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Marine protected areas as dynamic networks

Marine Protected Areas | Help the oceans to mitigate and adapt to climate change by promoting intact and complex

ecosystems with high diversity and abundance of species.

Blue ca rbon MPAs promote genetic diversity Protecting coastal habitats maintains carbon
that provides raw material for sequestration and storage processes and
adaptation to climate change. prevents loss of stored carbon.

MPAs prevent the release
of carbon from sediments T ——
disturbed by habitat L e RediiGtioniof human
modifying fishing gear. : %% stressors in MPAs

2 promotes ecosystem

| recovery and prevents
biodiversity loss
enhancing livelihoods
and ecosystem services.

MPASs protect apex predatorsf| /= e COnnECtiVity

that confer increased stability
to coastal habitats that buffer 7 : &
climate-induced instabilities.

MPAs can provide stepping .
stones for dispersal and safe d d d ptat ion

Trophic regulation “anding zones" for
and tipping pOintS High abundance of mesopelagic climate migrants.

Large populations with greater fish in open ocean MPAs may
reproductive output often found enhance CO2 absorption and buffer
in MPAs will be more resistant to acidification near the surface through
extinction as climate stress increases. excretion of gut carbonates.
J Roberts et al (2017, PNAS)




Dynamics of climate change: range shifts
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Morley JW, Selden RL, Latour RJ, Frélicher TL, Seagraves RJ, et al. (2018) Projecting shifts in thermal habitat for 686 species on the North
American continental shelf. PLOS ONE 13(5): e0196127



Networks of protected areas: connectivity
and adaptation

Initial State

)
s T O\Q

Environmental grad (e.g. temperature
: /’

Xuereb A et al. (2018)



Integration of permanent and dynamic
conservation areas

A Stepping stones B Peripheral nodes
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D'Aloia et al. 2019



Blue carbon: carbon stored in coastal and marine ecosystems

‘Ecosystem engineers’ contribute to carbon sequestration

Global Distribution of Blue Carbon Ecosystems
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Ecosystem engineering: higher-order interactions and
hypergraphs

sl Spatial flow
===l engineering Consumer Consumer
—> cycling
¢ v “ etritus \
Hyper edge
% nutrient \\ ,‘\: j‘;\’f ‘
%(?ﬂ S |
@ Detritus
non-trophic (higher-order) (annotated) Hypergraph

interactions representation



Meta-ecosystem engineering: spatial subsidies
(detritus) in coastal ecosystems
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Cross-ecosystem fluxes increase meta-ecosystem efficiency
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d) Mathematical matrix-based meta-ecosystem framework




Tipping points: coral reef ecosystems
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Dynamics of climate change: rate-dependent impacts

Global average temperature change
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The rate of environmental change can drive
ecological response

Stability landscape at equilibrium

Non-equilibrium: the ecological states is
under a shifting stability ‘landscape’

dynamics




The rate of environmental change can decouple
bifurcation and transitions

system state
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(b) Noncatastrophic transition from
transcritical bifurcation
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Early-warning signals of bifurcations vs transitions

Non-catastrophic transcritical bifurcation leads to extinction
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Conclusions

Blue carbon: e
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