.

8. E. Dawson, A. Clark, J. Golic, W. Millan, L. Penna, and L. Simpson, The LILI-128 Keystream
Generator, Proceedings of First NESSIE Workshop, Heverlee, Belgium, 2000.

9. Bluetooth Specification, version 1.1, Available at www.bluetooth.org/spec/.

10. M. Briceno, I. Goldberg, and D. Wagner, A Pedagogical Implementation of A5/1,
http://www.scard.org, May 1999.

11. G. Gong, and A. Youssef, Cryptographic Properties of the Welch-Gong Transformation Se-
quence Generators, IEEE Transactions on Information Theory, vol. 48, No. 11, pp. 2837-2846,
Nov. 2002.

12. ECRYPT: Call for Stream Cipher Primitives,
https://www.cosic.esat.kuleuven.ac.be/ecrypt/stream/.

13. J. Hong, and P. Sarkar, Rediscovery of Time Memory Tradeoffs, Cryptology ePrint Archive,
Report 2005/090, http://eprint.iacr.org/, 2005.

14. C. Canniere, J. Lano, and B. Preneel, Comments on the Rediscovery of Time Memory Data
Tradeoffs, https://www.cosic.esat.kuleuven.ac.be/ecrypt/stream/TMD.pdf.

15. S. W. Golomb, and G. Gong, Signal Design for Good Correlation: For Wireless Communication,
Cryptography, and Radar, Cambridge University Press, ISBN 0521821045, 2005.

16. A. Biryukov, and A. Shamir, Cryptanalytic Time/Memory/Data Tradeoffs for Stream Ciphers,
Asiacrypt 2000, LNCS 1976, pp. 113, Springer-Verlag, 2000.

17. N. Courtois, Fast Algebraic Attacks on Stream Ciphers with Linear Feedback, Advances in
Cryptology-CRYPTO 2003, LNCS 2729, pp. 176-194, Springer-Verlag, 2003.

18. N. Courtois, Algebraic Attacks on Combiners with Memory and Several Outputs, Cryptology
ePrint Archive, Report 2003/125, http://eprint.iacr.org/, 2003.

19. W. Meier, E. Pasalic, and C. Carlet, Algebraic Attacks and Decomposition of Boolean Func-
tions, Advances in Cryptology EUROCRYPT-2004, LNCS 3027, pp.474-491, Springer-Verlag,
2004.

20. Frederik Armknecht, On the Existence of Low-degree Equations for Algebraic Attacks, Cryp-
tology ePrint Archive, Report 2004/185, http://eprint.iacr.org/, 2004.

21. T. Siegenthaler, Decrypting a Class of Stream Ciphers Using Ciphertext Only, IEEE Transac-
tions on Computers, vol. C-34, pp. 81-85, 1985.

22. W. Meier, and O. Staffelbach, Fast Correlation Attacks on Certain Stream Ciphers, Journal of
Cryptology, pp. 159-176, 1989.

23. V. Chepyzhov, T. Johansson, and B. Smeets, A Simple Algorithm for Fast Correlation Attacks
on Stream Ciphers, Fast Software Encryption 2000, LNCS 1978, pp. 181-195, Springer-Verlag,
2001.

24. R. Mullin, I. Onyszchuk, and S. Vanstone, Optimal Normal Bases in GF(p"), Discrete Applied
Mathematics, vol. 22, pp. 149-161, 1989.

25. Gui-Liang Feng, A VLSI Architecture for Fast Inversion in GF(2™), IEEE Transactions on
Computer, vol. 38, No. 10, pp. 1383-1386, October 1989.

26. L. Massey, and J. Omura, Computational Method and Apparatus for Finite Field Arithmetic,
US Patent No. 4,587,627, 1986.

16

27. C. Wang, T. Troung, H. Shao, L. Deutsch, J. Omura, and I. Reed, VLSI Architecture for
Computing Multiplications and Inverses in GF(2™), IEEE Transactions on Computers, vol. 34,
No. 8, pp. 709-716, Aug. 1985.

28. B. Sunar, and C. Koc, An Efficient Optimal Normal Basis Type II Multiplier, IEEE Transac-
tions on Computers, vol. 50, No. 1, pp. 83-88, Jan. 2001.

29. A. Reyhani-Masoleh, and A. Hassan, A New Construction of Massey-Omura Parallel Multiplier
over GF(2™), IEEE Transactions on Computers, vol. 51, No. 5, pp. 511-520, May 2002.

30. G. Agnew, R. Mullin, I. Onyszchuk, and S. Vanstone, An Implementation for a Fast Public-Key
Cryptosystem, Journal of Cryptology, vol. 3, pp. 63-79, 1991.

31. A. Reyhani-Masoleh, and A. Hassan, Efficient Digit-Serial Normal Basis Multipliers over
GF(2™), ACM Transactions on Embedded Computer Systems, special issue on embedded sys-
tems and security, vol. 3, No. 3, pp. 575-592, Aug. 2004.

32. A. Reyhani-Masoleh, and A. Hassan, Low Complexity Word-Level Sequential Normal Basis
Multiplier, IEEE Transaction on Computers, vol. 54, NO. 2, Feb. 2005.

33. P. Ning, and Y. Yin, Efficient Software Implementation for Finite Field Multiplication in Nor-
mal Basis, ICICS 2001, LNCS 2229, pp. 177-188, Springer-Verlag, 2001.

34. A. Reyhani-Masoleh, and A. Hassan, Fast Normal Basis Multiplication Using General Purpose
Processors, IEEE Transaction on Computers, vol. 52, NO. 11, Nov. 2003.

35. G. Gong, and K. M. Khoo, Additive Autocorrelation of Resilient Boolean Functions, Selected
Areas in Cryptography 2003, LNCS 3006, Springer-Verlag, 2004.

17

Appendix A

Cy Matrix for Normal Basis Multiplier in Fy2

Cn

01000000000000000000000000000
10000000000000000000010000000
00000010000000000000010000000
00000000000001000010000000000
00000000000100000000O0O0OO0O0OOO10
00000000000000000100100000000
00100000000000000000O0O00O010000O0O
000000000000010000000000O0O10O0O
00000000011000000000000000000
00000000100000100000000000000
00000000100000000000000000100
00001000000000100000000000000
000000000000000OO00O01000000O01000OQ
00010001000000000000000000000
00000000010100000000000000000
000000000000O0O0O0O00O00O0OOOOOOO10100
00000000000000000001000100000
00000100000010000000000000000
00010000000000000000001000000
00000000000000001000000000O010
00000100000000000000000000001
01100000000000000000000000000
00000010000000000010000000000
000000000000000010000000O0O1IO0O0OQ
00000000000010010000000000000
00000001000000000000000100000
00000000001000010000000000000
00001000000000000001000000000
000000000000O0O0O00O0O0OOOO1I0000O0O0OO0O1

18

Appendix B
Test Vectors for 32 bit and 64 bit I'Vs

Test vectors for WG cipher; Each key, IV and keystream is given in smallendian
format (LSB --- MSB) in hexadecimal. For example binary representation of key
= 80000000000000000000 is 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 (least significant bit - - - most
significant bit). Similarly binary representation of IV = 01234567 is 0000 0001 0010
0011 0100 0101 0110 0111 (least significant bit --- most significant bit)

80 bit key and 32 bit IV

key = 80000000000000000000
IV = 01234567
keystream =9E4A A53B684E2B9AF3444BF556 AE4944

key = ABCDABCDABCDABCDABCD
IV = 01234567
keystream = 059344F2E99F5581AD5601C85CBE5DI9B

96 bit key and 32 bit IV

key = A00000000000000000000000
IV = 01234567
keystream = 1C620A7740E2F799636 A0DF142EF8EGE

key = ABABABABABABABABABABABAB
IV = 01234567
keystream = 9E5191903DD3346B7182C6FDAEIA6CBF

112 bit key and 64 bit IV

key = B000000000000000000000000000
IV = 0123456789 ABCDEF
keystream = 796A1D6A52BC504DFBIBAE7841A75583

key = 1234123412341234123412341234
IV = 0123456789ABCDEF
keystream = 767A61ACT7556377TCCBET43A72B9A5A9C

128 bit key and 64 bit IV
key = C0000000000000000000000000000000

IV = 0123456789ABCDEF
keystream = SEF6E4190F0372D3CCBFE641563424BA

key = 56785678567856785678567856785678

19

IV = 0123456789ABCDEF
keystream = 63362COBFD6A86B64AA4953C5466BEST

Appendix C
Test Vectors for Same Length Key and IV

Test vectors for WG cipher; Each key, IV and keystream is given in smallendian
format (LSB --- MSB) in hexadecimal. For example binary representation of key
= 80000000000000000000, is 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000 0000 0000 0000 (least significant bit - - - most
significant bit). Similarly binary representation of IV = 01234567, is 0000 0001 0010
0011 0100 0101 0110 0111 (least significant bit --- most significant bit)

80 bit key and 80 bit IV

key = 80000000000000000000
IV = 01234501234501234501
keystream = C1C64550B84F37281B80961D927DAS882

key = 56785678567856785678
IV = 01234501234501234501
keystream = BOOSDAAG67C11BAD30E70ES80AD4B007D7

96 bit key and 96 bit IV

key = B00000000000000000000000
IV = 012345012345012345012345
keystream = E27B2C072782ACE5DEC995559D090950

key = 567856785678567856785678
IV = 012345012345012345012345
keystream = 9A677TF523776A789403F2ED6712DA566

112 bit key and 112 bit IV

key = A000000000000000000000000000
IV = 0123450123450123450123450123
keystream = 695E126379DAB568AB5D962AB11EB72A

key = 5678567856785678567856785678
IV = 0123450123450123450123450123
keystream = TC5CA96F9IBIF604D792A55E175ECE33E

128 bit key and 128 bit IV

20

key = C0000000000000000000000000000000
IV = 0123456789 ABCDEF0123456789ABCDEF
keystream = 1ECE4F577TDOE71B2FA8580A81F676E12

key = 56785678567856785678567856785678
IV = 0123456789ABCDEF0123456789ABCDEF
keystream = 7TAC9AB808B0836197E377TBE48117AEE6

Appendix D
C Implementation of a Normal Basis Multiplier in Fq2

Following is the C implementation (32 bit word size) of the normal basis multi-

plier for the normal basis defined by ~ in Section 3.1. The implementation is based
on the algorithm given in [33].

#define ROTL29(v, n)
(unsigned)(((v) < (n)) | ((v) > (29 - (n))))& OxFFFFFFF8

void mult(unsigned int a, unsigned int b, unsigned int* c){
unsigned int A[29], B[29];

/*precomputation™/
AJ0]=a & 0xFFFFFFFS; B[0]=b & OxFFFFFFFS,;

A[1]=ROTL29(A[0], 1); B[1}=ROTL29(B[0],1);
A[2]=ROTL29(A[0], 2); B[2]J=ROTL29(B[0],2);
A[3]=ROTL29(A[0], 3); B[3]=ROTL29(B[0],3);
AJ4]=ROTL29(A[0], 4); B[4|=ROTL29(B[0]4);
A[5]=ROTL29(A[0], 5); B[5)]=ROTL29(B[0].5);
AJ6]=ROTL29(A[0], 6); B[6]=ROTL29(B[0].6);
A[7]=ROTL29(A[0], 7); B[7]=ROTL29(B[0],7);
A[8]=ROTL29(A[0], 8); B[8]=ROTL29(B[0].8);
AJ9]=ROTL29(A[0], 9); B[9]=ROTL29(B[0],9);
A[10]=ROTL29(A[0], 10); B[10]=ROTL29(B[0],10);
A[11]=ROTL29(A[0], 11); B[11]=ROTL29(B[0],11);
A[12]=ROTL29(A[0], 12); B[12]=ROTL29(B|0],12);
A[13]=ROTL29(A[0], 13); B[13]=ROTL29(B[0],13);
A[14]=ROTL29(A[0], 14); B[14]=ROTL29(B[0],14);
A[15]=ROTL29(A[0], 15); B[15]=ROTL29(B|0],15);
A[16]=ROTL29(A[0], 16); B[16]=ROTL29(B|0],16);
A[17]=ROTL29(A[0], 17); B[17]=ROTL29(B|0],17);
A[18]=ROTL29(A[0], 18); B[18]=ROTL29(B|0],18);
A[19]=ROTL29(A[0], 19); B[19]=ROTL29(B|0],19);

21

AN AN AN AN N N N N N

— e e —— —— —— ——

[b et et i St W i B i B i i i

S N N N N N N N N

ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29

o~

— e e

[e R e i e B W i B i B i i

e N N N N N N N N

ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29
ROTL29

A
A
A
A
A
A
A
A

e S0 e 2 0

..~ = ~ .. L= = .. =< .. =
: oY s T S o S SR
S T RN R RS T R I AT DN TR AAR AR X
NN A A RN A A m D R m DM MM MM Mm
mmPRRfRflgyAfcmmccma@mommmc o ma/mc
< < [— — ¢ < — > < ——— N O — O
R s s A AR AR SR SR G R S R)
S e N e e e N S N
R R R R R R R R PR R RO R R R RO
BB YBBPIYRYY T T IR AAXILLILIILIRDE
— — e e e e e e (@ ™ AN) <H O © D~ 00 O O = AN N H 1O O I~ 0
SN FO OO0 A A A A AAAAAAN NN NN NN NN
<< << < << ddddddadd g << <<
| 1 1 | R { B | 1 1 e | 1 1 1 R | A O |
AAAAAAAAA
CCCCCCCCC
* * * * * * * * *

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

<

22

Appendix E
C Implementation of a Normal Basis Inverter in Fj2

The following C implementation (32 bit word size) uses the normal basis mul-
tiplication to find inverse of an element in Fg29. The following implementation is
based on the algorithm given in [25].

#define ROTL29(v, n)
(unsigned)(((v) < (n)) | ((v) > (29 - (n))))& OxFFFFFFF8
#define ROTR29(v, n) ROTL29(v, 29 - (n))

void inverse(unsigned int a, unsigned int* b){
b=a
Jea%)
b=ROTL29(b, 16);
mult(b, ROTR29(b, 8), b);
mult(b, a, b);
/*3%/
b=ROTL29(b, 8);
mult(b, ROTR29(b, 4), b);
mult(b, a, b);
/2%
b=ROTL29(b, 4);
mult(b, ROTR29(b, 2), b);
/1%
mult(b, ROTR29(b, 1), b);

23

