
E�cient Gradient Computation of
Exotic Options using Automatic

Di↵erentiation

by

Ka Hei Kathleen Wong

A research paper
presented to the University of Waterloo

in partial fulfillment of the
requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisor: Prof. Thomas F. Coleman

Waterloo, Ontario, Canada, 2017

c�Ka Hei Kathleen Wong 2017

I hereby declare that I am the sole author of this report. This is a true copy of the
report, including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

The focus of this paper is on e�cient gradient computations for the following
exotic options, namely basket options, Asian options, and best of Asian options.
Gradients are essential for portfolio hedging and risk minimization. Instead of using
the traditional methods, a handy tool will be employed to compute the derivatives
in this paper. Automatic di↵erentiation (AD) is a handy tool in comparison to other
traditional methods for derivative computations. It is potentially faster and more
precise. Despite the promising advantages of AD, time and space e�ciency are the
challenges when implementing AD.

There are two objectives in this paper: space e�ciency and time e�ciency. The
first objective is to introduce one of the two types of structure that would significantly
reduce the space required for gradient computations. The second objective is to
introduce a new version of AD that would reduce the time for derivative computations.

Three experiments and comparison tests were performed. The results show that
the memory required for gradient computations was significantly reduced after ex-
ploiting the structure. Furthermore, the performance of structured AD is indepen-
dent of the implementation of the underlying user code. Lastly, we illustrate a new
version of AD that is more time e�cient than the previous version of AD for gradient
computations.

iii

Acknowledgements

I would like to express my sincere thanks to my supervisor, Prof. Thomas F.
Coleman, for his patient guidance and generous support during my time in University
of Waterloo. I would also like to thank all of the sta↵s, my professors, and friends in
University of Waterloo for the wonderful experience.

iv

Dedication

This is dedicated to my family.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Importance and Applications of Partial Derivatives 1

1.2 Challenges and Advantages of Automatic Di↵erentiation 2

1.3 Project Objectives . 3

1.4 Paper Overview . 4

2 Types of Structured Automatic Di↵erentiation 5

2.1 General Automatic Di↵erentiation Structure 5

2.2 Composite Functions/Dynamic Structure 11

2.3 Generalized Partially Separable Functions 13

3 Monte Carlo and Types of Options 17

3.1 Monte Carlo and its Gradient Calculations 17

3.2 Basket Options . 20

3.3 Asian Options . 24

3.4 Best of Asian Options . 27

4 Results of Experiments 29

4.1 Machine Specification and Experiments Overview 29

4.2 Comparison Test 1 Results . 30

4.3 Comparison Test 2 Results . 31

4.4 Comparison Test 3 Results . 39

vi

5 Conclusion 46

References 47

vii

List of Tables

2.1 Time Required by Each Method . 11

2.2 Space Required by Reverse-mode AD 11

4.1 Overview of Experiments . 29

4.2 Basket Option with 5 Weighted Basket Options - HV2.0 32

4.3 Asian Option with 10 Underlying Assets - HV2.0 33

4.4 Best of Asian with 10 Underlying Assets - HV2.0 34

4.5 Memory Usage of FL2.0 structured vs FL2.0 unstructured - Basket
Options . 38

4.6 Memory Usage of FL2.0 structured vs FL2.0 unstructured - Best of
Asian Options . 39

4.7 Time Ratio of FL2.0 (ADMAT) vs MADO - Basket Options 41

4.8 Time Ratio of FL2.0 (ADMAT) vs MADO - Asian Options 41

4.9 Time Ratio of FL2.0 (ADMAT) vs MADO - Best of Options 42

viii

List of Figures

2.1 Block diagram of composite function (dynamic structure) [1] 14

2.2 Block diagram of generalized partial separable function [4] 16

3.1 An example of the Monte Carlo simulation 18

3.2 Computation of option value using Monte Carlo 20

3.3 Diagram of a Batch . 23

3.4 Diagram of Basket Options Computation with M Assets 23

3.5 Diagram of Asian Options Computation: one of the paths shown . . . 25

3.6 Diagram of Asian Options’ Gradient Computation 27

4.1 Peak Memory: Basket Options’ Gradient Computation - HV2.0 . . . 35

4.2 Peak Memory: Asian Options’ Gradient Computation - HV2.0 35

4.3 Peak Memory: Best of Asian Options’ Gradient Computation - HV2.0 36

4.4 Memory Ratio: Basket Options’ Gradient Computation - HV2.0 . . . 36

4.5 Memory Ratio: Asian Options’ Gradient Computation - HV2.0 37

4.6 Memory Ratio: Best of Asian Options’ Gradient Computation - HV2.0 37

4.7 Peak Memory: FL2.0 Basket Options 38

4.8 Peak Memory: FL2.0 Best of Asian Options 39

4.9 Time Ratio: FL2.0 (ADMAT) vs MADO - Basket Options 42

4.10 Time Ratio: FL2.0 (ADMAT) vs MADO - Asian Options 43

4.11 Time Ratio: FL2.0 (ADMAT) vs MADO - Best of Asian Options . . 43

4.12 Time Ratio NAssets 1000-5000: FL2.0 (ADMAT) vs MADO - Basket
Options . 44

4.13 Time Ratio NAssets 1000-5000: FL2.0 (ADMAT) vs MADO - Best of
Asian Options . 44

ix

4.14 Memory: FL2.0 (ADMAT) vs MADO - Basket Options 45

4.15 Memory: FL2.0 (ADMAT) vs MADO - Best of Asian Options 45

x

Chapter 1

Introduction

1.1 Importance and Applications of Partial Deriva-

tives

Partial derivatives are essential for many multidimensional problems. Many real
life problems involve multiple variables as their domains. These practical problems
include edge detection in image processing, optimization, fluid viscosity in engineer-
ing, and marginal analysis in economics. The focus of this paper is on option pricing
in finance.

In finance, an option is a contract which gives the buyer the right, but the not
obligation, to buy or sell an underlying asset or instrument at a specific strike price
on a specified date, depending on the form of the option [2]. In general, the gradient
is the vector of the first partial derivatives of a multidimensional function while the
Hessian is defined as the matrix of the second partial derivatives of the function. In
the finance industry, gradients and Hessian are referred to as Delta and Gamma, re-
spectively. These two ”Greeks” are used to measure sensitivity to parameters such as
initial stock price, volatility and risk-free interest rate [3]. They are very important
for portfolio hedging and risk minimization. Therefore, it is essential to find an ef-
fective method to compute these ”Greeks”. The focus of this paper is on computing
the gradients for the following exotic options, namely basket options, Asian options,
and best of Asian options in an e�cient manner.

1

1.2 Challenges and Advantages of Automatic Dif-

ferentiation

As mentioned in the previous section, partial derivatives are widely used in
various applications. Some traditional methods to compute derivatives have been
developed. The most common ones are finite di↵erencing, hand coding, and sym-
bolic di↵erentiation. However, there are some disadvantages for each of the methods.
While finite di↵erencing is easy to use, it is di�cult to choose a good di↵erencing
parameter which is crucial for the accuracy of the derivatives [6]. Hand coding is
prone to typo errors. It can also be very expensive. Moreover, even it is easy to hand
code derivative functions for simple European options, it is actually quite challenging
for more complicated exotic options like the ones examined in this paper. Symbolic
di↵erentiation appears to be too expensive for ”large scale” problems [4].

In this section, the advantages of automatic di↵erentiation will be discussed. Au-
tomatic di↵erentiation (AD) is a technology for obtaining derivatives of codes used in
scientific computing. AD is a handy tool in comparison to other traditional methods
of computing derivatives for the following reasons: significantly faster than finite dif-
ferencing, easier to achieve an accurate derivative than finite di↵erencing, and more
convenient than hand coding [4].

Despite the advantages mentioned above, time and space are challenges when im-
plementing AD. There are two basic modes of AD: forward mode and reverse mode.
Both modes of AD use the idea of chain rule. While the forward mode AD executes
chain rule straightforwardly, reverse mode first computes and stores all intermedi-
ate values on a ”tape”, then roll back the ”tape” from the end to the beginning to
obtain the derivatives. While the forward mode seems straightforward to use for
”small-scale” problems, it gets more complex for ”large-scale” problems and requires
more time [4,10]. Since the method for option pricing in this paper is Monte Carlo,
which is a ”large-scale” problem, the reverse mode is attractive for computing the
gradients of our exotic options. One drawback of the reverse mode is that it requires
lots of ”tape” memory for storing the intermediate operations. The first objective
of this paper is to introduce two types of structure that can significantly reduce the
space required for gradient computations. The second objective of this paper is to
introduce a new version of ADMAT that reduces the time for derivative computations.

2

1.3 Project Objectives

The main focus of this paper is on e�ciently computing the gradients for the
following exotic options, namely basket options, Asian options, and best of Asian
options. There are two objectives in this paper: space e�ciency and time e�ciency
in computing first derivatives by AD. In order to achieve the first objective using
reverse mode AD, this paper introduces two types of structure that can significantly
reduce the space required for the gradient computations compared to non-structured
problems. There are two common special cases of the general AD structure, namely
composite functions (dynamic structure) and generalized partially separable (GPS)
structure. In general, the dynamic structure (DS) vertically cuts paths into segments,
usually in the unit of timesteps for option pricing, whereas the GPS function hori-
zontally divides simulations into smaller clusters of stochastic paths.

The second objective is achieved by applying the reverse-mode AD with the AD
structures. Suppose f : Rn ! R

1, f is di↵erentiable. The number of operations
(a measure of time) to evaluate a function f at an arbitrary point, given a code for
f , is denoted as !(f). The gradient computation using reverse-mode AD, at iterate
x, requires time proportional to !(f). In other words, the time required for gra-
dient computation is proportional to the time required for evaluating the function
itself. But both forward-mode AD and finite di↵erencing require time proportional
to n ·!(f). However, the order of work for reverse-mode AD is bounded by !(f) only
before fast memory is exhausted. The gradient computation will slow down signifi-
cantly after running out of fast memory [2]. Thus, the space-saving AD structures
introduced in the last paragraph are crucial.

In our experiments, we use two packages for di↵erentiating MATLAB functions:
ADMAT 2.0 [4] and MADO [7].

As mentioned, Monte Carlo is useful for option pricing in financial applications.
Monte Carlo method predicts option values by generating a large number of random
paths and taking the average of a large number of terminal values. The more random
simulation paths, the more reliable the predicted option value would be. Since the
Monte Carlo formula contains the random Brownian term, the option value produced
by Monte Carlo is unbiased. This method is widely used in the finance industry be-
cause of its simplicity. Better yet, Monte Carlo is a special case of structured AD, i.e.
the Jacobian of Monte Carlo exhibits the structure that is required for implementing
the structured AD techniques. Therefore, the objective of this project can be achieved
by implementing the reverse mode AD on the special case of structured problem (i.e.
Monte Carlo in this project). The computational space usage was significantly im-
proved using structured AD compared to the non-structured AD (i.e. plain reverse

3

AD).

1.4 Paper Overview

The main focus of this paper is on e�ciently computing the gradients for bas-
ket options, Asian options, and best of Asian options. The GPS structured AD,
Monte Carlo, and MADO are used to achieve space and time saving. In Chapter
2, the two types of structured AD, namely dynamic structure (DS) and generalized
partially separable structure (GPS), are introduced. The algorithms for gradient
computation for the generalized and special case structure are explained. In Chapter
3, we illustrate why the Monte Carlo method can be expressed in the GPS struc-
tured problem step-by-step. Moreover, the calculation of option values and gradient
computations for each type of the objective exotic options, as well as the algorithms
for structured AD, will be discussed in detail. In Chapter 4, the results of memory
usage for each type of the options using structured vs. non-structured AD will be
shown and compared. The results of time ratio produced by ADMAT 2.0 and MADO
will be reported and compared as well. Lastly, we report our conclusions in Chapter 5.

4

Chapter 2

Types of Structured Automatic
Di↵erentiation

2.1 General Automatic Di↵erentiation Structure

As mentioned in the previous chapter, the e�ciency of automatic di↵erentia-
tion can be significantly improved by using problem structure. In this section, we
describe a general structure and then specialize to our exotic option case [4].

Before discussing the mathematical functions, here is some background of auto-
matic di↵erentiation (AD). In AD, it is assumed that all mathematical functions are
defined by a finite set of elementary operations. The elementary operations include
unitary operation, i.e.

p
x, cos(·), and binary operations, i.e. +,�, x, / [4]. Therefore,

an objective function can be set up to have a structure as shown in (2.1), using these
elementary operations. The partitioned extended Jacobian (2.3) of this structure con-
sists of a block lower triangular matrix which is useful for improving computational
e�ciency. This is what we are referring to as structured AD in this paper.

These structures are used to improve space and time e�ciency. For example, in
the gradient case (2.7), the block lower triangular structure allows the use of (2.12)
to compute the product JT

! (i.e. reverse-mode) directly without computing the sub-
matrices explicitly. Therefore, computational space and time can be saved.

Now, we describe the overview of the general approach of structured AD. This
overview explains the derivation of (2.1), (2.2), (2.3), and (2.4) shown in this section.
First, we set up the objective function to have a structure, using elementary opera-
tions, that would lead to a block lower triangular matrix in the partitioned extended

5

Jacobian. This structure shown in (2.1) is referred to as the general structure. Sec-
ondly, we di↵erentiate (2.1) to obtain the entries of the extended Jacobian matrix, JE

(2.2). The di↵erentiation can be done by forward mode, reverse mode, or a combi-
nation of both. Then, we partition J

E as shown in (2.3) for the purpose of using the
Schur-complement formula later on. Finally, the derivative of the objective function
can be obtained using the Schur-complement formula shown in (2.4).

The general form we consider for computing z = F (x), F (x) : Rn ! R

m, can be
expressed as follows:

Solve for y1 : F1(x, y1) = 0

Solve for y2: F2(x, y1, y2) = 0

.

.

.

Solve for y
p

: F

p

(x, y1, y2, ..., yp) = 0

Solve for output z: z � F (x, y1, y2, ..., yp) = 0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.1)

where F
i

and F are continuously di↵erentiable vector-valued functions and y

i

are the
intermediate values for i = 1 : p. Note that z = F (x) is the objective function.

Therefore, the extended Jacobian J

E of equation (2.1) can be expressed as follows:

J

E =

0

BBBBBBBBBBBBBB@

@F1
@x

@F1
@y1

@F2
@x

@F2
@y1

@F2
@y2

...
...

...
. . .

@Fp

@x

@Fp

@y1

@Fp

@y2
· · · @Fp

@yp

@F

@x

@F

@y1

@F

@y2
· · · @F

@yp

1

CCCCCCCCCCCCCCA

(2.2)

In order to gain more insight, the extended Jacobian matrix J

E can be partitioned
into four sections. The four partitions will be labeled as A, B, C, and D hereafter.
Partition A is composed of @Fi

@x

where i = 1 : p as mentioned above. Partition B
is composed of @Fi

@yi
as there are p intermediate functions and p intermediate values.

Lastly, Partition C and D are composed of @F

@x

and @F

@yi
, respectively. The partitioned

extended Jacobian matrix J

E can be expressed as follows:

6

J

E =

2

666666666666664

J

1
x

J

2
x

...

J

p

x

J

1
y1

J

2
y1

J

2
y2

...
...

. . .

J

p

y1
J

p

y2
· · · J

p

yp

J

x

J

y1 J

y2 · · · J

yp

3

777777777777775

=


A B

C D

�
(2.3)

Assuming a unique solution to this, B is a nonsingular matrix. Therefore, it is
clear that B is block lower triangular. In addition, in many application each J

p

yp
is

lower triangular.

The Jacobian of F can be obtained using the following Schur-complement formu-
lation [9]:

J = C �DB

�1
A (2.4)

As mentioned in the introduction, there are two ways to compute (2.4). The first
method is the forward mode:

J = C �D[B�1
A] (2.5)

As shown in (2.3), both B and A can be obtained from top to bottom as the
intermediate values are obtained. Since B is block lower triangular and nonsingular,
computing B

�1
A is straightforward. Hence the Jacobian J can be obtained simulta-

neously from top to bottom as the function F is evaluated. The space required for
forward mode is essentially the same as it would required for evaluating F and storing
J. The forward mode is relatively easy to implement.

The other method is the reverse mode:

7

J = C � [DB

�1]A (2.6)

Compared to forward-mode, reverse-mode AD records each intermediate opera-
tion of the di↵erentiating function on a ”tape”, then rolls back from the end of the
”tape” to the beginning to obtain the derivative [4]. In order to perform the reverse
mode, computing DB

�1 first, ”tape” memory is required to store (2.3). Since A and
B would be generated from top to bottom when the function F is evaluated, (2.3)
must be stored so that B can be retrieved from bottom to top for the reverse mode
operation.

Now, assume the last intermediate function in (2.1) is a continuously di↵erentiable
scalar-valued function, the structured form of the objective function z = f(x), f(x) :
R

n ! R, can be expressed as follows:

Solve for y1 : F1(x)� y1 = 0

Solve for y2: F2(x, y1)� y2 = 0

.

.

.

Solve for y
p

: F

p

(x, y1, y2, ..., yp�1)� y

p

= 0

Solve for output z: f(x, y1, y2, ..., yp)� z = 0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.7)

Similar to (2.3), the extended Jacobian J

E of (2.7) can be expressed as follows:

J

E =

2

666666666666664

J

1
x

J

2
x

...

J

p

x

�I

J

2
y1
�I

...
...

. . .

J

p

y1

... · · · �I

rfT

x

rfT

y1
· · · · · · rfT

yp

3

777777777777775

=

"
A B

rfT

x

rfT

y

#
(2.8)

Hence, the gradient of f can be obtained using the Schur-complement formula [1]:

8

rfT = rfT

x

�rfT

y

B

�1
A (2.9)

Algorithm 2.1: Computing Gradients of General Structured Functions

1. Evaluate y

i

= F

i

(x), i = 1, · · · , p.

2 Evaluate z = f(x, y1, · · · , yp) and apply reverse-mode AD to obtain rfT

=

(rfT

x

,rfT

y1
, · · · ,rfT

yp
).

3. Gradient Computation with (2.12):

(a) Consider ⌫

T = rfT

y

B

�1
A. Define vector !

T = (!T

1 , · · · ,!T

p

) which satisfies

!

T = rfT

y

B

�1.

(b) Set ⌫
i

= 0 for i = 1 : p. Let rf = rf
x

.

(c) From bottom to top:
For j = p, p� 1, · · · , 1

• Solve !

j

= rf
yj
� ⌫

j

• Evaluate F

j

(x, y1, · · · , yj�1)
• Apply reverse-mode AD with !

T

j

to obtain !

T

j

· (Aj

, B

j).

• Let ⌫T

i

= ⌫

T

i

+ !

T

j

· Bj

i

for i = 1 : j � 1
• Update rfT rfT + !

T

j

A

j

Step 3 in Algorithm 2.1 [4], Aj represents J j

x

and B

j represents (J j

y1
, · · · , J j

yj�1
). In

order to compute ⌫

T = rfT

y

B

�1
A, vector !T = (!T

1 , · · · ,!T

p

) was defined to satisfy

!

T = rfT

y

B

�1. It can be expressed as follows:

!

T

B = rfT

y

(2.10)

Transpose (2.10) to obtain:

B

T

! = rf
y

(2.11)

9

Hence, (2.11) can be expressed as follows:

2

6666666666666666664

�I (J2
y1
)T (J3

y1
)T · · · (Jp�1

y1
)T (Jp

y1
)T

�I (J3
y2
)T · · · ... (Jp

y2
)T

�I · · · ...
...

. . . (Jp�1
yp�2

)T (Jp

yp�2
)T

�I (Jp

yp�1
)T

�I

3

7777777777777777775

2

6666666666666666664

!1

!2

!3

...

!

p�1

!

p

3

7777777777777777775

=

2

6666666666666666664

rf
y1

rf
y2

rf
y3

...

rf
yp�1

rf
yp

3

7777777777777777775

(2.12)

and

⌫

T = rfT

y

B

�1
A = !

T

A = !

T

1 J
1
x

+ !

T

2 J
2
x

+ · · ·+ !

T

p�1J
p�1
x

+ !

T

p

J

p

x

(2.13)

Reverse-mode AD computes B

T

! directly and does not compute B first. Since
explicit computation of submatrices J i

yi
is not required, computing the derivative as

shown in (2.12) saves computation. The vector !

j

can be obtained from bottom
to top, i.e. first solving for !

p

, then solve for !

p�1 using !

p

, etc. Furthermore,
this structured approach (Algorithm 2.1) is more space e�cient than plain reverse-
mode AD (unstructured). Although the time required for both approaches are the
same, i.e. !(rf) ⇠ !(f), structured AD is more space e�cient. The space required
by a given code to evaluate f is denoted as �(f). Plain reverse-mode AD requires
� ⇠ !(f) +

P
p

i=1 !(Fi

) while structured AD only requires �  max{!(f),!(F
i

), i =
1, · · · , p}. The e↵ect becomes even more obvious for large-scale problems, i.e. large
p. Table 2.1 and 2.2 summarize the time and space required for each of the methods,
respectively.

In addition to memory saving, structured reverse-mode AD contributes to time
e�ciency as well. As mentioned in Section 1.3, reverse-mode AD is faster than
forward-mode AD or finite di↵erencing for gradient computations. Forward-mode
AD and finite di↵erencing require time proportional to n · !(f) while reverse-mode
AD only requires time proportional to !(f). But the order of work for reverse-mode
AD is bounded by !(f) only when fast memory is available [1]. The gradient com-
putation will slow down significantly after running out of fast memory. Structured
reverse-mode AD reduces memory usage. It allows more gradient computations to be

10

Methods Time Required
Finite di↵erencing n · !(f)
Forward-mode AD n · !(f)

Reverse-mode AD (fast memory only) !(f)

Table 2.1: Time Required by Each Method

Methods Space Required
Plain reverse-mode AD � ⇠ !(f) +

P
p

i=1 !(Fi

)
Structured reverse-mode AD �  max{!(f),!(F

i

), i = 1, · · · , p}

Table 2.2: Space Required by Reverse-mode AD

done using the fast memory compared to plain reverse-mode AD. Thus, structured
reverse-mode AD requires less running time than plain reverse-mode AD. That is why
structured reverse-mode AD is crucial for both space and time e�ciency.

2.2 Composite Functions/Dynamic Structure

There are two common special cases of the general AD structure, namely com-
posite functions and generalized partially separable structure. In general, composite
functions vertically cut paths into segments, usually in the unit of timesteps for
option pricing, whereas generalized partially separable function horizontally divides
simulations into smaller clusters of stochastic paths [3]. Therefore, combining the
two structures will provide the highest e�ciency in both time and space. Generalized
partially separable structure (GPS) will be discussed in Section 2.3. A composite
function is a highly recursive function, f : Rn ! R, which has the following form:

f(x) = f(T
q

(T
q�1(· · · (T1(x)) · · ·))) (2.14)

where z = f(x) is the objective function, T
i

(i = 1 : q) is a vector-valued function,
and f is a continuously di↵erentiable scalar-valued function.

11

Composite (recursive) function can also be expressed in the following structured
form:

Solve for y1 : y1 � T1(x) = 0

Solve for y2 : y2 � T2(y1) = 0

.

.

.

Solve for y
q

: y

q

� T

q

(y
q�1) = 0

Solve for output z : z � f(y
q

) = 0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.15)

where the intermediate vector y

i

’s, i = 1 : q, are of varying dimension and f is a
continuously di↵erentiable scalar-valued function.

It can be clearly seen that each current intermediate value only depends on the
intermediate value immediately before itself. For example, y2 only depends on y1,
similarly, y

q

only depends on y

q�1. Since y

i

only depends on y

i�1, the composite
function structure uses less memory than non-structured AD as it does not require
space for storing computations before y

i�1 for the computation of y
i

.

The composite function can also be written in a more condensed form:

For i = 1 : q

Solve for y
i

: y

i

� T

i

(y
i�1) = 0

Solve for z : z � f(y
q

) = 0

9
>=

>;
(2.16)

where y0 = x.

Taking a similar approach from Section 2.1, the extended Jacobian J

E of the
composite function can be computed and written as follows:

12

J

E =

2

666666666666664

@T1
@x

@T2
@x

...

@Tq

@x

@T1
@y1

@T2
@y1

@T2
@y2

...
...

. . .

@Tq

@y1

@Tq

@y2
· · · @Tq

@yq

@f

@x

@f

@y1

@f

@y2
· · · @f

@yq

3

777777777777775

=

2

666666666666664

�J1
x

I

�J2
y1

I

.

�Jq

yq�1
I

rfT

yq

3

777777777777775

(2.17)

Note that dynamic system (DS) is a special case of the composite function where
each transformation is identical, i.e. T

i

= T for i = 1 : q.

Figure 2.1 illustrates the block diagram of the composite function (dynamic struc-
ture). J

i

represents the Jacobian of T
i

, i = 1 : q. It helps to understand the computa-
tion of the composite function shown in (2.15). The block diagram of the composite
function can be explained as a timeline. First, we supply the input vector x, function
T1 is evaluated at x and we obtain y1 as one of the outputs. Also, we can di↵erentiate
T1 to obtain J1 as the other output. The di↵erentiation can be done by forward mode,
reverse mode, or a combination of both. Then, we supply the previous output, y1, as
the new input. Function T2 is evaluated at y1 to obtain y2 as an output. Similarly,
we can di↵erentiate T2 to obtain J2 as the other output. This process is carried out
for i = 1 : q. Hence, as explained before (2.16), each current intermediate value of
the composite function only depends on the intermediate value immediately before
itself.

2.3 Generalized Partially Separable Functions

As mentioned in the previous section, the best performance in terms of time and
space e�ciency happens when exploiting both of the generalized partially separable
(GPS) and composite function (CF) structure. We explore this in the context of
Monte Carlo pricing. The use of Monte Carlo for evaluating option pricing will be
discussed in Chapter 3. Each path generated by Monte Carlo is independent of other
paths. Each function in the GPS structure is independent of other functions.

Assume to evaluate a scalar-valued function, f : Rn ! R, can be expressed in the
following structured form:

13

Figure 2.1: Block diagram of composite function (dynamic structure) [1]

Solve for y1 : y1 � T1(x) = 0

Solve for y2 : y2 � T2(x) = 0

.

.

.

Solve for y
p

: y

p

� T

p

(x) = 0

Solve for output z : z � f(x, y1, · · · , yp) = 0

9
>>>>>>>>>>>=

>>>>>>>>>>>;

(2.18)

where z = f(x) is the objective function, T
k

(k = 1 : p) is a vector-valued function,
and f is a continuously di↵erentiable scalar-valued function.

In a more condensed form,

14

For k = 1 : p

Solve for x : y

k

� T

k

(x) = 0

Solve for z : z � f(x, y1, · · · , yp) = 0

9
>=

>;
(2.19)

where x is a vector of input variables of function T

k

, k = 1 : p. As shown in (2.18)
each intermediate function is independent of the previous intermediate values.

Therefore, the extended Jacobian J

E of this GPS structure can be written as:

J

E =

2

666666666666664

�J1
x

�J2
x

...

�Jp

x

I

I

. . .

I

rfT

y1
rfT

y2
· · · rfT

yp

3

777777777777775

=


A B

C D

�
(2.20)

where partition B is an identity matrix.

Figure 2.2 illustrates the block diagram of the generalized partial separable (GPS)
function. It helps to understand the computation of the GPS function shown in (2.18).
The superscript represents the path number and the subscript represents the timestep.
Also, p is the total number of paths and q represents the number of timesteps. Note
that p >> q. Recall Section 2.2, each path in Figure 2.2 represents a composite
function (2.14). In other words, Figure 2.2 is made up of p block diagrams of the
composite function. The block diagram of the composite function is shown in Figure
2.1. Since each path is independent of other paths, each intermediate function only
depends on x. Hence, we can write y

k

� T

k

(x) = 0 for k = 1 : p as shown in (2.19).
Algorithm 2.2 illustrates the gradient computation using the GPS approach [3].

15

Figure 2.2: Block diagram of generalized partial separable function [4]

Algorithm 2.2: Generalized Partially Structure Functions (GPS)

1. Evaluate y

k

= T

k

(x), k = 1, · · · , p. (Note: there are p number of paths)

2. Evaluate f(y1, · · · , yp) and apply reverse-mode AD to obtain w

k

=rf
yk

, k=1, · · · , p.
(Note: matrix B is the identity matrix)

3. Gradient Computation by reverse-mode AD:
• Compute v

T

k

= w

T

k

J

k

x

, where J

k

x

is the Jacobian of T
k

(x), k = 1, · · · , p.
• Set rf(x)

P
p

k=1 vk.

16

Chapter 3

Monte Carlo and Types of Options

3.1 Monte Carlo and its Gradient Calculations

As mentioned in the previous chapter, Monte Carlo is useful for option pricing
in financial applications. Monte Carlo method predicts option values by generating a
large number of random paths and taking the average of a large number of terminal
values. The more random simulation paths, the more reliable the predicted option
value would be. Since the Monte Carlo formula contains the random Brownian term,
Z, the option value produced by Monte Carlo is unbiased. This method is widely used
in the financial industry because of its simplicity. When making an investment and
evaluating a portfolio, the derivatives are equally important as the option value itself.
Hedging analysis is crucial for risk assessment and it is necessary for constructing a
portfolio. For instance, the gradient of the option value with respect to its asset price,
@V

@S

, is used to o↵set the sensitivity to the underlying up to the first order. Unlike the
simple vanilla options, it is not easy to compute the gradients for the types of exotic
options mentioned in the next sections. Hence, automatic di↵erentiation becomes
very handy for this application.

Monte Carlo exhibits the structure that is required for implementing the struc-
tured AD techniques. In this chapter, we introduce the types of exotic options exam-
ined in this paper. And we describe the gradient computation of these exotic options
using the generalized partially separable structure. Figure 3.1 is an example of the
Monte Carlo simulation.

In this section, we demonstrate how the average option value bC and its derivative
can be estimated in a path-by-path manner [1]. Then we explain how to relate this to
the general AD structure (2.7) and simplify (2.7) to obtain the generalized separable

17

Figure 3.1: An example of the Monte Carlo simulation

structure (GPS) (2.18). First, the basic Monte Carlo formula for option pricing can
be expressed as follows:

C = E(V (S)) (3.1a)

where C is the option value, S is the underlying asset price, V (S) is the payo↵
function of the underlying asset S at expiry and E(·) is the expectation. Note that
the underlying asset price S is a function of variables x, including but not limited to
the initial asset price S0, volatility �, and risk-free interest rate r, and the random
Brownian motion, Z. Therefore, S can be expressed as follows:

S = h(x, Z) (3.1b)

where x is the vector of initial parameters that can influence the evolution of S. Z is
the random innovation that drives the price. Note that C can also be written in its
integral form as follows:

C =

Z
(V (S))⇢(Z)dZ =

Z
V (h(x, Z))⇢(Z)dZ (3.2)

18

where ⇢(Z) is the probability density function. Note that ⇢(Z) is independent of the
deterministic variables. In order to be able to interchange the order of integration
and di↵erentiation, certain regularity conditions must be fulfilled by V (·) [3]. Then,
we can write:

@C

@x

=
@

@x

Z
V (h(x, Z))⇢(Z)dZ =

Z
@V (h(x, Z))

@x

⇢(Z)dZ (3.3)

Due to (3.1a) and (3.2), (3.3) can be written as follows:

@C

@x

=
@

@x

E(V (S)) = E(
@V (S)

@x

) (3.4)

Assume p simulations have been generated, we can estimate the integral with Monte
Carlo simulations. First, break down the random Brownian term Z to p discrete
vectors Z

k

. Each vector corresponds to a simulation path. Then we can write:

@

b
C

@x

=
1

p

pX

k=1

@V (h(x, Z
k

))

@x

(3.5)

where @

b
C

@x

is the derivative of the objective function and @V (h(x,Zk))
@x

is the derivative of
each path. The process above has shown that the derivative of the objective function
can be obtained in a path-by-path manner.

Similarly, the Monte Carlo option value can be written as:

b
C =

1

p

pX

k=1

V (h(x, Z
k

)) =
1

p

pX

k=1

c
C

k

(3.6)

where cC
k

represents the simulation path corresponding to Z

k

.

Now we have shown that the derivatives of the option can be obtained path-
by-path. We can discuss how this idea relates to the general structure shown in
(2.7) and the generalized partially separable (GPS) structure shown in (2.18). Con-
sider the evaluation of f(x) in (2.7) is the same as the evaluation of bC. Each

19

y

k

= F

k

(x, y1, · · · , yk�1) where k = 1 : p in (2.7) corresponds to path cC
k

with
y

k

= V (h(x, Z
k

)), k = 1 : p. Since each path of Monte Carlo simulations is inde-
pendent of other paths, vector y

k

is independent of other vector y

j

, j < k in this
case. In other words, y

k

only depends on x. Hence, we can write y

k

� F

k

(x) = 0
for k = 1 : p as shown in (2.18). Thus, option pricing in a Monte Carlo framework
exhibits the generalized partially separable (GPS) structure shown in (2.18). In this

case, f(x, y1, · · · , yp) = 1
p

P
p

k=1
c
C

k

. Note that both T

k

(x), k = 1 : p in (2.18) and
F

i

(x), i = 1 : p in (2.7) represent intermediate functions and p simulation paths [1].
They are the same in this context. Figure 3.2 illustrates the computation of option
values using Monte Carlo where bC

k

, k = 1 : p is the option value of each path and bC
is the average option value.

Figure 3.2: Computation of option value using Monte Carlo

3.2 Basket Options

The stochastic di↵erential equation (SDE) for the asset price can be expressed
as follows:

S

i+1 = S

i

e

(r��2

2)�t+�Z

p
�t (3.7)

20

where r is risk-free interest rate, � is volatility, and Z ⇠ N(0, 1) is standard normal.

For simple European options, the payo↵ functions are defined as follows:

V

call

= max(S(T)�K, 0) (3.8a)

V

put

= max(K � S(T), 0) (3.8b)

where V represents the option value, K represents the strike price, and S(T) repre-
sents the underlying asset price at expiry.

The payo↵ functions of the exotic options are slightly di↵erent as there are usually
more than one underlying asset in the portfolio or the average of the asset price is
used instead of the price at expiry. For instance, the basket option is an extension of
the European option. A call basket option takes the weighted average of a group of
M assets and calculates the payo↵ using the weighted average of asset price, instead
of a single asset price, and the strike price [1,8]. The formula can be expressed as
follows:

V

call

= max(
MX

j=1

w

j

S

j

(T)�K, 0) (3.9)

where K is the strike price, T is the expiry time, S
j

(T) is the jth asset price at expiry
in the basket, and w

j

is the weight for the j

th asset.

For a basket option with l baskets, (3.9) can also be written in the matrix form:

2

66666666664

V1

V2

...

V

l

3

77777777775

= max

2

66666666664

w11 w12 · · · w1M

w21 w22 · · · w2M

...
... · · · ...

w

l1 w

l2 · · · w

lM

3

77777777775

2

66666666664

S1

S2

...

S

M

3

77777777775

�

2

66666666664

K1

K2

...

K

l

3

77777777775

, 0

!
(3.10)

21

where S is a vector with M underlying asset prices, W
lj

is a matrix with l by j basket
weights, V is a vector with l basket option values, and K is a vector with l strike
prices. Each row of w represents a basket with di↵erent weights for each underlying
asset. Figure 3.4 illustrates the computational diagram for one basket. Suppose there
are M assets in the basket (j = 1 : M) and q timesteps (i = 1 : q). S

j,0 is the initial
price of the jth asset, S

j,q

is the price of the jth asset at expiry, and V is the weighted
basket option value.

Algorithm 3.1 illustrates how to compute the gradients for basket options using
the generalized partially separable structure (GPS) [1,8]. In general, x represents
a vector involving multiple deterministic parameters such as volatility and risk-free
interest rates, etc. In this demonstration, x only includes S0 and volatility. Also, x

j

represents the vector of deterministic parameters for the j

th asset, S
j,0 is the initial

asset price of the j

th asset, and �

j

is the volatility of the j

th asset. Note that the
vector of parameters is di↵erent for each asset, i.e. x1 6= x2 and S1,0 6= S2,0.

As mentioned in Chapter 2, composite function (dynamic structure) vertically
cuts paths into segments, usually in the unit of timesteps for option pricing, whereas
generalized partially separable function horizontally divides simulations into smaller
clusters of stochastic paths. The terms ”by batch” and ”by segment” will be referred
to as ”generalized partially separable structure” and ”dynamic structure”, respec-
tively, hereafter. Figure 3.3 illustrates that if there are total of eight paths and they
are divided into two batches, the solid blue lines represent one of the two batches
with batch size equaling to four. Similarly, the dashed black lines represent the other
of the two batches with batch size equaling to four.

Figure 3.4 illustrates the computational diagram of the basket option. This is
a simplified diagram as it is showing only one path for each asset in the basket. For
example, S1,0 represents the initial asset price of the first asset and S

M,0 represents
the initial asset price of the M

th asset. Similarly, S1,q represents the asset price at
expiry of the first asset and S

M,0 represents the asset price at expiry of the M

th

asset. The straight arrows represent the evolution of the simulated paths going from
initial time point to expiry. The straight arrow is referred to as the forward sweep.
We perform forward sweeps to obtain the asset price at expiry. The curved arrow is
referred to as the reverse sweep. We perform reverse sweeps via Algorithm 2.2 and
3.1 to obtain the matrices of the extended Jacobian shown in (2.20). These Jacobian
matrices, i.e. J1, J2, · · · , JM , are stored and used for computing the gradient using
the Schur-complement formula (2.9).

22

Figure 3.3: Diagram of a Batch

Figure 3.4: Diagram of Basket Options Computation with M Assets

23

Algorithm 3.1: Computation of Basket Options - By Batch

1. Set number of paths, k = 1 : p, for one asset.

2. Set number of timesteps: i = 1 : q.

3. For path k1 to k

h

, perform forward sweep until expiry, q.

• Store all the intermediate values for k1 to k

h

. Perform reverse sweep in one
segment to compute the Jacobian matrix @Sk

@x

for path k1 to k

h

.

• Store the Jacobian matrix and clear all intermediate values of this batch.

• Repeat for all batches, i.e. k
h+1 to k

p

.

4. Compute the gradients of V

x

with Algorithm 2.2 using the stored Jacobian matrix.

5. Repeat for all assets, j = 1 : M , in the basket.

Note: x only includes S0 and volatility in this demonstration.

In Algorithm 3.1, the memory usage reduced for the computation is propor-
tional to the number of batches. Since all intermediate values from k1 to k

h

are
overwritten by the intermediate values from k

h+1 to k

p

after computing the Jacobian
matrix. That is, the intermediate values of the previous batch are overwritten by the
intermediate values of the current batch, the intermediate values of the current batch
are overwritten by the intermediate values of the next batch, etc. Therefore, only 1

2
of the memory is required when dividing the total number of paths into two batches.
Similarly, only 1

t

of the memory is required when dividing the total number of paths
into t batches.

3.3 Asian Options

As mentioned in the previous section, there are di↵erent types of exotic options.
The payo↵ function of an Asian call option [1,2] is defined as follows:

24

V

call

= max(
1

q

qX

i=1

S

i

�K, 0) (3.11)

where S

i

is the asset price at time point i. q is the total number of timesteps. K is
the strike price. Figure 3.5 illustrates the diagram of the Asian options computation
for one path.

Figure 3.5: Diagram of Asian Options Computation: one of the paths shown

Algorithm 3.2 illustrates how to compute the gradients for Asian options by
batch [1,6]. Figure 3.5 illustrates the computational diagram of Asian options for one
path. Figure 3.6 illustrates the computational diagram of Asian option’s gradient.
This is a simplified diagram as it is showing only one path and one asset. For exam-
ple, S0 represents the initial asset price of the asset and S

q

represents the asset price
at expiry of the asset The straight arrows represent the evolution of the simulated
paths going from initial time point to expiry. The straight arrow is referred to as
the forward sweep. We perform forward sweeps to obtain the asset price at expiry.
The curved arrow is referred to as the reverse sweep. We perform reverse sweeps
via Algorithm 2.2 and 3.2 to obtain the matrices of the extended Jacobian shown in
(2.20). The Jacobian matrix, i.e. @Sk

@x

, is stored and used for computing the gradient

25

using the Schur-complement formula (2.9).

Algorithm 3.2: Computation of Asian Options - By Batch

1. Set number of paths, k = 1 : p, for the Asian option.

2. Set number of timesteps, i = 1 : q.

3. For path k1 to k

h

, perform forward sweep until expiry, q.

• Store all the intermediate values for k1 to k

h

. Perform reverse sweep in one
segment to compute the Jacobian matrix @Sk

@x

for path k1 to k

h

.

• Store the Jacobian matrix and clear all intermediate values of this batch.

• Repeat for all batches, i.e. k
h+1 to k

p

.

4. Compute the gradients of V

x

with Algorithm 2.2 using the stored Jacobian matrix.

Note: x only includes S0 and volatility in this demonstration. In general, x can
be a vector involving other deterministic parameters such as volatility and risk-free
interest rates, etc.

In Algorithm 3.2, the memory usage reduced for the computation is propor-
tional to the number of batches. Since all intermediate values from k1 to k

h

are
overwritten by the intermediate values of k

h+1 to k

p

after computing the Jacobian
matrix. That is, the intermediate values of the previous batch are overwritten by the
intermediate values of the current batch, the intermediate values of the current batch
are overwritten by the intermediate values of the next batch, etc. Therefore, only 1

2
of the memory is required when dividing the total number of paths into two batches.
Similarly, only 1

t

of the memory is required when dividing the total number of paths
into t batches.

26

Figure 3.6: Diagram of Asian Options’ Gradient Computation

3.4 Best of Asian Options

Suppose there are M assets in the portfolio. The Asian option value of the jth

asset is denoted as A

j

for j = 1 : M . The best of Asian option is obtained by first
computing the values of the Asian option and then choosing the maximum value from
the vector of Asian option values [1,2]. The mathematical formula can be written as
follows:

V

call

= max(A) (3.12)

where A can be expressed as:

A

j

= max(S
j

�K

j

, 0) (3.13a)

S

j

=
1

q

qX

i=1

S

i

j

(3.13b)

27

where S

j

is the average price of the j

th asset and K

j

is the strike price.

The algorithm for the best of Asian option is the same as the algorithm for the
Asian option since the option value of the best of Asian option is simply the maximum
value of the Asian option. Refer to Algorithm 3.2 for the gradient computation of
best of Asian options using the generalized partially separable (GPS) structure. The
Jacobian of the best of Asian option is just a row vector when the regular Asian
option produces a diagonal matrix Jacobian. For example:

Asian Option Values =

2

66666666664

V1

V2

...

V

m

3

77777777775

(3.14)

Jacobian of Asian Option =

2

66666666664

J1

J2

. . .

J

m

3

77777777775

(3.15)

Assuming V

m

is the maximum value in (3.14), then:

Best of Asian Option Values = V

m

(3.16)

Jacobian of Best of Asian Option =


0 · · · · · · 0 J

m

�
(3.17)

28

Chapter 4

Results of Experiments

4.1 Machine Specification and Experiments Overview

To be consistent, all experiments have been performed on the same machine
with the following specifications: Intel Core i5-5200U, 8GB DDR3 L memory, and
1000 GB HDD. The version of Matlab used was R2016b. The AD packages used were
ADMAT 2.0 and MADO.

In order to perform the objective comparison tests, two versions of AD algo-
rithm have been developed and tested. The experiments were performed with several
combinations of AD algorithm and underlying user code for option pricing. The first
experiment was called the HV2.0. It incorporated the ADMAT 2.0 algorithm, a highly
vectorized underlying user code, and exploited the GPS structure. The second ex-
periment was called the FL2.0 (ADMAT). It employed the ADMAT 2.0 algorithm, a
for loop underlying user code, and exploited the GPS structure. The last experiment
was called the MADO. It used the MADO algorithm, a for loop underlying user code,
and exploited the GPS structure. The three experiments performed are summarized
in Table 4.1.

Three comparison tests were performed. The first comparison test compared
the memory usage between HV2.0 structured and HV2.0 unstructured (plain reverse
mode). The second comparison test compared the memory usage of FL2.0 structured

Experiment Name AD algorithm Underlying User Code Structure Mode
HV2.0 ADMAT 2.0 Highly vectorized GPS By batch Reverse Mode

FL2.0 (ADMAT) ADMAT 2.0 For loop GPS By batch or path Reverse Mode
MADO MADO For loop GPS By path Reverse Mode

Table 4.1: Overview of Experiments

29

versus FL2.0 unstructured. The last comparison test compared the time e�ciency
between FL2.0 vs MADO. In the subsequent sections, FL2.0 will be referred to as
ADMAT.

4.2 Comparison Test 1 Results

In this section, the results of the comparison test between HV2.0 structured
and HV2.0 unstructured will be shown and discussed. It was done to test the per-
formance of the AD-use of the generalized partially separable structure (GPS) for
basket options, Asian options, and best of Asian options. The setup for the basket
option computation was shown in (3.10) where l = 5 and M = 10. Therefore, there
were five weighted basket options in this experiment. Each basket consists of ten
underlying assets. Table 4.2 shows the time and memory usage for the calculation
of basket option values and their gradients using the Monte Carlo method. The for-
mula for the computation of the Asian options and best of Asian options were in
(3.11) and (3.12), respectively. There were ten underlying assets in the portfolio of
the Asian options and best of Asian options. Table 4.3 shows the time and memory
usage for the calculation of Asian option values and their gradients using the Monte
Carlo method. Table 4.4 shows the time and memory required for the calculation of
best of Asian option values and their gradients using the Monte Carlo method.

For each of the options, six total Monte Carlo instances were examined, namely
100000, 80000, 60000, 40000, 20000, and 10000. Recall that the GPS structure hor-
izontally divides simulations into smaller clusters of stochastic paths. In this paper,
each cluster of paths is referred to as a batch and the number of paths in a batch
is referred to as batch size. Five di↵erent combinations were tested for the case of
100000 total MC paths. The first combination (1 x 100000) was the Plain Reverse
AD mode (also referred to as non-structured AD), where there is only 1 batch and the
batch size is the same as the total number of MC paths. This is used as a controlled
case for comparison with the structured scenarios. For the structured cases, the fol-
lowing combinations of batch x batch size are tested: 10x10000, 20x5000, 50x2000,
and 100x1000.

Before discussing the results, here are the notations for Table 4.2, 4.3, and
4.4. Total MC represents the total Monte Carlo paths generated, NBatch represents
the number of batches, batch size represents the number of paths in a single batch.
Memory ratio is the ratio between the memory required by plain reverse mode AD
and the memory required by the respective structured AD. Consider Table 4.2 as an
example, for the case of 80000 total MC paths, the memory required by plain reverse
mode AD is 4508.816 MB. For the first structure combination (10 batches x 8000
paths), the memory required is 450.888 MB. Therefore, the memory ratio is 9.9999.
For the second structure combination (20 batches x 4000 paths), the memory ratio

30

is 255.448. Thus, the memory ratio is 19.9994, etc. Similarly, time ratio is the ratio
between the time required by plain reverse mode AD and the time required by the
respective structured AD.

Table 4.2, 4.3, and 4.4 all show that the memory usage reduces as the number
of batches increases. Moreover, the memory usage reduced approximately equals to
the number of batches. This phenomena was explained in the paragraph immediately
after Algorithm 3.2. In short, the memory usage is reduced because the intermediate
information is overwritten after each AD session due to the GPS structure. Take
Table 4.2 as an example, for total MC paths of 80000, the memory usage for plain
reverse AD was 4508.812 MB and the memory usage for structured AD (100x800)
was only 45.096 MB. The memory usage was reduced by 100 times which equals to
the number of batches. Similarly, for total MC paths of 20000, the memory usage
for plain reverse AD was 1127.208 MB and the memory usage for structured AD
(20x1000) was only 56.364 MB. Again, The memory usage was reduced by 20 times
which equals to the number of batches. This pattern holds for all total number of MC
instances, batch combinations, and all three types of exotic options examined. Table
4.3 and 4.4 show the results for Asian options and best of Asian options, respectively.

Figure 4.1, 4.2, and 4.3 show the trend of memory usage for di↵erent total
number of MC instances and batch combinations. The x-axis and y-axis represent
the number of batches and memory usage in MB, respectively. Each line represents
the total number of MC instances. From top to bottom, the top line uses the most
memory because it represents the memory usage for 100000 MC instances in total,
the second line represents the memory usage for 80000 MC instances in total, and the
third line represents the memory usage for 60000 MC instances in total, so on and
so forth. The bottom line uses the least memory because it represents the memory
usage of 10000 MC instances in total. For all cases of total number of MC instances,
all three types of option show the same decreasing trend as the number of batches
increases.

Figure 4.4, 4.5, and 4.6 show that all MC instance cases result in the same
memory ratio which is proportional to the number of batches regardless of the total
number of MC instances.

4.3 Comparison Test 2 Results

In order to show that the performance of structured AD is independent of the
implementation of the underlying user code, the results of the comparison test between
FL2.0 structured and FL2.0 unstructured will be shown and discussed in this section.
This comparison test is similar to comparison test 1. The setup for the basket option

31

Plain Reverse AD Structured AD
Total MC NBatch Batch Size Memory(MB) Time(s) Memory(MB) Time(s) Memory Ratio Time Ratio

100000

1 100000 5636.02 159.674655 1 1
10 10000 563.608 125.525408 9.999893543 1.272050476
20 5000 281.808 127.666146 19.99950321 1.250720414
50 2000 112.728 125.710322 49.99662905 1.270179349
100 1000 56.484 134.951923 99.7808 1.18319

80000

1 80000 4508.812 107.7002 1 1
10 8000 450.888 100.0016 9.9998 1.0770
20 4000 255.476 100.4558 19.9969 1.0721
50 1600 90.184 101.2327 49.99557 1.0639
100 800 45.096 102.1406 99.9825 1.0544

60000

1 60000 3381.612 85.8128 1 1
10 6000 338.168 86.1482 9.9998 0.9961
20 3000 169.088 88.5867 19.9991 0.9687
50 1200 67.64 86.6762 49.9942 0.9900
100 600 33.8844 88.2671 99.8000 0.9722

40000

1 40000 2254.412 52.051197 1 1
10 4000 225.452 48.782437 9.999520962 1.067006903
20 2000 112.8 49.995203 19.98592199 1.041123825
50 800 46.852 49.342586 48.11773243 1.054893981
100 400 22.688 50.871891 99.36583216 1.023181879

20000

1 20000 1127.208 25.478715 1 1
10 2000 112.728 24.466931 9.999361294 1.041353123
20 1000 56.364 25.114317 19.99872259 1.014509572
50 400 22.62 24.90138 49.83236074 1.02318486
100 200 11.304 27.414264 99.71762208 0.929396281

10000

1 10000 563.608 14.314761 1 1
10 1000 56.364 12.382822 9.999432262 1.156017667
20 500 28.188 12.354023 19.99460763 1.15871251
50 200 11.336 12.622057 49.7184192 1.134106826
100 100 5.64 13.152183 99.93049645 1.088394299

Table 4.2: Basket Option with 5 Weighted Basket Options - HV2.0

32

Plain Reverse AD Structured AD
Total MC NBatch Batch Size Memory(MB) Time(s) Memory(MB) Time(s) Memory Ratio Time Ratio

100000

1 100000 5636.18 142.0514 1 1
10 10000 563.608 125.3115 10.0002 1.1336
20 5000 281.816 125.0417 19.9995 1.1360
50 2000 112.724 126.7981 49.9998 1.1203
100 1000 56.388 126.4218 99.9536 1.1236

80000

1 80000 4508.816 106.2053 1 1
10 8000 450.888 97.7114 9.9999 1.0869
20 4000 255.448 97.969 19.9994 1.0841
50 1600 90.244 99.4338 49.9625 1.0681
100 800 45.092 99.7190 99.9915 1.0650

60000

1 60000 3381.608 78.7129 1 1
10 6000 338.232 73.8844 9.9979 1.0654
20 3000 169.092 73.3636 19.9986 1.0729
50 1200 67.636 73.9170 49.9972 1.0649
100 600 33.824 74.1921 99.9766 1.0609

40000

1 40000 2254.436 49.7433 1 1
10 4000 225.444 49.7946 10.0000 0.9990
20 2000 112.788 53.5537 19.9883 0.9288
50 800 45.092 49.4490 49.9964 1.0059
100 400 28.408 50.0092 79.3592 00.9947

20000

1 20000 1131.08 24.6128 1 1
10 2000 112.724 24.6423 10.0341 0.9988
20 1000 56.364 24.9646 20.0674 0.9859
50 400 22.548 25.0055 50.1632 0.9843
100 200 11.336 26.8979 99.7777 0.9150

10000

1 10000 563.608 12.6555 1 1
10 1000 60.092 12.6814 9.3791 0.9980
20 500 28.252 12.5079 19.9493 1.0118
50 200 11.272 12.6677 50.0007 0.9990
100 100 5.636 14.0885 100.0014 0.8983

Table 4.3: Asian Option with 10 Underlying Assets - HV2.0

33

Plain Reverse AD Structured AD
Total MC NBatch Batch Size Memory(MB) Time(s) Memory(MB) Time(s) Memory Ratio Time Ratio

100000

1 100000 5636.00 138.42 1 1
10 10000 563.61 120.91 9.9999 1.1448
20 5000 281.86 122.76 19.9961 1.12764
50 2000 112.73 124.7 49.997 1.11
100 1000 56.388 124.44 99.951 1.1123

80000

1 80000 4508.8 102.04 1 1
10 8000 450.89 97.182 9.9998 1.05
20 4000 225.44 99.065 20.0000 1.03
50 1600 90.244 98.065 49.962 1.0405
100 800 45.092 99.235 99.991 1.0282

60000

1 60000 3381.6 75.499 1 1
10 6000 338.17 74.569 9.9998 1.1013
20 3000 169.08 73.814 20.000 1.0228
50 1200 67.7 73.587 49.95 1.026
100 600 33.888 74.599 99.788 1.0121

40000

1 40000 2254.4 49.198 1 1
10 4000 225.51 49.611 9.997 0.9917
20 2000 121.58 49.525 18.543 0.9934
50 800 45.092 48.899 49.996 1.0061
100 400 22.612 49.519 99.70 0.9935

20000

1 20000 1131.3 24.425 1 1
10 2000 113.65 24.40 9.9542 1.001
20 1000 56.424 25.1157 20.05 0.9725
50 400 22.608 24.967 50.04 0.9783
100 200 11.276 27.724 100.33 0.9495

10000

1 10000 563.61 12.271 1 1
10 1000 56.428 12.224 9.9881 1.0038
20 500 28.76 12.413 19.597 0.98861
50 200 11.344 13.719 49.683 0.8945
100 100 5.64 12.919 99.93 0.9499

Table 4.4: Best of Asian with 10 Underlying Assets - HV2.0

34

Figure 4.1: Peak Memory: Basket Options’ Gradient Computation - HV2.0

Figure 4.2: Peak Memory: Asian Options’ Gradient Computation - HV2.0

computation was shown in (3.10) where l = 1 and M = 1000, 2000, 3000, 4000, 5000.
Therefore, the portfolio of the basket options consists of one weighted basket and
1000-5000 underlying assets. Table 4.5 shows the memory usage for the calculation of
basket option values and their gradients using the Monte Carlo method. The formula
for the computation of the best of Asian option was in (3.12). The portfolio of the
best of Asian options consists of 3000, 4000, and 5000 underlying assets. Table 4.6
shows the memory usage for the calculation of best of Asian option values and their
gradients using the Monte Carlo method. Please note that the result for the Asian
option is unavailable due to insu�cient memory storage of the testing machine.

For each of the options, two batching structures and one unstructured (plain
reverse mode) case were examined. The two batching structures are 100 MC paths
with 100 batches and 100 MC paths with 50 batches. The plain reverse mode case is

35

Figure 4.3: Peak Memory: Best of Asian Options’ Gradient Computation - HV2.0

Figure 4.4: Memory Ratio: Basket Options’ Gradient Computation - HV2.0

100 MC paths with 1 batch. As mentioned earlier, ”batching” refers to as exploiting
the GPS structure (i.e. clustering several paths together). In a more precise sense,
there is a di↵erent meaning of ”batches” between HV2.0 and FL2.0. In the highly
vectorized case (HV2.0), number of batches is referred to as the size of the vector. In
the for loop case (FL2.0), number of batches is referred to as number of loops to run
in an AD session.

For the basket options, five number of assets were tested, namely 1000, 2000,
3000, 4000, and 5000. Each number of assets were examined with each of the three
”batching” cases mentioned above. For the best of Asian options, three number
of assets were tested, namely 3000, 4000, and 5000. Each number of assets were

36

Figure 4.5: Memory Ratio: Asian Options’ Gradient Computation - HV2.0

Figure 4.6: Memory Ratio: Best of Asian Options’ Gradient Computation - HV2.0

examined with each of the three ”batching” cases as well.

Before discussing the results, NAssets represents the number of assets in the
portfolio in Table 4.5 and 4.6. Both Table 4.5 and 4.6 show that the memory usage
reduces as the number of batches increases. Moreover, the memory usage reduced
approximately equals to the number of batches. These results are consistent with
the results of comparison test 1 in the last section. In short, the memory usage is
reduced because the intermediate information is overwritten after each AD session
due to the GPS structure. Consider Table 4.5 as an example, for 1000 assets , the
memory usage for plain reverse AD (unstructured: 100 mcpaths and 1 batch) was
1238.5 MB and the memory usage for structured AD (100 mcpaths and 100 batches)
was only 12.648 MB. The memory usage was reduced by 100 times which equals to

37

Memory(MB) - FL2.0 Basket Options
NAssets 100 mcpaths/100 batches 100 mcpaths/50 batches 100 mcpaths/1 batch (plain)
1000 12.648 20.54 1238.5
2000 25.896 55.512 2444.94
3000 33.932 67.944 3416.4
4000 45.384 90.996 4546.75
5000 57.64 114.904 5672.66

Table 4.5: Memory Usage of FL2.0 structured vs FL2.0 unstructured - Basket Options

the number of batches. This pattern holds for all total number of assets, batching
combinations, and both types of exotic options examined. Table 4.6 shows the results
for best of Asian options. Comparison test 2 shows consistent results as comparison
test 1. Whether the underlying user code is highly vectorized or for loop, the GPS
structure still improves the space e�ciency. Therefore, the performance of structured
AD (GPS) is independent of the implementation of the underlying user code.

Figure 4.7 and 4.8 show the memory usage of di↵erent number of assets and
batching combinations. The x-axis and y-axis represent the number of assets and
memory usage in MB, respectively. The bars with the diagonal line pattern represent
the memory usage of the plain reverse mode (unstructured: 100 mcpaths and 1 batch).
The solid and dotted-patterned bars represent the memory usage of the following GPS
structured combinations: 100 mcpaths x 50 batches and 100 mcpaths x 100 batches,
respectively. Both figures reveal that the plain reverse mode requires significantly
more space than the other two structured combinations.

Figure 4.7: Peak Memory: FL2.0 Basket Options

38

Memory(MB) - FL2.0 Best of Asian Options
NAssets 100 mcpaths/100 batches 100 mcpaths/50 batches 100 mcpaths/1 batch (plain)
3000 35.204 68.964 3421.56
4000 45.828 91.872 4549.83
5000 58.368 113.432 5685.2

Table 4.6: Memory Usage of FL2.0 structured vs FL2.0 unstructured - Best of Asian
Options

Figure 4.8: Peak Memory: FL2.0 Best of Asian Options

4.4 Comparison Test 3 Results

The focus of this section is on time e�ciency. The performance of FL2.0
(ADMAT) and MADO will be examined and compared. The performance of AD as
derivative computation is a↵ected by two factors: AD algorithm and the underlying
user code. The time required by the user code to evaluate option values is called the
primary time. The time required by the AD algorithm for derivative computation
is called the derivative time. The time e�ciency performance of the AD package is
measured by the time ratio between derivative time and primary time. That is, how
much more expensive the derivative computation is compared with the user code.

The setup for the basket options computation was shown in (3.10) where l = 1
and M = 10, 100, 500, 1000, 2000, 3000, 4000, 5000. Table 4.7 shows the time ratio
results for the basket options. The formulas for the computation of the Asian options
and best of Asian options were presented in (3.11) and (3.12), respectively. The
portfolio of the Asian options and best of Asian options also consist of 10, 100, 500,
1000, 2000, 3000, 4000, and 5000 underlying assets. Table 4.8 and 4.9 show the the
time ratio results for the Asian options and best of Asian options, respectively.

As mentioned in Section 4.1, FL2.0 will be referred to as ADMAT in this sec-
tion. NAssets represents the number of assets in the portfolio in Table 4.7, 4.8, and

39

4.9. For each of the experiments, three total MC paths were examined. All of them
exploited the GPS structure and had only 1 path per batch. For instance, 100ad-
mat means 100 mc paths with 100 batches, 200admat means 200 mc paths with 200
batches, 300admat means 300 mc paths with 300 batches. Similarly for the experi-
ment MADO, 100mado means 100 mc paths with 100 batches, 200mado means 200
mc paths with 200 batches, and 300mado means 300 mc paths with 300 batches. For
each of the experiments, the following combinations (number of assets x mc paths)
were tested: 10x100admat, 10x200admat, 10x300admat, 10x100mado, 10x200mado,
and 10x300mado, so on and so forth.

Table 4.7, 4.8, and 4.9 show that the time ratios of MADO are significantly less
than the corresponding time ratios produced by ADMAT. That means the derivative
computation of MADO is less expensive than the derivative computation of ADMAT.
In other words, MADO is faster than ADMAT in these examples. The reason is
that ADMAT implements AD by function overloading. It is a dynamic approach,
i.e. di↵erentiate user code at runtime. On the other hand, MADO implements
AD by code generation. It is a static approach, i.e. parsing and processing the
computational graph before runtime. Since MADO generates derivative code before
runtime, the generated code has less to deal with. Thus, MADO is faster than
ADMAT in these examples. Since the time ratios slightly fluctuate, these time ratios
are average results of five runs. Consider Table 4.7 as an example, for 10 assets, the
time ratio produced by 100admat is 99.59 while the time ratio produced by 100mado
is only 19.99. That means ADMAT required 99.59 times more than the primary time
to compute its’ derivative. And MADO took only 19.99 times more than the primary
time to compute its’ derivative. In other words, MADO is five times faster than
ADMAT for this combination. Similarly, for 1000 assets, the time ratio of 200admat
is 15.38 while the time ratio of 200mado is only 4.57. Hence, MADO is roughly three
times faster than ADMAT for this combination. In Table 4.8, some time ratios of the
Asian options are unavailable due to insu�cient memory storage of the test machine.
These cells have been labeled as o.f.m. (out of memory).

Figure 4.9, 4.10, and 4.11 show the time ratios for di↵erent number of assets
and MC paths combinations. The x-axis and y-axis represent the number of assets
and time ratio, respectively. The solid lines represent the time ratios produced by
MADO. The dotted lines represent the time ratios produced by ADMAT. As shown
in all three graphs, ADMAT exhibits a much higher ratio than MADO. Again, that
means MADO is faster than ADMAT as an AD package in these examples.

Note that in Figure 4.9 and 4.11, time ratios started out with a large di↵erence
between ADMAT and MADO, but they started to merge together to a similar time
ratio as number of asset increases. This merging trend is due to the size of the asset
vector. The AD overhead becomes less significant as vector becomes larger. Thus,
package di↵erence becomes less significant as well. Figure 4.12 and 4.13 are the close
up plots of Figure 4.9 and 4.11, respectively. They illustrate the time ratio results for

40

Time Ratio - Basket Options
FL2.0(ADMAT) MADO

NAssets 100admat 200admat 300admat 100mado 200mado 300mado
10 99.59 114.05 137.07 19.99 26.41 26.98
100 74.59 78.93 75.95 16.29 15.63 16.1
500 23.57 24.73 23.83 6.16 6.42 6.34
1000 14.59 15.38 14.8 4.54 4.57 4.53
2000 7.92 7.3 8.98 3.09 3.46 3.51
3000 7.19 7.16 7.1 3.37 3.22 3.23
4000 6.09 6.2 6.16 3.34 3.27 3.19
5000 5.59 5.67 5.65 3.15 3.2 3.21

Table 4.7: Time Ratio of FL2.0 (ADMAT) vs MADO - Basket Options

Time Ratio - Asian Options
FL2.0(ADMAT) MADO

NAssets 100admat 200admat 300admat 100mado 200mado 300mado
10 144.57 135.38 145.47 32.25 28.71 31.39
100 118.99 126.55 128.5 35.36 36.08 37.07
500 321.75 3162.28 309.62 217.65 212.76 204.91
1000 o.f.m. o.f.m. o.f.m. 473.18 o.f.m. o.f.m.
2000 o.f.m. o.f.m. o.f.m. 1000.61 o.f.m. o.f.m.
3000 o.f.m. o.f.m. o.f.m. 1762.05 o.f.m. o.f.m.
4000 o.f.m. o.f.m. o.f.m. 2384.38 o.f.m. o.f.m.
5000 o.f.m. o.f.m. o.f.m. o.f.m. o.f.m. o.f.m.

Table 4.8: Time Ratio of FL2.0 (ADMAT) vs MADO - Asian Options

”large-scale” problems, i.e. 1000-5000 assets. Figure 4.14 and 4.15 show the memory
usage for the basket options and best of Asian options, respectively. The x-axis and
y-axis represent the number of assets and memory usage (MB), respectively. As men-
tioned, 100admat (solid lines) represents 100 paths with 100 batches using ADMAT.
100mado (dotted lines) represents 100 paths with 100 batches using MADO. Both
plots show that MADO requires less space than ADMAT. In other words, MADO is
both faster and more space e�cient than ADMAT in these examples.

41

Time Ratio - Best of Asian Options
FL2.0(ADMAT) MADO

NAssets 100admat 200admat 300admat 100mado 200mado 300mado
10 135.3 145.92 144.83 30.34 30.67 31.3
100 75.28 77.89 76.18 16.87 17.94 17.42
500 20.61 24.93 22.93 5.97 7.05 6.42
1000 14.46 17.06 14.08 4.55 5.11 4.64
2000 9.14 9.34 9.07 3.77 3.8 3.71
3000 8.38 7.35 7.49 4.17 3.58 3.63
4000 6.63 6.76 6.63 3.74 3.84 3.78
5000 6.06 6.1 6.12 3.69 3.75 3.75

Table 4.9: Time Ratio of FL2.0 (ADMAT) vs MADO - Best of Options

Figure 4.9: Time Ratio: FL2.0 (ADMAT) vs MADO - Basket Options

42

Figure 4.10: Time Ratio: FL2.0 (ADMAT) vs MADO - Asian Options

Figure 4.11: Time Ratio: FL2.0 (ADMAT) vs MADO - Best of Asian Options

43

Figure 4.12: Time Ratio NAssets 1000-5000: FL2.0 (ADMAT) vs MADO - Basket
Options

Figure 4.13: Time Ratio NAssets 1000-5000: FL2.0 (ADMAT) vs MADO - Best of
Asian Options

44

Figure 4.14: Memory: FL2.0 (ADMAT) vs MADO - Basket Options

Figure 4.15: Memory: FL2.0 (ADMAT) vs MADO - Best of Asian Options

45

Chapter 5

Conclusion

In summary, structured AD is an e�cient tool for derivative computations.
Three experiments and comparison tests were done to show the e↵ectiveness of struc-
tured AD for determining Greeks of exotic options in a Monte Carlo framework. The
first experiment was called the HV2.0. It incorporated the ADMAT 2.0 algorithm, a
highly vectorized underlying user code, and exploited the GPS structure. The second
experiment was called the FL2.0 (ADMAT). It employed the ADMAT 2.0 algorithm,
a for loop underlying user code, and exploited the GPS structure. The last experi-
ment was called the MADO. It used the MADO algorithm, a for loop underlying user
code, and exploited the GPS structure.

Three comparison tests were performed. The first comparison test compared
the memory usage between HV2.0 structured and HV2.0 unstructured (plain reverse
mode). The results show that the memory required for the gradient computations was
significantly reduced after exploiting the GPS structure. Furthermore, the memory
usage reduced is proportional to the number of batches. It is because the GPS
structure allows the intermediate information to be overwritten after each AD session.

The second comparison test compared the memory usage of FL2.0 structured
versus FL2.0 unstructured. This comparison test is similar to the first comparison
test. The only di↵erence is that HV2.0 employs a highly vectorized user code while
FL2.0 uses a for loop user code. Comparison test 2 shows consistent results as com-
parison test 1. Whether the underlying code is highly vectorized or for loop, the GPS
structure still improves the space e�ciency. Thus, the performance of structured AD
is independent of the implementation of the underlying user code.

The last comparison test compared the time e�ciency between FL2.0 (ADMAT)
and MADO. The results show that the time ratios of MADO are significantly less
than the corresponding time ratios produced by ADMAT. That is, the derivative
computation of MADO is faster than that of ADMAT in these examples.

46

References

[1] Xi Chen, Wei Xu, and Thomas F. Coleman. The E�cient Application of Au-
tomatic Di↵erentiation for Computing Gradients in Financial Applications. J.
Comput. Finance, 2014.

[2] Thomas F. Coleman and G.F. Jonsson. The e�cient computation of structured
gradients using automatic di↵erentiation. SIAM Journal on Scientific Comput-
ing, Vol. 20, 1999, pp. 1430-1437.

[3] Thomas F. Coleman andWei Xu. Fast (Structured) Newton Computations. SIAM
Journal on Scientific Computing, 31.2, 2008. pp. 1175-1191.

[4] Thomas F. Coleman and Wei Xu. Automatic Di↵erentiation in MATLAB Using
ADMAT with Applications. SIAM, Philadelphia, Pennsylvania, 2016.

[5] Michael Giles and Paul Glasserman. Computation Methods: Smoking Adjoints:
Fast Monte Carlo Greeks. Risk-London-Risk Magazine Limited, 19.1, 2006, pp.
92.

[6] John C. Hull. Options, Futures and Other Derivatives. Prentice Hall, Philadel-
phia, Pennsylvania, 6th edition, 2005.

[7] Wanqi Li. MADO Editor User Manual. http://github.com/vanchi7/mado-
editor(poundsign)generate-derivative-code, 2017.

[8] Pablo Olivares and Alexander Alvarez. Pricing Basket Options by Polynomial
Approximations. Journal of Applied Mathematics, 2016, Article ID 9747394.

[9] W. Murray P.E. Gill and M.H. Wright. Practical Optimization. Academic Press,
New York, 1982.

[10] B. Speelpenning. Compiling Fast Partial Derivatives of Functions Given by Al-
gorithms. Ph.D. thesis, Department of Computer Science, University of Illinois
at Urbana-Champaign, 1980.

47

	List of Tables
	List of Figures
	Introduction
	Importance and Applications of Partial Derivatives
	Challenges and Advantages of Automatic Differentiation
	Project Objectives
	Paper Overview

	Types of Structured Automatic Differentiation
	General Automatic Differentiation Structure
	Composite Functions/Dynamic Structure
	Generalized Partially Separable Functions

	Monte Carlo and Types of Options
	Monte Carlo and its Gradient Calculations
	Basket Options
	Asian Options
	Best of Asian Options

	Results of Experiments
	Machine Specification and Experiments Overview
	Comparison Test 1 Results
	Comparison Test 2 Results
	Comparison Test 3 Results

	Conclusion
	References

