
Incorporating Wasserstein metric in
Autoencoder Training for Effective

Image Compression

by

Antonina Rudakova

A research paper
presented to the University of Waterloo

in fulfillment of the
paper requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Waterloo, Ontario, Canada, 2024

© Antonina Rudakova 2024

Reader

The following served as readers of this report.

Reader: Hans De Sterck
Professor, Dept. of Applied Mathematics, University of Waterloo

Supervisor(s): Stephen Vavasis
Professor, Dept. of Combinatorics & Optimization,
University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this research paper. This is a true copy of
the research paper, including any required final revisions, as accepted by my reareds.

I understand that my research paper may be made electronically available to the public.

iii

Abstract

This study aims to improve autoencoder training methodology by incorporating the
Wasserstein distance, the metric for capturing differences between image distributions, with
the primary goal of integrating it into the autoencoder training process. To achieve this, our
work presents an implementation designed to efficiently compute the entropy-regularized
Wasserstein distance and its gradient between images. The numerical outcomes underscore
the impact of this integration, revealing notable improvements in discrimination between
input and reconstructed images. For instance, with an autoencoder configured at offset =
0.05 and epsilon = 0.1, the Wasserstein metric exhibited a substantial change of -0.11 when
comparing various images of zeros, while the 2-norm showed a metric value of 0. Similarly,
comparing images of 0 to 2 yielded a Wasserstein metric value of 1.49, outperforming the
2-norm’s value of 0.08. Beyond individual pairs, our approach consistently resulted in en-
hanced discrimination, promising implications for the broader field of image classification.
These results reinforce the Wasserstein distance’s potential to optimize autoencoder-based
image compression, contributing to the ongoing pursuit of employing advanced metrics for
more efficient deep learning models in image processing tasks.

iv

Acknowledgements

Here is an updated version (though in my opnion): I would like to express my heartfelt
gratitude to my supervisor, Professor Stephen Vavasis, for his continuous guidance and
unwavering support throughout my Master’s studies. His mentorship has been invaluable,
and I genuinely appreciate his shared knowledge and insight.

A special acknowledgment goes to my colleagues in the Computational Mathematics
lab, who supported me during my academic journey and played a vital role in the discus-
sions related to this thesis. Their collaborative spirit and encouragement have significantly
enriched my research experience.

I am also sincerely thankful to the University of Waterloo for organizing the summer
program, particularly in response to Russia’s invasion of Ukraine. The university’s sup-
port and commitment to the academic growth of Ukrainian students, especially during
challenging times, have been instrumental. I am grateful for the opportunities provided by
the University of Waterloo to foster learning and cultural exchange.

Once again, thank you to everyone who has supported me throughout my academic
journey at the University of Waterloo.

v

Dedication

I dedicate this thesis to the unconditional support and love of my mother. Her en-
couragement and belief in my abilities have been a driving force throughout my academic
journey.

To my close friends, who stood by me during the challenges and joys of this academic
pursuit, your friendship has been a source of strength. Your understanding and encour-
agement have significantly impacted me, and I am fortunate to have you in my life.

A special mention goes to my best friends, Oleh and Diana. Your leadership, guidance,
and exemplary dedication to your pursuits have inspired me to strive for excellence. Your
friendship has been a guiding light, and I am thankful for your positive influence on my
academic and personal growth.

Thank you for being an integral part of this journey.

vi

Table of Contents

Reader ii

Author’s Declaration iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures ix

List of Tables x

1 Introduction 1

2 Wasserstein distance 3

2.1 Kantorovich Optimal Transport Problem (OTP) 4

2.2 Entropic Regularization of Optimal Transport 5

2.3 Sinkhorn’s Algorithm . 6

3 Autoencoder 9

3.1 Structure of Autoencoder . 9

vii

3.2 Autoencoder vs SVD . 10

3.3 Loss function: Wasserstein distance . 14

3.4 Wasserstein distance: Autodifferentiation 15

4 Observations 21

References 26

viii

List of Figures

2.1 Three densities p1, p2, p3 [6]. 3

3.1 An A(n; m; n) Autoencoder Architecture [1]. 10

3.2 Linear SVD with rank 2. 13

3.3 Affine SVD with rank 2. 13

3.4 Autoencoder with SGD and Adam optimizers. 14

4.1 Multidimensional scaling of Wasserstein distance and 2-norm 23

4.2 Annotated figures of Wasserstein distance and 2-norm. 25

ix

List of Tables

3.1 Table of Figures . 15

3.2 Truncation Error of the Algorithm 2 . 20

4.1 Algorithm 1 experiment with various parameter values. 21

x

Chapter 1

Introduction

Within the fields of artificial intelligence and image processing, researchers have been ex-
ploring novel strategies in an effort to achieve optimal picture compression while main-
taining important characteristics. Neural networks’ autoencoder class has shown to be a
potent tool in this endeavour. These neural networks are made to learn compact repre-
sentations by encoding incoming data and then reconstructing it. Improving autoencoder
training methodologies becomes necessary as the necessity for effective picture compression
increases.

Image compression is essential for many uses, from rapid transmission via communi-
cation systems to effective storage. Picture compression aims to present visual data more
compactly while maintaining critical information. By learning compact representations
of input data, a type of artificial neural networks called autoencoders has demonstrated
promise in picture compression challenges ([14], [15], [18]). However, addressing issues with
the accuracy of reconstructed pictures and the quality of learnt representations is necessary
for improving autoencoders for efficient compression.

Characterized by an encoder-decoder design, autoencoders are models for unsupervised
machine learning. The input data, which is typically an image, is mapped by the encoder
into a latent space of lower dimension. The decoder then uses this reduced representation
to reconstitute the original input. The key to autoencoders is their capacity to identify
relevant characteristics throughout the encoding-decoding process, which allows them to
learn effective data representations.

Image compression has shown to be a particularly successful use of this encoding-
decoding technique. Autoencoders enable the construction of compact representations

1

that preserve crucial information by minimizing the dimensionality of the input data. This
makes it possible to store and transmit pictures efficiently.

But conventional autoencoder training techniques might not necessarily produce the
best outcomes, particularly when trying to achieve particular desirable features in the com-
pressed form. This leads to the investigation of sophisticated criteria, such the Wasserstein
metric, to direct the training procedure in order to get better compression efficiency.

In this article, we explore the incorporation of the Wasserstein metric into the training
process of autoencoders to enhance its performance in image compression. An indicator
of how different probability distributions are from one another is the Wasserstein metric,
also referred to as the Earth Mover’s Distance. Our goal is to enhance the reconstructed
picture quality and encourage the acquisition of more significant image representations by
utilizing the Wasserstein measure throughout the autoencoder training process.

The goal of this research is to incorporate the Wasserstein metric into the autoencoder’s
loss function, directing the training process to produce compressed representations consis-
tent with the metric’s focus on structure preservation. Through empirical evaluations and
experiments, we argue that our Wasserstein distance algorithm is better in clusterization
than the Euclidean norm, which provides promises to achieve better picture compression
by incorporating Wasserstein distance algorithm as a loss function of an autoencoder.

2

Chapter 2

Wasserstein distance

Wasserstein distance is a distance function defined between probability distributions on a
given metric space M. It is named after Leonid Vaserštĕın. Intuitively, if each distribution
is viewed as a unit amount of earth (soil) piled on M, the metric is the minimum ”cost” of
turning one pile into the other, which is assumed to be the amount of earth that needs to
be moved times the mean distance it has to be moved. This problem was first formalised
by Gaspard Monge in 1781 [9]. Because of this analogy, the metric is known in computer
science as the earth mover’s distance. the material in this chapter is based on the survey
paper [13].

To see the difference between the Wasserstein distance and other distances consider
figure 2.1 with three densities p1, p2, p3. Since

∫
|p1 − p2| =

∫
|p2 − p3|, each pair has the

same distance in L1, L2, Hellinger etc. But Wasserstein distance captured that p1 and p2
are close together.

Figure 2.1: Three densities p1, p2, p3 [6].

3

2.1 Kantorovich Optimal Transport Problem (OTP)

Define a and b are the weight at the locations x1, . . . , xn in image X and y1, . . . , ym in
image Y . The Monge problem [9] seeks a map that associates to each point xi a single
point yi and which must push the weight of a toward the weight b.

Let P ∈ Rn×m
+ be a coupling matrix, where Pi,j describes the amount of mass flow-

ing from pixel i toward pixel j, or from the weight found at xi toward yj. For better
understanding, a coupling matrix can be described as a transportation service [13]. In
resource distribution scenarios, an operator is tasked with moving goods from a warehouse
indexed by i to a factory indexed by j. This service imposes a uniform cost Cij per unit
for transferring resources. Possessing exclusive transport rights, the company applies a
consistent pricing mechanism across the economic landscape, making the transportation
cost for a units amount to a×Cij. In response to these conditions, the operator resolves to
apply a linear programming approach as delineated in Equation 2.3 to derive an optimal
transportation matrix P ∗. This matrix details the quantity Pij of resources to be shipped
from warehouse i to factory j.

Admissible couplings admit simple characterization,

U(a, b)
def
=
{
P ∈ Rn×m

+ : P1m = a and P T1n = b
}
, (2.1)

where the following matrix-vector notation is used:

P1m =

(∑
j

Pi,j

)
∈ Rn and P T1n =

(∑
i

Pi,j

)
∈ Rm. (2.2)

The set of matrices U(a, b) is bounded and defined by n + m equality constraints, and
therefore is a convex polytope (the convex hull of a finite set of matrices) [2].

Kantorovich’s relaxed formulation is always symmetric, in the sense that a coupling
P is in U(a, b) if and only if P T is in U(b, a) 2.1. Kantorovich’s formulation of optimal
transport between 2 measures is the problem between their associated probability weight
vectors a, b and the cost matrix C [13]

LC(a, b)
def
= min

P∈U(a,b)
⟨C,P ⟩ def=

∑
i,j

Ci,jPi,j, (2.3)

where the cost matrix is [13]

Ci,j
def
= c(xi, yj). (2.4)

Solving the Kantorovich’s OTP is challenging. Therefore, an entropic regularization
needs to be added to approximate Wasserstein distance between 2 measures.

4

2.2 Entropic Regularization of Optimal Transport

G. Peyre and M. Cuturi in [13] described using a regularizing function to obtain approx-
imate solutions to the original transport problem. This form of regularization presents a
multitude of significant benefits that collectively establish it as an exceedingly effective
instrument. The optimization of the regularized objective can be conducted through an
uncomplicated scheme of alternating minimization. This procedure corresponds to itera-
tions that involve straightforward matrix-vector operations, which are notably well-aligned
with the computational architecture of GPUs. For certain scenarios, there is no necessity
to retain a full n × m cost matrix in memory; instead, it suffices to perform evaluations
on a kernel basis. Moreover, when a substantial subset of measures possesses identical
support, the aforementioned matrix-vector operations can be efficiently transformed into
matrix-matrix operations, which yields considerable computational accelerations. The en-
tropic regularization is added to Kontorovich’s OTP to approximate Wasserstein’s distance
between 2 measures.

The discrete entropy of a coupling matrix is defined as

H(P)
def
= −

∑
i,j

Pi,j(log(Pi,j)− 1), (2.5)

with an analogous definition for vectors, with the convention that H(a) = −∞ if one of
the entries ai is 0 or negative. To avoid the infinity in the lower bound an offset is added
to the coupling matrix P . The function H is 1-strongly concave, because its Hessian is
∂2H(P) = −diag(1/Pi,j) and Pi,j ≤ 1. By using −H as a regularizing function, we are
able to approximate solutions to the original problem (2.3):

Lε
C(a, b)

def
= min

P∈U(a,b)
⟨P,C⟩ − εH(P). (2.6)

Since the objective is an ε-strongly convex function, Problem (2.6) has a unique optimal
solution.

The unique solution Pε of (2.6) converges to the optimal solution with maximal entropy
within the set of all optimal solutions of the Kantorovich problem

Pε = argmin
P
{−H(P) : P ∈ U(a, b), ⟨P,C⟩ = LC(a, b)}, (2.7)

so that in particular

Lε
C(a, b)

ε→0−→ LC(a, b). (2.8)

5

One also has
Pε

ε→∞−→ a⊗ b = abT = (aibj)i,j. (2.9)

2.3 Sinkhorn’s Algorithm

The following statement shows that the solution of equation (2.6) follows a unique structure
that may be represented in terms of n + m variables. Since nm variables within U(a, b)
are bounded by n+m constraints on a coupling matrix P , this representation is effectively
the dual aspect.

The unique solution Pε of (2.6) is a projection onto U(a, b) of the Gibbs kernel asso-
ciated to the cost matrix C as

Ki,j
def
= e−

Ci,j
ε (2.10)

has the form
∀(i, j) ∈ [n]× [m], Pi,j = uiKi,jvj, (2.11)

for two (unknown) scaling variable (u, v) ∈ Rn
+ × Rm

+ .

It is possible to efficiently translate the factorization of the optimal solution, provided
by equation (2.6), into matrix notation where P = diag(u)Kdiag(v). The two variables
(u, v) have to satisfy the particular nonlinear equations that correspond with the mass
conservation constraints incorporated in U(a, b):

diag(u)Kdiag(v)1m = a, and diag(v)KTdiag(u)1n = b. (2.12)

The two given equations can be further simplified by taking the product of diag(u)
with Kv to be an element-wise multiplication since the term diag(v)1m is equal to v. The
formulas thus have the form

u⊙ (Kv) = a and v ⊙ (KTu) = b, (2.13)

where ⊙ stands for the Hadamard product. In numerical analysis, this set of equations
is known as the matrix scaling problem (see [10] and references therein). An iterative
approach can be used to solve these equations by first modifying u to match the left side
of Equation (2.13), and then v to meet the right side. The Sinkhorn’s algorithm is made
up of these iterative phases and is represented as follows:

u(ℓ+1) =
a

Kv(ℓ)
and v(ℓ+1) =

b

KTu(ℓ+1)
, (2.14)

6

beginning with an arbitrary positive vector v(0) = 1m. The division indicated is to be
interpreted entrywise. These iterations converge and all result in the same optimal coupling
diag(u)Kdiag(v) regardless of different initialization.

To be able to differentiate the algorithm which computes Wasserstein distances:

1. Initialize the vector V (0) to a vector of ones (e).

2. For each iteration l in a loop from 1 to 50, perform the following updates:

• Compute s(l) by multiplying the matrix K with the vector v(l−1).

• Update u(l) by element-wise division of the vector a by s(l).

• Compute t(l) by multiplying the transpose of K with the vector u(l).

• Update v(l) by element-wise division of the vector b by t(l).

3. After the iterative updates, compute the coupling matrix P using the vectors u(50)

and v(50).

4. Compute the entropy term h as the sum of certain function evaluations on the ele-
ments of P .

5. Compute the objective function L as a combination of the entropy term and the
weighted sum of the cost matrix C using the coupling matrix P .

6. The final objective function f is set to L.

We chose the fixed iteration limit of 50 based on some other experiments not reported
here.

In summary, the approach estimates the Wasserstein distance between two measures
denoted by the vectors a and b via entropic regularization. The Wasserstein distance
is calculated as part of the total objective function, and the regularization term adds
entropy to aid in optimization. The methodology known as Sinkhorn’s algorithm utilizes
an iterative method to determine the coupling matrix. It takes into account restrictions
related to mass conservation and incorporates entropic regularization to enhance computing
efficiency and convergence.

The Wasserstein distance algorithm is shown below.

7

Algorithm 1 Regularized Wasserstein metric algorithm

V (0) ← e
for l = 1 : 50 do

s(l) = Kv(l−1)

u(l) = a
s(l)

t(l) = KTu(l)

v(l) = b
t(l)

end for
for i = 1 : n do

for j = 1 : n do
Pij = u

(50)
i Kijv

(50)
j

end for
end for
h =

∑n
i,j=1−φ (Pij) ▷ φ (Pij) = Pij(log (Pij)− 1)

L = −εh+
∑n

i,j=1 PijCij

f = L

8

Chapter 3

Autoencoder

The primary principle behind autoencoders [1] is to utilize the input as the objective for
reconstruction, thus reproducing the input data as its output. This idea, which was first
suggested by Sanjaya Addanki and developed by the PDP group [12, 8], might not appear
very important at first because it only entails reproducing an already-existing input. But
rather than the output itself, the true value lies in the abstract representations generated
in the network’s hidden layers. While feedforward autoencoders with a single hidden layer
are the main focus of this thesis, autoencoder setups that include recurrent connections
and multiple hidden layers are also viable. It is claimed that understanding the linear
examples of the single-hidden layer framework is necessary to understand more complex,
multi-layered situations. To keep things simple and expand on the analysis of network
architectures, a single hidden layer architecture is considered.

3.1 Structure of Autoencoder

The material in this section is based on the book [1]. For any A ∈ A and B ∈ B, the
autoencoder with architecture A(n,m, n) transforms an input vector x ∈ Fn into an output
vector A ◦B(x) ∈ Fn (fig. 3.1). The corresponding autoencoder problem is to find A ∈ A
and B ∈ B that minimize the overall error or distortion function:

min
A,B
E(A,B) = min

A,B

K∑
k=1

E(xk) = min
A,B

K∑
k=1

∆(A ◦B(xk), xk) (3.1)

where:

9

• n,m and K are positive integers.

• F and G are sets.

• A is a class of functions from Gm to Fn.

• B is a class of functions from Fn to Gm.

• X = {x1, . . . , xK} is a set of K training vectors in Fn. External targets presented
(hetero-association) by the same set X = {x1, . . . , xK} and denoted the corresponding
set of target vectors in Fn. For convenience, the set Y = {y1, . . . , yK} will be used as
target set.

• ∆ is a distance or distortion function (e.g., Lp norm, Hamming distance) defined over
Fn.

Figure 3.1: An A(n; m; n) Autoencoder Architecture [1].

3.2 Autoencoder vs SVD

Here we consider a compressive linear Autoencoder A(784, 2, 784) over the real numbers,
which takes as input a reshaped image of a digit of the size 28 × 28. The goal of the

10

Autoencoder is to compress 1500 images of three different digits of MNIST handwritten
digits dataset [7]. In the linear case, the functions A and B are represented by matrices
with weights over the set of images. The goal is the minimization of the squared Euclidean
distance [1]:

min
A,B
E(A,B) = min

A,B

K∑
k=1

∥xk − ABxk∥2 =
K∑
k=1

(xk − ABxk)
t(xk − ABxk). (3.2)

Let Y be the 784 × 784 input-to-output matrix computed by the linear Autoencoder.
As there is a bottleneck layer of two neurons, we must have rank(Y) ≤ 2, and probably
rank(Y) = 2. We expect that ∥A− Y A∥ is also small since the Autoencoder seems to be
performing well. However, since W is optimal, we know that in the Frobenius norm, we
must have ∥A− Y A∥ ≥ ∥A−XA∥.

The Frobenius norm shows that the trained linear Autoencoder computes an affine
linear transformation to compress the data. This means that there is a matrix A ∈ R784×784

and a vector c ∈ R784 such that if x is an input to the trained Autoencoder, that is,
x ∈ R784, then the output to the Autoencoder is of the form Ax+c. Furthermore, because
the hidden layer has only two nodes, rank(A) ≤ 2.

Given the trained Autoencoder, explicit forms of A and c were obtained as follows.
One runs the trained Autoencoder on the vector of all 0 s, denoted 0 ∈ R784. Then the
output should be A · 0+ c = c.

To obtain the compression matrix A, one runs the trained Autoencoder 784 times on
the standard basis vectors of R784, which are

1
0
...
0

 ,

0
1
...
0

 , . . . ,

0
0
...
1

 .

Let these 784 vectors be denoted e1, . . . , e784. Let the 784 vectors output by the trained
encoder on e1, . . . , e784 be denoted v1, . . . ,v784. Observe that vi = Aei + c = A(:, i) + c.
Therefore, we recover A(:, i) as vi − c. In other words, the matrix A is the concatenation
A = [v1 − c, . . . ,v784 − c].

By determining A and c, by the procedure above, confirmation of the correctness of
computed A and c are obtained using the following test. Let x ∈ R784 be a randomly
chosen vector. Let v be the output from the trained Autoencoder when applied to x. Let

11

v′ := Ax+ c, where A and c have been obtained by the above procedure. Then v and v′

show be very close, in other words, ∥v − v′∥ /∥v∥ should be a very small number.

The SVD computes the optimal linear fitting for the data, but we need an extra step to
compute the optimal affine linear fitting. The following procedure to compute an adequate
affine linear fitting is a heuristic. Let the data matrix be denoted by D ∈ R784×1500. In
other words, each column of D corresponds to one handwritten digit. The algorithm to
compute a rank-2 affine fitting to D:

1. Compute p ∈ R784, the average of all the columns of D. If e ∈ R1500 denotes
the vector of all 1’s of length 1500, then this computation may be written as p :=
De/1500.

2. Let D̄ be the matrix that results from subtracting p from each column of D. In
matrix notation: D̄ := D − peT .

3. Factorize D̄ as D̄ = UΣV T (SVD). Here, U ∈ R784×784 is orthogonal, Σ ∈ R784×1500

is diagonal, and V ∈ R1500×1500 is orthogonal.

4. The rank-2 affine approximation to D is given by:

Dappx = U(:, 1 : 2)Σ(1 : 2, 1 : 2)V (:, 1 : 2)T + peT .

5. The rank-2 compressing matrix for a vector x determined by the SVD is

A′ = U(:, 1 : 2)U(:, 1 : 2)T ,

which is 784× 784. The full transformation is given by x 7→ A′(x− p) + p. In other
words, the mapping is given by x 7→ A′x+ c′ where c′ has the formula c′ = p−A′p.

Classification of the digits by the linear approximation and affine approximation are
shown in Figure 3.2 and Figure 3.2 respectfully.

For optimization, SGD [4] and Adam [5] optimizers were applied to Autoencoder net-
work to perform better compression of handwritten digits dataset [7]. Figure 3.4 shows
classifications of the digits by Autoencoder with SGD optimizer in comparison with Au-
toencoder with Adam optimizer.

Compressed images are shown in table 3.1.

12

Figure 3.2: Linear SVD with rank 2.

Figure 3.3: Affine SVD with rank 2.

13

(a) SGD optimizer. (b) Adam optimizer.

Figure 3.4: Autoencoder with SGD and Adam optimizers.

3.3 Loss function: Wasserstein distance

Used autoencoders with a described previously structure do not substantially outperform
mathematical techniques like SVD and Affine SVD, as shown in Table 3.1. In order to
do this, the main goal of this work is to investigate the usage of Wasserstein distance in
determining the separation between input and output images. Since we are compressing
images, the distance between an original image and its compressed form should approach
zero, and the image must remain unchanged. The Wasserstein distance is to be used as an
update step in SGD [4] and Adam [5] optimization algorithms.

Both SGD and Adam algorithms require a derivative of the Wasserstein distance with
respect to the weights of the nodes of Autoencoder. The derivative of the Wasserstein
distance f between the input and output images with respect to the weights w of Au-
toencoder’s nodes must be calculated in order to employ Wasserstein distance as a loss
function. A derivative of the Wasserstein distance f with respect to an input image a and
a derivative of the image a with respect to the weights wof the nodes must be found in
order to determine the derivative of the Wasserstein distance f with respect to weights w:

∂f

∂w
=

∂f

∂a
· ∂a
∂w

. (3.3)

The first term of the equation 3.3 is the derivative ∂a
∂w

of an image a with respect to the
weights w of the nodes, and is a standard back-propagation in order to train Autoencoder.

14

Digit SGD SVD Adam Affine SVD

Table 3.1: Table of Figures

To compute the second term of the equation 3.3, the derivative ∂f
∂a

of the Wasserstein
distance f with respect to an input image a, the autodifferentiation needs to be applied.

3.4 Wasserstein distance: Autodifferentiation

The material in this section is based on the book [11]. The foundation of automatic dif-
ferentiation techniques is the understanding that evaluating any function is a sequence
of basic operations, each of which handles one or two parameters at a time. Addition,
multiplication, division, and the power operation ab are examples of operations that need
two inputs. Functions such as logarithmic, exponential, and trigonometric functions are
examples of single-argument operations. Another common element across several auto-
mated differentiation techniques is the use of the chain rule. The well-known rule from
basic calculus asserts that we may express the derivative of h with respect to x as follows:

∇xh(y(x)) =
m∑
i=1

∂h

∂yi
∇yi(x), (3.4)

15

where h is a function of the vector y, which is in turn a function of the vector x [11].

There are two basic modes of automatic differentiation: the forward and reverse modes.
The computational complexity of forward-mode automated differentiation would be pro-
portionate to the number of input variables as it would need calculating the derivatives
with respect to each input variable separately [11]. In contrast, reverse autodiff is a more
effective method for calculating gradients in situations when there are many inputs and
only one output, which makes it an appropriate choice for optimization issues such as the
Wasserstein metric technique. Reverse autodiff calculates the derivatives of the final out-
put with regard to intermediate variables by traversing from the output back to the input
on the computational graph in reverse order.

Generally, the reverse mode of automatic differentiation retrieves the partial derivatives
of a function h with respect to all variables (images in the input set) hi by executing a
reverse sweep of the computational graph. The partial derivatives ∂h

∂hi
with respect to the

independent variables hi, i = 1, 2, ..., n can be joined to form the gradient vector ∇f at
the end of this operation.

An important idea in reverse-mode automated differentiation is the reverse sweep, that
relies on the following observation, which is grounded in the chain rule 3.4: The partial
derivatives corresponding to any node i’s child nodes j can be used to generate the partial
derivative for that node [11]:

∂h

∂xi

=
∑

j a child of i

∂h

∂xj

∂xj

∂xi

. (3.5)

As soon as we calculated the right-hand-side term in (3.5) for each node i, we add it
to x̄i; in other words, we execute the procedure

x̄i+ =
∂h

∂xj

∂xj

∂xi

. (3.6)

The partial derivative of the objective function h with respect to the variable xi is being
updated by this equation (3.6). Contributions are accumulated by multiplying the local
sensitivity of xj with regard to xi by the partial derivatives of h with respect to its child
nodes (xj). In contrast to the forward calculation of the function h, the computation is
carried out in the opposite direction. The partial derivative ∂h

∂xi
is collected for each node

(i) through contributions from its child nodes. When all child nodes have contributed,
the node is considered ”finalized.” The computation of the partial derivative ∂h

∂xi
occurs

when a node (i) is finalized. At that point, the node is prepared to add a term to the

16

summation for every parent node. The contribution is produced using formula (3.6) for
every parent node. Nodes iteratively contribute to their parent nodes until all nodes have
been finalized. In the graph, the direction of the computation flow is reversed from the
function evaluation flow, going from children to parents.

The main objective of the forward sweep is to compute the numerical values of each
variable xi and evaluate the function h. Additionally, the numerical values of the partial
derivatives

∂xj

∂xi
are computed and recorded for each arc (connection) in the computational

graph. Each variable xj’s local sensitivities to variations in xi are represented by these
partial derivatives.

Instead of using symbolic formulas or computer code utilizing the variables xi or the
partial derivatives ∂h

∂xi
, the forward sweep works with numerical values. By the time the

forward sweep is complete, the system has the numerical values of the partial derivatives
∂xj

∂xi
for every arc in the graph in addition to the numerical values of the variables xi.

These stored partial derivatives have numerical values that are important for the reverse
sweep (backpropagation). In order to quickly calculate the gradients ∂h

∂xi
in the reverse

sweep, the previously computed
∂xj

∂xi
values acquired during the forward sweep are utilized.

These are the numerical numbers used in the equation 3.6 for the reverse sweep. The
gradients of the objective function with respect to each variable may be easily computed
by the reverse sweep by using the numerical values of the partial derivatives that were
saved during the forward sweep. This method improves computing efficiency by avoiding
the need to recompute the symbolic derivatives during the reverse sweep.

As a result, the forward sweep computes and saves numerical values for variables and
partial derivatives, which are then used to efficiently compute gradients during the reverse
sweep.

Algorithm 1 is appropriate for reverse-mode automatic differentiation (reverse autodiff)
since it produces the Wasserstein distance as a scalar output through a series of operations.
Reverse autodiff involves traversing the computational graph in reverse order, from the
output back to the input, in order to calculate the derivatives of the final result with
regard to intermediate variables.

In theWasserstein metric algorithm (1), updating the variables in the loop—specifically,
calculating s(l), u(l), t(l), and v(l)—is essential for determining the Wasserstein distance.
Matrix-vector products and element-wise operations are used in these computations. These
factors are combined to form the Wasserstein distance (L).

In this case, reverse autodiff works well because it makes it possible for the algorithm
to compute gradients quickly by going backwards from the final result (L) through the

17

procedures. This is helpful because it prevents repetitive calculations by reusing interme-
diate findings during the backward pass, which is particularly useful when there are several
input variables (as in the case of Wasserstein metric computations) and a single output.

To differentiate the function which implements Wasserstein algorithm 1, the gradients
of the objective function f with respect to its inputs should be computed. The input
vectors a and b to the function which implements Algorithm 1 are used as an original
image and the compressed image.

To differentiate the algorithm 1:

1. Initialize by setting ∂f
∂L

= 1 since L is the final output.

2. Calculate ∂f
∂h

= −ε ∂f
∂L
.

3. Update ∂f
∂Pij

= Cij
∂f
∂L

for all i, j.

4. Adjust ∂f
∂Pij

using the chain rule: ∂f
∂Pij

= ∂f
∂Pij
−∂f

∂h
φ′ (Pij) where φ

′ (Pij) is the derivative

of the function φ defined in the algorithm.

5. Compute M = ∂f
∂P
·K, where K is a matrix.

6. Update ∂f
∂u(50) = Mv(50) and ∂f

∂v(50)
= M⊤u(50).

7. Iterate backward through the loop from l = 50 to l = 1 :

• Compute t(l) = ∂f
∂v(l)
·
(
− b

(t(l))
2

)
.

• For l = 50, update ∂f
∂u(l)+ = K ∂f

∂t(l)
, otherwise set ∂f

∂u(l) = K ∂f
∂t(l)

.

• Update ∂f
∂s(l)

= ∂f
∂u(l) ·

(
− a

(s(l))
2

)
.

• Update ∂f
∂a

= ∂f
∂a

+ ∂f
∂u(l) ·

(
1

s(l)

)
.

• Update ∂f
∂v(l−1) = KT ∂f

∂s(l)
.

This process essentially computes the gradients of the objective function f with respect to
the inputs a and b by traversing the computational graph in reverse order. The algorithm
that implements the steps described above is presented as Algorithm 2.

The truncation error is used to verify the accuracy of the autodifferentiation process
and the sensitivity of the Wasserstein distance function with perturbations in the input

18

Algorithm 2 Reverse Mode Autodiff of Wasserstein metric algorithm
∂f
∂L

= 1
∂f
∂h

= −ε ∂f
∂L

∂f
∂Pij

= Cij
∂f
∂L

▷ ∀i, j
∂f
∂Pij

= ∂f
∂Pij
− ∂f

∂h
φ′ (Pij) ▷ φ′ (Pij) =

[
0, if x = 0
log (Pij) , otherwise

M = ∂f
∂P
·K

∂f
∂u(50) = Mv(50)

∂f
∂v(50)

= M⊤u(50)

for l = 50 : −1 : 1 do

t(l) = ∂f
∂v(l)
·
(
− b

(t(l))
2

)
if l = 50 then

∂f
∂u(l)+ = K ∂f

∂t(l)

else
∂f

∂u(l) = K ∂f
∂t(l)

end if
∂f
∂s(l)

= ∂f
∂u(l) ·

(
− a

(s(l))
2

)
∂f
∂a

= ∂f
∂a

+ ∂f
∂u(l) ·

(
1

s(l)

)
∂f

∂v(l−1) = KT ∂f
∂s(l)

end for

19

image a. A set of regularization parameters λ is chosen: 0.1, 0.01, . . . , 10−10. For each
λ, the Wasserstein distance function is evaluated with a perturbed input a + λ∆a, where
∆a ∈ Rn is a random normilized vector.

f(a+ λ∆a)− f(a)

λ
−
〈
∂L

∂a
,∆a

〉
, (3.7)

where ∆L ≈ ∂L
∂a
·∆a.

The test aims for the error to approach zero as λ approaches zero.

The results of the truncation error are shown in Table 3.2 and are indicating conver-
gence of the numerical approximation to the true derivative. However, for extremely small
values of λ, there is a divergence, and the truncation error becomes negative. This could
be an indication of numerical instability or limitations in the precision of the calculations.

λ Trunc error
1 9.149 ∗ 10−2

10−1 1.508 ∗ 10−1

10−2 9.886 ∗ 10−2

10−3 1.478 ∗ 10−2

10−4 1.547 ∗ 10−3

10−5 1.554 ∗ 10−4

10−6 1.570 ∗ 10−5

10−7 3.220 ∗ 10−6

10−8 −5.662 ∗ 10−6

10−9 −5.007 ∗ 10−5

10−10 −9.169 ∗ 10−4

Table 3.2: Truncation Error of the Algorithm 2

The next step in the project would be to connect the Wasserstein loss to an autoencoder
for the purpose of digit classification. Due to time limitations, we did not implement that
step. In the next section, we show some preliminary results about classification using
multidimensional scaling.

20

Chapter 4

Observations

The Wasserstein metric f is computed using the Algorithm 1, which determines the
distance between two probability distributions, in this case, two images a and b. In order
to minimize the cost L, the method iterates to find a scaling solution u and v to optimize
the transport plan P (coupling matrix).

Table 4.1 presents the results of experiments comparing results of applying Wasserstein
distance Algorithm 1 for different digit pairs, ”0 against 2”, ”0 against 0”, ”1 against 2”.
The experiments vary in terms of different digit images, offset values, and epsilon values.

Experiment # of iterations Offset Epsilon Wasserstein Norm
0 against 2 50 0.05 0.05 0.995327 0.052788
0 against 0 50 0.05 0.05 0.173436 0.000000
1 against 2 50 0.05 0.05 1.440770 0.079627
0 against 2 50 0.05 0.10 0.755230 0.052788
0 against 0 50 0.05 0.10 -0.110661 0.000000
1 against 2 50 0.05 0.10 1.492173 0.079627
0 against 2 50 0.10 0.05 0.653446 0.043741
0 against 0 50 0.10 0.05 0.025347 0.000000
1 against 2 50 0.10 0.05 0.825891 0.058365
0 against 2 50 0.10 0.10 0.399932 0.043741
0 against 0 50 0.10 0.10 -0.262807 0.000000
1 against 2 50 0.10 0.10 0.813571 0.058365

Table 4.1: Algorithm 1 experiment with various parameter values.

21

Notably, experiments with offset = 0.05 and epsilon = 0.1, as well as offset = 0.1 and
epsilon = 0.05, yield the most promising results. These two configurations show better
distinguishing ability between less similar digits (0 and 2) and smaller distance values for
more similar digits (0 against 0). Specifically, for ”0 against 2” and ”1 against 2,” these
configurations exhibit values that suggest better discrimination between dissimilar digits
and more subtle distinctions among similar digits.

The offset and epsilon values of 0.05 and 0.1, respectively, seem to contribute to the
Wasserstein distances’ effectiveness in distinguishing between digits in comparison with 2-
Norm. These configurations appear to strike a balance, resulting in more meaningful and
interpretable Wasserstein distance values for digit comparisons. These insights could guide
the selection of parameters for Wasserstein distance calculations, emphasizing the impor-
tance of considering offset and epsilon values to achieve optimal discrimination between
digit pairs.

To analyze the data and visualize the distances, Multidimensional Scaling (MDS) must
be used.

In MDS, normalization, symmetrization, and distance matrix calculation are essential
preparatory procedures. It is possible that the origin is meaningless and that the dissimi-
larity values in the input matrix f are on different scales. By centering the dissimilarities
around zero by normalization, the MDS solution becomes invariant to additive constants.
Normalization guarantees that the MDS analysis does not concentrate on the absolute
magnitudes of the dissimilarities, but rather on their relative differences.

There is a chance that the dissimilarity between a and b will not be the same as the
one between b and a. The process of symmetrization guarantees the symmetry of the final
MDS solution. In addition to making analysis easier, symmetrization ensures that for both
a and b, the coordinates in the reduced-dimensional space remain consistent.

It is vital to do normalization and symmetrization to guarantee that the input dis-
similarity matrix is suitably ready for MDS analysis. By doing these stages, the MDS
solution becomes more stable and interpretable, which improves its capacity to capture
the underlying geometric structure of the data.

In classical MDS [16] uses the knowledge that the coordinate matrix X may be obtained
from B = XX ′ by eigenvalue decomposition. Additionally, double centering may be used
to calculate the matrix B from the proximity matrix D.

Steps of a Classical MDS algorithm [17]:

1. Set up the squared proximity matrix D(2) =
[
d2ij
]
. Building the double-centered

22

Figure 4.1: Multidimensional scaling of Wasserstein distance and 2-norm

matrix required for the eigenvalue decomposition starts with the squared dissimilarity
matrix D(2).

2. Double centering is used as follows: B = −1
2
CD(2)C using C = I− 1

n
as the centering

matrix. Jn, where I is the n× n identity matrix, n is the number of objects, and Jn
is a n× n matrix containing all ones.

3. Find them biggest eigenvectors e1, e2, . . . , em and associated eigenvalues λ1, λ2, . . . , λm

of B, where m is the number of required dimensions for the output. Since there are
two nodes in the autoencoder’s bottleneck and that the rank of the SVD approxima-
tion matrix is two, m = 2.

4. Now, X = EmΛ
1/2
m , in which Λm is the diagonal matrix of m eigenvalues of B and

Em is the matrix of m eigenvectors.

Classical MDS preserves dissimilarities while reducing the dimensionality of the data
and visualizing it in a lower-dimensional environment. The MDS is conducted on both
the Wasserstein distances and the normalized distances (fig. 4.1). Based on Wasserstein
distances, the first figure displays the data points in a condensed two-dimensional space. In
terms of the Wasserstein distance, the clustering or dispersion shows how close or dissimilar
the data points are. Following the reduction of dimensionality, the axes indicate the two
most important metrics.

23

The second figure performs the same function for normalized distances. The purpose
of these plots is to display how the data distributes or clusters according to the relevant
criteria. The associations based on normalized distances are shown in this graphic. It
offers an alternative interpretation of the data by emphasizing normalized metrics.

There seems to be a clear point grouping with some overlap across groups in the Wasser-
stein distance plot. While the ’1’s’ (green points) form a distinct group on the left side of
the plot, the ’0’s (red points) are more dispersed and overlap with the ’2’s (blue points).

The groups are more clearly divided from one another in the 2-norm plot. The ’2’s’
are centred, the ’0’s’ form a tight cluster on the right, and the ’1’s’ are clearly identifiable
on the left. When contrasted with the Wasserstein distances, this suggests a more definite
distinction across groups.

If the goal is to distinguish between the three categories, the norm values might be
considered a more suitable metric, given the clearer separation.

However, the Wasserstein distances could be revealing more subtle relationships be-
tween the ’0’s’ and ’2’s’, which might be important for using Wasserstein distance as a loss
function in a neural network.

The Wasserstein distances plot’s point density indicates a gradient or transition be-
tween the ’2’s’ and ’0’s’, which may allude to a spectrum of similarity rather than discrete
groupings.

According to the 2-norm plot, each digit appears to have a more distinct identity, with
less of a gradient and more of a categorical difference.

It is also worth considering that while the 2-norm values show better separation, it may
be overfitting the data if these distinctions are not representative of underlying patterns
in larger or more complex datasets.

The Wasserstein distances may be capturing more complex correlations including the
structure of the data distribution rather than just distance. Conversely, norm values only
consider the geometric separations between the data points.

For example in the annotated Figure 4.2, some ’2’s’ are more similar to ’0’s’ rather
than to other ’2’s’ being compared by Wasserstein distance (fig. 4.2a). The annotated
graph also shows how ’1’s’ are having separation in Figure 4.2b due to different angles of
writing, which should be centred closer as a representation of the same digit.

In summary, the 2-norm appears to be less effective for ’1’s’, excellent for ’0’s’, and mod-
erately effective for ’2’s’. Wasserstein distance, however, shows a more uniform behaviour,

24

(a) Wasserstein distance. (b) 2-norm.

Figure 4.2: Annotated figures of Wasserstein distance and 2-norm.

being moderate for ’0’s, ’1’s, and ’2’s. Wasserstein appears more consistent across cate-
gories, making it potentially more suitable for training an autoencoder due to its uniform
behaviour across different classes.

The results, which exhibit consistent behaviour across many digit groups, imply that
Wasserstein distance may be a more useful method for classifying images. Wasserstein
distances provide a more consistent depiction of digit associations, according to the MDS
analysis, which may make them a good option for a loss function in an autoencoder. The
project’s next stages may entail using Wasserstein distances as the loss function in an au-
toencoder for image classification and image compression, given its promising performance.
Improved classification accuracy might result from this, particularly in situations where
it’s critical to detect minute variations between images. Future studies on Wasserstein
distance-based autoencoders may benefit from more investigation and testing.

25

References

[1] Pierre Baldi. Deep learning in science. Cambridge University Press, 2021.

[2] Richard A Brualdi. Combinatorial matrix classes, volume 13. Cambridge University
Press, 2006.

[3] Gene H. Golub and Van Loan Charles F. Matrix computations. Johns Hopkins Univ
Press, 2013.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[5] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017.

[6] S. Kolouri. Optimal Transport and Wasserstein Distance.

[7] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[8] Aurora KR LePort, Aaron T Mattfeld, Heather Dickinson-Anson, James H Fallon,
Craig EL Stark, Frithjof Kruggel, Larry Cahill, and James L McGaugh. Behav-
ioral and neuroanatomical investigation of highly superior autobiographical memory
(hsam). Neurobiology of learning and memory, 98(1):78–92, 2012.

[9] Gaspard Monge. Memoire sur la theorie des deblais et des remblais. De l’Imprimerie
Royale, 1781.

[10] Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling. Linear
Algebra and its Applications, 302:435–460, 1999.

[11] Jorge Nocedal and Stephen J. Wright. Calculating Derivatives, page 193–219.
Springer, 2006.

26

http://www.deeplearningbook.org

[12] Osvaldo Olmea and Alfonso Valencia. Improving contact predictions by the combina-
tion of correlated mutations and other sources of sequence information. Folding and
design, 2:S25–S32, 1997.

[13] Gabriel Peyre and Marco Cuturi. Computational optimal transport. Foundations and
Trends in Machine Learning, 11(5-6):355–607, 2019.

[14] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image
compression with compressive autoencoders. arXiv preprint arXiv:1703.00395, 2017.

[15] Yijing Watkins, Oleksandr Iaroshenko, Mohammad Sayeh, and Garrett Kenyon. Im-
age compression: Sparse coding vs. bottleneck autoencoders. In 2018 IEEE Southwest
Symposium on Image Analysis and Interpretation (SSIAI), pages 17–20. IEEE, 2018.

[16] Florian Wickelmaier. An introduction to mds. Sound Quality Research Unit, Aalborg
University, Denmark, 46(5):1–26, 2003.

[17] Wikipedia. Multidimensional scaling — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/w/index.php?title=Multidimensional%20scaling&

oldid=1181496234, 2024. [Online; accessed 25-January-2024].

[18] Song Zebang and Kamata Sei-Ichiro. Densely connected autoencoders for image com-
pression. In Proceedings of the 2nd International Conference on Image and Graphics
Processing, pages 78–83, 2019.

27

http://en.wikipedia.org/w/index.php?title=Multidimensional%20scaling&oldid=1181496234
http://en.wikipedia.org/w/index.php?title=Multidimensional%20scaling&oldid=1181496234

	Reader
	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Wasserstein distance
	Kantorovich Optimal Transport Problem (OTP)
	Entropic Regularization of Optimal Transport
	Sinkhorn's Algorithm

	Autoencoder
	Structure of Autoencoder
	Autoencoder vs SVD
	Loss function: Wasserstein distance
	Wasserstein distance: Autodifferentiation

	Observations
	References

