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Abstract

Fluid simulation has increasingly important applications in computer graphics, ani-
mation, gaming, and virtual reality. As our virtual and animated worlds become more
complex, the ability to model and animate viscous fluid flow in an efficient manner is
crucial. The main hallmarks of a successful fluid simulation are computational efficiency
and correct realistic behaviour. For simulating highly viscous fluids such as mud, tar,
lava, molasses, and honey, the inclusion of the viscosity component of the incompressible
Navier-Stokes equations can decrease the efficiency of the fluid solver by several orders
of magnitude. Stable implicit methods to deal with the viscosity portion of fluid solvers
have been developed since the early 2000’s and are incorporated into standard animation
software, yet computational efficiency continues to be a limiting factor in the use of these
methods.

The primary objective of this study is to develop an efficient “drop-in” replacement
of the operator-split viscosity solve of the incompressible Navier-Stokes fluid equations.
We present an approach that exploits efficiency by using a cheaper discretization in the
interior of the liquid, and preserves realistic viscous fluid behaviours by employing a more
expensive but accurate discretization near the air-liquid interface.

We propose and evaluate three novel mixed discretization approaches to do so, resulting
in both SPD and non-symmetric matrices. We evaluate all three mixed discretization’s
ability to solve the two PDEs in their respective regions via a mixed spatial convergence
test of the viscosity step alone. We see that the non-symmetric mixed formulation passes
six of six convergence tests while the two SPD formulations only pass one of the six. We
subsequently integrate two of these hybrid viscosity discretizations into a comprehensive 2D
fluid solver. We then assess both the computational expenses and the associated qualitative
behaviors of the mixed viscosity models, comparing them against the benchmark models
that do not incorporate mixing. Compared to the more expensive benchmark viscosity
model, we see that these mixed methods always incur computational cost benefits for a
given fixed solver, and that overall cost benefits can occur while qualitatively retaining
viscous behaviours.
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Chapter 1

Introduction

Fluid simulation in the context of computer graphics plays a vital role in films, gaming,
and virtual reality through the use of computer graphics software. The key criteria for
a successful fluid simulation lie in achieving both computational efficiency and accurate
realistic behavior. However, when dealing with highly viscous fluids and incorporating the
viscosity component into the incompressible Navier-Stokes equations, the efficiency of a
given fluid solver often experiences a significant decline from solving a linear system three
times the size of the pressure projection in 3D. This inclusion of the viscosity component
is necessary for modeling viscous fluids like mud, lava, tar, molasses, honey, and many
more. Stable grid based implicit methods for addressing the viscosity aspect have been
under development since the early 2000s, integrated into standard animation software [25].
Nevertheless, efficiency remains the primary limiting factor for these methods and we aim
to address this through the use of a mixed discretization scheme.

The primary objective of this study is to develop an efficient drop-in replacement of the
operator-split viscosity solve of the Navier-Stokes fluid equations to (1) exploit efficiency
in the interior of the fluid by using the less accurate yet more efficient discretization of
Carlson et al. [7], and (2) employ the more accurate discretization of Batty and Bridson [4]
near the surface of the fluid to achieve the correct boundary condition to preserve known
viscous fluid behaviours. After covering related work and mathematical background in
Section 2, we propose and evaluate three novel mixed discretization coupling schemes to
do so in Section 3. Two of the three mixed methods yield SPD matrices. We develop a
novel mixed discretization spatial convergence test in Section 4.1 of the altered viscosity
steps to test each mixed method’s ability to solve the two PDEs in their respective regions.
In Section 4.2 we then integrate two of these hybrid viscosity methods, one SPD and one
non-symmetric method, into a comprehensive 2D fluid solver. We then assess both the
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computational expenses and the associated qualitative behaviors of the mixed viscosity
models, comparing them against benchmarks that do not incorporate mixing.
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Chapter 2

Background

This chapter covers the necessary background information of this research project. Related
work in Eulerian viscosity and efficiency acceleration techniques for both viscosity and
pressure projection are presented. We then present the Mathematical background necessary
for this project. We briefly discuss general methods and techniques for full fluid solvers.
Next, an in-depth mathematical background on Eulerian viscosity integration is covered,
which is what this project aims to accelerate the efficiency of through a mixed treatment
of the presented models.

2.1 Related Work

Eulerian Viscous Animation in Computer Graphics. Harlow and Welch in 1965 began the
initial attempts at modelling viscous fluids from solving the Navier-Stokes fluid equations
in the context of Computational Fluid Dynamics (CFD) [14]. Miller and Pearce [18]
introduced viscous fluids to the field of computer graphics by approximating melting and
flowing viscous substances via extending particle systems with inter-particle spring forces.
Similarly, Terzopoulos et al. [26] showcased a finite element method which melted solids
into molten-state fluids with long-range attraction and short-range repulsive forces between
particles. These previous two techniques used ad hoc methods to achieve viscous effects
which were not derived by tackling the viscosity portion of a Navier-Stokes solver. Building
upon Harlow and Welch’s work on MAC grid fluid simulation, Foster and Metaxas [11] were
the first to use the 3D Navier-Stokes equations to simulate viscous fluids, with explicit
time integration requiring small time steps. The first implicit time integration scheme for
viscosity was introduced by Stam [15], in which they made the simplification that viscosity
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is constant throughout the fluid to reduce the viscosity equation to three separate un-
coupled diffusion-like symmetric positive definite (SPD) linear systems for each velocity
component rather than one much larger system of coupled velocity components. This was
extended to be used with level sets to accurately track the liquid surface by Foster and
Fedkiw [10]. Carlson et al. further extended this diffusion-like viscosity treatment with
free surfaces as well as a temperature-dependent variable viscosity model throughout the
liquid [7]. In the results there existed artificial dampening of liquid surrounded by air,
which was manually rectified. Fält and Roble resolved the artificial dampening from not
neglecting solid boundary contributions to the linear system matrix diagonal [9].

The decoupled implicit velocity scheme in Carlson et al. [7] which arises from assuming
constant viscosity will be referred to as ‘Laplacian Viscosity’ or ‘Laplacian Form Viscos-
ity’ throughout this project since the three separate SPD systems each arise from the 3D
Laplacian operator acting on the velocity field. Unfortunately the free surface boundary
condition which arises in Laplacian Viscosity fails to yield correct viscous fluid behaviours
such as buckling, rotating and bending. This is due to the decoupled nature of the Lapla-
cian Viscosity which enforces the incorrect free surface boundary condition. Batty and
Bridson fix this by not assuming constant viscosity to reduce the shear stress tensor, leav-
ing the velocity components coupled to one another in the viscosity solve to give one much
larger SPD system involving all velocity components simultaneously [4]. This was the
first implicit treatment of viscosity which did not drop the velocity-coupling cross term,
and we refer to this velocity-coupled form as the ‘Full Form Viscosity’ throughout this
project. Batty and Bridson use a variational principle to automatically enforce the zero-
traction free surface condition at the liquid-air boundary for the operator-split viscosity
equation and they show the equivalence between this discrete minimization approach with
the time-discretized operator-split viscosity equation [4]. The correct enforcement of the
operator-split version of the zero-traction free surface boundary condition in [4] is what
yields visually compelling buckling, rotating, and bending behaviours of viscous fluids with
liquid-air free surfaces, even for when viscosity is constant throughout the liquid. A uni-
fied pressure-velocity coupled Stokes solver was developed by Larionov et al. [16] which
follows a similar variational principle to correctly enforce the true pressure-velocity cou-
pled zero-traction free surface boundary condition, yielding slightly more realistic coiling
effects compared to the Full Form Viscosity, albeit a much larger SPD system involving all
velocity components along with pressure must be solved simultaneously.

Accelerated methods for increased efficiency in Eulerian viscosity. The three main time-
implicit Eulerian viscosity models have been introduced. From most to least efficient as
well as least to most compelling viscous fluid behaviour, we have Laplacian Viscosity, Full
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Form Viscosity, and the pressure-velocity coupled unsteady Stokes solver of Larionov et al.
[16]. Considering that the latter two methods give compelling viscous phenomena, along
with the Full Form Viscosity being the most widely adopted in commercial software and not
having an extremely large discrepancy in results compared to the unsteady Stokes solver,
we now discuss acceleration methods which aim to increase the efficiency of these two
models. Eulerian Viscosity involving spatial adaptivity applied to the Full Form Viscosity
Equation 2.6 to yield dimension reduction has been implemented by Batty and Houston
[5] via adaptive tetrahedral meshes and Goldade et al. [13] via octrees in a respective finite
volume and finite difference setting. Aanjaneya et al. [2] design a multigrid preconditioner
combined with a conjugate gradient (CG) solver to increase the viscosity solve speed of
the Full Form Viscosity. Panuelos et al. [21] use incompressible polynomial vector fields
to represent interior regions of the fluid to accelerate the unsteady Stokes solver.

Accelerated methods for Pressure Projection. Literature involving accelerating the operator-
split pressure Equations 2.7, which equivalently yield a Poisson problem, will now be dis-
cussed. Adaptive methods here may be applicable to viscosity since both involve solving
a SPD linear system of similar stencil nature. Spatial adaptivity via octrees have long
been examined in the pressure projection context, beginning in the work of Popinet [22].
Losasso et al. [17] as well as Shi and Yu [24] extend this to SPD formulations for liquid and
smoke. Tetrahedral meshes were utilized in conjunction with an algebraic multigrid solver
to address the Poisson problem in Chentanez et al. [8]. Goldade et al. [12] introduce
a surface-only approach to adjust the pressure projection to achieve realistic immersed
bubbles interacting with fluid while also developing multigrid-based preconditioners for
CG. They further use spatial adaptivity via affine vector fields, similar to Panuelo et al.
[21] who built upon this framework for dimension reduction to accelerate the pressure
solve. Aanjaneya et al. [1] use power diagrams and octrees along with a multigrid matrix
preconditioner to accelerate the Poisson problem.

2.2 Mathematical Background

2.2.1 Navier-Stokes Fluid Equations

The incompressible Navier-Stokes fluid equations are
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∂u⃗

∂t
= −u⃗ · ∇u⃗− 1

ρ
∇p+ 1

ρ
∇ · τ + 1

ρ
f⃗ (2.1)

∇ · u⃗ = 0 (2.2)

τ = µ
(
∇u⃗+ (∇u⃗)T

)
(2.3)

where u⃗ is the velocity field, µ is the viscosity coefficient, p is the fluid pressure, ρ is the
fluid density, f⃗ is external body forces (e.g. gravity), and τ is the viscous shear stress
tensor. Equation 2.1 is essentially a = Fnet

m
for a continuum fluid, taking into account

advection forces, pressure forces, viscous forces, and external body forces. Equation 2.2
is a continuity equation referred to as the incompressibility condition, ensuring that the
mass of the fluid is conserved.

Operator splitting is a very common strategy used to numerically solve these equations
in computer graphics, and we adopt this approach in this project and focus on editing the
viscosity step. The full set of equations to solve after operator splitting are

∂u⃗

∂t
= −u⃗ · ∇u⃗ (2.4)

∂u⃗

∂t
=

1

ρ
f⃗ (2.5)

∂u⃗

∂t
=

1

ρ
∇ ·
(
µ
(
∇u⃗+ (∇u⃗)T

))
(2.6)

∂u⃗

∂t
= −1

ρ
∇p s.t. ∇ · u⃗ = 0. (2.7)

A standard operator-split numerical simulation involves the following: A time step ∆t
is chosen, adhering to the Courant-Friedrichs-Lewy (CFL) condition for numerical stabil-
ity. An initial divergence-free velocity field gets advected forward by ∆t by integrating
Equation 2.4, then gravity plus any other body forces, viscosity, and finally the pressure
projection are sequentially integrated forward by ∆t via solving Equation 2.5, Equation
2.6, and Equation 2.7 respectively with each respective output velocity being the initial
input velocity of the next equation. The final pressure projection in Equation 2.7 leaves
the resultant velocity field divergence-free for the subsequent advection step in the next
time step.

This project builds upon Eulerian fluid simulations in which quantities are tracked
at fixed locations in space [6], as opposed to tracking specific particle quantities in the
Lagrangian viewpoint. We further adopt the widely-used marker-and-cell (MAC) grid
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introduced by Harlow and Welch [14] which employs a staggered grid for storing velocity
components, pressure, and other fluid quantities at different locations. In two dimensions

Figure 2.1: A 2D staggered MAC grid for uniform grid resolution N = 5 with u velocities
stored at shaded orange circles, v velocities at shaded blue circles, pressure values at shaded
black circles, and off-diagonal discretized τ locations at shaded black squares.

a staggered MAC grid has pressure values at the centre of the cell, while the horizontal
u-component velocity is sampled at the centers of the vertical cell faces and the vertical
v-component velocity is sampled at the centers of the horizontal cell faces. This gives two
u-velocity values to the left and right of each pressure value, and two v-velocity values
below and above of each pressure value, making central differences robust in the spatial
discretizations presented later on. See Figure 2.1 for a MAC grid example. This project
focuses on alternative ways to increase the efficiency of viscosity integration, specifically
Equation 2.6 and so only a brief mention of the most standard methods surrounding the
other non-viscosity components of the full fluid solver will be presented here. Equation
2.4 is the advection equation which is usually solved with a semi-Lagrangian procedure
[6]. Body forces are traditionally integrated via explicit methods [6] then added to the
intermediate velocity value obtained after solving the advection equation before continuing
onward with the viscosity solve. An in-depth overview on numerically integrating the
viscosity Equation 2.6 is outlined in Section 2.2.3. Pressure projection in Equations 2.7
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is commonly solved by plugging the first equation of Equation 2.7 into the second to
obtain the associated Poisson problem ∇2p = ρ

∆t
∇ · u⃗. This Poisson equation is implicitly

integrated with finite difference or finite volume methods [6, 3, 23, 19].

2.2.2 Viscosity Boundary Conditions

The remainder of this chapter focuses on viscosity integration of Equation 2.6 after operator-
splitting the Navier-Stokes fluid equations. The true zero-traction free surface condition
at the liquid-air interface is

(−pI + τ)n⃗ = 0 (2.8)

with the identity matrix I and the surface normal vector n⃗. In the absence of surface
tension, this condition enforces no traction on the plane of the surface. This pressure-
velocity coupled boundary condition was only originally solved recently via a pressure-
velocity coupled stokes solver developed by Larionov et al. [16]. Enforcing Condition 2.8
is what gives the known viscous fluid behaviours such as viscous buckling, rotation, and
coiling.

The operator splitting approach we adopt in this document solves viscosity separately
from the pressure projection. The free surface boundary condition is thus also split between
the separate solvers, yielding a simplified zero-traction free surface condition that only
the shear stress tensor applied to the free surface normal vector need be zero during the
viscosity solve

τ n⃗ = 0 (2.9)

while the pressure free surface condition in the separate pressure projection is that the
pressure must be zero at the free surface (pI = 0). This decoupled operator-split simplifi-
cation of the free surface condition still yields convincing and compelling viscous behaviour
such as buckling and rotational movement, while maintaining desirable efficiency benefits
from solving smaller systems of equations compared to the pressure-viscosity coupled sys-
tem in the Stokes solver of Larionov et al. [16]. Further, this decoupled approach is widely
adopted and used in commercial fluid animation software such as SideFX Houdini [25].

Solid boundary conditions are not the focus of this project, yet are quite simple with
u⃗ = u⃗solid being the no-slip Dirichlet condition [6].

2.2.3 Viscosity Discretization of Time and Space

To solve Equation 2.6 numerically, choices must be made regarding the spatial and tempo-
ral discretization schemes. A standard first order time-implicit method such as Backwards
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Euler gives numerical stability irrespective of the time-step chosen, ∆t, and is much more
stable compared to explicit methods such as Forward Euler which limits this time step size.
Higher order implicit methods can be used, but are not as common as implicit Euler for
simulating fluids in computer graphics and so we choose to use this temporal discretization
scheme.

The semi-discretized version of Equation 2.6 according to Implicit Euler is

u⃗ = u⃗old +
∆t

ρ
∇ ·
(
µ
(
∇u⃗+ (∇u⃗)T

))
(2.10)

where u⃗old is the velocity field directly before the viscosity solve, while u⃗ denotes the new, fi-
nal velocity field which results after the viscosity solve. We now seek a spatial discretization
which can solve Equation 2.10 while also enforcing the free surface boundary condition 2.9.
One can choose to solve the first while then separately dealing with the complex boundary
condition, or one can follow the insights and simple yet robust scheme of Batty and Bridson
[4] which employs a variational interpretation of viscosity to solve Equation 2.10, while also
automatically enforcing the complex free surface boundary condition by construction. We
use this variational interpretation and derive the corresponding stencil and matrix system
now. Following Batty and Bridson [4], the variational interpretation of viscosity seeks an
unknown velocity field which minimizes the following energy functional E1[u⃗] with respect
to the unknown velocity field

E1[u⃗] =

∫∫∫
Ω

(
ρ

2∆t

∥∥u⃗− u⃗old
∥∥2 + µ

∥∥∥∥∇u⃗+ (∇u⃗)T

2

∥∥∥∥2
F

)
dV (2.11)

where || ||F denotes the Frobenius norm, Ω is the fluid domain, and dV is a differential
fluid volume. E1[u⃗] is both convex and quadratic in u⃗, and after discretizing and mini-
mizing we end up with symmetric positive definite (SPD) system which is conducive to
solving efficiently with iterative linear matrix solvers such as a preconditioned CG algo-
rithm. Discretizing E1[u⃗] in space with finite differences and sums is the next step. In two

dimensions instead of three for simplicity, we have u⃗ =

[
u
v

]
storing the x-component and

y-component velocities u and v, and the above volume integral becomes an area integral
over the 2D fluid domain with differential area dA. For a 2D square MAC grid arranged as
in Figure 2.1 with uniform grid resolution N = Nx = Ny giving ∆x = ∆y, the integral can
be approximated with the following discrete sums and central finite differences for partial
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derivatives:∫∫
Ω

ρ
∥∥u⃗− u⃗old

∥∥2 dA =

∫∫
Ω

ρ
(
(u− uold)2 + (v − vold)2

)
dA

≈
∑
i,j∈Ω

V u
i+ 1

2
,j
ρi+ 1

2
,j

(
ui+ 1

2
,j − uold

i+ 1
2
,j

)2
∆x2

+
∑
i,j∈Ω

V v
i,j+ 1

2
ρi,j+ 1

2

(
vi,j+ 1

2
− vold

i,j+ 1
2

)2
∆x2

∫∫
Ω

µ

∥∥∥∥∇u⃗+ (∇u⃗)T

2

∥∥∥∥2
F

dA =

∫∫
Ω

µ

∥∥∥∥[ ux
uy+vx

2
uy+vx

2
vy

]∥∥∥∥2
F

dA =

∫∫
Ω

µ

(
u2x + v2y +

(uy + vx)
2

2

)2

F

dA

≈
∑
i,j∈Ω

V p
ijµij

(
ui+ 1

2
,j − ui− 1

2
,j

∆x

)2

∆x2 +
∑
i,j∈Ω

V p
ijµij

(
vi,j+ 1

2
− vi,j− 1

2

∆x

)2

∆x2

+
∑
i,j∈Ω

V τ12

i+ 1
2
,j+ 1

2
µi+ 1

2
,j+ 1

2

(u
i+1

2 ,j+1
−u

i+1
2 ,j

∆x
+

v
i+1,j+1

2
−v

i,j+1
2

∆x

)2
2

∆x2

(2.12)

The above involves a spatially varying viscosity µij which is piecewise constant as well
as the crucial volume fraction arrays V u, V v, V p, V τ12 being the key to enforcing the
traction-free free surface boundary condition 2.9. These volume fractions (area fractions
in 2D) vary across the domain and denote the fraction of liquid inside a control volume,
with one being completely filled with liquid and zero being completely empty. Location-
wise in 2D, V u

i+ 1
2
,j
, V v

i,j+ 1
2

, V p
ij , and V

τ12

i+ 1
2
,j+ 1

2

are ∆x×∆x area squares with inner midpoints

respectively populated at ui+ 1
2
,j, vi,j+ 1

2
, pij, and τ

12
i+ 1

2
,j+ 1

2

quantity locations as in Figure 2.2.

Note that V p equivalently holds the volume fractions for the diagonal stress components
τ11 and τ22 since these are located at the same location as pressure values. We choose to
follow similar notation to Batty and Bridson [4] regarding these volume fractions.

The above discretized sums support spatially variable viscosity. In the following con-
texts we confine ourselves to a fixed viscosity coefficient µ̃ throughout the domain since we
later combine this method with the Laplacian Viscosity formulation which can not sup-
port variable viscosity. Discretizing then minimizing the integral E1[u⃗] via differentiating
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with respect to ui+ 1
2
,j and then equating to zero gives the following implicit update for the

x-component velocity in 2D with fixed viscosity constant µ̃ for the Full Form Viscosity:

ui+ 1
2
,j +

∆t µ̃

∆x2(ρV u)i+ 1
2
,j

( (
2V p

ij + 2V p
i+1,j + V τ12

i+ 1
2
,j+ 1

2
+ V τ12

i+ 1
2
,j− 1

2

)
ui+ 1

2
,j − 2V p

ijui− 1
2
,j

− 2V p
i+1,jui+ 3

2
,j − V τ12

i+ 1
2
,j+ 1

2
ui+ 1

2
,j+1 − V τ12

i+ 1
2
,j− 1

2
ui+ 1

2
,j−1

+V τ12

i+ 1
2
,j+ 1

2
(vi,j+ 1

2
− vi+1,j+ 1

2
) + V τ12

i+ 1
2
,j− 1

2
(vi,j− 1

2
− vi+1,j− 1

2
)

)
= uold

i+ 1
2
,j

(2.13)

See Appendix A with α = 1 for a detailed derivation of Equation 2.13. The equation for
vi,j+ 1

2
is of a very similar form. Equation 2.13 is a nine-point stencil in 2D and we see that

the u and v velocity components are coupled to one another, yielding one SPD system
to solve for both u and v degrees of freedom simultaneously. Multiplying Equation 2.13
through by (ρV u)i+ 1

2
,j the resultant SPD system can be expressed as

(WV uvWρ + 2∆t µ̃DTKWV τD)u⃗ = WV uvWρu⃗
old (2.14)

where u⃗ here stores all discrete u and v degrees of freedom in a lexicographic order, each
W is a diagonal matrix holding the corresponding volume fractions (WV uv , WV τ ) or fluid

density (Wρ), D is a discretized linear operator such that Du⃗ ≈ ∇u⃗+(∇u⃗)T

2
and K is a

diagonal matrix which doubles the contribution of the off-diagonal stress components τ 12

since off-diagonal components contribute twice to the Frobenius norm from the symmetric
form of the shear stress tensor (τ 12 = τ 21). Note that WV τ contains both the V τ12 and V p

volume fraction, while WV uv holds both V u and V v volume fractions.

Under the assumption of a constant viscosity throughout the liquid, µ̃, the divergence
operator in Equation 2.6 can be distributed to both terms, giving a ∇ · (∇u⃗)T term which
can then be re-expressed as ∇(∇ · u⃗) which simply vanishes under the incompressibility
constraint ∇· u⃗ = 0. This simplifies the Full Form Viscosity Equation 2.6 to the Laplacian
Form of viscosity

∂u⃗

∂t
=
µ̃

ρ
∇2u⃗ (2.15)

which is equivalent to a re-scaled heat equation for each velocity component. This Lapla-
cian Form of viscosity was introduced to computer graphics by Stam [15] and the first
implicit formulation with free surfaces was implemented by Carlson et al. [7]. The dif-
ferent components of velocity are decoupled from one another from having no cross terms
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ui+ 1
2
, jui− 1

2
, j ui+ 3

2
, j

ui+ 1
2
, j− 1

ui+ 1
2
, j+ 1

vi, j− 1
2

vi, j+ 1
2

vi+ 1, j− 1
2

vi+ 1, j+ 1
2

Full Form Stencil

ui+ 1
2
, jui− 1

2
, j ui+ 3

2
, j

ui+ 1
2
, j− 1

ui+ 1
2
, j+ 1

Laplacian Form Stencil

Figure 2.2: 2D Stencil partners for a general discrete x-velocity DOF ui+ 1
2
,j. For the

discretized shear stress tensor, diagonal components such as τij and τi+1,j are located at
the left and right black shaded circles, while off-diagonal nodal stress components such
as τi+ 1

2
,j+ 1

2
and τi+ 1

2
,j− 1

2
are located at cell corners at the upper and lower shaded black

squares. Note that pij and pi+1,j are also located at τij and τi+1,j. Corresponding control
volumes for the volume fractions V p and V τ12 are shaded yellow and red, centred at their
respective quantity. Control volumes for volume fractions V u and V v are centred at u and
v DOFs.

from the vanished (∇u⃗)T term, and thus it is much less costly to solve compared to the
velocity-coupled Full Form Viscosity. The Laplacian Form has a five-point neighbor stencil
for each separate system in both 2D and 3D, while the Full Form Viscosity has a nine-point
stencil for the 2D coupled system and a 13-point stencil for the 3D coupled system. The
semi-discrete form of Equation 2.15 according to implicit Euler is

u⃗ = u⃗old +
∆t µ̃

ρ
∇2u⃗ (2.16)

and the equivalent energy functional to this semi-discrete form is

E0[u⃗] =

∫∫∫
Ω

( ρ

∆t

∥∥u⃗− u⃗old
∥∥2 + µ ∥∇u⃗∥2F

)
dV (2.17)
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which gives the incorrect natural free surface boundary condition from minimizing, ∇u⃗ n =
0. Again, following the derivation in Appendix A with α = 0, after discretizing then
minimizing we get the implicit Laplacian Viscosity update for the x-component velocity

ui+ 1
2
,j +

∆t µ̃

∆x2(ρV u)i+ 1
2
,j

( (
V p
ij + V p

i+1,j + V τ12

i+ 1
2
,j+ 1

2
+ V τ12

i+ 1
2
,j− 1

2

)
ui+ 1

2
,j − V p

ijui− 1
2
,j

−V p
i+1,jui+ 3

2
,j − V τ12

i+ 1
2
,j+ 1

2
ui+ 1

2
,j+1 − V τ12

i+ 1
2
,j− 1

2
ui+ 1

2
,j−1

)
= uold

i+ 1
2
,j

(2.18)

which has no coupling to the y-velocity v and yields an independent SPD linear system
for the u degrees of freedom (DOFs). See Figure 2.2 for the u stencil. A similar stencil
and SPD system arises for the v DOFs. The matrices which arise are M-matrices with
the real part of all eigenvalues being positive. This property can increase the efficiency of
preconditioned CG. The exact form of the matrices are below

(WV uWρ +∆t µ̃WV τM)u = WV uWρu
old, (WV vWρ +∆t µ̃WV τM)v = WV vWρv

old

with M being the discrete Laplacian operator matrix. Theses systems are identically
diffusion systems up to a scaling.

This research project seeks to develop a mixed discretization scheme to (1) exploit
efficiency in the interior of the liquid by implementing an efficiently solved Partial Differ-
ential Equation (PDE) 2.15 throughout a potentially large portion of the interior and (2)
employ the more accurate PDE 2.6 near the liquid-air surface of the fluid. Adopting the
latter allows our method to preserve and satisfy the zero-traction free surface boundary
condition 2.9 which is necessary to giving convincing viscous fluid behaviours from viscous
forces near the liquid surface.
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Chapter 3

Methodology

In this chapter, we delineate avenues explored for a mixed viscosity discretization to in-
tegrate the less costly Laplacian Viscosity Equation 2.15 in the vast interior of the fluid,
while integrating the more costly Equation 2.6 near the air free surface to get the correct
boundary conditions. We propose three novel mixed discretization coupling approaches to
do so. The first approach uses the corresponding stencil for whichever region the DOF is
located in, the second approach treats the inner discretization split boundary as a pseudo
free surface, and the third combines and minimizes a mixed energy combination between
the Laplacian and Full Form energies E0[u⃗] and E1[u⃗] in different regions of space. We
describe these approaches in Sections 3.1.1 – 3.1.3. We further evaluate each novel dis-
cretization’s ability to solve the two PDEs in their respective regions in the subsequent
Section 4.1 via a mixed spatial convergence test of the viscosity step alone. We then move
forward with plugging two of these mixed viscosity discretizations into a full 2D fluid solver
in the subsequent Section 4.2 and evaluate computational costs as well as the corresponding
qualitative viscous fluid behaviours.

3.1 Mixed Discretizations Explored

Consider a region of liquid whose boundary consists of a free surface and (optionally) a
solid boundary, as depicted in Figure 3.1. We divide the space into the outer air region,
Ωair, an outer layer of liquid ΩF , and an inner region of liquid Ω∇2 . We refer to the inner
liquid boundary between ΩF and Ω∇2 as ΓD.

Given these domains, we wish to apply the Laplacian Viscosity discretization in Ω∇2 ,
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the Full Form Viscosity in ΩF , and determine a strategy for coupling the two together
across ΓD.

Ω∇2

ΩF ΓD

Ωair

Figure 3.1: Mixed domain example set-up for a circular liquid. The Laplacian Viscosity
is implemented in the interior Ω∇2 region while the Full Form Viscosity is implemented in
ΩF to handle the liquid-air free surface as well as liquid-solid boundary interactions.

3.1.1 Per-DOF Stencil-Selection

The first strategy we propose for constructing a mixed discretization is to respectively use
stencil Equation 2.13 for the DOFs in ΩF and stencil Equation 2.18 for DOFs in Ω∇2 .
A consequence from using this treatment is that the resultant sparse matrix is no longer
SPD as we have lost symmetry from asymmetric stencil arms interacting with one another
across the ΓD boundary. Preconditioned CG solvers can no longer be used, and we must
resort to preconditioned Krylov subspace solvers like the Generalized Minimal Residual
Method (GMRES) or the Bi-Conjugate Gradient Stabilized method (BiCGStab).
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3.1.2 Free Surface Mixed Approach

The second method we propose is one which treats the inner liquid discretization boundary
ΓD as a free surface, with air on the other side, from each discretization domain’s respective
point of view. It should be noted that the separate methods are not using their own DOFs
— Each discretization makes use of the same DOFs in the region near the surface, so those
DOFs receive forces from both discretizations, and we recover a single continuous velocity
field.

A matrix AΩ∇2 is constructed from minimizing Equation 2.17 in a liquid-filled Ω∇2

region with a free surface located at ΓD, assuming that both ΩF and Ωair contain air.

A matrix AΩF
is constructed from minimizing Equation 2.11 in a liquid-filled ΩF region

with a free surface located at ΓD, assuming that both Ω∇2 and Ωair contain air.

Since minimizing Equations 2.17 or 2.11 on their own with free surfaces yield SPD
systems, both AΩ∇2 and AΩF

are SPD matrices. We now add both together to get

A = AΩ∇2 + AΩF
(3.1)

which is also SPD. Matrix A is the resultant Free Surface Mixed discretization matrix used
in the viscosity solve for this method. Since A is symmetric, preconditioned CG can be
used to solve it.

3.1.3 Smoothing-α Mixed Approach Between E1[u⃗] and E0[u⃗]

This third mixed method seeks to minimize a combination of the two energies correspond-
ing to the Full Form Viscosity and Laplacian Viscosity, respectively Equation 2.11 and
Equation 2.17, at different locations in space. Specifically, the combined energy to mini-
mize is

Eα[u⃗] =

∫∫∫
Ω

(
ρ

2∆t

∥∥u⃗− u⃗old
∥∥2 + α

(
µ

∥∥∥∥∇u⃗+ (∇u⃗)T

2

∥∥∥∥2
F

)
+

(1− α)

2

(
µ ∥∇u⃗∥2F

))
dV

(3.2)
with α ∈ [0..1] being piecewise constant, varying in space, and corresponding to different
control volumes in space just like volume fractions. See Appendix A for the minimization
of Equation 3.2 where we similarly discretize and define α analogously to volume fractions.
Eα[u⃗] is clearly equivalent to E1[u⃗] in Equation 2.11 for when all α array values are 1, and
equivalent to E0[u⃗] in Equation 2.17 for when all α array values are 0.
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An α value of zero corresponds to a pure Laplacian Viscosity control volume, while an
α value of one corresponds to a pure Full Form Viscosity control volume, with α ∈ (0, 1)
a combination of the two. Since E0[u⃗] and E1[u⃗] are convex and quadratic in u⃗, adding a
combination of the two also yields a convex and quadratic function and thus Eα[u⃗] yields a
desirable property — a SPD linear system to solve with preconditioned CG. This method
is actually a more general case of the previous Free Surface Mixed Method introduced in
Section 3.1.2 which involved a sharp transition of the α arrays from one to zero at ΓD while
moving deeper into the liquid. We implemented both gradual and sharp transitions of α
in space via letting α be determined by a smoothstep function.

For example, in the mixed spatial convergence test results in Table 4.1 with a vertical
line splitting the domain into two distinct discretization areas Ω∇2 and ΩF as in Scenario (1)
of Figure 4.2, α = α(x) is a simple scalar function equivalent to a translated smoothstep(x)
function which we chose to transition from zero to one from x = [π

4
, 3π

4
]:

α(x) =


0 if x ≤ π

4
,

3
(

x−π
4

3π
4
−π

4

)2
− 2

(
x−π

4
3π
4
−π

4

)3
if π

4
< x < 3π

4
,

1 if x ≥ 3π
4
.

(3.3)

In the mixed spatial convergence test we also tested cases in which the smoothstep(x)
transitions from zero to one from x = [0, π] as well as x = [9π

20
, 11π

20
].

3.2 Inner Liquid Discretization Boundary ΓD

This section explains a simple low-overhead algorithm to define the discretization splitting
boundary ΓD to divide the inner-liquid discretization regions ΩF and Ω∇2 . We refer to this
algorithm as the Square-radius Neighbor Liquid Content algorithm. This algorithm labels a
DOF as an interior Ω∇2 DOF if all of the neighboring cells (within a local neighborhood) are
fully filled with fluid. In two dimensions (for simplicity) we define the local neighborhood
to be a square region surrounding the DOF. We thus define a distance parameter d which
is the half square ‘radius’ length to look in all directions, and then check if all the DOFs
contained within the surrounding square of side length 2d are fully filled with liquid via
examining the volume fractions.

For the Per-DOF Stencil Method of Section 3.1.1, we do the following. If all the volume
fractions within the surrounding square are one (fully liquid), then this DOF is inside Ω∇2 .
Otherwise, the DOF is closer to the air-liquid surface and we label it a ΩF DOF. The u
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Scene 1 of Section 4.2 Scene 2 of Section 4.2

Figure 3.2: Visual depiction of the Square-radius Neighbor Liquid Content Algorithm in
Section 3.2 which is used to label DOFs as either Laplacian Ω∇2 DOFs (green) or Full
Form ΩF DOFs (red). These are the initial condition frames for the scenes of Section 4.2.
Scene 1 uses N = 180 and Scene 2 uses N = 150.

DOFs only check nearby u DOF volume fractions V u, while the v DOFs only check nearby
v DOF volume fractions V v.

For the Free Surface Mixed Method of Section 3.1.2, we initially construct AΩF
by

letting the u DOF control volume fractions V u within ΩΩF
be one, and then we construct

a pseudo free boundary at ΓD by estimating the the other volume fractions V v, V p, and
V τ12 from this V u. The volume fractions are then inverted to get the appropriate volume
fractions to then construct AΩ∇2 .
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Chapter 4

Implementation and Results

We propose a mixed spatial convergence test to evaluate each mixed discretization’s ability
to solve the different PDEs in the respective inner-liquid sub-domains. From there, we move
forward with implementing two of the mixed discretization schemes from Sections 3.1.1
and 3.1.2 into full 2D fluid solvers and evaluate (i) computational cost of each against the
Full Form Viscosity benchmark and Laplacian Viscosity benchmark for different iterative
solvers as well as (ii) qualitative visual comparisons of each mixed method against the ideal
benchmark viscous fluid behaviour of the Full Form Viscosity.

4.1 Mixed Spatial Convergence Test Results

Although visual results and speed are often prioritized in computer graphics over spatial
accuracy, we nonetheless focus our attention on numerical accuracy in this section for
each proposed mixed method. This is motivated by having a quantitative measure of
the effectiveness and accuracy of the mixed methods to solve Equation 2.15 in certain
locations of the domain, while also accurately solving Equation 2.6 in the other portions
of the domain.

Following the same two 2D test cases in the work of Wang [27] along with a 3rd case,
we now formulate a mixed discretization test in which we (i) initialize one portion of the
domain ΩF with the Laplacian velocity input, while using the Full Form input in the rest
of the domain Ω∇2 . We then employ each mixed discretization method in its respective
domain region and then compare to the analytical exact solution. This is done for different
grid resolutions of the a uniform MAC grid, and the infinity norm error convergence is
examined for each mixed method.
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All three 2D test cases are conducted in a π × π square domain filled with fluid, with
outer Dirichlet solid boundaries of the box which are zero and with N = Nx = Ny for
simplicity. We also simply set ∆t, ρ µ to be one as in Wang [27]. These tests are solely
applied to the viscosity step, not the full fluid solver. Two mixed domain scenarios are
examined for each test case:

1. Line split: A vertical discretization divider line is placed down the direct centre of
the domain, separating region ΩF on the left half and Ω∇2 on the right half.

2. Square split: An internal square region in the direct centre of the domain of size
π
2
× π

2
is region Ω∇2 , while the region external to this interior square is region ΩF .

Scenario (1) is examined for simplicity, while Scenario (2) more appropriately reflects the
actual use case of this mixed method since the Laplacian region Ω∇2 only interacts inside
the fluid and only has a boundary with the ΩF region. Scenario (2) further has right angles
separating ΩF and Ω∇2 to test corners in a 2D setting.

0 π
2

π

x

0

π

y Ω∇2 ΩFΓD

Scenario (1): Line split

0 π
4

3π
4

π

x

0

π
4

3π
4

π

y Ω∇2

ΓD

ΩF

Scenario (2): Square split

Figure 4.1: 2D Mixed Convergence test scenarios for the mixed domain input.

Each test case is derived via beginning from an analytical exact velocity field solution
at t = ∆t which has outer Dirichlet solid boundaries which are zero. The initial velocity
input is then found via analytically integrating backwards the semi-discretized form for
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each discretization, Equations 2.10 and 2.16, by ∆t to have the respective inputs for the
ΩF and Ω∇2 regions. For input regions in which there exists coincident DOFs associated
with both discretizations at the boundary between ΩF and Ω∇2 , we simply take the average
of both discretization inputs at those locations. This is relevant for the mixed methods
Free Surface and Smoothing-α Mixed Methods. The full mixed velocity field input is then
used as the initial velocity field which is stepped forward by the discrete mixed method to
get an approximate solution to compare with the analytical exact solution.

Test Case I

From Wang [27], this simplest test case is derived by starting from the exact final velocity
field at t = ∆t which is

u(x, y, t = ∆t) = sin(x) sin(y)

v(x, y, t = ∆t) = sin(x) sin(y)

giving initial inputs u⃗F =

[
uF
vF

]
for region ΩF and u⃗∇2 =

[
u∇2

v∇2

]
for Ω∇2 :

uF (x, y, t = 0) =

(
1 +

3∆t µ

ρ

)
sin(x) sin(y)− ∆t µ

ρ
cos(x) cos(y)

vF (x, y, t = 0) =

(
1 +

3∆t µ

ρ

)
sin(x) sin(y)− ∆t µ

ρ
cos(x) cos(y)

u∇2(x, y, t = 0) =

(
1 +

2∆t µ

ρ

)
sin(x) sin(y)

v∇2(x, y, t = 0) =

(
1 +

2∆t µ

ρ

)
sin(x) sin(y)

Test Case II

From Wang [27], this less simple test case is derived via starting from the exact final
velocity field at t = ∆t which is

u(x, y, t = ∆t) = sin(x) sin(y) (4.1)

v(x, y, t = ∆t) = (x2 − πx)(y2 − πy) (4.2)
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Scenario (1): Line split input Scenario (2): Square split input

Figure 4.2: Mixed input y-component velocity component v for Test Case I for both
scenarios (1) and (2) for domain splitting.

giving the initial inputs

uF (x, y, t = 0) = sin(x) sin(y)− ∆t µ

ρ
((2x− π)(2y − π)− 3 sin(x) sin(y))

vF (x, y, t = 0) = (x2 − πx)(y2 − πy)− ∆t µ

ρ
(cos(x) cos(y) + 4(x2 − πx) + 2(y2 − πy))

u∇2(x, y, t = 0) =

(
1 +

2∆t µ

ρ

)
sin(x) sin(y)

v∇2(x, y, t = 0) = (x2 − πx)(y2 − πy)− 2∆t µ

ρ
((x2 − πx) + (y2 − πy)).

Test Case III

This test case was designed to prove the intuition that Free Surface Mixed method enforces
a pseudo zero-traction free surface boundary condition in the interior of the liquid at the
artificial boundary between ΩF and Ω∇2 . Let ψ(x, y) = sin(x) sin(y) cos2(x) for more
compact notation in the below. We intuitively choose a final velocity field in which the
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zero-traction boundary condition is satisfied at x = π
2
:

u(x, y, t = ∆t) = ψ(x, y) (4.3)

v(x, y, t = ∆t) =
ψ(x, y)

cos2(x)
(4.4)

Under Scenario (1) where we split the domains along a vertical line down the centre of
the domain (ie. at x = π

2
), this velocity field clearly satisfies the zero-traction free surface

boundary condition 2.9 along this line. We show this now. The normal vector to the

interior fluid boundary is n⃗ = x̂ =

[
1
0

]
, and with µ = 1 and we see that

τ n⃗ =
(
∇u⃗+ (∇u⃗)T

)
n⃗

=

[
2∂xu ∂xv + ∂yu

∂xv + ∂yu 2∂yv

] [
1
0

]
=

[
2∂xu

∂xv + ∂yu

]
=

[
2 cos(x) sin(y)

[
cos2(x)− 2 sin2(x)

]
cos(x) [sin(x) + cos(x) sin(x) cos(y)]

]
which clearly vanishes for x = π

2
from the common cos(x) in both vector components. Once

again, analytically integrating the semi-discretized equations we get the initial inputs for
this most complicated test case.

uF (x, y, t = 0) =

(
1 +

∆t µ

ρ

)
ψ(x, y)− 2∆t µ

ρ
sin(y)

(
2 sin(x)− 9ψ(x, y)

sin(y)

)
− ∆t µ

ρ
cos(x) cos(y)

vF (x, y, t = 0) =

(
1 +

3∆t µ

ρ

)
ψ(x, y)

cos2(x)
− ∆t µ

ρ
cos(y)

(
3 cos3(x)− 2 cos(x)

)
u∇2(x, y, t = 0) =

(
1 +

∆t µ

ρ

)
ψ(x, y)− ∆t µ

ρ
sin(y)

(
2 sin(x)− 9ψ(x, y)

sin(y)

)
v∇2(x, y, t = 0) =

(
1 +

2∆t µ

ρ

)
sin(x) sin(y)

Test Case Results

In all convergence tests presented, we did not employ a second order ghost boundary
treatment for the Dirichlet boundaries, so the highest order of convergence possible in these
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tests is first order convergence of the infinity norm errors for u and v. We thus consider
first order convergence of the infinity norm errors as a ‘pass’ (✓) for this convergence
test, otherwise a ‘fail’ (✗). A summary of the mixed methods results are presented in
Table 4.1. The result that the Free Surface Mixed Method only converges for the Test

Case 1 Case 2 Case 3

Line Square Line Square Line Square

Per-DOF Stencil 3.1.1 ✓ ✓ ✓ ✓ ✓ ✓

Free Surface 3.1.2 ✗ ✗ ✗ ✗ ✓ ✗

Smoothing-α 3.1.3 ✗ ✗ ✗ ✗ ✓* ✗

Table 4.1: Mixed Discretization convergence test Pass (✓) and Fail (✗) summary for Sce-
nario (1) and Scenario (2) domains as shown in Figure 4.2. A (✓) indicates first order
infinity norm error convergence between exact solution and the mixed discrete solution. A
(✗) indicates no convergence.

Case 3 in Table 4.1 shows that the artificial internal free surface implemented from both
discretizations indeed (undesirably) enforces the zero-traction boundary condition there,
which is the reason the Free Surface Mixed Method fails to converge in all other cases. An
example of successful spatial convergence for Test Case 3 is presented in Figure 4.3. The

u velocity v velocity

Figure 4.3: Log-log plots of the infinity norm error ||E||∞ vs N showing successful first
order convergence for Test Case III with Line Scenario (1) for the Free Surface Mixed
Method of Section 3.1.2.
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Smoothing-α Mixed Method is a more general case of the Free Surface Mixed Method. It
fails all tests unless the full α transition zone approaches a single vertical line, in which this
mixed method converges towards the Free Surface Method and then similarly converges
for Test Case 3, Scenario (1).
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4.2 Full Fluid Solver Results

We implement the proposed mixed methods into full fluid solvers following the operator-
split numerical procedure outlined in Section 2.2.1. Other acceleration strategies for Eule-
rian viscosity have achieved at least first order spatial convergence [13], so we make sure to
evaluate the Per-DOF Stencil Mixed method of Section 3.1.1 in this section which was the
only mixed method that converged to first order for all six test cases. Although this method
increases sparsity of the overall system compared to the Full Form Viscosity benchmark,
unfortunately it does not yield a symmetric system. We thus choose to also investigate
full fluid solver results with the Free Surface Mixed Method of Section 3.1.2 here, given
that it has the desirable property of yielding an SPD system while also increasing the
system sparsity. The effectiveness of these mixed discretizations will now be evaluated via
computational cost along with qualitative visual comparisons to the Full Form Viscosity
and Laplacian Viscosity benchmarks.

A MacBook Air M1 is used for all simulation results. Since we are using operator
splitting, we adjust and only change the viscosity step with the mixed methods as a drop-in
replacement. The fluid solver used is the C++ open source code from Batty and Bridson [4].
This fluid simulator solves the operator split Navier-Stokes equations with semi-Lagrangian
advection as outlined in [6], an external downwards force of gravity via adjusting the y-
velocity, the Full Form Viscosity step (which we alter), and then a pressure projection
according to Batty et al. [3]. Liquid particle locations are used to track the liquid-air
surface, which is then internally converted to a standard level set method for accurate and
efficient computation of area liquid fractions [20]. The solid no-slip condition u⃗ = u⃗solid is
enforced at solid boundaries and pressure values are set to zero at the free surface to help
enforce the natural zero traction operator-split free surface boundary condition 2.9. For
the viscosity solve we use various iterative solvers and preconditioners from the ViennaCL
and Eigen C++ open source linear algebra libraries, as well as the ‘built-in’ modified
Incomplete Cholesky (ICHOL) CG solver which comes with the open source code base [4].
This built-in modified ICHOL CG solver is used for the pressure projection. Note that as
long as a non-zero amount of Full Form DOFs are incorporated within the mixed methods,
they lose the property of being an M-matrix and preconditioners for iterative solvers may
be less effective.

4.2.1 Scene 1: Circular Boundary with Beam, Column, and Disk

The open source code of Batty and Bridson [4] comes with a scene with a column, beam,
and a disk of fluid at rest inside an outer circular solid boundary as in the top row of Figure
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Full Form Benchmark Per-DOF Stencil Free Surface Laplacian Benchmark

Figure 4.4: Scene 1 viscous fluid simulation comparison for N = 150 at frames [0, 180, 310].
The average NNZ(A) = 91527, 83865, 84727, 68292 respectively for the Full Form Benchmark,
Per-DOF Stencil Mixed, Free Surface Mixed, and Laplacian Benchmark.
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4.4. These three blobs of fluid fall downwards via a gravitational force and interact with
the circular solid boundary. The three qualitative benchmark viscous behaviours that the
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Figure 4.5: BiCGStab Solver (ViennaCL) comparison for Mixed Per-DOF Stencil Method
for N = 150. This example follows the same parameters and simulation shown in Figure
4.4. Similar plots arise for when comparing computational costs for a fixed preconditioned
BiCGStab solver, or a fixed preconditioned CG solver for the Free Surface Mixed method.

original unaltered Full Form Viscosity gives in this scene are:

1. The disk rotating down the solid wall

2. The beam bending

3. The middle column buckling side to side

These three benchmark viscous behaviours can be seen in Figure 4.4 in Frame 180 for the
Full Form Viscosity Benchmark. As expected, the Laplacian Viscosity Benchmark fails
to exhibit viscous rotating, bending and buckling due to incorrect boundary conditions.
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Since our mixed method is a combination of the two, we use them as benchmarks in terms
of visual qualitative behaviour and speed. We present visual comparisons of the full fluid
solver with altered viscosity steps against the benchmarks in Figure 4.4 for chosen param-
eters which give 35% Laplacian DOFs in the interior of the liquid for the mixed methods.
Both mixed methods use the same Square-radius Neighbor Liquid Content algorithm to
construct identical inner discretization boundaries. The corresponding cumulative com-
putational costs of the Mixed Per-DOF Stencil Method and the benchmarks, for a fixed
BiCGStab solver, are shown in Figure 4.5 demonstrating that both the viscosity solve and
overall simulation costs decrease relative to the Full Form Benchmark for a given fixed
iterative solver. Similarly, speed-ups of the Free Surface Mixed Method occur relative to
the Full Form Benchmark for a fixed preconditioned CG solver.

The 35% Full Form DOFs in the mixed methods of Figure 4.4 is relatively low for
this scene, as there are only small amounts of Laplacian DOFs in the interior of the fluid
for this simulation. Laplacian DOFs only begin to disperse themselves throughout the
lower-middle portion of the column later as the simulation progresses. We also examine
the same scene but with all blobs of fluid involving mostly Laplacian inner DOFs, 68%
specifically. Figure 3.2 depicts a visual representation of the initial frame’s DOF count that
are Full Form vs Laplacian Form. In this example, the discretization boundary is much
closer to the liquid-air surface and is pushing the mixed methods towards the limit in terms
of Laplacian DOF’s for this N value. The resultant mixed viscosity matrices are therefore
sparser than the previous example. Simulation results for a single mid-simulation frame
are shown in Figure 4.6, and we isolate the 3 individual blobs of fluid to easily compare
the three benchmark viscous behaviours without the blobs of fluid interacting with one
another. Computational costs for all 3 blobs of fluid simulated together are outlined in
Table 4.2. From Figure 4.6 it is clear that the Per-DOF Mixed Method qualitatively
exhibits two of the three viscous benchmark behaviours. It gives convincing rotation of the
disk and bending of the beam, but it does not exhibit viscous buckling of the column and
the column evolves similar to the Laplacian benchmark. We do not show the Free Surface
Mixed method in Figure 4.6 for this example with more Laplacian DOFs as it exhibited
none of the three viscous benchmarks. Table 4.2 shows overall speedups for both mixed
methods relative to the Full Form benchmark for the viscosity linear solve, with minimal
speedup for the Per-DOF Mixed method.
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Figure 4.6: Scene 1 with a sparser mixed example with 68% Laplacian DOFs in the per-DOF
Mixed Method vs the benchmarks for N = 150, all at frame 180. The average NNZ(A) = 91527,
74496, 68292 respectively for the Full Form Benchmark, Per-DOF Stencil Mixed, and Laplacian
Benchmark.
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Discretization Solver Preconditioner Package Viscosity Solve (s)

Laplacian CG ICHOL Built-in 0.161
Laplacian CG Block-ILU0 ViennaCL 0.177
Laplacian BiCGStab Block-ILU0 ViennaCL 0.196
Laplacian CG none ViennaCL 0.221
Laplacian BiCGStab none ViennaCL 0.315

Free Surface CG ICHOL Built-in 0.163
Free Surface CG Block-ILU0 ViennaCL 0.168
Per-DOF Stencil BiCGStab Block-ILU0 ViennaCL 0.249
Per-DOF Stencil BiCGStab none ViennaCL 0.419

Full Form CG Block-ILU0 ViennaCL 0.250
Full Form BiCGStab Block-ILU0 ViennaCL 0.271
Full Form CG ICHOL Built-in 0.368
Full Form CG none ViennaCL 0.382
Full Form BiCGStab none ViennaCL 0.531

Table 4.2: Scene 1 average viscosity solve computational costs for the sparser example with
68% Laplacian DOFs in the mixed methods. 310 time steps are used and N = 150.

31



4.2.2 Scene 2: Rectangular Boundary with Column and Pile

We alter the same fluid solver code base to create a scene involving a column of liquid
at rest falling into a large vast rectangular pile of fluid, all within an outer rectangular
solid boundary (Figure 4.7). The large pile of liquid enables our mixed methods to take
large advantage of the interior of the fluid, with 90.5% of the DOFs on average being
cheaper Laplacian DOFs in this scene for the chosen parameters. See Figure 3.2 for the
dispersion of the Laplacian DOFs vs the Full Form DOFs at the initial condition for the
mixed methods. As time evolves, the Laplacian DOFS enter into the falling column after it
makes contact with the rectangular pile of fluid. Since we only have a column falling from
rest, the single benchmark behaviour we seek in this scene is viscous buckling of the column.
Looking at frame 150 of Figure 4.7 (second row), we see convincing viscous buckling of both
mixed methods which closely mimics the Full Form Benchmark. Corresponding average
computational costs for the viscosity solve are outlined in Table 4.3. Overall, viscosity
solves for the mixed methods are faster than the Full Form benchmarks. The Per-DOF
Stencil mixed method with BiCGStab has a marginal 2.0% average viscous solve speed-
up, while the Free Surface mixed method with CG shows a 20.9% average viscous solve
speed-up.

Discretization Solver Preconditioner Package Viscosity Solve (s) Time Step Speed (s)

Laplacian CG ICHOL Built-in 0.084 0.364
Laplacian BiCGStab none ViennaCL 0.203 0.636
Laplacian GMRES none ViennaCL 0.998 1.424
Laplacian CG ICHOL Eigen 0.922 1.356
Laplacian BiCGStab ILUT Eigen 1.641 2.068

Free Surface CG ICHOL Built-in 0.272 0.585
Per-DOF Stencil BiCGStab none ViennaCL 0.337 0.785
Free Surface CG ICHOL Eigen 1.605 2.074
Per-DOF Stencil GMRES none ViennaCL 1.933 2.379
Per-DOF Stencil BiCGStab ILUT Eigen 1.963 2.406

Full Form CG ICHOL Built-in 0.344 0.634
Full Form BiCGStab none ViennaCL 0.434 0.940
Full Form GMRES none ViennaCL 2.295 2.800
Full Form CG ICHOL Eigen 2.348 2.883
Full Form BiCGStab ILUT Eigen 3.623 4.124

Table 4.3: Scene 2 average viscous solve and full simulation step costs corresponding to
Figure 4.7. 90.5% of the DOFs on average are Laplacian DOFs. 510 time steps are used
and N = 180.
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Full Form Benchmark Per-DOF Stencil Free Surface Laplacian Benchmark

Figure 4.7: Simulation comparison of a viscous stream of liquid falling from rest into a square-
boundary for N = 180 at frames [1, 150, 200, 300]. An average of 90.5% of the active DOF are
Laplacian DOF for both the Per-DOF Stencil and Free Surface mixed methods, while qualitatively
retaining the viscous buckling behaviour of the Full Form Benchmark. Computational costs are
outlined in Table 4.3
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Chapter 5

Conclusion

In this research project, we developed novel mixed viscosity discretizations to address effi-
ciency issues regarding Eulerian grid based viscosity integration via a drop-in replacement
of the operator-split viscous portion of the incompressible Navier-Stokes fluid equations.
Specifically, we combined the computer graphics industry-accepted Full Form Viscosity
model with a cheaper reduced Laplacian Viscosity model by employing the Full Form near
the liquid-air surface, while employing the Laplacian Form in the interior of the liquid. This
increases matrix sparsity as the Laplacian Form and Full Form have respectively five-point
uncoupled and nine-point velocity-component-coupled stencils in 2D.

We introduced three novel mixed discretization coupling approaches: the Per-DOF
Stencil Selection Method, the pseudo inner-liquid Free Surface Method, and the Smoothing-
α approach between the energy formulation point of view of the PDEs. The latter two
methods retain SPD matrices, while the first loses symmetry. We also propose an algorithm
to determine the inner-liquid discretization splitting boundary location that considers the
local neighborhood of the surrounding velocity DOFs. These mixed methods have relatively
low overhead cost to implement, with the goal of speeding up the viscous linear solve.

We proposed a mixed spatial discretization test in 2D for the viscosity step alone with
three test case functions and two mixed domain scenarios to evaluate each mixed method.
The Per-DOF Stencil method obtained spatial convergence to first order of the L∞ error
for all tests, while the two symmetric mixed methods converged for only one of the six
tests, validating our intuition that these two symmetric mixed methods unfortunately
enforce pseudo inner-liquid boundaries that indeed introduce a non-negligible error in the
resultant velocity field.

We then incorporated and evaluated the Per-DOF Stencil and Free Surface Mixed
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methods as drop-in viscosity solve replacements to a standard 2D fluid simulator. In scene
1 we saw in Figure 4.4 with 35% of the DOFs being Laplacian that all three benchmark
viscous behaviours are retained for the Per-DOF Stencil mixed method and two of the
three are retained for the Free Surface Mixed method (no rotation of circle). We show that
for a fixed solver, speedups occur. We then investigate the same scene but with the mixed
methods having 68% Laplacian DOFs, increasing matrix sparsity compared to the previous
mixed method, and we see that qualitatively still two of the three proper viscous behaviour
benchmarks are achieved for the Per-DOF mixed method. the Free Surface Mixed method
did not achieve any of the benchmark viscous behaviours for this sparser scenario. Both
mixed methods achieve overall viscous solve speedups to the Full Form benchmark’s fastest
preconditioned CG solve in this sparser scenario, with marginal increase for the Per-DOF
Stencil Mixed method. A second scene is examined, where a column of liquid falls from
rest into a very large rectangular pile of liquid in which 90.5% of the DOFs are Laplacian
Form DOFs and we see a marginal 2.0% viscous solve speed-up from the Per-DOF Mixed
Method with BiCGStab, while the Free Surface Mixed Method with preconditioned CG
shows a 20.9% viscous solve speed-up. Both mixed methods show the correct benchmark
viscous behaviour for this second scene.

Mixed discretizations show promising potential to address the viscosity speed issues of
computer graphics. An important avenue of future work would be to develop a discretiza-
tion resulting in a SPD matrix which can consistently exhibit all three viscous behaviour
benchmarks, while being cheaper than the Full Form benchmark. Minimizing the Lapla-
cian energy functional E0[u⃗] in Equation 2.17 with an additional energy term involving
the surface integral

∫∫
∂Ω
µuT (∇u)Tn dA to ensure the natural boundary condition is the

correct operator-split zero-traction boundary condition 2.9 may work. Goldade et al. [13]
show that acceleration via octree/quadtree spatial adaptivity within the inner liquid is
possible for both discretizations we combined in this project, and thus another future work
avenue would be to combine their dimension reduction technique with our matrix sparsity
boosting technique. Alternatively, future work could be done to employ a mixed discretiza-
tion between the pressure-velocity coupled unsteady Stokes viscosity solver presented by
Larionov et al. [16] and the simpler Laplacian Viscosity. Starting from and adjusting
this higher-accuracy coupled solver may better enforce both incompressibility and the full
zero traction boundary condition, which may exhibit better qualitative results from anal-
ogously employing a mixed discretization method. Other potential avenues of exploration
are preconditioners for mixed-discretization methods such as the ones presented here.
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Appendix A

Derivations

A.1 Minimizing Eα[u⃗]

We discretize and store volume fractions in arrays V u, V v, V p, V τ12 , to respectively denote
volume fractions which surround u, v, p, and τ 12. V u

i+ 1
2
,j
, V v

i,j+ 1
2

, V p
ij , V

τ12

i+ 1
2
,j+ 1

2

surround

ui+ 1
2
,j, vi,j+ 1

2
, pij, and τ

12
i+ 1

2
,j+ 1

2

. See Figure 2.2 for control volumes and quantity locations.

Similarly to volume fractions we define arrays for α which are piecewise constant,
attached to each term in the discrete summations, with αu

i+ 1
2
,j
, αv

i,j+ 1
2

, αp
ij, α

τ12

i+ 1
2
,j+ 1

2

corre-

sponding to the summation terms attached to the respective volume fractions of the same
indices.

Note in the below that for when all α values are one, we have equivalently minimized
the Full Form Viscosity smooth energy E1[u⃗] of Equation 2.11. For when all α values
are zero, we have equivalently minimized the Laplacian viscosity energy E0[u⃗] of Equation
2.17.

Along with the discrete sums in Equation 2.12, the last sums needed before minimizing
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are:∫∫
Ω

µ ∥∇u⃗∥2F dA =

∫∫
Ω

µ

∥∥∥∥[ux uy
vx vy

]∥∥∥∥2
F

dA =

∫∫
Ω

µ
(
u2x + u2y + v2x + v2y

)
dA

≈
∑
i,j∈Ω

V p
ijµij

(
ui+ 1

2
,j − ui− 1

2
,j

∆x

)2

∆x2 +
∑
i,j∈Ω

V τ12

i+ 1
2
,j+ 1

2
µi+ 1

2
,j+ 1

2

(
ui+ 1

2
,j+1 − ui+ 1

2
,j

∆x

)2

∆x2

+
∑
i,j∈Ω

V τ12

i+ 1
2
,j+ 1

2
µi+ 1

2
,j+ 1

2

(
vi+1,j+ 1

2
− vi,j+ 1

2

∆x

)2

∆x2 +
∑
i,j∈Ω

V p
ijµij

(
vi,j+ 1

2
− vi,j− 1

2

∆x

)2

∆x2

With Equation 2.12 and the above discrete sums on hand, we now evaluate

Eα[u⃗] =

∫∫∫
Ω

(
ρ

2∆t

∥∥u⃗− u⃗old
∥∥2 + α

(
µ

∥∥∥∥∇u⃗+ (∇u⃗)T

2

∥∥∥∥2
F

)
+

(1− α)

2

(
µ ∥∇u⃗∥2F

))
dV

(A.1)
which is clearly equivalent to E1[u⃗] in Equation 2.11 for when all α arrays are one, and
equivalent to E0[u⃗] in Equation 2.17 for when all α arrays are zero.

Differentiating Eα[u⃗] with respect to ui+ 1
2
,j, fixing viscosity to be a constant µ̃, cancelling

out ∆x2

∆x2 and equating to zero we get

0 =
1

∆t
V u
i+ 1

2
,j
ρi+ 1

2
,j

(
ui+ 1

2
,j − uold

i+ 1
2
,j

)
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+ 2µ̃V p
ijα

p
ij
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2
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2
,j

)
− 2µ̃V p

i+1,jα
p
i+1j

(
ui+ 3

2
,j − ui+ 1

2
,j

)
− µ̃V τ12

i+ 1
2
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2
ατ12

i+ 1
2
,j+ 1

2

(
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2
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2
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− vi,j+ 1

2
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+ µ̃V τ12
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2
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ατ12
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2
,j− 1

2

(
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2
,j − ui+ 1

2
,j−1 + vi+1,j− 1

2
− vi,j− 1

2
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+ µ̃V p

ij(1− αp
ij)
(
ui+ 1

2
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2
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)
− µ̃V p

i+1,j(1− αp
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(
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2
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2
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− µ̃V τ12
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2
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which reduces to

V u
i+ 1

2
,j
ρu
i+ 1

2
,j
uold
i+ 1

2
,j
=
(
V u
i+ 1

2
,j
ρu
i+ 1

2
,j
+ (1 + αp

ij)k̃V
p
ij + (1 + αp

i+1,j)k̃V
p
i+1,j + k̃V τ12

i+ 1
2
,j+ 1

2
+ k̃V τ12

i+ 1
2
,j− 1

2

)
ui+ 1

2
,j

− (1 + αp
ij)k̃V

p
ijui− 1

2
,j − (1 + αp

i+1,j)k̃V
p
i+1,jui+ 3

2
,j

− k̃V τ12

i+ 1
2
,j+ 1

2
ui+ 1

2
,j+1 − k̃V τ12

i+ 1
2
,j− 1

2
ui+ 1

2
,j−1

+ ατ12

i+ 1
2
,j+ 1

2
k̃V τ12

i+ 1
2
,j+ 1

2

(
vi,j+ 1

2
− vi+1,j+ 1

2

)
+ ατ12

i+ 1
2
,j− 1

2
k̃V τ12

i+ 1
2
,j− 1

2

(
vi+1,j− 1

2
− vi,j− 1

2

)
with k̃ = ∆t µ̃

∆x2 . Degrees of freedom that have a linear equation with all α equal to one use
the pure Full Form viscosity stencil Equation 2.13. Degrees of freedom that have a linear
equation with all α equal to zero use the pure Laplacian stencil Equation 2.18.
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