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Abstract

In this research, we introduce a neural network method as a preliminary step towards
our ultimate goal of identifying the parameters of complex structures, such as bio-molecules,
under environmental conditions.

By employing a simplified truss framework, we aim to explore the elastic responses of
structures subjected to thermal environmental fluctuations. This method simplifies the
complexities into models composed of rod elements and nodes, which experience deforma-
tion and movement due to thermal noise.

The displacement of nodes, crucial for understanding the system’s dynamics, is de-
termined by the modulus of elasticity and the cross-sectional area (EA) of the rods. To
estimate these varying EA values across the model, we utilize a fully connected neural net-
work trained with simulated data, thereby enhancing our ability to predict the structure’s
behavior under various conditions.

This technique offers a way of investigating the elastic characteristics of systems, pro-
viding valuable insights into their dynamic behavior without specifying their biological or
molecular nature. The ultimate purpose of our work is to enable the recovery of material
properties from experimental data, such as those obtained from cryo-electron microscopy
(cryo-EM) experiments, further bridging the gap between theoretical models and practical,
observable phenomena.
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Chapter 1

Introduction

1.1 Background

Cytoskeletal motors, crucial for various cell processes such as transport, movement, cell
division, and growth, function as mechanoenzymes. They convert the chemical energy of
ATP into mechanical force. ATP, the primary energy carrier within the cell, captures chem-
ical energy from food molecule breakdown and releases it to fuel other cellular processes.
In essence, ATP is the cell’s energy currency, powering vital functions like active trans-
port, muscle contraction, and chemical synthesis[https://unitedmedicines.com/adenosine-
triphosphate/].

Unlike larger motors, nanoscale motors are heavily impacted by their viscous environ-
ment, as well as thermal fluctuations and Brownian motion (Purcell, 1977; Bustamante
et al., 2001). Their ability to operate in these conditions, along with their vital role in
cellular activities, highlights the importance of studying their mechanical properties in bi-
ology, physics, and engineering (Bustamante et al., 2001; Nelson et al., 2010; Hess, 2011,
Robert-Paganin et al., 2020).

Modeling proteins like myosin is essential for understanding the movement of proteins
in a cell with precision. This, in turn, is important because, through this movement,
proteins transport cargo through the cell. The problem is very similar to mechanical
devices operating at the nanoscale. However, typical motions experienced by standard
machines in our typical environment, myosin, and other proteins operate in a viscous liquid
environment and are subject to random thermal forces. Thus, by studying how myosin
responds to thermal fluctuations—whether it takes short steps, adjusts to the loads, or



can keep itself moving in such unpredictable surroundings—we build our understanding
of its mechanical efficacy and resilience. This data is crucial for effectively implementing
advanced material technologies and devices (Gravett, 2022).

1.2 Challenges with bio-molecular modeling

Many existing bio-molecular modeling techniques, such as conventional atomistic sim-
ulations, require the detailed atomic structure as input, limiting their applicability to
molecules with higher-resolution structural information, which is often unavailable. This
highlights the necessity for alternative modeling approaches that can accommodate less
detailed structural data while still providing valuable insights.

The development of lower-resolution experimental techniques, such as SAXS, cryo-
electron microscopy, fluorescent resonance energy transfer labeling, ion-mobility mass-
spectroscopy, and atomic force microscopy have begun to offer dynamic information at the
mesoscopic level. These advancements provide new opportunities to study bio-molecular
flexibility and dynamics using computational models that can integrate with experimental
data.

Based on the discussion above, it is clear that we need computational approaches that
can provide precise material characteristics for individual bio-molecules, using data from
experiments. This way, we can start to compare how flexible these bio-molecules are,
considering their unique shapes. Understanding this flexibility is key, especially when
we’re looking at molecules like molecular motors that are constantly moving. This kind of
insight is crucial for unraveling how these molecules work and what they do in the cell.

1.3 Cryo-Electron Microscopy

“Cryo-Electron Microscopy” (Milne et al., 2013), often abbreviated as “cryoEM”, has
evolved in the past decades to encompass a wide range of experimental techniques. Fun-
damentally, each of these methods relies on the concept of imaging specimens sensitive
to radiation using a transmission electron microscope, while the specimens are kept at
cryogenic temperatures.

In the field of of biology, cryo-EM is a powerful tool that enables us to look at a
variety of structures, from intact whole tissues and frozen cells to tiny bacteria, viruses,



and protein molecules. It includes specializations such as cryo-electron tomography, single-
particle cryo-electron microscopy, and electron crystallography. These methods have been
used successfully to study biological structures under different conditions. They can be
utilized on their own or mixed with other methods, like X-ray crystallography and NMR
spectroscopy. This way, researchers get a fuller picture of what these structures look like
and how they work.

So why is it not routinely possible to image individual proteins, viruses and cells in their
natural state directly under an electron microscope at atomic resolution? The main reason
for this is the extensive damage caused by the interaction between electrons and organic
matter. Electron irradiation leads to the breaking of chemical bonds and the formation of
free radicals, which in turn cause more secondary damage.

Modern ”high-resolution” electron microscopy uses two approaches to solve this prob-
lem. One approach involves ”cryo-electron microscopy”, in which frozen samples are used
for imaging, kept at the temperature of either liquid nitrogen or liquid helium.

The development of methods to rapidly freeze (vitrify) biological specimens within
a layer of glass-like ice, which could then be imaged at liquid nitrogen and/or helium
temperatures, led extensive use of this approach.

Perhaps the most commonly used variant of cryo-electron microscopy is single-particle
analysis. In this technique, data from a large number of 2D projection images showing
identical copies of the protein complex in different orientations are combined with a 3D
reconstruction of the structure. When atomic models are available for some or all of the
sub-components of a complex, they can be placed or fitted onto a density map to pro-
duce pseudo-atomic models, which greatly expands the information available from electron
microscopy. Figure 1.1 shows an example Cryo-EM image.

1.4 Material Properties

The Fluctuating Finite Element Analysis (FFEA) model addresses the challenge of simu-
lating large bio-molecules by treating them as three-dimensional objects. This approach is
very useful for biological systems for which large-scale motions are more important than
the chemical interactions. The model is suitable for representing globular structures, like
certain parts of the Ndc80C protein complex, suggesting the importance of understanding
material properties to grasp the functional dynamics of these bio-molecules. However, it
is known that 3D continuum methods face limitations in accurately representing slender,
elongated structures such as the coiled-coil region of Ndc80C because of the difficulties in



Figure 1.1: The image showcases GroEL protein complexes from a frozen-hydrated speci-
men, highlighting how these complexes can be seen in different orientations relative to the
electron beam (Milne et at., 2013)

capturing the correct thermal fluctuations at the small length scales involved (Welch et
at., 2020).

To effectively model slender biological structures such as alpha-helices, understanding
their material properties becomes essential (Welch et al., 2020). We can gain crucial
insights into their behaviors by developing models that account for how these bio-molecules
can stretch, bend, and twist. This knowledge is key to comprehending how these molecules
function within cells, highlighting the importance of material properties in the study of
bio-molecular movement and functionality.

1.5 Neural Networks

Neural networks are computational models inspired by structure and function of the human
brain. They consist of layers of nodes, or "neurons,” connected to allow them to learn and
make decisions from input data. By adjusting the connections between these nodes during
training, neural networks can identify patterns, classify data, and predict outcomes for a
wide range of problems, making them incredibly versatile tools in artificial intelligence and
machine learning.



Neural networks can be beneficial in material property retrieval using cryo-electron
microscopy (cryo-EM) images. Cryo-EM images provide detailed views of biological struc-
tures, from entire tissues to individual protein molecules, often at resolutions that challenge
traditional analysis methods. By training a neural network on a dataset of cryo-EM images
labeled with known material properties, the network can learn to identify the unique fea-
tures associated with different materials or structural characteristics. This training involves
feeding the network a large number of images and letting it adjust its internal parameters
to minimize the difference between its predictions and the actual data.

Once trained, the neural network can be applied to new, unlabeled cryo-EM images
to predict their material properties. This process could revolutionize how scientists un-
derstand biological structures, allowing for rapidly categorizing materials based on their
visual characteristics. For example, a neural network might learn to distinguish between
protein complexes with different mechanical properties or identify the presence of specific
materials within a larger cellular structure, all from the visual data provided by cryo-EM.

The process of training a neural network for material property retrieval is a systematic
one. It starts with the acquisition of a large and diverse dataset of labeled cryo-EM images.
Data augmentation techniques, such as rotating or flipping the images, can help increase
the size and variability of the data set, enhancing the network’s ability to generalize from its
training. The network is then trained by iteratively adjusting its parameters to reduce the
difference between its predictions and the true labels of the training images, a process often
facilitated by back-propagation algorithms. After training, the network’s performance is
evaluated on a separate set of test images to ensure it can accurately predict material
properties on data it hasn’t seen before.

Deploying a neural network trained this way could significantly aid in studying bio-
molecules, and allow researchers to infer material properties from cryo-EM images quickly.
This could enhance our understanding of the mechanical behavior of bio-molecules in their
natural environments, contributing to advances in material science, bio-engineering, and

related fields.

1.6 Forward Euler algorithm

In mathematics and computational science, the Euler method (also called the forward Euler
method) is a first-order numerical procedure for solving ordinary differential equations
(ODEs) with a given initial value. It is the most basic explicit method for numerical
integration of ordinary differential equations and is the simplest Runge-Kutta method
("Euler Method for the Cauchy Problem,” n.d.).
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Figure 1.2: TImage retrieved from https://medium.com/data-science-365/overview-of-a-
neural-networks-learning-process-61690a502fa

We're presented with a basic, single-variable ODE

dy
= f(¢, 1.1
U f(t.y) (1)

and we want to predict the behavior of function y(t) over time,starting from an initial
state y(t = 0) = yo, to understand how the function y(¢) evolves for all times ¢ > 0. In
particular, we would like to use an algorithm that is able to be executed by a computer to
find the evolution of y(t) for all times.

To derive the algorithm, first replace the exact equation with an approximation based
on the forward difference derivative to get

y(t+h) —y(t)
h

~ f(t,y) (1.2)

Now the equation must be discretized. That means we replace our function y(t) defined
on continuous ¢ with a sampled function y,, defined on discrete times t¢,,. That is, y, = y(t,).
We also imagine the time step between samples is small, h = ¢,,.1 — t,,. In this case, the
previous equation becomes



Moving forward, we will replace the ~ sign with = for convenience, and keep in mind
that behind our expression results in an approximation error which grows with increasing
h. Next, imagine we are at the present time point £,,, and rewrite the previous equation to
move the future to the left-hand side and the present to the right-hand side. We get:

Ynt+1 = Yn T hf(tm yn) (1'4)

This expression says that if we know the values of ,, and ¥, at the present, then to get
the future value y,,1 we just perform the computation on the RHS. That is, this equation
describes a way to step forward in time. We start at time ¢ = 0 with initial condition
y = 1o and use the equation to step to y;, then use that result to step to y,, and y3, and
so on. By iterating this equation, we generate a vector of y, values which constitute the
sampled version of the function y(¢) (Stuart Brorson, in Numerically Solving differential
equations).

1.7 Truss model

A truss is a collection of beams joined at nodes, forming a stable framework often used
in engineering and architectural design. We can use a simplified truss model comprised of
elements and nodes to study the deformation and movements within complex structures,
such as proteins, by treating them as a group of rods joined at nodes. This model can
be particularly insightful for simulating how proteins respond to the stresses of their en-
vironment, including thermal fluctuations. We can use the truss framework to develop a
neural network that simulates these interactions and predicts the protein’s elasticity and
other material properties. The predictions from this neural network, derived from the
simulation results or actual data from Cryo-EM imaging, can then be used to train the
network further, enhancing its ability to deduce material properties for a protein with un-
known material properties. This process will vastly improve our understanding of protein
dynamics and flexibility.



Imaginary cut

Figure 1.3: A simple truss (Alderliesten, 2022)

1.8 Ergodic Hypothesis

The ergodic hypothesis is a fundamental concept in statistical mechanics (Lee, M. H.,
2002). It asserts that over long periods, the time spent by a system in some region of
the phase space of its microstates (or configurations) is proportional to the volume of this
region. This implies that time averages and ensemble averages (averages over all possible
states of the system) are equivalent for a sufficiently large system or over a sufficiently long
time. In simpler terms, given enough time, a system will explore all its possible states,
making it possible to understand the system’s behavior by examining a long enough sample
of its history.

When applied to analyzing truss model displacements, the ergodic hypothesis supports
the idea that histograms or statistical distributions derived from long-term observations of
node displacements can accurately represent all possible displacement states of the model.
By collecting data over time on how the nodes of a truss model move, one can infer the
full range of movements the model can undergo. This method of analysis assumes that
every potential state will eventually occur, and thus, a long-term observation captures the
complete behavior of the system.

Calculating node displacements and matrices of node distances over time provides a
statistical distribution of these displacements, allowing for the analysis of the system’s
behavior in a probabilistic sense. By doing so, one can study the likelihood of specific
displacements, offering insights into the structural behaviors under different loads or con-
ditions.

Furthermore, this approach simplifies complex, high-dimensional data into more un-
derstandable forms. For example, analyzing extreme eigenvalues and identifying principal
modes of displacement can reveal the most significant ways a structure tends to move or
deform, shedding light on its mechanical properties and vulnerabilities.



Figure 1.4: (a) Cryo-EM map of My05a-S1-61Q (Gravett, 2022) (b) Nodes in mesh closest
to vector coordinates in Cryo-EM model (Gravett, 2022)



The Ergodic hypothesis, therefore, not only justifies the use of statistical methods for
analyzing the dynamics of physical systems like truss models but also provides a frame-
work for interpreting these analyses, leading to a deeper understanding of the system’s
mechanical behavior.
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Chapter 2

Procedure

2.1 An Example Truss Model

To explore the possibility of creating data from simulation snapshots of a truss model that
could be used to train a neural network for retrieving material properties, I constructed
a basic truss model. Figure 2.1 shows this truss in two dimensions and three dimensions
respectively.

As mentioned by Welch et al., 2013, the changes to the configuration of the assembly
of rod elements is defined by the changes of node positions, Ar;. The translational motion
of each node is given by a stochastic equation of the form:

Ar; = My(F; + f;)At. (2.1)

In this model, At signifies the time step for the simulation, M, represents the mobility
tensor of a rod segment in a fluid, F; corresponds to the internal elastic force, and f; is the
stochastic force due to thermal fluctuations. The model operates under the assumption of
being highly over-damped, rendering the rod’s inertia negligible. Welch et. al (2013) also
state that they have neglected the hydrodynamic interactions between the rod elements
in equation (2.1), but include a damping force for the motion of an isolated rod element
floating in a fluid medium. As a result, this is considered a Brownian equation of motion.
For simplicity they have approximated the mobility as being isotropic and equal to the
mobility of a sphere of radius a;, which is half the length at equilibrium of the rod’s
segment:

11



M; =¢'L (2.2)

where & = 6mpa; and p is the dynamic viscosity of the medium.

Using the drag given by equation (2.2), the force acting on each node from thermal
noise is given by the fluctuation dissipation theorem(H. Nyquist, 1928):

| 24kBT¢;
fi= TR- (2.3)

where T is the temperature of the system, £ the friction coefficient, At the time step,
kp is the Boltzmann constant, and R is a random vector, where R,, R,, and R, are
independently sampled from a standard normal distribution.

The internal forces within a structure can be quantified using the fundamental principles
of material mechanics. The resulting internal force, denoted by Fj, is derived from the
stress-strain relationship, which is expressed by the equation:

Fe=o0o (2.4)

where FE is the modulus of elasticity, € is the strain, and o is the stress. This relationship
is commonly referred to as the stress-strain law. From this law, the force can also be
described by the equation:

FAe =0A=F (2.5)
where A denotes the cross-sectional area.

For a specific element, the internal force F; on each node from that element is given by

the relationship:

Al
Fi - (EA)elementg - (EA)elementT (26)

in which Al indicates the change in length and [ represents the original length. In evaluating
Al, I have considered the exact kinematics of the rods to represent arbitrarily large rotations
and elongations.

To reflect variations in structural components, I have assumed different £ A parameters
assigned based on their location; for example, (F'A)4 for elements on the edge and (FA)p
for the inner elements of the truss.

12
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Figure 2.1: (a) The simplified Truss structure in 2D. (b) The simplified Truss structure
in 3D. The elements colored red have less flexibility that the blue elements. Each data
point in a particular histogram corresponds to the two extremal eigenvalues of the all-pairs
squared distance matrix of the truss model at a particular time step during simulation. A
new data point is inserted in the histogram every 1000 time steps.
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2.2 Data Generation

Our study utilized the Forward FEuler method to determine the displacements of nodes in
our truss model. The time-step was chosen small enough to ensure the stability of the
method. This approach allowed for a step-by-step adjustment of node positions to mimic
how the truss responds to external forces. Periodically, we created matrices to show the
distances between each pair of nodes, providing valuable insight into the truss’s behavior.

These distance matrices were particularly insightful when we examined their extreme
eigenvalues. These values revealed the truss’s principal displacement modes. These values
showed us the main ways the truss moved, highlighting patterns of movement. Studying
these eigenvalues was crucial for predicting how the truss would react to various loading
conditions.

The ergodic hypothesis suggests that given enough time, the system will pass through all
possible states. This hypothesis allowed us to use histograms to analyze the displacements
in the truss model, assuming that long-term observations could accurately represent the
entire state space.

The calculation of node displacements and the assembly of node distance matrices
provided us with a statistical distribution of displacements over time. By focusing on the
analysis of extreme eigenvalues, we could simplify the complex, high-dimensional data into
more understandable forms. This approach was helpful in identifying the principal modes
of displacement within the truss.

To enhance our understanding of the truss’s behavior, we varied the modulus of elas-
ticity values, [E'A] , for the edge elements and [E'A]; for the inner elements. The resulting
histograms for each configuration were systematically catalogued into matrices, which then
served as input data for our predictive models. The varied E A values were set as the target
outputs. This enables the models to map the relationship between material properties and
displacement behaviors.

2.3 The Neural Network

We created a dataset with thousands of data points to encompass a broad spectrum of FA
values. Specifically, F A4, corresponding to the modulus of elasticity for the edge elements
of the truss, is consistently larger than E'Ag, which pertains to the inner elements. Within
our dataset parameters, /A, is at most ten times greater than FApg, ensuring a realistic
portrayal of the differing mechanical properties across the truss structure.

14
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For our neural network, we used a simple design with just one hidden layer connecting
the input and output. To find the best number of neurons for this layer, we tested different
amounts with K-fold cross-validation. This method helped us make sure the network would
work well no matter the situation.

Additionally, I used L2 regularization in the training to prevent overfitting, which
is when a model gets too tuned to the training data and does not do well with new
information. This technique helps keep the model flexible.

We chose an optimization method known as Stochastic Gradient Descent with Momen-
tum (SGDM) because it learns fast and smooths out the process.

Lastly, we varied the learning rate during training with a step-by-step method. This
let the network learn quickly at first and then more slowly and carefully as it got closer to
what we wanted it to do, making the whole training more effective.

2.4 The Training process

The matrices generated from histograms acted as the input to the neural network and the
two EA values were the targets that we aimed to predict. We allocated 70 percent of all
data to the training set, 15 percent to the validation set, and 15 percent to the test set.

In the pre-processing stage, I cleaned up the data by trimming and removing noise
from each matrix. This reduced the size of matrices significantly. Then we turned these
matrices into vectors of size 1 x 888 which is not too big for our neural network to handle.

Training was done through the functions available in MATLAB’s Neural Network pack-
age. It took 1 minute and 25 seconds for the training process to complete, and it stopped
when it reached the validation criterion, which was a tolerance of five. This means that
to prevent over-fitting, the training will stop if the validation set loss increases for five
consecutive points. The training plot can be seen in the figure in the next page.
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Chapter 3

Results

The neural network’s testing phase provided insightful outcomes. The training was con-
cluded successfully when the model met the predetermined validation criteria. The Mean
Absolute Error (MAE) was used as a metric to evaluate the model’s performance. For
the training set, the MAE was recorded at 0.31542134, reflecting the model’s average de-
viation from the actual values. Similarly, the MAE for the test set was slightly higher at
0.33872029, indicating a consistent performance when the model was exposed to unseen
data.

To further assess the model’s predictive accuracy, we analyzed the test set results in
greater detail. A Test R-squared (R?) value of 0.8866 was achieved, which denotes a high
level of correlation between the predicted values and the actual outcomes. This high R?
value suggests that the model can explain a significant portion of the variance in the test
data, which indicates strong predictive capabilities.

A scatter plot of predicted versus actual values graphically illustrates the model’s perfor-
mance, with most points closely aligning with the identity line. This visualization confirms
the numerical findings, showing a concentration of predictions around the line of perfect
agreement, with one of the targets indicated with red circular points and the other target
shown with blue circular points.

In conclusion, the neural network demonstrated a robust ability to predict outcomes
with high accuracy, as evidenced by the low MAE and high R-squared value. These results
are promising and indicate the model’s potential utility in practical applications where
predictive precision is paramount.
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Figure 3.1: The Predicted vs. Actual values of Test data. The blue and red dots show the
two targets and the red line shows the line of perfect prediction.
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Chapter 4

Future Work

In the field of structural biology, there are exciting opportunities to advance our under-
standing of bio-molecular structures. Our future research, in collaboration with the Uni-
versity of Leeds, aims to use empirical data to uncover the precise node coordinates of
bio-molecules. This work will likely involve using real protein data extracted from cryo-
genic electron microscopy (Cryo-EM) images to model coordinates, paving the way for a
deeper understanding of bio-molecular formations at an atomic scale.

Developing a neural network training process is a central component of the planned
research methodology. This process is envisioned to predict the elastic response of bio-
molecules to thermal fluctuations. Inter-atomic distances are expected to be determined
from simulated high-resolution Cryo-EM imagery, laying the groundwork for accurately
mapping spatial relationships within bio-molecular assemblies.

The subsequent step in this future research will involve constructing distance matrices
to represent the intricate network of atomic interactions. Computing the eigenvalues of
these matrices is projected to yield critical insights into bio-molecules’ dynamic behavior
and vibrational characteristics.

Utilizing the eigenvalue data, histogram matrices are anticipated to be created as an
innovative means to encapsulate complex eigenvalue information. These matrices are ex-
pected to be instrumental in training neural networks, enabling the system to discern subtle
patterns indicative of bio-molecular elastic behavior.

Our collaborative efforts have the potential to revolutionize the precision of predic-
tive models for bio-molecular structures. By harnessing advanced neural network training
techniques and leveraging simulated datasets, we aspire to set new standards in the pre-

20



dictive modeling of bio-molecular elasticity. This could potentially lead to groundbreaking
discoveries in the field of structural biology.
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