
A SAT Solver + Computer Algebra
Attack on the Minimum

Kochen–Specker Problem

by

Zhengyu Li

A research project
presented to the University of Waterloo

in fulfillment of the
research paper requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Waterloo, Ontario, Canada, 2023

© Zhengyu Li 2023



Author’s Declaration

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii



Abstract

One of the fundamental results in quantum foundations is the Kochen–Specker (KS)
theorem, which states that any theory whose predictions agree with quantum mechanics
must be contextual, i.e., a quantum observation cannot be understood as revealing a pre-
existing value. The theorem hinges on the existence of a mathematical object called a
KS vector system. While many KS vector systems are known, the problem of finding the
minimum KS vector system in three dimensions has remained stubbornly open for over
55 years. In this paper, we present a new method based on a combination of a Boolean
satisfiability (SAT) solver and a computer algebra system (CAS) to address this problem.
Our approach shows that a KS system in three dimensions must contain at least 24 vectors.
Our SAT+CAS method is over 35,000 times faster at deriving the previously known lower
bound of 22 vectors than the prior CAS-based searches. More importantly, we generate
certificates that allow verifying our results without trusting either the SAT solver or the
CAS. The increase in efficiency is due to the fact we are able to exploit the powerful
combinatorial search-with-learning capabilities of SAT solvers, together with the CAS-
based isomorph-free exhaustive method of orderly generation of graphs. To the best of our
knowledge, our work is the first application of a SAT+CAS method to a problem in the
realm of quantum foundations and the first lower bound in the minimum Kochen–Specker
problem with a computer-verifiable proof certificate.
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Chapter 1

Introduction

1.1 The Kochen–Specker Theorem and SPIN Axiom

Quantum Mechanics (QM) is often described as one of the most successful physical the-
ories of all time, and yet many questions regarding the very foundations of QM remain
unresolved. To address these foundational issues, many interpretations of QM (i.e., map-
pings from mathematical formalisms of QM to physical phenomena) have been proposed.
Hidden-variable theories are attempts at understanding counterintuitive QM phenomena
through a deterministic lens by positing the existence of (possibly) unobservable physical
entities or hidden variables [40] that standard QM theory does not account for (and hence
is deemed incomplete). Over the years, many constraints have been imposed on hidden-
variable theories, e.g., Bell’s inequalities that rule out the possibility of local hidden-variable
theories that are also in agreement with the predictions of QM [7]. In a similar vein, Simon
Kochen and Ernst Specker [61] proved their famous Kochen–Specker (KS) theorem in 1967
(and independently by John Bell in 1966 [6]) that essentially asserts that non-contextual
hidden variable theories cannot reproduce the empirical predictions of QM.

Informally, the KS theorem states that there is a contradiction between the SPIN axiom
of standard QM and the assumption of non-contextuality. The Stanford Encyclopedia
of Philosophy provides a comprehensive background to the KS theorem and stresses its
importance in the foundations of QM [40]. The proof of the KS theorem crucially relies
on the existence of a KS vector system (see Figure 1.1). More precisely, exhibiting the
existence of a KS vector system proves the KS theorem, which essentially states that the
unit sphere is not 010-colorable (defined in Section 3). The two following terms play a
crucial role in motivating the formal definition of the KS vector system in Section 3:
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Spin of an Elementary Particle: Spin is an intrinsic form of angular momentum car-
ried by elementary particles. Its existence can be inferred from the Stern–Gerlach experi-
ment [37]. In the context of this paper, a spin-1 particle is shot through a magnetic field in
a given direction and continues undisturbed, deflects up, or deflects down—corresponding
to 3 possible angular momentum states, namely 0, 1, and −1. Thus, the square of this
measurement is 0 or 1.

SPIN axiom: The SPIN axiom of QM states that the squared spin components of a
spin-1 particle are 1, 0, 1 in three pairwise orthogonal directions of measurement. Thus,
the observable corresponding to the question “is the squared spin 0?” measured in three
mutually orthogonal direction always produce yes in exactly one direction and no in the
other two orthogonal directions. We use the dual of the above form in the present work,
i.e., the ‘010’ convention rather than ‘101’, following Uijlen and Westerbaan [79]. The
SPIN axiom follows from the postulates of QM and is experimentally verifiable [48].

1.2 3-Dimensional Kochen–Specker Problem

The KS theorem rules out non-contextual hidden-variable theories via the existence of a
finite set of three-dimensional vectors, referred to as a KS vector system [61]. A KS vector
system (or simply a KS system) is a combinatorial object that witnesses a contradiction
between non-contextuality (i.e., the assumption that observables can be assigned values
prior to measurement and independent of measurement context) and the SPIN axiom of
QM. The first KS vector system, discovered in 1967, contains 117 vectors [61]. Another
theorem that relies on the existence of KS systems in an essential way is the “Free Will”
theorem of John Conway and Simon Kochen [28].

Since the publication of Kochen and Specker’s theorem in 1967, physicists and mathe-
maticians have wondered about the cardinality of the smallest-sized KS vector system (see
Table 1.1 and Section 1.3). Finding the minimum KS system, referred to as the minimum
KS problem, is not only of scientific and historical interest, but also has direct applica-
tions in quantum information processing [23]. For example, finding a minimum KS system
could enable applications in the security of quantum cryptographic protocols based on com-
plementarity [21], zero-error classical communication [31], and dimension witnessing [38].
Further, the large size of all known KS systems has hindered physicists from using them
for empirical tests of the KS theorem, similar to the empirical tests of Bell’s theorem [75].
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Authors Year Bound
Kochen, Specker 1967 ≤ 117
Jost 1976 ≤ 109
Conway, Kochen 1990 ≤ 31
Arends, Ouaknine, Wampler 2009 ≥ 18
Uijlen, Westerbaan 2016 ≥ 22
Li, Bright, Ganesh 2022 ≥ 23
Li, Bright, Ganesh /

2023 ≥ 24
Kirchweger, Peitl, Szeider

Table 1.1: A chronology of the bounds on the size of the minimum KS vector system
in three dimensions. The present work (presented at CanaDAM 2023) was performed
independently of Kirchweger, Peitl, Szeider (presented at IJCAI 2023).

1.3 Related Works

Over the last 55 or more years, many mathematicians and physicists such as Roger Penrose,
Asher Peres, and John Conway have attempted to find a minimum 3-dimensional KS
system (see Table 1.1). The first KS system was constructed in 1967 and it contained
117 vectors [61]. A KS system with 109 vectors was found by Res Jost [50]. The current
smallest known KS system in three dimensions contains 31 vectors and was discovered by
John Conway and Simon Kochen circa 1990 (see Figure 1.1). All these discoveries were
made analytically, without the assistance of computational methods.

In 2011, Arends, Ouaknine, and Wampler proved several interesting properties of KS
graphs and leveraged them to computationally establish that a KS system must contain
at least 18 vectors [4]. Seven years later, Uijlen and Westerbaan showed that a KS system
must have at least 22 vectors [79]. This computational effort used around 300 CPU cores
for three months and relied on the nauty software package [68] to exhaustively search for
KS graphs. Pavičić, Merlet, McKay, and Megill [72] have improved a variation of the
KS problem, one in which each vector is part of a mutually orthogonal triple. Under
this restriction they show a KS system must have at least 30 vectors in three dimensions
and in four or higher dimensions the minimum KS system has 18 vectors. However, in
three dimensions the gap between the lower and upper bounds on a KS system remains
significant and the minimum size remains unknown.

Another way of measuring the size of a d-dimensional KS system is the number of
mutually orthogonal “contexts” (cliques of size d in the orthogonality graph). Lisoněk,
Badzia̧g, Portillo, and Cabello [65] found a six-dimensional KS system with seven contexts
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Figure 1.1: The 31 vectors of the smallest known KS system (discovered by John Conway
and Simon Kochen circa 1990).
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and showed this is the simplest possible KS system allowing a symmetry parity proof of the
KS theorem. This KS system was later experimentally used by Cañas et al. [20] to perform
measurements verified to arise from a quantum system rather than a classical system.

Preliminary versions of the present work were announced at the 2022 SC-Square work-
shop, as well as at the 2023 Southeastern International Conference on Combinatorics,
Graph Theory and Computing, and at CanaDAM 2023. At the former two venues we pre-
sented searches for KS systems with up to 22 vectors, and at CanaDAM 2023 we presented
our work that extends this to a search for KS systems with up to 23 vectors. In each case
the searches were exhaustive and no KS systems were found. Thus, a KS system in three
dimensions must contain at least 24 vectors.

We recently became aware of the contemporaneous work of Kirchweger, Peitl and Szei-
der [56] who completed an independent search for KS systems with up to 23 vectors with
a similar approach as our technical report [62] but with a SAT modulo symmetries (SMS)
solver and an alternate definition of canonicity. They do not use orderly generation, as
their definition of canonical does not satisfy property (2) from Sec. 4.1, but otherwise
the SMS approach is similar in that it combines a SAT solver with a canonical checking
routine [58]. Their approach can also be used to generate proof certificates, though the
certificate verification was not performed with the exception of 5% of the certificates in the
order 23 search. Going forward, we would like to determine the strengths and weaknesses
of the SAT+CAS and SMS approaches and how they can be improved. Having said that,
one big difference is that CAS systems are not limited to symmetry breaking. For exam-
ple, discrete fourier transform (DFT) is applied in the SAT+CAS pipeline for the smallest
counterexample of the Williamson conjecture [16].
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Chapter 2

The SAT+CAS Paradigm for
Combinatorics

2.1 Boolean Satisfiability Problem

A basic understanding of Boolean logic is necessary to understand the encoding described
in Section 3. Each variable in Boolean logic can assume only one of two values denoted
by true or false. The variables are joined by Boolean operators. We summarize the most
commonly used Boolean operators in Table 2.1.

Name Symbol Arity

Negation ¬ 1
Conjunction ∧ n-ary
Disjunction ∨ n-ary
Implication → 2
Biconditional ↔ 2

Table 2.1: Some commonly used Boolean operators and their arities.

The interpretation of ∨ (disjunction/or), ∧ (conjunction/and), ¬ (negation/not) oper-
ators follows their intuitive meanings: x1∨x2∨· · ·∨xn is evaluated to be true exactly when
at least one xi is true. x1 ∧ x2 ∧ · · · ∧ xn is true exactly when all xi are true. ¬xi is true
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exactly when xi is false. We will define the terms “literal”, “clause”, and “formula”, which
will be used throughout this paper. A literal is a propositional variable or its negation.
A clause is a disjunction of literals. A formula in conjunctive normal form (CNF) is a
conjunction of clauses. For example, given variables x1, x2, x3, x4, we can construct the
formula (x1 ∨ x2) ∧ (¬x3 ∨ x4), which is in CNF, but a formula like (x1 ∧ x2) ∨ (x3 ∧ x4) is
not.

Boolean satisfiability (SAT) is one of the most influential problems in computer science
and mathematics, as it has been studied intensively since it was shown to be NP-complete
[29]. Over the last two decades, the design and implementation of conflict-driven clause-
learning (CDCL) SAT solving algorithms are able to solve multimillion variable instances
efficiently [36]. Even more surprisingly, SAT solvers frequently outperform special-purpose
algorithms designed for software engineering [22], verification [24], and AI planning [55].

2.2 Computer Algebra Systems

Computer algebra systems are powerful tools that have been used for decades by mathe-
maticians to perform symbolic computation in different branches of mathematics such as
abstract algebra, graph theory, combinatorics, number theory, etc. However, when applied
to problems with a large search space, computer algebra systems (CAS) lack the search
capabilities of SAT/SMT solvers. CAS contain state-of-the-art algorithms that can be in-
tergrated as subroutines to encode predicates relevant for a SAT solver. The key concept
of the SAT + CAS paradigm mentioned below is to embed the functionality of a computer
algebra system (CAS) within the inner loop of a CDCL SAT solver, thus achieving powerful
searching capabilities along with strong mathematical context and knowledge.

2.3 The SAT+CAS Paradigm for Combinatorics

In recent years we have witnessed the dramatic impact of satisfiability (SAT) solvers—
computer programs that take as input Boolean logic formulas and decide whether they have
solutions—in areas as diverse as AI, software engineering, program verification, program
synthesis, and computer security [9, 36]. Unfortunately, despite these fantastic achieve-
ments of SAT solvers, they struggle on certain problems such as those containing many
symmetries [69] or those requiring the usage of more advanced mathematical theories than
propositional logic [17]. Much work has been done to remedy these drawbacks, including
the development of sophisticated symmetry breaking techniques [3] and the development
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of solvers that support richer logic such as “SAT modulo theories” or SMT solvers [5].
However, the mathematical support of SMT solvers is quite limited when compared with
the vast mathematical functionality available in a modern computer algebra system (CAS).

In response to this need for a solver that combines the efficient search capabilities of
SAT solvers with the mathematical knowledge available in CASs, a new kind of solving
methodology was developed in 2015 by Zulkoski, Ganesh, and Czarnecki [85] and indepen-
dently by Ábrahám [1]. This SAT+CAS solving methodology has been successfully applied
to many diverse problems, including circuit verification [53, 66], automatic debugging [67],
finding circuits for matrix multiplication [43], computing directed Ramsey numbers [70],
and verifying mathematical conjectures [13]. For other work in the intersection of sym-
bolic computation and satisfiability checking, see Matthew England’s summary [34] of the
SC-Square project. In short, the SAT+CAS methodology has found wide application in
diverse fields that somehow require solving hard combinatorial problems.

In this paper, we use the SAT+CAS solving methodology (see Figure 2.1) to dramati-
cally improve the performance of the search for KS systems compared to all previous ap-
proaches developed to prove lower bounds for the minimum KS problem (see Section 2.5).
This is made possible via a combination of the powerful search and learning algorithms
used in modern SAT solvers with an “isomorph-free exhaustive generation” approach that
prevents the duplicate exploration of isomorphic parts of the search space by the solver. For
example, such an approach was recently used to resolve the Lam’s problem from projective
geometry [12]. Although isomorph-free exhaustive generation has been used extensively in
combinatorial enumeration, it has only recently been combined with SAT solving [52, 76].

The traditional approach to prevent a SAT solver repeatedly explore isomorphic sec-
tions of a search space is through the use of symmetry breaking techniques. [69]. One such
symmetry breaking approach is to add “static” constraints to the input formula at the be-
ginning of the search aimed at reducing the size of the search space [30, 42]. Unfortunately,
such an approach can be quite expensive in the sense that the number of added constraints
can be large (e.g., exponential in the number of variables of the formula that encodes the
problem-at-hand). Another approach is to “dynamically” break symmetries during the
solver’s search [77, 69] such as in the SAT modulo symmetries (SMS) paradigm [59, 57].
Our approach is similar in that it also dynamically adds constraints to the problem during
the solving process. However, an important difference is that the SAT+CAS paradigm
is more general since the functionality of CAS goes beyond breaking symmetries and can
be used to incorporate a wide range of mathematical domain knowledge. For example, in
the resolution of the smallest counterexample of the Williamson conjecture, we used the
Discrete Fourier Transform (DFT) as part of the CAS computations [16].

8



2.4 Automated Verification of Results

Verification is of utmost importance in the context of computer-assisted proofs, given the
mathematical nature of such computations—especially for nonexistence proofs. Fortu-
nately, the SAT+CAS paradigm naturally lends itself to automated verification, given the
fact that all modern solvers produce verifiable proofs. By contrast, all previous computer-
assisted proofs of lower bounds for the minimum KS problem are not verifiable.

Since our problem requires the solver to perform an exhaustive search, the validity of
our nonexistence result is crucially dependent on the encodings and the computational tools
that we use. For example, our nonexistence result crucially relies on the correctness of the
SAT solver’s search and the computer algebra system’s isomorph-free exhaustive generation
routine. Fortunately, our SAT+CAS method generates verifiable certificates that allow an
independent third party to certify that the SAT solver’s search is exhaustive and also that
the facts provided by the isomorph-free generation are correct. Thus, one does not need to
trust either the SAT solver or the CAS to trust that our results are correct—instead, one
only needs to trust the correctness of the proof verifier. This is quite significant, as SAT
solvers and CASs are complicated pieces of software that typically cannot be guaranteed
to be bug-free. By contrast, a proof verifier is a much simpler piece of software that can
be formally checked. In Section 5, we provide details on the verification techniques that
we used to certify our results.

2.5 Our Contributions

In this paper, we present the first successful design and implementation of a SAT+CAS
system with extensive verification aimed at problems in the realm of quantum foundations.
Specifically, we do so by leveraging and improving the SAT+CAS paradigm to incorporate
an isomorph-free generation method (as part of a new SAT+CAS tool, PhysicsCheck1) to
obtain tighter lower bounds on the minimum KS problem with four orders of magnitude
speedup over previous computational methods developed for this problem. We managed
to get this improvement in spite of the fact that we also generate verifiable proofs.

In more detail, we implement a robust push-and-run pipeline that incorporates a ver-
sion of the MapleSAT Boolean SAT solver [63], the SMT solver Z3 [32], and a CAS-based

1We provide an easy-to-use open source repository at https://github.com/curtisbright/

PhysicsCheck for readers to reproduce our results.
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isomorph-free exhaustive generation method known as orderly generation that we imple-
mented and integrated into MapleSAT. We also describe new encoding techniques that
enabled an efficient reduction of the minimum KS problem into a SAT problem. Finally,
we propose an extension of the standard Boolean UNSAT proof certificate format DRAT
(deletion, reverse asymmetric tautology) that enables us to construct certificates of nonex-
istence for KS systems without needing to trust either the SAT solver or the CAS. We
provide a modified DRAT-trim proof checker that can check the nonexistence proof cer-
tificates we produced [81].

Our new approach establishes a lower bound of 24 for the minimum size of a KS system,
as opposed to the previous best of 22.2 Our approach is over 35,000 times more efficient
than the previous best approach [79] and we solidify previous results by finding candidates
missing in previous results (see Section 5). We also verified all certificates computed by the
SAT and CAS solvers (see Section 5.2) in contrast to Kirchweger et al. [56] who verified
5% of the certificates in order 23.3

In order to make the report relatively self-contained, we provide a thorough background
on the KS problem and previous work (Sec. 1.3). Following this, we motivate our SAT
encoding of the KS problem (Sec. 3), provide a detailed explanation of orderly generation
in the context of the SAT+CAS method (Sec. 4.1), describe our usage of an SMT solver
for embeddability checking (Sec. 4.2), and describe how we exploit parallelism (Sec. 4.3).
We also provide comparison of our results and runtime with previous work (Sec. 5).

2At the SC-Square workshop in 2022, we presented a preliminary version of this work in which we
improved the lower bound to 23. The lower bound has also been improved to 24 independently by
Kirchweger et al. [56] (see the remarks in Sec. 1.3).

3We have fully verified all results for KS systems up to order 22. The results in order 23 have been
fully verified except for a small number of cubes (see Section 4.3) whose verification is ongoing.
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Figure 2.1: A flowchart of our SAT+CAS based toolPhysicsCheck for solving the KS
problem. The instance generator generates the SAT instance encoding the KS problem
(see Section 3), and the instance is simplified using CaDiCaL [8]. The simplified instance
is passed to the MapleSAT+CAS tool (see Section 4.1) either sequentially or in parallel
using cube-and-conquer [45]. Finally, an embeddability checker applies the SMT solver Z3
to determine whether the candidates are embeddable (see Section 4.2).
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Chapter 3

Boolean Encoding of the
Kochen–Specker Problem

3.1 Encoding Vector Systems as Undirected Graphs

KS Vector System: A KS vector system can be represented in multiple ways and we
describe it as a finite set of points on a sphere. As a consequence of the SPIN axiom,
the squared-spin measurements along opposite directions must yield the same outcome.
Therefore, two collinear vectors are considered to be equivalent. To define a KS vector
system, we first formally define a vector system and the notion of 010-colorability. For the
purposes of this paper, we limit ourselves to the 3-dimensional version of the KS problem as
the size of the minimum Kochen–Specker system in higher dimensions is already known [72].

Definition 1 (Vector System) A vector system is a finite set of non-collinear points
on the unit sphere in R3.

A {0, 1}-coloring of a vector system is an assignment of 0 and 1 to each vector in the
system. The colorings of interest to us are described in the following definition.

Definition 2 (010-Colorability of Vector Systems) A vector system is 010-colorable
if there exists an assignment of 0 and 1 to each vector such that:

1. No two orthogonal vectors are assigned 1.

12



2. Three mutually orthogonal vectors are not all assigned 0.

Definition 3 (KS Vector System) A Kochen–Specker (KS) vector system is a
vector system that is not 010-colorable.

Definition 4 (Orthogonality Graph) For a vector system K, define its orthogonality
graph GK = (V,E), where V = K, E = { (v1, v2) : v1, v2 ∈ K and v1 · v2 = 0 }.

Essentially, the vertices of GK are the vectors in K, and there is an edge between two
vertices exactly when their corresponding vectors are orthogonal. Similarly, the notion of
010-colorability can be translated from a vector system to an orthogonality graph.

Definition 5 (010-colorability of Graphs) A graph G is 010-colorable if there is a
{0, 1}-coloring of the vertices such that the following two conditions are satisfied simulta-
neously:

1. No two adjacent vertices are colored 1.

2. For each triangle, the vertices are not all colored 0.

It is not always the case that an arbitrary graph has a corresponding vector system,
but if one does exist then we say that such a graph is embeddable.

Definition 6 (Embeddable Graph) A graph G = (V,E) is embeddable if it is a sub-
graph of an orthogonality graph for some vector system.

Being embeddable implies the existence of a vector system K whose vectors have a
one-to-one correspondence with the vertices of G in such a way that adjacent vertices are
assigned to orthogonal vectors. An example of an unembeddable graph is the cyclic graph
C4 on 4 vertices, as the orthogonality constraints force a pair of opposite vertices to be
mapped to collinear vectors (which are not allowed in a vector system).

Definition 7 (KS Graph) An embeddable and non-010-colorable graph is called a KS
graph.

Observation 1 There exists a KS vector system if and only if there exists a KS graph.

13



3.2 Encoding Undirected Graphs as Boolean Formu-

las

As stated earlier, every KS vector system K can be converted into a KS graph GK. Each
vector in K is assigned to a vertex in GK, so that if two vectors are orthogonal, then their
corresponding vertices are connected.

We say a KS graph is minimal if the only subgraph that is also a KS graph is itself.
Arends, Ouaknine, and Wampler [4] proved that a three-dimensional minimal KS graph
must satisfy the following properties:

1. The graph does not contain the 4-cycle graph C4 as a subgraph.

2. Each vertex of the graph has minimum degree 3.

3. Every vertex is part of a 3-cycle triangle graph C3.

We encode these three properties and the non-010-colorability of the KS graph in con-
junctive normal form (CNF), as described below. If a SAT solver produces solutions for
such an encoding, then these solutions are equivalent to graphs that satisfy all of the
above-mentioned four constraints.

A simple undirected graph of order n has
(
n
2

)
potential edges, and we represent each edge

as a Boolean variable. The edge variable eij is true exactly when the vertices i and j are
connected, where 1 ≤ i < j ≤ n. For convenience, we let both eij and eji denote the same
variable since the graphs we consider are undirected. We also use the

(
n
3

)
triangle variables

tijk denoting that distinct vertices i, j, and k are mutually connected. In Boolean logic this
is expressed as tijk ↔ (eij ∧eik∧ejk) which in conjunctive normal form is expressed via the
four clauses ¬tijk∨eij, ¬tijk∨eik, ¬tijk∨ejk, and ¬eij∨¬eik∨¬ejk∨tijk. Again, the indices
i, j, and k of the variable tijk may be reordered arbitrarily for notational convenience.

3.2.1 Encoding the Squarefree Constraint

To encode the property that a Kochen–Specker graph must be squarefree, we construct
encodings that prevent the existence of any squares in the graph. Observe that three
squares can be formed on four vertices. Therefore, for every choice of four vertices i, j, k,
l, we use clauses ¬eij∨¬ejk∨¬ekl∨¬eli, ¬eij∨¬ejl∨¬elk∨¬eki, and ¬eil∨¬elj∨¬ejk∨¬eki to
encode the fact that a solution produced by the solver must be squarefree. By enumerating
over all possible choices of four vertices and constructing the above CNF formula, we force
the graph to be squarefree. The total number of clauses used is 3 ·

(
n
4

)
.
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3.2.2 Encoding the Minimum Degree Constraint

For each vertex i, to ensure that i is connected to at least three other vertices, we take
each subset S of {1, . . . , i− 1, i+1, . . . , n} with cardinality n− 3 and construct the clause∨

j∈S eij. By enumerating over all such subsets we enforce a minimum degree of 3 on
vertex i. Thus, constructing similar formulae for all vertices 1 ≤ i ≤ n, enforces that any
vertex in the graph has a degree of at least 3. The total number of clauses used is therefore
n ·

(
n−1
n−3

)
= n ·

(
n−1
2

)
.

3.2.3 Encoding the Triangle Constraint

We encode the property that every vertex is part of a triangle as follows: for each vertex
i, we require 2 other distinct vertices to form a triangle, and there are

(
n−1
2

)
possible

triangles containing i. At least one of those triangles must be present in the KS graph—
this is encoded by the clause

∨
j,k∈S tijk where S is {1, . . . , i − 1, i + 1, . . . , n} and j < k.

Using this clause for each 1 ≤ i ≤ n ensures that every vertex is part of a triangle and
hence there are n triangle clauses.

3.2.4 Encoding the Noncolorability Constraint

Recall that the key property of a KS graph is that it is non-010-colorable. As stated earlier,
a graph is non-010-colorable if and only if for all {0, 1}-colorings of the graph a pair of
color-1 vertices is connected or a set of three color-0 vertices are mutually connected.

For each {0, 1}-coloring, a KS graph has a set V0 of color-0 vertices and a set V1 of
color-1 vertices. Given a specific such coloring, the clause∨

i,j∈V1
i<j

eij ∨
∨

i,j,k∈V0
i<j<k

tijk

encodes that this coloring is not a 010-coloring of a graph—since either a pair of color-1
vertices is connected or three color-0 vertices are mutually connected. Note that we have
to generate such a clause for all possible colorings, and conjunct them together to obtain
a non-colorability constraint for graphs of order n. An assignment that satisfies such a
constraint corresponds to a graph that is not 010-colorable under any possible coloring.
Observe that in order n the total number of such clauses is 2n.
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Fortunately, an empirical observation allows cutting the size of formula dramatically:
{0, 1}-colorings with more than ⌈n

2
⌉ color-1 vertices are unlikely to be 010-colourings and

in practice are not useful in blocking 010-colourable graphs. Put differently, by dropping
the constraints with |V1| ≥ ⌈n

2
⌉ we reduce the formula size drastically (making the formula

easier to solve) and the corresponding increase in the number of satisfying assignments
is small enough that these candidates can be ruled out via post-processing (Section 5.2).
In fact, for graphs up to order 23, no additional satisfying assignments (or candidate KS
graphs) were generated.

3.2.5 Encoding Static Isomorphism Blocking Clauses

Following [26], we use symmetry breaking constraints that enforce a lexicographical order
among rows of the graph’s adjacency matrix. These small number of additional constraint
enable us to statically block many isomorphic graphs.

Given an adjacency matrix A of a graph, define Ai,j as the ith row of A without
columns i and j. Codish et al. prove that up to isomorphism every graph can be represented
by an adjacency matrix A for which Ai,j is lexicographically equal or smaller than Aj,i for
all 1 ≤ i < j ≤ n.

We express that Ai,j = [x1, x2, . . . , xn] is lexicographically equal or less than Aj,i =
[y1, y2, . . . , yn] using 3n − 2 clauses and auxiliary variables a1, . . . , an−1 [60]. The clauses
are ¬xk ∨ yk ∨ ¬ak−1, ¬xk ∨ ak ∨ ¬ak−1, and yk ∨ ak ∨ ¬ak−1 for k = 1, . . . , n − 1. The
literal ¬a0 is omitted and the clause ¬xn ∨ yn ∨ ¬an−1 is also included.
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Chapter 4

The PhysicsCheck Pipeline

4.1 Orderly Generation via SAT+CAS

The symmetry breaking constraints described in Section 3.2.5 do not block all isomorphic
copies of adjacency matrices. Thus, a crucial part of the PhysicsCheck pipeline is the
use of a SAT+CAS combination of a SAT solver and an isomorph-free generation routine
(the CAS part). The orderly isomorph-free generation approach was developed indepen-
dently by Read et al. [74] and Faradvzev et al. [35]. It relies on the notion of a canonical
representation of an adjacency matrix.

Definition 8 (Canonical Graph) An adjacency matrix M of a graph is canonical if
every permutation of the graph’s vertices produces a matrix lexicographically greater than
or equal to M , where the lexicographical order is defined by concatenating the above-diagonal
entries of the columns of the adjacency matrix starting from the left.

An intermediate matrix of A is a square upper-left submatrix of A. If A is of order n
then its intermediate matrix of order n − 1 is said to be its parent, and A is said to be a
descendant of its intermediate matrices.

The orderly generation method is based on the following two consequences of Defini-
tion 8:

1. Every isomorphic class of graphs only has exactly one canonical representative.

2. If a matrix is canonical, then its parent is also canonical.
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Figure 4.1: A flowchart of the orderly generation algorithm implemented as part of Physics-
Check’s SAT+CAS architecture.

Note that the contrapositive of the second property implies that if a matrix is not
canonical, then all of its descendants are not canonical. The orderly generation process only
generates canonical matrices and they are built starting from the upper-left. Therefore,
any noncanonical intermediate matrix that is encountered during an orderly generation
exhaustive search can be discarded, as none of its descendants will be canonical.

As described in Figure 4.1, in our SAT+CAS implementation, when the SAT solver
finds an intermediate matrix the canonicity of this matrix is determined by a canonicity-
checking routine implemented in the PhysicsCheck system. If the matrix is noncanonical,
then a “blocking” clause is learned which removes this matrix (and all of its descendants)
from the search. Otherwise, the matrix is canonical and the SAT solver proceeds as normal.

When a matrix is noncanonical, the canonicity-checking routine also provides a “wit-
ness” of this fact (a permutation of the vertices that produces a lex-smaller adjacency ma-
trix). We combine this process with the symmetry breaking clauses of Codish et al. that
canonical matrices can be shown to satisfy [26, Def. 8].

The orderly generation technique provides a speedup that seems to increase exponen-
tially in the order n of the KS graph—see Table 4.1, which provides experimental running
times comparing the SAT+CAS approach against SAT-only and CAS-only approaches.
These timings were run on an AMD EPYC 7502P CPU running at 1.5 GHz and the CAS
compared against was the nauty graph generator [68] with the same configuration from [79].

As described in Figure 2.1, we simplify the SAT instance using the SAT solver CaD-
iCaL [8] before solving the instance using MapleSAT [64]. As a preprocessing step, we
also run the orderly generation process on graphs with up to 12 vertices and add the gen-
erated blocking clauses directly into the instance provided to CaDiCaL—this allows the
simplification to incorporate some of the knowledge derived from the orderly generation
process.
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Speedup Speedup
n SAT+O.G. over SAT over CAS
17 0.99 m 8.9× 25.6×
18 1.65 m 161.6× 276.1×
19 14.03 m 834.3× 677.6×

Table 4.1: The solving time for SAT + orderly generation and the speedup factor provided
in each order 17 ≤ n ≤ 19 when compared against SAT-only and CAS-only approaches. We
did not provide the speedup factor for n > 19 since the SAT-only and CAS-only instances
could not be solved within 12,000 minutes.

4.2 Embeddability Checker using SMT Solver

We refer to the solutions generated by the SAT solver as KS candidates. Note that we have
to additionally check whether a KS candidate is embeddable in order to detect whether
it is a KS graph (and hence corresponds to a KS vector system). Hence, we perform
an embeddability check on every KS candidate generated by the SAT+CAS solver of
PhysicsCheck.

Operationally, a graph G is said to be embeddable if every pair of adjacent G-vertices
can be mapped to two orthogonal vectors on the unit sphere in R3 (refer to Definition 6).
Otherwise, we say that G is unembeddable.

Our embeddability checking algorithm consists of two parts. The first part is an inte-
gration of the vector assignment algorithm of [79] that finds all possible vector assignments
describing the orthogonal relations between the vectors vi in a KS candidate defined by a set
of edges E. A vector assignment is a set of edge pairs C = {(eij, eik), (elm, eln), . . . } ⊆ E2

where each pair of edges share one common vertex and each pair is disjoint from each
other, meaning the same edge cannot exist in more than one pair. Each pair (eij, eik) in C
can be interpreted as a cross product relationship between the vectors vi, vj, and vk, since
the presence of eij and eik in the KS graph means that vector vi must be orthogonal to
both vj and vk in any embedding of the candidate.

The second part of the algorithm applies an SMT solver to determine the satisfiability of
a system of nonlinear equations generated from a particular vector assignment as described
below. More precisely, an assignment generated by Uijlen and Westerbaan’s algorithm is
converted into a set of cross and dot product equations, and these equations are passed to
the theorem prover Z3 [32] that solves the equations over the real numbers. We denote the
vector corresponding to vertex vi as Vi in Z3, where Vi is a 3-tuple of real numbers.
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Given a specific vector assignment generated by the previous algorithm, the system of
constraints is as follows:

1. If (eij, eik) ∈ C, we add the cross product constraint Vi = Vj × Vk.

2. If eij is one of the edges of E that is not contained in any of the pairs of C, we add
the dot product constraint Vi · Vj = 0.

3. If i ̸= j then Vi must not be collinear with Vj, so we add the noncollinearity constraint
Vi × Vj ̸= 0⃗.

A free vector is one that has not been fixed as the cross product of two other vectors.
Of all possible assignments, we first choose the one with the least number of free vectors,
since in practice such an assignment is likely to be solved more quickly.

It is important to note that for any vector assignment, each edge of the KS graph
is encoded into either constraint 1 or 2, making the encoding shorter and more efficient
than a naive encoding. Constraint 3 requires two vectors to be noncollinear rather than
only being nonequal, since we do not enforce vectors to have unit length for reasons of
efficiency. This is a harmless optimization, since vectors can be projected onto the unit
sphere without disturbing these constraints.

We also fix two orthogonal vectors to be the standard vectors (1, 0, 0) and (0, 1, 0) to
cut down on the number of free variables. To check whether a graph is embeddable, we
use Z3 to determine whether these nonlinear arithmetic constraints are satisfiable over
the real numbers. Z3 applies a CDCL-style algorithm to decide the satisfiability of such
systems [51]. If a solution is found, it is an assignment of vertices to vectors that satisfies
all orthogonality constraints and the graph is therefore embeddable.

Embeddability checking of large graphs can be further optimized by precomputing
minimal unembeddable graphs, as defined below.

Definition 9 (Minimal Unembeddable Graph) An unembeddable graph G is said to
be a minimal unembeddable graph if any proper subgraph of G is embeddable.

A graph is unembeddable if and only if it contains a minimal unembeddable subgraph.
To optimize embeddability checking, we precomputed all minimal unembeddable graphs
of orders up to and including 12. It suffices to only consider squarefree graphs in this
enumeration, as the square graph C4 is minimally unembeddable itself. Moreover, we only
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(a) (b)

Figure 4.2: The only two minimal nonembeddable graphs of order 10. These are the
smallest squarefree graphs that are not embeddable.

consider squarefree graphs with a minimum degree of 2 or greater, as a graph containing a
vertex of degree 0 or 1 is not minimally unembeddable. If it was, removing that vertex from
the graph yields another unembeddable subgraph—in contradiction to the supposition the
graph was minimally unembeddable.

The embeddability of most graphs can be determined using the first assignment (with
the fewest free vectors) in less than 1 second. If the satisfiability of an assignment is not
determined within 10 seconds, we move on to a different orthogonality assignment and
attempt the satisfiability check again until we determine the embeddability of a graph.
Given a KS candidate, if the candidate contains a minimal unembeddable subgraph, then
the candidate must be unembeddable. Using this property significantly speeds up the
embeddability checking process, since nearly all candidates contain an unembeddable sub-
graph of order 10, 11, or 12 (see Section 5). In Figure 4.2 we provide the two minimal
nonembeddable graphs of order 10 which appear frequently as subgraphs of KS candidates.

4.3 Parallization using Cube-and-Conquer

The cube-and-conquer SAT solving paradigm was developed in [46] to solve hard combi-
natorial problems. The method applies two (possibly) different types of SAT solvers in
two stages: First, a “cubing solver” splits a SAT instance into a large number of distinct
subproblems specified by cubes—formulas of the form x1 ∧ · · · ∧ xn where xi are liter-
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als. Second, a “conquering solver” solves each subproblem under the assumption that its
associated cube is true (more precisely, the conjunction of the original instance and the
cube).

The cube-and-conquer method has empirically been shown to be effective at quickly
solving large satisfiability problems when the cubing solver generates many cubes encoding
subproblems of similar difficulty. It has since been applied to solve huge combinatorial
problems such as the Boolean Pythagorean triples problem [44], the computation of Schur
number five [41], and a SAT-based resolution of Lam’s problem [12].

In this Section, we discuss parallelization of the SAT+CAS solving process. In our
implementation, parallelization is applied by dividing the SAT instance into smaller sub-
problems using the cube-and-conquer approach [46]. The approach applies the lookahead
solver march cu [46] to partition a hard problem into many cubes and offers very efficient
solving time for some combinatorial problems.

During the splitting, the lookahead solver tries to find the next variable that will split
the search space the most evenly. Each splitting variable will be added to the SAT instance
as a new unit clause, generating two subproblems (one with a positive unit clause and one
with a negative unit clause) that can be solved in parallel.

In prior applications of the cube-and-conquer technique [45], the cubing solver generates
a collection of cubes before the conquering solver is invoked. Subsequently, each of these
subproblems is solved using the conquering solver in parallel. However, this approach
presents two primary challenges. Firstly, the generated cubes might exhibit imbalanced
solving times, especially since the cubing solver does not have the ability to call the CAS
to incorporate isomorph-free generation. Secondly, the proof size for each subproblem will
also vary, making it difficult to allocate an appropriate amount of memory to individual
cores. In PhysicsCheck, we implement a slight modification of traditional cube-and-conquer
practices to resolve the above challenges.

In our proposed method, the cubing solver operates on the CNF instance, generating
a set of cubes until a fixed number of edge variables eij in each subproblem have deter-
mined values (either through added unit clauses or unit propagation). Subsequently, each
subproblem is passed to the conquering solver (MapleSAT with orderly generation) and
solved in parallel. To manage the termination of each subproblem, we set a condition such
that if the proof size exceeds 7 GiB, the subproblem is further cubed and solved by in-
creasing the number of edge variables eij to determine. In addition, we augment instances
that need to be cubed further with learned clauses derived from MapleSAT, encompassing
noncanonical blocking clauses, unit clauses, and candidate blocking clauses. This iterative
process continues until all subproblems can be solved with corresponding proofs of size less
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than 7 GiB. We overcome the challenges posed by varying proof sizes by implementing this
slight modification and it allows us to verify all generated proof certificates with at most
4 GiB of memory allocation.
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Chapter 5

Results

5.1 A New Lower Bound of the KS Problem

Given the CNF file with the encoded constraints, we use the aforementioned encoding
techniques combined with the SAT+CAS approach to verify all previous results on KS
systems up to order 21 with a speedup factor of over four order-of-magnitudes. Moreover,
we improve on the best known lower bound for a minimum KS system (see Table 5.1).
The computations up to order 22 were done on an Intel Xeon E5-2667 CPU and the
computations in order 23 were done on Intel E5-2683 CPUs that belong to Canada’s
national advanced research computing platform. All computations are measured in the
total CPU time reported by the solver. Our search in order 21 is about 35,000 times faster
than the previous computational search of Uijlen and Westerbaan which was distributed
on approximately 300 CPU cores and took roughly three months [79]. Furthermore, we
achieve comparable runtime to Kirchweger, Peitl and Szeider’s search [56] using a SAT
modulo symmetries (SMS) solver. Uijlen and Westerbaan were unable to determine the
embeddability of one particular graph of order 14. Using our embeddability checking
approach, this graph is quickly shown to be unembeddable. By comparing our sets of
minimal unembeddable subgraphs with Uijlen and Westerbaan’s online dataset of small
graphs1, we find our minimal unembeddable subgraphs from order 10 to 12 to be identical
to theirs up to isomorphism.

We compared our Kochen–Specker candidates with Uijlen and Westerbaan’s findings,
and verified their conclusion that there is no KS system with strictly less than 22 vectors.

1https://kochen-specker.info/smallGraphs/
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n Candidates Simplifying Solving
17 1 0.01 h 0.00 h
18 0 0.01 h 0.02 h
19 8 0.07 h 0.15 h
20 147 0.06 h 1.25 h
21 2,497 0.31 h 18.36 h
22 88,282 0.44 h 360.75 h
23 3,747,950 963.28 h 52,619.16 h

Table 5.1: A summary of our results on orders 17 ≤ n ≤ 23 (in hours). The second column
lists the number of KS candidates generated by PhysicsCheck.

In order 20, we found four additional KS candidates that were not present in the collection
of Uijlen and Westerbaan, indicating that their search missed some KS candidates. We
present one of the missing graphs in Figure 5.1. We verified that these four additional
graphs satisfy the constraints of a KS candidate and therefore would be KS systems were
they embeddable, but unfortunately they are not.

In order 23, we adjust the colorability encoding in Section 3.2.4 by reducing the max-
imum number of color-1 vertices from ⌈n/2⌉ to ⌈n/3⌉ to counter the exponential blowup
in the number of clauses. As a result, the SAT solver found 5,160,001 solutions in order
23, but 1,412,051 solutions could be 010-colored (using more than ⌈n/3⌉ color-1 vertices).
After these 010-colorable graphs were removed, we were left with 3,747,950 candidates and
this matches the count of Kirchweger et al. [56].

All KS candidates of order less than 24 are not embeddable. The embeddability check
is done quickly since over 99.99% of the candidates contain one of the minimal nonembed-
dable subgraph up to order 12 and this can be checked cheaply. Even though all minimal
nonembeddable subgraphs up to order 14 are found by Uijlen and Westerbaan [79], only
minimal unembeddable graphs up to order 12 are used in the PhysicsCheck pipeline since
we computed them ourselves (see Table 5.2). Specifically, there is a single order-22 candi-
date and there are 41 order-23 candidates that do not contain a minimal nonembeddable
subgraph up to order 12.

For verification purposes, we also check if those graphs contain a minimal unembeddable
subgraph up to order 14 using the list computed by Uijlen and Westerbaan [79]. We
found that all candidates less than order 23 contain a minimal unembeddable subgraph
up to order 14, and there are two order-23 candidates that do not contain any known
minimal unembeddable subgraphs (see Figure 5.2), corroborating the findings obtained by
Kirchweger et al. [56]. The candidates that do not contain any minimal nonembeddable
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Figure 5.1: One of the four graphs with 20 vertices that was not present in Uijlen and
Westerbaan’s enumeration. The four graphs satisfy all constraints mentioned in Section 3,
but are not embeddable, and therefore do not constitute a KS system.

subgraph up to order 12 are determined to be unembeddable using Z3. Therefore, we
conclude that the minimum size of a KS system is at least 24.

5.2 Formal Verification of Results

In order to verify the computations produced by the SAT solver, we enabled DRAT proof
logging in the SAT solver so that nonexistence certificates are generated. This makes it
possible for a proof verifier to provide an independent certification of the correctness of the

Order Squarefree + Min. Degree 2 Min. Unembed. Runtime
4–9 164 0 30 s
10 563 2 4.1 m
11 3,257 5 1.3 h
12 23,699 10 27 h

Table 5.2: Counts for the number of minimal unembeddable graphs in orders up to 12 and
the computation time for the embeddability check.

26



(a) (b)

Figure 5.2: The only two KS candidates up to order 23 that do not contain minimal
nonembeddable graphs up to and including order 14. These two graphs are determined to
be unembeddable by Z3.

solver’s conclusion (assuming the correctness of the constraints in the SAT instance).

A DRAT proof consists of a trace of the clauses learned by the solver during its exe-
cution. A proof verifier checks that each clause can be derived from the previous clauses
using simple rules known to be logically consistent. The CAS-derived noncanonical block-
ing clauses cannot be verified using the normal rules, so they were specially tagged to be
verified separately. Instead, they are justified via a CAS-derived permutation that, when
applied to the blocked adjacency matrix, produces a lex-smaller adjacency matrix—and
therefore provides a witness that the blocked matrix is noncanonical and is safe to block.

The CAS-derived clauses in the DRAT proof were prefixed by the character ‘t’ to
signify they should be trusted and we modified DRAT-trim [81] to trust such clauses. The
trusted CAS-derived clauses were separately verified by a permutation-applying Python
script that applied the witnesses produced by the CAS to verify the blocked matrices were
noncanonical. Similarly, when a KS candidate was found the solver learns a trusted clause
blocking the candidate (so that the search continues until all candidates have been found).
The DRAT proof ends with the empty clause which by definition is not satisfiable. If the
verifier is indeed able to verify the empty clause then we can have confidence that the SAT
solver’s search missed no candidates without needing to trust the solver itself.

We have fully certified the results up to and including order 22. The uncompressed
proofs are about 1.9 TiB in total. For order 23, we have verified more than 95% of the
cubes, and we estimate that the uncompressed proof size for order 23 would exceed 40 TiB.
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The certification in orders 22 and 23 required using cube-and-conquer (as described in
Sec. 4.3) to ensure that each DRAT proof could be verified with at most 4 GiB of memory.
While the certification of the non-existence proofs of order 23 is ongoing, we have done
many cross-checks on it as described below.

We have conducted extensive cross-verification on all the results (KS candidates) pro-
duced by the SAT solver. For example, each KS candidate is passed into a verification
script implemented using the NetworkX [39] graph package to verify that they satisfy all
encoded constraints (see Section 3). In the order 23 search, some 010-colorable graphs that
are colorable with more than ⌈n/3⌉ color-1s were discarded during this step.

We also test the embeddability pipeline by performing a verification on all embeddable
subgraphs. Specifically, if a graph is embeddable and corresponds to a set of vectors, we
check that no pair of vectors in the set are collinear, and a pair of vectors are orthogonal
if their corresponding vertices are connected.

The candidate counts of the previous search [79] were larger than ours because the
previous search did not require each vertex to be part of a triangle. However, we cross-
verified that all our KS candidates from order 17 to 21 (except for the four new candidates
that we discovered) are isomorphic to the previously known candidates. The previously
known candidates were discovered using the graph theory package nauty—a very different
approach than ours. Our candidates were verified to be isomorphic to the previously known
candidates using both SageMath [78] and NetworkX [39].
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Chapter 6

Future Work and Conclusion

6.1 Future Work

With our current methods, we predict that order 24 can also be solved given proper com-
putation power and parallization, though it is unlikely that an exhaustive search can be
performed up to order 31. Consequently, the pursuit of further improvements in the Physic-
sCheck pipeline becomes imperative. At present, three of these strategies are under rigorous
investigation.

One approach involves a deliberate construction of the exploration domain through
the expansion of ‘special’ subgraphs into KS graphs by adding vertices and edges. This is
motivated by the observation that certain subgraphs appear frequently in many KS graphs;
thus, limiting the search space by fixing the existence of such subgraphs could allow us
to find an embeddable candidates between order 24 to 30 more quickly even though the
search is not exhaustive.

Another approach is to introduce techniques that produce more balanced cubes. Cur-
rently, the cube-and-conquer process generates cubes that exhibit imbalances in terms of
their solving complexity. By generating cubes that are similar in solving time, we minimize
the solving time for the hardest cube, and therefore improve the wall-clock solving time of
the KS problem.

The last approach is to investigate the additional graph-theretical properties that a
KS graph must satisfy, then encode them in conjunctive normal form to reduce the search
space of SAT solving.
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6.2 Conclusion

We give a computer-assisted proof showing that a Kochen–Specker vector system in three
dimensions must contain at least 24 vectors. In addition, we provide a computational
speedup of over four orders of magnitude over the previously used approach of Uijlen
and Westerbaan [79]. For the first time, we successfully implemented and applied the
SAT+CAS paradigm along with orderly isomorph-free generation to provide a robust
pipeline for problems in quantum foundations. The validity of our work is further confirmed
by Kirchweger, Peitl, Szeider [56], who performed an independent search for KS systems
with up to 23 vectors with a similar approach as our technical report [62] using a SAT mod-
ulo symmetries (SMS) solver. Compared to previous work, our approach is less error-prone
since we use heavily-tested proof-generating SAT solvers such as MapleSAT and CaDiCaL.
We verified the produced proofs using independent proof checkers, meaning our result does
not rely on the correctness of MapleSAT or CaDiCaL.

Finding the minimum KS system has remained stubbornly open for over 55 years. It is
not only a problem of great importance to quantum foundations, but has direct applica-
tions to various fields of quantum information processing, such as quantum cryptographic
protocols [21], zero-error classical communication [31], and dimension witnessing [38]. As
a consequence, a wide variety of techniques have been developed to address this question
over the past several decades. We add a novel class of techniques to this body of work.

The SAT+CAS paradigm has been successfully used to resolve a number of math-
ematical problems in combinatorics, number theory, and geometry that had previously
remained unsolved for many decades [13, 43, 12]. With this work we extend the reach of
the SAT+CAS paradigm, for the first time, to resolving combinatorial questions in the
realm of quantum foundations.
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[35] I A Faradžev. Constructive enumeration of combinatorial objects, 1978.

33



[36] Vijay Ganesh and Moshe Y. Vardi. On the unreasonable effectiveness of SAT solvers,
December 2020.

[37] Walther Gerlach and Otto Stern. Der experimentelle nachweis der richtungsquantelung
im magnetfeld. Zeitschrift für Physik, 9:349–352, 1922.

[38] Otfried Gühne, Costantino Budroni, Adán Cabello, Matthias Kleinmann, and Jan-
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