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Abstract

The COVID-19 outbreak has been identified as one of the most severe respiratory
virus outbreaks since the 1918 H1N1 influenza pandemic. Its impact on people’s lives
and governments has been significant, affecting areas such as health and the economy.
Governments have responded to the pandemic by implementing policies to mitigate its
destructive effects on the economy and people’s lives and to stop its spread. These policies
fall under four main categories: containment and closure policies, economic policies, health
system policies, and vaccination policies.

Many of these policies were implemented as emergency measures without a thorough
study of their impact and effectiveness. Therefore, investigating the impact of govern-
ment policies during the pandemic is crucial to assist policymakers in addressing future
pandemics or variations of COVID-19.

To conduct this investigation, we utilized counterfactual reasoning and counterfactual
generation techniques from causality. We also measured the level of dependence between
each policy and the spread of COVID-19 using Hilbert-Schmidt Independence Criterion
(HSIC) and mutual information. Our findings indicate that vaccination policies had the
most positive impact on controlling the disease. Additionally, school closings, restrictions
on gatherings, and canceling public events were found to be quite effective. However, in
some cases, our methods produced counterintuitive results, suggesting a decrease in the
level of some policies, such as PCR testing, for controlling the disease.

It’s important to note that different methods used in this investigation may produce dif-
ferent and sometimes contradicting results. We discussed the limitations of the techniques
used, which may have contributed to the contradictory findings.
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Chapter 1

Introduction

During the COVID-19 pandemic, governments implemented various policies to control the
spread of the disease and mitigate its negative impacts on people’s lives. These policies
can be categorized into four main categories: containment and closure policies, economic
policies, health system policies, and vaccination policies. However, many of these poli-
cies were implemented as emergency measures without a thorough study of their impact
and effectiveness. Therefore, investigating the impact of government policies during the
pandemic is crucial to assist policymakers in addressing future pandemics or variations of
COVID-19.

Numerous studies have attempted to investigate the underlying effect of policies on
COVID-19. Some studies used statistical methods and approaches for this purpose. For
instance, in [8], the authors considered time, log(time), and the lagged value of different
policies as features and found their coefficient in their Poisson regression model. Negative
coefficients indicated that the feature had a positive effect, and vice versa. The authors
found that most of the significant policies had positive coefficients, suggesting that daily
confirmed cases and policies may be correlated in more complex ways or that other factors
not considered in the study may affect the spread of COVID-19. The study also found
that contact tracing and the health index had consistent negative coefficients across all
analyses.

Other studies used causality to investigate the effect of policies. Some studies tried
to find the causal graph to show which policies were the cause of the number of daily
confirmed cases without indicating the positivity or negativity of the effect. For example,
in [13], authors modified the SyPI algorithm [14] to generate the causal graph by considering
confounders and generated the causal graph of the effect of different types of closures and
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the effect of different cities on each other in Germany. The study found that different cities
had a different set of policies as the causes, and the set of causes was not the same for all
cities.

Other studies assumed a causal graph between policies and the number of daily con-
firmed cases and used interventions to find the effects. For instance,in [19], they assumed
a causal graph, derived the equations behind it, and found the coefficients of the policies
on those equations to show the effect of those policies.

Additionally, a research introduced Simpson’s paradox in COVID-19 case fatality rates
and argued that a country is like a confounder that affects both age and fatality rate [20].
Ignoring the effect of this confounder when investigating the effect of policies will hide the
true effect of age on the fatality rate.

This study aims to investigate the effect of policies on the number of daily confirmed
cases during the COVID-19 pandemic. We assumed an underlying causal graph and em-
ployed deep learning/machine learning models for modeling the dynamic of the problem
to apply counterfactual reasoning. We aimed to answer three questions: (1) What would
have been the impact on the daily confirmed cases if the policies were not implemented or
implemented with lower levels of strictness? (2) What is the optimal level of each policy to
ensure that the number of daily confirmed cases remains below 500 during the peak days?
(3) What is the level of dependence between policies and the number of daily confirmed
cases? The report is organized as follows: Chapter 1 introduces the problem statement,
Chapter 2 presents background information, Chapter 3 describes the proposed methods,
Chapter 4 presents the experimental results, Chapter 5 discusses the limitations of the
employed methods, and Chapter 6 concludes the paper.
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Chapter 2

Background and Problem Definition

The coronavirus disease 2019 (COVID-19) has rapidly spread globally and was declared a
pandemic by the World Health Organization on March 11, 2020 (World Health Organiza-
tion, n.d.) [6]. The COVID-19 pandemic has had a significant impact on people’s lives,
world economies, and public health, and is considered the most severe respiratory virus
outbreak since the 1918 H1N1 influenza pandemic (World Health Organization, n.d.)[7].
Governments worldwide have implemented various policies to mitigate or suppress the dis-
ease, which can be classified into four categories: C for containment and closure policies, E
for economic policies, H for health system policies, and V for vaccination policies. However,
the effectiveness of each policy in mitigating the spread of COVID-19 may differ. There-
fore, it is crucial to identify which policy or policies are most effective in controlling the
disease. Determining the effectiveness of each policy can assist policymakers in addressing
future pandemics or variations of COVID-19. To investigate the impact of each policy on
COVID-19 transmission, we employed counterfactual reasoning and counterfactual genera-
tion techniques from causality, while utilizing Hilbert-Schmidt Norm and mutual informa-
tion to measure the level of dependence between each policy and the spread of COVID-19.
Before introducing our approaches, it would be great to introduce the mentioned methods
from the available literature.

2.1 Causality

Causality can be illustrated through an example of a student, Matth, who is taking a math
course. The more hours he spends practicing math, the higher his score is likely to be.
This indicates a relationship between these two events, where a change in the number of
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practicing hours causes a change in the score. This is known as causality or causation,
which refers to the relationship between a cause and its effect. If we have two variables
X, and Y then we say that X is a cause of Y if Y relies on X for its value[16]. We
need causality and causation in machine learning due the obstacles that today’s machine
learning models are confronting [15]. The first obstacle is about adaptability or robustness,
machine learning researchers has noticed that current systems lack the ability to recognize
the new circumstances that they have not been trained for before, also machine learning
models use historical data and as time passes some of the features may change so they
require to be trained again. The second problem is about explain ability, machine learning
models are mostly act as black boxes. So, they are unable to bring some reasons for their
predictions and to get some recommendation. Imagine a person who has been applied for
getting loan from a bank but his application was rejected by the system of that bank. The
system must be able to provide some explanations on its decision and also provide some
possible recommendations for that person to be able to get a loan. The third obstacle is
about ignoring the cause-effect relations[12]. Machine learning models require to be able
to consider these causal relations to be able to arrive at a human intelligence level while
they are mostly operating based on statistics.

2.2 Counterfactual Reasoning (CR)

Counterfactuals are a fundamental concept in causality that aim to address questions
of the form: ”What would have happened if I had acted differently?” which the ”if”
portion is unrealistic or untrue. Interventions are not capable of answering such questions
because counterfactuals consider events occurring under different conditions or in different
worlds, which is not possible in interventions. To calculate counterfactuals, a structural
causal model (SCM) is required, which illustrates how the variables in a given context
interact and are related. An SCM comprises two types of variables: exogenous variables,
which are unknown and act as external factors affecting other variables, denoted as U, and
endogenous variables, which are descended from at least one of the exogenous variables[16].
In the case of our problem, we assume that policies have a direct effect on the number of
daily confirmed cases and have constructed an SCM using deep learning models, as shown
below:

y = f(x) + e (2.1)

Where e is the exogenous variable, x is the set of features (policies) and f is the
underlying function that we have found it by deep learning models and y is the number of
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daily confirmed cases. After discovering the underlying Structural Causal Model (SCM)
of a problem, the following three steps must be taken to calculate counterfactuals[16]:

1. Abduction: Using the available observations for each instance to calculate its corre-
sponding exogenous variables

2. Action: modify the underlying model (M) by replacing the intervened features (x
′
)

for arriving at a new model (Mx′ )

3. Prediction: calculate the consequence of the counterfactual by using the modified
model Mx′ and the corresponding exogenous variables that have been calculated in
the Abduction step

These procedures can be demonstrated via the following example: consider a scenario
where the number of daily confirmed cases of COVID19 depends on the level of strictness
of three policies: health(h), vaccine(v) and closures(c). Let us assume that for h = 30,
v = 0, and c = 10, f(h = 30, v = 0, c = 10) = 19997 , and the recorded number of daily
confirmed cases was around 20000. Based on the Abduction step, we find the exogenous
variable, e = 20000 − 19997 = 3. Next, we intervene in the features such that v = 0,
h = 30, c = 100, and find the modified model, fv=0,h=30,c=100 = 10000 based on the action
step. Finally, the resulting counterfactual will be ycounterfactual = 10000+ 3 = 10003 which
implies that the closure policy had a positive effect on controlling COVID19.

2.3 Counterfactual Generation (CG)

Machine learning models have become increasingly popular for solving various tasks such
as classification, regression, and recommendation systems. However, one of the limitations
of these models is their inability to provide recommendations to users on how to improve
their state and achieve desired goals [16]. Counterfactual generation aims to address this
limitation by generating recommendations that answer the question of how to change
the current state of different features for an instance to transfer its state from A to B.
Many works in the literature have addressed counterfactual generation to arrive at possible
recommendations.

One current work [9], introduces a multi-objective optimization problem to cover differ-
ent properties of the generated counterfactuals. According to their method, the generated
counterfactual (x

′
) should satisfy the following properties for its corresponding observation

(x∗):
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1. Its resulted output(state) is close to the desired output (state)

2. It is close to x∗ in the input space (X)

3. It is different from x∗ in a few features

4. It is a possible data point based on the distribution of input data (PX)

To satisfy each of these properties, they define the objective function as follows:

min
x

O(x) = min
x

(O1(f̂(x), Y
′
), O2(x, x

∗), O3(x, x
∗), O4(x,X

obs)) (2.2)

In the context of counterfactual generation, four properties have been identified as
important metrics to evaluate the quality of generated counterfactual instances. These
properties are quantified by four separate objective functions, denoted as Oi , i = 1, . . . , 4.
A detailed description of each objective function is available in the literature. Here, we
focus on the fourth objective function, which we use in our counterfactual reasoning method
to measure the distance of generated counterfactuals from the distribution of the dataset

The fourth objective measures weighted average Gower distance[11] between x (the
input) and the k nearest observed data points, x[1], ..., x[k] ∈ X. This empirical approxi-
mation helps determine the likelihood of x originating from the distribution of the primary
data (X) as follows:

O4(x,X
obs) =

k∑
i=1

w[i]1

p

p∑
j=1

δG(xj, x
[i]
j ) ∈ [0, 1] where

k∑
i=1

w[i] = 1 (2.3)

And δG defines as follows:

δG(xj, x
∗
j) =

{
1

R̂j
|xj − x∗

j | if x is a numeriacl feature

Ixj ̸=x∗
j

if x is a categorical feature
(2.4)

is extracted from the dataset based on the value range of the j-th feature.

2.4 Measuring Dependency

Measuring the dependency between each feature, i.e., policies, and the target variable, i.e.,
the number of daily confirmed cases, is essential for revealing their effect and relation. To
accomplish this, we employed the following two methods:
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Hilbert-Schmidt Independence Criteria (HSIC)

This method is a kernel-based approach used to measure the dependency between variables.
The underlying idea is that while measuring correlation in a linear space is straightforward,
the unknown non-linearity of the data makes it challenging to measure the dependence
factor. Therefore, based on a theorem, if we implicitly transform the data to a high-
dimensional space using a kernel, such as the radial basis function (RBF), then the variables
in the infinite-dimensional Reproducing Kernel Hilbert Spaces (RKHS) are independent
if and only if they are uncorrelated. As a result, it is sufficient to find the correlation
between the kernel means using kernel trick. For a set of independent observations that
have been sampled from a distribution Pxy as O := (x1, y1), . . . ., (xm, ym) ⊆ ×, where m is
the number of samples, HSIC can be calculated as follows[5]:

HSIC(O,F, g) := (m− 1)−2trKHLH (2.5)

Where H,K,L ∈ Rm×m , Kij := k(xi, xj), Lij := l(yi, yj) and Hij := δij −m−1

Mutual Information (MI)

Mutual information is a measure based on the entropy of variables that quantifies the
amount of information that one variable provides about another variable. MI is a non-
parametric measure of the dependence between two variables and ranges from 0 (indicating
independence) to positive infinity, where a value of 0 indicates independence between two
random variables, and higher values indicate stronger dependence between them. Mathe-
matically, the mutual information between two random variablesX and Y can be computed
as follows[4]:

I(X;Y ) = H(X)−H(X|Y ) (2.6)

Where I is the mutual information between X and Y , H(X) is the entropy of X and
H(X|Y ) is the conditional entropy of X given Y .

2.5 Deep Learning/ Machine Learning Models

For finding the underlying model of the COVID19 data, we have used Support Vector
Regression(SVR)[3] and a Gated Recurrent Unit (GRU)[10] based network, that their
details is mentioned bellow.
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Figure 2.1: Gated recurrent unit (GRU) architecture[2].

Gated Recurrent Unit (GRU)

Recurrent Neural Networks (RNNs) are prone to the problem of gradient vanishing and
bottleneck, which results in the loss of important information over long input sequences. In
order to solve this issue, the Gated Recurrent Unit (GRU) was introduced[?]. GRU utilizes
update and forget gates in its structure to address the problem of vanishing gradients and
information loss in RNNs. The functional representation of a GRU unit can be seen in
Figure 2.1 and is described below.

The update gate (zt) determines which information needs to be kept and which needs
to be discarded using the following formula:
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zt = σ(Wzxt + Uzht−1) (2.7)

The reset gate (rt) determines how much of the previous state should be passed using
the following formula:

rt = σ(Wrxt + Urht−1) (2.8)

The memory content uses the reset gate to store relevant information from the past:

h
′

t = tanh(Wxt + U(rt ∗ ht−1) (2.9)

Finally, the unit calculates the ht which contains information about the current state,
to be passed on to the next units using the following formula:

ht = zt ∗ ht−1 ⊕ (1− zt) ∗ h
′

t (2.10)

Support Vector Regression (SVR)

This is a method used for regression tasks where the labels are continuous. The goal is
to find the best line by solving one of two optimization problems. The first optimization
problem is[18]:

The first optimization problem is:

min
1

2
∥w∥2 s.t.|yi − wixi| ≤ ε (2.11)

The second optimization problem is:

min
1

2
∥w∥2 + C

n∑
i=1

|ξi| s.t.|yi − wixi| ≤ ε+ |ξi| (2.12)

Here, ε represents the margin of error, yi is the label, xi is the input and wi are
coefficients.

The deviation from the margin ε is represented by ξi, which includes any error outside
of the margin for some points from the line.
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Chapter 3

Methodology

In this report, we aim to address the problem of determining the impact of policies on the
transmission of Covid-19 by answering the following three research questions:

1. What would have been the impact on the daily confirmed cases if the policies were
not implemented or implemented with lower levels of strictness?

2. What is the optimal level of each policy to ensure that the number of daily confirmed
cases remains below 500 during the peak days?

3. What is the level of dependence between policies and the number of daily confirmed
cases?

To answer the first two questions, we employ counterfactual reasoning/generation, while
we estimate mutual information between each policy and the number of daily confirmed
cases for the third research question. Further details of the employed methods can be
found in subsequent sections.

3.1 Counterfactual Reasoning

To address the initial inquiry, we have employed counterfactual reasoning, a concept in
causality, as a methodological approach. In order to implement this approach, it was nec-
essary to develop a model of the problem. Therefore, we began by utilizing deep/machine
learning models to model the effect of policies on the number of daily confirmed cases. Two
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Sequence length
Train MSE Test MSE

#train data # test data
GRU model1 GRU model2 GRU model1 GRU model2

5 0.32230179930867514 0.4346392810129612 1.2528273836513348 1.2129056446786128 27158 6892
7 0.2987417784043683 0.3285427176648504 1.1543941183572677 1.095605739265928 27070 6859
10 0.210973340648669 0.29731745162944606 0.866611977065608 0.9799715153751649 26934 6817
15 0.15339124191113784 0.17105107342098852 0.6234000675083087 0.6291053129615952 26686 6770
30 0.01111500333849858 0.012078098885689207 0.01610591501799095 0.01885932536314295 25990 6581

Table 3.1: Mean square error and number of data for both train and test phases of GRU
based models.

models, namely a GRU network and Support Vector Regression (SVR), were employed for
this purpose.

In case of GRU network, two different GRU networks were trained using 5 distinct
sequence lengths each. The mean of the results from all 10 models was reported as the
final conclusion in order to mitigate the effects of any potential model bias on the results. A
window with a length of 31 was utilized to represent the time required to observe the effect
of a policy on the number of daily confirmed cases. Subsequently, 5, 7, 10, 15, and 30 were
evaluated as possible sequence lengths, and for each input sequence, the corresponding y
value at the end of the window was considered as the label. The process of generating
the data can be observed in Figure 3.1. In the case of SVR, the model is not designed for
modeling sequential data. Therefore, we input a set of features (policies) at each time and
select the labels by considering a window of 30, 35, 40, 45, and 50. This window allows us
to observe the effect of policies over time. To report our results, we calculate the average
of the outcomes across these different window sizes to reduce model bias. To train these
models, we used 80% of the data for training and validation purposes (70% for training,
and 10% for validation). The remaining 20% of the data was used as the test set. To
minimize the impact of seasonal patterns, we separated the data as shown in Figure 3.2.
Finally mean squared error(MSE) along with the prediction curves on both train and test
data have been reported in Tables 3.1 and 3.2 and Figures 3.3 and 3.4 as a metric for
evaluating the generalizability of the models.

Following the development of the underlying data model, counterfactual reasoning can
be applied through three distinct steps[16]: abduction, action, and prediction. In the first
step, abduction, the unknown exogenous variable (e) is identified for each data point within
the dataset, with Equation 1 representing the mathematical model of our problem. In this
equation, y represents the daily confirmed cases and the label of each data point, f(x)
denotes the model prediction (utilizing either GRU networks or SVR) for a given input, x,
and x represents the set of features, including policies and yave.
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Sequence length Train MSE Test MSE # train data # test data

30 0.4419261780802710 0.7588354142474789 25990 6581
35 0.49529740520637894 0.8600352649315898 25742 6534
40 0.5390001543702576 0.945128562432032 25518 6463
45 0.5716183213149735 0.9831645856910654 25270 6416
50 0.593433933264728 1.0317995225237289 25046 6345

Table 3.2: Mean square erreor and number of data for both train and test phases of SVR
models.

Figure 3.1: The process of generating sequential data (i.e., 5, 7, 10, 15, and 30) while a
window length of 31 has been utilized to capture the time required to observe the effect of
a policy on the number of daily confirmed cases.
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Figure 3.2: Data separation into train/validation/test for reducing seasonality patterns.

Figure 3.3: A sample on GRU model predictions on test data when sequence length is 7.
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Figure 3.4: A sample on GRU model predictions on train data when sequence length is 7.
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y = f(x) + e (3.1)

In the second step, action, we replace the exogenous variable (e) in Equation 3.1 with
the corresponding value for each data point. Next, we modify the input of f(x) in the
following manner: As our objective is to determine the effect of each policy, we set the
value of a given policy to zero (i.e. do(x = x

′
)) and subsequently calculate the new f value

(f(x
′
)). Essentially, by setting the value of x to x

′
, we are posing a counterfactual question

to the model (GRU or SVR). However, utilizing an input that is from a distribution
different from that of the training or test dataset can negatively impact the performance
of neural network models such as GRU. To ensure that our counterfactual questions and
samples are comparable to those in the training and test sets, we utilized the weighted
average Gower distance[11] between x (the input) and the k nearest observed data points,
x[1], ..., x[k] ∈ X (Susanne Dandl, 2020). This empirical approximation helps determine
the likelihood of x originating from the distribution of the primary data (X). Given that
the input of GRU is a sequential data with a set of points, we determine the midpoint in
each input and utilize the aforementioned measure to ensure that the counterfactual points
are proximate to the dataset distribution.

Finally, in the prediction step, we calculate the consequences of the counterfactuals for
each data point by utilizing its corresponding e and f(x

′
). By finding the difference between

the number of daily confirmed cases before and after implementing the counterfactuals
(eq.3.2), we can determine the impact of policies. As we set the value of policies to zero in
our counterfactual questions, a positive difference indicates that the policy was effective in
controlling the disease, while a negative difference suggests the opposite. Furthermore, the
magnitude of this difference can be utilized to compare the effectiveness levels of different
policies. After determining the differences for all data points using all models, we computed
the mean of those results in the final report to facilitate interpretations and mitigate the
impact of model bias. The mean of differences for each policy and for each model (GRU
or SVR) is presented in Table 4.2.

difference = yconterfactual − y (3.2)

3.2 Counterfactual Generation

During the COVID-19 pandemic, governments have implemented various policies with
varying levels of strictness in response to conditions, interpretations, and forecasts. Now
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we would like to go back to that environment in the past and ask this question: “What is
the optimal level of each policy to ensure that the number of daily confirmed cases remains
below 500 during the peak days?” It is not possible to change the level of policies in the
past to see its effect on the number of daily confirmed cases because that state is past in
time and we do not have access to that, but counterfactual generation gives us the ability
to answer this question by using the available observational data. So, in this study, we
employ the approach outlined in Susanne Dandl’s 2020 paper to generate counterfactuals
that reduce the number of daily confirmed cases during peak days to below 500. For this
approach, we do not normalize policies or the number of daily confirmed cases, with policy
levels ranging from 0 to 100 and the number of daily confirmed cases ranging from 0 to
large positive numbers. By employing this method, we can calculate the change in the level
of policies. It is expected to see a recommendation for increasing in the level of effective
policies and a decrease in the level of those that were not effective, and the range of changes
can state which policies were more important than others.

3.3 Calculating the Dependency Level Between Poli-

cies and Number of Daily Confirmed Cases

In this study, two methods, namely Mutual Information (MI) and Hilbert-Schmidt Inde-
pendence Criterion (HSIC), were used to measure the dependency between policies and
daily number of confirmed cases. While these methods cannot explicitly determine whether
the policies were effective or not, they can provide an insight into the degree of effect that
a policy may have had on the output variable. The obtained results for these methods are
presented in Table 4.2.
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Chapter 4

Experiments and Results

The dataset of policies, both numeric and ordinal, is sourced from the Oxford COVID-
19 Government Response Tracker (OxCGRT)[1] developed by the Blavatnik School of
Government and the University of Oxford. This dataset includes 23 indicators grouped
into five categories: containment and closure policies (C), economic policies (E), health
system policies (H), vaccination policies (V), and miscellaneous policies (M), with most
indicators representing the level of strictness of the policy. Four indicators (E3, E4, H4,
and H5) are recorded as a US dollar value of fiscal spending, while V1 records categorical
data and the ranked order of prioritized groups for vaccination. Additionally, ten indicators
have a flag indicating whether they are targeted to a specific geographical region(flag =
0) or a general policy applied across the whole country/territory (flag =1). E1 has a flag
for income support, and H7 has a flag to describe whether vaccine policy is funded by
the government or at cost to the individual. Several indices are also calculated to provide
an overall impression of government activity, with all indices being simple averages of the
individual component indicators. For example, the Stringency Index is the average of all
closing policies (C1-C8). The numerical policies in the dataset were normalized to a range
of 0-100, taking into account their flag value, using the following formula:

pj,t = 100 ∗ vi,t − 0.5 ∗ (Fj − fj,t)

Nj

(4.1)

Where Pj,t represents the scaled value of the jth policy on day t, Fj indicates whether
the policy has a flag variable or not, with Fj = 0 for policies without flag variables and vice
versa. The flag value of the jth policy on day t is represented by fj,t, while vi,t represents
the recorded value of the jth policy on day t. Finally, Nj represents the maximum value
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(range) of the jth policy. Furthermore, the daily number of confirmed cases was subjected
to a simple moving average with a window of 7 to account for weekly periodicity in the
data. In our counterfactual reasoning methods, the policy scales were first transformed to
a range of 0-1 through the use of a min-max scaler, while the number of daily confirmed
cases was scaled using a logarithmic function. Among the policies, we just have used the
numerical ones and the policies that there were enough records for them in the dataset.
The selected policies with their description can be seen in the Table 4.1.

Policies Description

V1 Vaccine Prioritisation

Reports the existence of a prioritised plan for vaccine
(0: no plan, 1: a prioritised plan is in place,
2: universal/general eligibility; no prioritisation
between groups)

V2A Vaccine Availability

Reports whether any categories of people are
receiving vaccines
(0 :no categories are receiving vaccines,
1 :vaccines are available to some categories,
2: vaccines are available to anyone over the age of 16 yrs,
3: vaccines are available to anyone over the age of 16 yrs
PLUS one or both of 5-15 yrs and 0-4 yrs)

V2D Medically clinically
vulnerable (Non-elderly)

Reports the number of categories selected from
thematic group:
V2 At risk age ranges below 60 (one or more selected
counts as 1 x category),
V2 Clinically vulnerable/chronic illness/significant
underlying health condition
(excluding elderly and disabled) ,
V2 Disabled people ,
V2 Pregnant people ,
V2 People living with a vulnerable/shielding person or
other priority group
(0: no categories are receiving vaccines,
1: 1 or 2 categories in group selected,
2: 3 or more categories selected or all from
V2 General 16-19 years up to
V2 General 80+ years present)

18



V2E Education

Reports the number of categories selected from
thematic group:
V2 Educators,
V2 Primary and secondary school students,
V2 Tertiary education students
(0: no categories are receiving vaccines,
1:1 category in group selected,
2: 2 or more categories selected or all from
V2 General 16-19 years up to,
V2 General 80+ years present)

V2F Frontline
workers (non healthcare)

Reports the number of categories selected from
thematic group:
V2 Police/first responders,
V2 Airport/Border/Airline staff,
V2 Factory workers,
V2 Frontline retail workers,
V2 Military,
V2 Other high contact professions/groups
(taxi drivers, security guards),
V2 Frontline/essential workers
(when subcategories not specified)
(triggers an automatic 2)
(0: no categories are receiving vaccines ,
1: 1 or 2 categories in group selected,
2: 3 or more categories selected or all from
V2 General 16-19 years up to
V2 General 80+ years present)

V2G Frontline
workers (healthcare)

Reports the number of categories selected from
thematic group:
V2 Staff working in an elderly care home,
V2 Healthcare workers/carers (excluding care home staff)
(0: no categories are receiving vaccines,
1:1 category in group selected,
2: 2 categories selected or all from
V2 General 16-19 years up to
V2 General 80+ years present)
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H1 Public information
campaigns

Record on the availability of the public campaigns
(0: no Covid-19 public information campaign,
1: public officials urging caution about Covid-19,
2: coordinated public information campaign
(eg: social media))

H7 Vaccination policy

Record on vaccine delivery for different groups
(0: No availability,
1: Availability for ONE of following:
key workers/ clinically vulnerable groups (non elderly)
/ elderly groups,
2: Availability for TWO of following:
key workers/ clinically vulnerable groups (non elderly)
/ elderly groups,
3: Availability for ALL of following:
key workers/ clinically vulnerable groups (non elderly)
/ elderly groups ,
4: Availability for all three plus partial
additional availability(select broad groups/ages) ,
5: Universal availability )

H8 Protection of
elderly people

Record policies for protecting elderly people
(0: no measures,
1: Recommended isolation, hygiene, and visitor restriction
measures in LTCFs and/or elderly people to stay at home,
2: Narrow restrictions for isolation, hygiene in LTCFs,
some limitations on external visitors and/or restrictions
protecting elderly people at home,
3: Extensive restrictions for isolation and hygiene in LTCFs,
all non-essential external visitors prohibited,
and/or all elderly people required to stay at home and not
leave the home with minimal exceptions,
and receive no external visitors)

20



H6 Facial Coverings

Record on using facial coverings outside home
(0: no policy,
1:recommended,
2: Required in some specified shared/public
spaces outside the home with other people present,
or some situations when social distancing not possible ,
3: Required in all shared/public spaces outside the home with other
people present or all situations when social distancing not possible,
4: Required outside the home at all times regardless
of location or presence of other people)

H2 Testing policy

Record on who have access to testing
(0: no testing policy,
1: only those who both
(a) have symptoms AND
(b) meet specific criteria,
2: testing of anyone showing Covid-19 symptoms,
3: open public testing
(eg ”drive through” testing available to asymptomatic people)

H3 Contact tracing

Record on contact tracing after a positive diagnosis
(0: no contact tracing,
1: limited contact tracing; not done for all cases,
2: comprehensive contact tracing;
done for all identified cases)

E1 Income support

Record on the direct payment of the government to
people who lost their job or cannot work
(0: no measure,
1:government is replacing less than 50% of the lost salary,
2:overment is replacing 50% or higher percentage of the
lost salary, 3:)

E2 Debt contract
relief

Record if the government is freezing financial obligations
for households (e.g: stopping loan repayments,
preventing services like water from stopping,
or banning evictions)
(0: no measure, 1:narrow debt relief,
2: broad debt relief)
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C1 School closing

Record on closing schools and universities
(0:no measures,
1:recombed closing or all school opens,
2: require closing (some levels),
3: require closing all levels)

C2 Workplace
closing

Record on closing workplaces
(0:no measures,
1:recommend closing or all open or recommend
working online,
2:require closing for some sectors,
3:require closing for all essential workplaces)

C3 Cancel public
events

Record on cancelling public events
(0: no measure,
1:recommend cancelling,
2: require cancelling)

C4 Restrictions on
gatherings

Record on the limits on gatherings
(0: no measure,
1: restriction on very large gatherings(above1000),
2: restriction on gatherings between 101-1000),
3: restriction on gatherings between 11-100,
4: restriction on gatherings of 10 people or less

C5 Close public
transport

Record on the closure of public transportation
(0: no measure,
1: require closing (reduce the volume/ type of transport),
2: require closing (or prohibit all people from using them))

C6 Stay at home
requirements

Record on staying at home
(0:no measure,
1:recommend not leaving home,
2:require not leaving home with exceptions on emergency)

C7 Restrictions on
internal movement

Record of the restrictions on the movement
between cities and regions (0: no measure,
1:recommend not to travel between cities,
2: internal movement restrictions in place)
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C8 International
travel controls

Record on the international travel restrictions
(just for foreign travellers)
(0: no measure,
1:monitoring arrivals,
2: quarantine arrivals for some or all regions
3:ban arrivals from some regions,
4:ban on all arrivals or border closures)

Table 4.1: Description of governments’ policies during COVID 19 (continued)[1]

Table 4.2 presents the outcomes of the four methods applied to measure the impact
of policies. The mutual information method provides non-negative values, where greater
values indicate stronger dependency and effect of policies on the target variable (i.e., daily
confirmed cases). The HSIC method determines whether a policy had a significant effect
on the target variable or not. The counterfactual reasoning approach calculates the average
error between the actual number of daily confirmed cases (scaled by logarithmic function)
and the counterfactual value obtained through the method. Negative values indicate that
a policy had a detrimental impact on controlling the disease, and its implementation at a
lower level of strictness or omission would have resulted in a lower number of daily confirmed
cases. Positive values indicate that a policy was effective in controlling the disease, and
increasing its level of strictness could further reduce the number of daily confirmed cases.
The counterfactual generation method proposes a new set of policy levels for reducing the
number of daily confirmed cases on peak days. As the policies were trained on a range of
0-100 for the regressor, the results indicate the degree of increase or decrease in the level
of each policy to achieve a lower number of COVID-19 cases in range of 0-100.So, policies
with a positive effect are those for which the algorithm suggests an increase in their level,
and vice versa.

Among the five methods used in our study, the causality-based methods were able to
not only show the amount of dependency between each policy and the number of daily
confirmed cases but also clarify the positive or negative effect of each policy on controlling
the disease. On the other hand, the dependency-based methods can only show the amount
of dependency between the policies and did not provide information on the positivity or
negativity of their effect on controlling the disease.

According to our analysis, three of the methods (MI, Count Res GRU, and Count Gen)
have identified V2D Medically clinically vulnerable (Non-elderly) as the most effective vac-
cination policy for controlling daily confirmed COVID-19 cases, indicating that increasing

23



its level could lead to a decrease in the number of cases. Additionally, V2F Frontline work-
ers (non healthcare) has been recognized as the second most effective vaccination policy,
while V2E Education has been ranked third among the vaccination policies.

All three causality-based methods recommend a lower level of V2G Frontline workers
(healthcare) for reducing the number of daily confirmed cases, whereas the dependency
factor indicates a dependency of only 0.2 between the policy and the number of cases.
Furthermore, four methods (MI, Count Res SVR, Count Res GRU, and Count Gen) have
determined that V1 Vaccine Prioritisation and V2A Vaccine Availability have no effect on
controlling the spread of COVID-19. However, since the value of these policies was zero for
a significant portion of the dataset, their classification as ineffective may be due to poor
data quality rather than an accurate representation of their effect. Also, the HSIC method
has been identified this policy as having effect on the number of daily cases.

For economic policies, MI method recognizes E1 Income support as the most effective
one while the three causality based methods recognize E2 Debt contract relief as the most
effective one, and on the positivity or the negativity of the effects counterfactual gener-
ation methods considered both economic factors as policies that had positive impact on
controlling the disease and suggests an increase in their level, while the other two causality
methods consider those as having a negative effect on controlling the disease.

Four algorithms (methods (MI, Count Res SVR, Count Res GRU, and Count Gen))
identified H7 Vaccination policy as one of the top four most effective health policies in
reducing the number of daily confirmed cases. In addition, all three causality-based algo-
rithms included H1 Public information campaigns among the top four most effective health
policies. Count Res SVR and Count Gen identified H8 Protection of elderly people as the
least effective policy, while the other two methods ranked it as the third most effective
policy. Almost all algorithms found that H1 and H7 had a positive impact on controlling
the spread of the disease and recommended increasing their level. On the other hand,
H8 had a positive effect but was considered the least effective policy by two algorithms.
The results regarding the positivity or negativity of other policies varied among the three
causality-based methods, and they provided different interpretations.

Four analyzed (MI, Count Res SVR, Count Res GRU, and Count Gen) methods iden-
tified C1, C3, and C4 as among the top five most effective closure policies for controlling the
spread of the disease, with three methods (Count Res GRU, Count Res SVR, Count Gen)
also recognizing C7 in this category. While all three causality-based methods indicate that
C3 has a positive impact on reducing daily confirmed cases, and recommend an increase in
its implementation, only the two counterfactual reasoning methods consider C1, C4, and
C7 as policies with a positive effect, while the counterfactual generation method suggests
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reducing their implementation to decrease the number of daily confirmed cases. Inter-
estingly, the counterfactual generation method considers C8 as the most effective closure
policy with a positive effect, while the other methods do not assign much weight to it, and
only one method concurs with its positive impact.

According to the findings obtained from the proposed algorithms, the vaccination poli-
cies were found to have the most significant effect in controlling the spread of the COVID-
19 disease, which is consistent with our intuitive understanding. Furthermore, among
the vaccination policies or vaccination availability, it was found that vaccinating people
with disabilities and medically/clinically vulnerable individuals was the most critical as-
pect, followed by vaccinating frontline workers, and then those associated with schools and
education were identified as the most important groups to be vaccinated.

Additionally, among the closure policies, it was found that school closures, cancellation
of public events, and restrictions on gatherings were the most effective measures in control-
ling the spread of the disease, which is also consistent with our understanding. However,
the algorithms also produced some counter-intuitive conclusions. For instance, the testing
policy was found to be destructive, and the algorithms suggested a lower level of imple-
mentation. Moreover, for some policies, the algorithms provided different statements on
their positivity or negativity.

A tabulated summary of the results obtained from all the algorithms for all policies can
be found in Table 4.2, and these counter-intuitive findings can be observed by assessing
the table results.
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Policy/Method
Dependency
(HSIC)

Dependency
(MI)

Counterfactual
Reasoning (GRU)

Counterfactual
Reasoning (SVR)

Counterfactual
Generation

V1 Vaccine Prioritisation Dependent 0.00056 4.2661e-10 0.0 0.0
V2A Vaccine Availability Dependent 0.000501 4.3791e-10 0.0 0.0
V2D Medically clinically
vulnerable (Non-elderly)

Dependent 0.31662 -0.060943 0.07960 55.32

V2E Education Dependent 0.27588 0.056011 0.03858 7.62
V2F Frontline
workers (non healthcare)

Dependent 0.26836 0.074795 0.07701 34.25

V2G Frontline
workers (healthcare)

Dependent 0.21252 -0.047364 -0.3603 -9.62

H1 Public information
campaigns

Dependent 0.011948 0.52995 -0.73849 33.02

H7 Vaccination policy Dependent 0.477148 0.205889 0.320958 24.24
H8 Protection of
elderly people

Dependent 0.26528 0.12542 0.011315 1.05

H6 Facial Coverings Dependent 0.365488 0.044294 0.24361 -6.23
H2 Testing policy Dependent 0.23562 -0.03172 -0.4340 -12.05
H3 Contact tracing Dependent 0.15982 -0.054270 -0.1251 37.43
E1 Income support Dependent 0.42720 0.0152382 -0.04649 3.55
E2 Debt contract
relief

Dependent 0.18861 -0.058103 -0.14097 20.32

C1 School closing Dependent 0.472582 0.180043 0.60221 -5.07
C2 Workplace
closing

Dependent 0.454668 0.110302 0.02218 1.01

C3 Cancel public
events

Dependent 0.41243 0.047841 0.23158 12.55

C4 Restrictions on
gatherings

Dependent 0.42311 0.06925 0.12588 -16.90

C5 Close public
transport

Dependent 0.15011 0.014426 0.03298 -3.67

C6 Stay at home
requirements

Dependent 0.378284 0.026564 0.00775 1.04

C7 Restrictions on
internal movement

Dependent 0.17138 0.09443 0.2676 -18.19

C8 International
travel controls

Dependent 0.071675 0.01698 -0.29042 52.41

Table 4.2: The results of the effect of policies on the number of daily confirmed cases
obtained from all four methods.
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Chapter 5

Limitations of the Proposed
Methodology

Since in counterfactual reasoning, we are asking on situations that have not been seen in
the dataset, the model must have the generalizability to be able to make a correct decision
and bring a true output based on our counterfactual question(input). But it is more likely
that our models are not generalized in a way to be able to answer counterfactual questions.
We were able to show the low mean square error on both train and test data and also the
predictions on both train and test data are following the trend, but these factors cannot
represent if the model is generalized or not. They can only tell us that the model has not
been overfitted on the data. Consider the case which is depicted in Figure 5.1, based on the
figure the true underlying model is the complicated curve, but our dataset is just covering
a small part of that. So, by training a deep learning/machine learning model on this data
although we arrive at a good model based on the deep learning factors the resulted model
is not generalizable. For this problem, we have tried to make sure that the distribution
of the created counterfactual questions is close to the distribution of the dataset as it was
explained in the methodology part, but as it can be seen in the results, there are some
policies that the prediction of the models are different for them. Some of the models have
recognized them as effective and some not. Although other available works in the literature
stated confronting with these cases in their results as well, but we are discussing this to
attract the users’ attention in using the results carefully and by considering the shortages
of the proposed methods.

The generalization problem may has been happened due to the dataset and ignoring
some confounders that are affecting the COVID19 pandemic but are not recognized to us
or have been ignored.
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Figure 5.1: An illustration of the case when the dataset is not a good representative of the
underlying model.
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Chapter 6

Conclusion

This paper presented a study on the impact of government policies on the spread of COVID-
19. By employing deep learning/machine learning models and counterfactual reasoning,
we attempted to investigate the effect of policies on the number of daily confirmed cases.
Our results provide insights into the impact of different policies on the spread of COVID-19
and can assist policymakers in addressing future pandemics.
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