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Abstract

The Ramsey problem R(p, q) asks for the smallest n such that every graph on n vertices must
contain either a p-clique or an independent set of size q. We provide the first certifiable proof that
R(3, 8) = 28, automatically generated by a combination of Boolean satisfiability (SAT) solver
and a computer algebra system (CAS). While the R(3, 8) problem was first computationally
solved by McKay and Min in 1992, it was not a verifiable proof. This SAT+CAS combination
is significantly faster than a SAT-only approach. We prove and verify R(3, 9) = 36 combining
theory on the structure of graphs and a parallelisable SAT+CAS toolchain. The theory relating
to R(3, 9) was developed by Graver and Yackel in 1968 and expanded upon and finally proved
by Grinstead and Roberts in 1982, again not a verifiable proof.

The SAT+CAS method that we use for our proof is very general and can be applied to a wide
variety of combinatorial problems.
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Chapter 1

Introduction

Ramsey Theory was first introduced by Frank P. Ramsey in On a problem of formal logic [41].
The theory ensures the existence of ordered substructures given a large enough structure. Given
this broad and rather vague description, ‘Ramsey type’ problems exist in various branches of
mathematics [13]. The problem has also been referred to as the ‘party problem’; how many
guests need to be invited to a party to ensure there are p guests who mutually know one another,
or q guests who mutually do not know one another. Ramsey numbers are renowned and chal-
lenging problems; only 9 non-trivial Ramsey numbers are known, despite an extensive literature
on the topic [40]. Erdős famously quoted in Scientific American that if aliens invaded Earth and
demanded the value of R(6, 6), our resources would be better employed in a pre-emptive strike
rather than attempt to find the solution. R(6, 6), indeed R(5, 5) remains unsolved to this day,
over 30 years later. My work focused on the ‘classic’ Ramsey numbers defined below. Ramsey
Theory has applications in communication theory [42], information retrieval problems [45] and
decision trees [38].

The Ramsey Theorem states that for every p, q ∈ Z, there exists an n ∈ Z such that every
graph of order n, contains a p-clique or an independent set of size q. An m-clique is a complete
subgraph of order m. A Ramsey problem is defined as finding the smallest integer n, denoted
R(p, q), for some given input p, q. A common, equivelant reformulation is as follows: the Ram-
sey Theorem states that for every p, q ∈ Z, there exists an n ∈ Z such that any red/blue coloring
of the edges of the complete graph of order n, denoted Kn, contains a blue monochromatic p-
clique or a red monochromatic q-clique. Throughout this paper, I will use both formulations.
A (p, q)-graph is a graph without a p-clique and without an independent set of size q. (p, q;n)-
graphs and (p, q;n; e)-graphs are (p, q)-graphs on n vertices and (p, q)-graphs on n vertices and
with e edges, respectively. All graphs are assumed to be simple and undirected, unless stated
otherwise.
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Figure 1.1: A red/blue edge coloring on 8 vertices without a blue 3-clique or red 4-clique, show-
ing R(3, 4) > 8.

R(p, q) 1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1
2 2 3 4 5 6 7 8 9
3 6 9 14 18 23 28 36
4 18 25 36–40 49–58 59–79 73–106

Table 1.1: Values of some Ramsey numbers, where exact values are unknown, the best known
lower and upper bounds are given [40].

Table 1.1 is a list of some Ramsey numbers. R(p, q) = R(q, p), thus some numbers are
excluded from the table for clarity. R(1, q) = 1 and R(2, q) = q trivially.

A graph on n vertices has n(n − 1)/2 ∈ O(n2) edges. There are 2n(n−1)/2 possible edge-
colorings. Thus for a graph with 28 vertices, the search space is huge (i.e., there are more
than 6 × 10113 possible colorings). Therefore, finding the exact values of Ramsey numbers is a
challenging endeavor, and researchers often focus on bounds. Both theoretical and computational
methods exist for improving upper or lower bounds. For example, Erdős theoretically proved
2k/2 < R(k, k) < 4k−1 [12] , while R(4, 8) > 57 [14] was proven by using a satisfiability (SAT)
solver to discover a (4, 8)-graph on 57 vertices. Despite significant research in this area, it was
not until 2023 that the exponent’s base for the upper bounds of R(k, k) Ramsey numbers was
improved, yielding a bound of (4 − ϵ)k, where k = 2−7 [8]. In 1992, McKay and Min [35]
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computationally showed that no (3, 8)-graph exists on 28 vertices. Combined with a previous
result that R(3, 8) > 27 [21], this showed R(3, 8) = 28. Contemporary proof techniques relying
on computer-assistance necessitate formal verification.
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Chapter 2

Boolean Algebra, SAT Solvers and CASs

This section describes the basics of Boolean algebra, SAT solvers and computer algebra systems
(CASs). Boolean algebra was introduced by mathematician George Boole [4]. Values can take
True (⊤) or False (⊥). There are three operations, binary operations AND ∧ and OR ∨, and unary
operation NOT ¬ (or negation). A literal is a variable or its negation. A clause is a disjunction of
literals: x1∨x2∨ · · ·∨xn. A formula is a combination of literals and operations. A formula is in
conjunctive normal form (CNF) if is a conjunction of clauses C1 ∧ C2 ∧ · · · ∧ Cn. The formula
(x1∨x2)∧x3 evaluates to True with (x1, x2, x3) = (⊤,⊥,⊤). Note this is not a unique solution.
In this solution, we say x1 is assigned True. A set of assigned variables is an assignment.

A conflict-driven clause learning (CDCL) satisfiability (SAT) solver is a computer program
that takes as input a Boolean formula in CNF, and determines whether there exists an assignment
of variables in the input formula such that the formula evaluates to True. The formula is called
satisfiable (SAT) if so. If there does not exist an assignment of variables such that the formula
evaluates as true, then the formula is unsatisfiable (UNSAT). These solvers learn clauses through
unit propagation and back tracking. Unit propagation propagates the assignment of single literal
through a formula. If no unit clauses exist, a literal is chosen. If a conflict is found, the solver
back tracks to learn a clause to block this assignment of clauses. Often multiple variables are
propagated before this happens. Consider the following CNF formula:

(x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3) ∧ (¬x3 ∨ x4).

Suppose we choose x1 = ⊤ to propagate and then x2 = ⊤;

x1 (propagated) : (⊤ ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3) ∧ (⊥ ∨ x3) ∧ (¬x3 ∨ x4),

x2 (propagated) : (⊤ ∨⊥ ∨ x3) ∧ (⊥ ∨ ¬x3) ∧ (⊥ ∨ x3) ∧ (¬x3 ∨ x4).
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Tidying this we see:
¬x3 ∧ x3 ∧ (¬x3 ∨ x4)

From this, we can see that x3 is a conflict. The solver back tracks to find the cause of the conflict,
in this case x1 ∧ x2. The solver learns ¬(x1 ∧ x2). CDCL SAT solvers can solve some instances
with millions of variables efficiently [16]. However, SAT solvers face challenges when solving
combinatorial problems such as the Ramsey problem, in part due to the considerable amount of
symmetry in the associated search space.

Computer Algebra Systems (CASs), such as Maple and Mathematica, are storehouses of
mathematical knowledge and are widely used to solve a variety of scientific and engineering
problems. We use a CAS to dynamically provide mathematical context to the SAT solver in
order to break symmetries in the search space associated with an input formula. In particular,
we use a CAS to generate blocking clauses that are given to the SAT solver dynamically via a
programmatic interface [15]. The clauses block the solver from exploring noncanonical matrix
representations of a graph, since they are all isomorphic to one “canonical” representation. An
adjacency matrix M of a graph is canonical if every permutation of the graph’s vertices produces
a matrix lexicographically greater than or equal to M , where lexicographical order is defined
by concatenating the above-diagonal entries of the columns of the adjacency matrix starting
from the left. We only need to examine the non-isomorphic lexicographically least matrices
as the lexicographically least matrix represents its equivelance class under this isomorphism.
Blocking noncanonical graphs is achieved using orderly generation [32] and is implemented
through the SAT+CAS paradigm [7]. This technique can dramatically prune a formula’s search
space, since the CAS guides the SAT solver to not only block a noncanonical subgraph but also
all its extensions. The SAT+CAS paradigm has been shown to be an effective approach to solving
hard combinatorial math problems.

Specific to Ramsey problems, we performed an ablation study which demonstrated that
SAT+CAS was 7 times faster than a SAT-only solver (2.3 seconds vs. 17 seconds) at solving
R(3, 6) = 18. The improvement was even more pronounced for R(3, 7) = 23. These results
were derived without any symmetry breaking constraints or other elements of our methodology.
Further detail is provided through an ablation study in Section 9.
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Chapter 3

Cube and Conquer

Cube and conquer is a parallelisation technique whereby a set of simpler instances are solved, and
the aggregate result is equivalent to solving the original instance. Many combinatorial problems
have been solved using this technique, inter alia Lam’s Problem [5] and Pythagorean Triples
[25].

Let vi be a variable appearing in Boolean formula F . Then solving sub-instances F1 : F ∧ vi
and F2 : F ∧¬vi is equivalent to solving F . If either F1 or F2 are satisfiable, then F is satisfiable.
We say vi was the variable split on. If a sub-instance is still hard to solve, an unassigned variable
appearing in the sub-instance can be split on, subject to some selection criteria. This can be
repeated subject to some stopping criteria.

Solving time improvement is based on the variables selected and the order in which they
are selected. Several existing tools can rank variables to split on, such as March [24] and Al-
phaMapleSAT [26] . March uses a conflict driven clause learning SAT solver to compute metrics
to rank variables to split on. AlphaMapleSAT leverages a Monte Carlo Tree Search to rank
variables which may not immediately be optimal, but offer potential improvements after suffi-
cient splitting. Based on experiments run by the AlphaMapleSAT developers, including on the
Ramsey R(3, 8) problem, we chose AlphaMapleSAT due to its improved performance.

We used the number of variables assigned as stopping criteria. A variable was split upon,
propagated, simplified, and if the total number of assigned variables was greater than a predefined
threshold, the cubing stopped for this sub-instance.

Following cubing, the cubes are ‘conquered’, i.e., they are passed to a solver. Ideally, the
solver can solve all cubes. However, when the SAT+CAS could not solve an instance without
producing a proof file larger than 7GB, the instance was passed back to be cubed again. 7GB was
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chosen as files up to this size can fit on 4GB on RAM. This typically corresponded to 8–10 hours
of solving. Thus cubing and conquering iterate on hard instances, but not on easier instances.

We used the Python multiprocessing library to facilitate solving many cubes on few CPUs.
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Chapter 4

Methodology

Under our methodology, a problem is encoded for a pre-defined n, p, q by deriving a Boolean
formula in conjunctive normal form asserting the existence of a (p, q)-graph of order n. The
encoding enforces every p-clique to have at least one edge in the opposing (red) color and every
q-clique to have at least one edge in the opposing (blue) color, i.e.,∧

Kp⊆Kn

∨
e∈Kp

¬e ∧
∧

Kq⊆Kn

∨
e∈Kq

e,

where the variable e is assigned True exactly when the corresponding edge is colored blue. We
refer to this as the ‘basic Ramsey’ encoding. A satisfying assignment of the encoding corre-
sponds to finding a (p, q)-graph of order n. Similarly, an unsatisfiable result means no such
colorings exist for this particular n, i.e., all colorings contain a blue p-clique or a red q-clique.

In order to break symmetries in the problem, we add constraints that enforce a lexicographic
ordering on rows of the graph’s adjacency matrix, before using the dynamic symmetry breaking
capacities of a CAS. These constraints are a partial static symmetry breaking technique; see
Chapter 5 for details. There is an overhead associated with calling the CAS, thus by including
these constraints, we reduce the number of CAS calls. This a CNF encoding for (p, q)-graphs
on n vertices, and can be passed to a SAT solver or SAT+CAS. We refer to this encoding as
the ‘standard encoding’. As described in Chapter 5, we experimented with further constraints
to improve solve time. For harder instances, we used a parallelisation technique, as described
in section Chapter 3. The methodology accepts various n, p, q and does not need different
techniques or theories to solve such problems.

Proof correctness is an important step in computer-assisted proofs, in particular for non-
existence proofs. Each time SAT+CAS returns UNSAT or SAT, we utilise a modified DRAT-trim
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Figure 4.1: A flowchart of the orderly generation algorithm implemented as part of MathCheck’s
SAT+CAS architecture.

proof checker to verify that the clauses learned by the CAS block non-canonical graphs and the
SAT solver’s search is exhaustive. This toolchain is known as MathCheck1.

It was previously known that R(3, 8) > 27 [21]. Our methodology produced a satisfying
assignment on order 27 for the R(3, 8) problem after 7.5 hours. Graver and Yackel found a
cyclic (3, 9; 35)-graph, demonstrating R(3, 9) > 35 [20]. The R(3, 9; 35) basic encoding has
over 70 million clauses. The standard encoding yields a 9GB file. Such a large encoding was not
feasible for our tools.

1https://github.com/BrianLi009/MathCheck
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Figure 4.2: Flowchart of pipeline without parallelisation from input parameters to verification.
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Chapter 5

Constraints

Additional constraints can be included in an encoding to potentially improve solve times. Addi-
tional constraints can arise from theoretical results, or other methods. For example, in deriving
R(4, 8) > 57, the authors utilised unit clauses which could be iteratively removed if they resulted
in a significant number of conflicts [14]. Typically, these constraints narrow the search space or
improve propagation speed, although they can also slow down solve times. Additional constraints
may use auxiliary variables which increases the number of variables in an encoding. Constraints
can be grouped into exhaustive and non-exhaustive categories. Exhaustive constraints do not af-
fect the exhaustive search of a SAT solver, however, non-exhaustive constraints limit the search
space. Limiting the search space intuitively should provide a computational benefit, however, it
may not be able to prove non-existence. Ultimately, the purpose of additional constraints is to
yield a faster result.

Using additional constraints introduces sources of error. Our code may not perform as ex-
pected, or the encoding may be incorrect. For exhaustive constraints, we can confirm that the
number of (p, q;n)-graphs with and without the additional constraints does not change. How-
ever, by definition, this does not hold for non-exhaustive constraints. In the one instance where
we used non-exhaustive constraints, we wrote a programme to verify that satisfying assignments
had the expected structure.

There is no one method to encode constraints into Boolean logic and the ‘best’ encoding
of constraints is not obvious. We experimented with the Sinz sequential [43] encoding and the
Bailleaux and Boufkand totalizer encoding [2] to encode cardinality constraints on the edges.
Encoding additional constraints requires clauses, and may introduce new variables. The number
of clauses or variables introduced does not necessarily result in a faster or slower solve time.

An important concept of constraint encoding for SAT solvers is arc-constistency. Arc consis-
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tent encodings allow the removal of values from the domains of variables that can never be part
of a satisfying solution.

Symmetry breaking constraints

We encoded partial static symmetry breaking constraints, developed by Codish et al. [10], which
enforce a lexicographical ordering on the rows of a graphs adjacency matrix. These block the
solver from exploring certain symmetric portions of the search space, before the CAS is called.
There is an overhead associated with calling the CAS. Given an adjacency matrix A of a graph,
define Ai,j as the ith row of A without columns i and j. The clauses enforce that Ai,j is lexico-
graphically equal or less than Aj,i, 1 ≤ i < j ≤ n. These clauses introduce O(n3) auxiliary
variables and clauses. Based on our empirical evidence, these constraints provide a significant
speed up to solving and were included in all runs.

Edge constraints

These enable searching specifically for (p, q;n; e)-graphs. The non-existence of these graphs for
particular p, q, n, e is an important result in the original proof for R(3, 9), and we use them in our
approach to solve R(3, 9). We experimented with the Sinz sequential counter and Bailleaux and
Boufkand totalizer encodings. Suppose we wish to encode between l and u of m variables are
⊤.

Sinz sequential cardinality encoding

Define k = u+1. The sequential counter is based on an m×k matrix A where ai,j is ⊤ if at least
j of x1, . . . , xi are ⊤ [6]. The relationship between auxiliary variables ai,j and edge variables is
given by

ai,j ⇐⇒ (ai−1,j ∨ (xi ∧ ai−1,j−1)) for 1 ≤ i ≤ m and 1 ≤ j ≤ k.

This formula is encoded to CNF by the following four clauses, ¬ai−1,j∨ai,j , xi∨¬ai−1,j−1∨ai,j ,
¬ai,j ∨ ai−1,j ∨ xi, and ¬ai,j ∨ ai−1,j ∨ ai−1,j−1. Additionally, s0,j will be false for 1 ≤ j ≤ k
and that ai,0 will be true for 0 ≤ i ≤ m. an,l = ⊤ and am,k = ⊥. More variables can in fact
be assigned in the matrix, however, the clauses allow these to be quickly assigned if they are
unassigned. This encoding uses both O(mk) auxiliary variables and clauses.
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Bailleaux and Boufkand totalizer cardinality encoding

In constrast, the totalizer is based on a binary tree. Each node in the tree is assigned a value and
a set of unique variables. If a node’s value M is greater than 1, the node is given two children
nodes a, with value ⌊M/2⌋, and b with value M − ⌊M/2⌋. The root node is assigned a value u.
This yields a tree with exactly m leaves. Each leaf is bijectively assigned one of the m variables.
The tree root is assigned u auxiliary variables, known as the counting variables. Finally, each
remaining internal node with value M is assigned M auxiliary variables, known as the linking
variables.

For a non-leaf node r with children a, b, define R = {r1, . . . , rm}, A = {a1, . . . , am1} and
B = {b1, . . . , bm2} be the set of variables assigned to r, a and b respectively. The following
conjunction of clauses is related to the node r:∧

0≤α≤m1
0≤βm2
0≤σ≤m
α+β=σ

C1(α, β, σ) ∧ C2(α, β, σ).

with the following notations:

a0 = b0 = r0 = ⊤, am1+1 = bm2+1 = rm+1 = ⊥,

C1(α, β, σ) = (¬aα ∨ ¬bβ ∨ rσ),

C2(α, β, σ) = (aα+1 ∨ bβ+1 ∨ ¬rσ+1).

C1(α, β, σ) is the CNF representation of the relation α + β ≤ σ and C2(α, β, σ)is the CNF
representation of the relation α+β ≥ σ . Finally, for counting variables ci, the following clauses
defines the bounds, ∧

1≤i≤l

(ci)
∧

u+1≤i≤m

(¬ci).

This encoding uses O(m logm) new variables and O(m2) new clauses, thus is independent
of u, unlike the Sinz encoding. For larger u, we used the totalizer encoding.

In both encodings, more variables can in fact be assigned ⊤ or ⊥ in advance, however, the
clauses allow these to be quickly assigned if left unassigned. A larger encoding size does not
necessarily reduce solve time. We considered using other cardinality constraints. The above two
were chosen as they are arc-consistent, whereas some other encodings are not.
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Degree constraints

These constraints state that for a (p, q)-graph on n vertices, each vertex v satisfies n− R(p, q −
1) ≤ degb(v) ≤ R(p − 1, q) − 1 where degb(v) is the number of (blue) edges on vertex v [20].
To see the upper bound, suppose a vertex v in a (p, q)-graph has at least R(p− 1, q) neighbours
joined with v by blue edges. Then by definition, this neighbourhood contains either a red q-clique
or a blue (p− 1)-clique. The first is a clear contradiction and the second is too because the blue
(p − 1)-clique and v form a blue p-clique. The same argument can be used on the red edges to
give the lower bound.

Note from this proof that the Ramsey constraints directly imply these constraints. Thus, they
add no new information. However, as they improve solver performance, they appear to assist
with propagations. As the bounds on these are low, the largest used being 8, we used the Sinz
sequential counter.

Triangle constraints

There is an upper bound on the number of monochromatic triangles appearing on an edge in
a (p, q)-graph. In fact, these along with the degree constraints, form a family of constraints
limiting the number of k-cliques in a (p, q)-graph [11]. For the experiments we ran, the largest
bound used was 17, thus we only tested the Sinz cardinality encoding. This was only tested this
for p = 3. These constraints slowed the total solve time. These constraints yield long clauses,
under our encoding. Indeed, the clause length increases with exponentially if we limited the
number of k-cliques. Short clauses need less assignments to yield a propagation. We theorise the
long clauses under our encoding do not assist the solver.

Maximal clique free constraints

These constraints enforce that graphs are maximally blue p-clique free, that is, if any red edge
is recoloured to blue, then a blue p-clique is formed. Indeed, a (p, q)-graph exists iff a maximal
p-clique free (p, q)-graph exists. This can be proved trivially. A similar result holds for max-
imally red q-clique free, although one direction of the equivalence does not necessarily hold if
both maximal red and maximal blue statements are true. Unlike the aforementioned constraints,
these are non-exhauastive constraints. In order to lend credence to our encoding, we wrote a
programme to verify that graphs found with these constraints are maximally blue p-clique free.
p was chosen to keep encoding files small.
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Two encodings were considered, a direct encoding and an alternate encoding, which uses
auxiliary variables. The direct encoding introduces no new variables but is exponential in np−1

in the number of clauses used. Under this encoding, the maximality constraint is a disjuction
of conjunctions, each of size

(
n−2
p−2

)
which requires an exponential in

(
n−2
p−2

)
number of clauses

to convert to CNF. The alternate encoding uses O(np) clauses and new variables. The alternate
encoding was implemented by introducing for each edge e auxiliary variables VP (e) for each
p-clique P on e minus e, VP (e) ≡

∧
ei∈P (e) ei, and maximality constraints ¬e →

∨
v∈VP (e) v.
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Chapter 6

Comparison of R(3,8) Methods

In this section, we will describe the method used by McKay and Min, and outline some advan-
tages of our method.

First, the authors use a previous result, that R(3, 8) ∈ {28, 29} [21]. They intend to generate
graphs on 28 vertices without 3-cliques and without independent sets of size 8. These graphs are
equivalent to graphs without blue 3-cliques and without red 8-cliques. If at least one such graph
is found, then R(3, 8) = 29. However, by extending particular graphs, and using graph isomor-
phism rejection, the authors show that no such graphs exist on 28 vertices. Graph isomorphism
takes the usual definition in their paper. Note that isomorphic graphs have the same canonical
labeling.

Their method extends graphs without 3-cliques and without independent sets of size t. The
authors first outline the following two results for graphs on n vertices that have no 3-cliques and
no independent set of size t:

• n−R(3, t− 1) ≤ δ ≤ min(t− 1, n/2) where δ is the minimum degree of the graph,

• Such graphs can only arise from extension of graphs without 3-cliques, without indepen-
dent sets of size t− 1 and on n− δ − 1 vertices.

The first point above is an equivalent statement to the degree constraints used in our encoding.

Thus, the authors must generate all graphs (up to isomorphism), on {20, 21, 22} vertices for
t = 7 to show no such graphs on 28 vertices exist for t = 8. This corresponds to generating just
under 5.2 million graphs with distinct canonical forms. To generate these graphs, the authors
generated the equivalent graphs for t = 6. The starting point for this chain of graph generation

16



was t = 3 and 1 ≤ n ≤ 5. The generation procedure is recursively called and each graph must
pass three criteria to be extended. In total, over 5.2 million distinct graphs were generated. After
a graph was generated, the authors converted it to canonical form using nauty [36] to remove
isomorphic graphs. Before non-canonical graph removal, their procedure generated 695 million
extensions of graphs without 3-cliques, without independent sets of size 6, and on 15 vertices.
The authors’ generation procedure is specific to R(3, q) problems. For R(p, q) problems with
p ̸= 3, a modified generation procedure would be required.

McKay and Min validate their computational method by noting the number of graphs gener-
ated for different combinations of n and t, for t ≤ 7, align with previously known values.

In comparison, we argue our method has two key benefits. Primarily, it generates a proof
certificate. For R(3, 8) we generated a 31 GB DRAT file which can be independently verified,
without relying on the correctness of either the SAT solver or the CAS. Secondly, the SAT+CAS
method is simpler to implement. In theory, once the CNF file representing the Ramsey problem
has been generated it can be immediately passed to a SAT+CAS solver. We also, as outlined in
the Methodology section, include additional constraints such as symmetry breaking constraints
and vertex degree constraints. Similarly, the SAT+CAS method has broader applicability as it
is independent of p, q, and n, and only needs a CNF encoding of the problem, whereas the
McKay and Min extension procedure would need modification for different (p, q) with p ̸= 3.
We note the caveat that technological improvements have certainly played a large role run time
differences.

Beyond this specific problem, there are additional benefits to the SAT+CAS method. The
SAT+CAS method allows for further constraints, typically derived from theory, to be easily
included in the encoding, as outlined in Chapter 5. Further constraints limit the search space
and may improve search speed. Although not used in deriving R(3, 8) = 28, SAT+CAS is
parallelisable through the ‘cube and conquer’ technique [23]. 1

1We did use parallelised MathCheck on the Ramsey problem on a machine with 8 CPUs. The total computational
time to solve and verify was 247 hours and the real time was 30 hours. 89 cubes were generated.
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Chapter 7

The search for R(3,9)

In 1968, Graver and Yackel [20] improved many Ramsey number bounds, and improved many
bounds on the minimum number of edges required in (p, q;n)-graphs. By a constructive method,
and computer verification by Kalbfleisch, a former student and researcher at University of Water-
loo, they determined R(3, 9) ≥ 36. They developed a method which showed R(3, 9) ≤ 37 and
even further, they proved that a (3, 9; 36)-graph must be regular of degree 8. Finally, they noted
that if a (3, 8; 27)-graph with 80 edges does not exist, then R(3, 9) = 36. In 1982, Grinstead and
Roberts computationally showed no (3, 8; 27; 80)-graphs exist [21]. It was not until 1992 that
R(3, 8) = 28 was computationally proven by McKay and Min, in theory an easier problem.

Directly applying a SAT+CAS to the R(3, 9) problem is difficult. Firstly, the CNF file is
large, 9.2Gb including the static symmetry breaking constraints and degree constraints, and thus
a large amount of RAM is needed. As the problem is computationally harder than the R(3, 8)
problem, a parallisable approach or other method is needed. Below, we outline the methods of
Graver and Yackel and Grinstead and Roberts, which combine theory and computation to show
R(3, 9) = 36. Where relevant, we outline our use of solving and verifying tools to replicate and
verify their results. However, we have not implemented graph gluing into the SAT+CAS method,
which is a key piece of Grinstead and Roberts’ method, and thus could not directly replicate their
approach using SAT+CAS. In this case, graph gluing refers to inserting an n×n adjacency matrix
and an m × m adjacency matrix along the main diagonal of a larger empty matrix, to form an
(m+n)×(m+n) adjacency matrix. The off-diagonal is then filled in, subject to some constraints
(in this case the Ramsey constraints), using an arbitrary method. Graph gluing relies on extending
immutable submatrices of an adjacency matrix; however the CAS generates permutations which
affect the entire matrix. This could be resolved by restricting the CAS to generate permutations
from the stabaliser set of these submatrices. Instead we search for (3, 8; 27; 80)-graphs using
a parallelised SAT+CAS. Using R(3, 8) = 28, which we have computationally verified, the
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Figure 7.1: Graph with a preferred vertex v,H1(v) and H2(v). Note for p = 3, H1(v) is an
independent set.

theoretical results of Graver and Yackel on the structure of (3, 9; 36)-graphs are significantly
easier to prove.

Lemma 1. A (3, 9; 36)-graph contains a (3, 8; 27; 80)-graph.

Proof. In a (p, q;n)-graph, choose a preferred vertex v of degree d. Define H1(v) as the graph
generated by the neighbourhood of p and H2(v) as the graph generated by V (G) \ (v ∪H1). In
some literatures [17], H2(v) is referred to as the ‘anti-neighbourhood’ of v.

Then H1(v) is a (p−1, q; d)-graph and H2(v) is a (p, q−1;n−d−1)-graph. Suppose H1(v)
is not a (p−1, q; d)-graph, i.e. it contains a (p−1)-clique or an independent set of size q. Clearly
the latter is a contradiction. If the former, the H1(v)∪ v is a p-clique. Similarly if there exists an
independent set of size q − 1 is H2(v), then H2(v) ∪ v is an independent set of size q. In fact,
H1(v) is an independent set if p = 3. By definition, v is not joined to H2(v) by any edge.

Now a (3, 9; 36)-graph, by the degree constraints is regular of degree 8, must have 144 edges.
As all vertices have equal degree, our choice of v is irrelevant. 8 (blue) edges join v to H1(v) and
due to the regularity, 7 (blue) edges join each vertex in H1(v) to vertices in H2(v).

Thus a total of 64 (blue) edges are used. The remaining 80 edges must be in H2(v), which is
a (3, 8; 27)-graph.

Graver and Yackel originally used formula (7.1) below to derive this same result. Our proof
above uses the degree bounds of (3, 9; 36), which uses R(3, 8) = 28 and was unknown at the
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time. We will show no (3, 8; 27; 80)-graphs exist. Deriving the non-existence of (3, 8; 27; 80)-
graphs is a computationally hard problem. Below, I outline the approach of the original authors.

The authors of both papers relied on the following definitions:

• vi := a vertex of degree q − 1− i,

• si := the number of vertices of degree vi,

• e(p, q;n) := the minimum number of edges possible in a (p, q)-graph on n vertices,

• full vertex := a vertex v such that ||H2(v)|| = e(p, q − 1, n− deg(v)− 1),

• Z(v) :=
∑

vi∈N(v) deg(vi)

Note that the maximum degree in a (3, q)-graph is q − 1, so subscript i can be thought of as
the difference between the degree of the vertex and the maximum possible degree in the graph
[21]. For a full vertex v of degree k, Z(v) ≥ Z(u) for all other vertices u of degree k.

The following lemma was proved by Graver and Yackel and Grinstead and Roberts used a
slightly modified version. For our purposes, we will use the latter.

Lemma 2. Let G be a (p, q;n; e)-graph. Let

ϕ = ne−
∑
i≥0

(e(3, q − 1;n− vi − 1) + v2i )si. (7.1)

Then ϕ ≥ 0 and there are at least n− ϕ full vertices in G. 1

Proof. Let βij(v) be the number of vertices in H1(v) of degree vj if deg(v) = vi, 0 otherwise.

Note that
∑

v βij =
∑

v βji as
∑

v βij is the number of edges from vertices of degree vi to
vertices of degree vj . For a preferred vertex p of degree vi,

||G|| = ||H2(p)||+ v2i +
∑
j≥0

(i− j)βij.

Intuitively, this formula can be explained as

|edges in G| = |edges in H2(v)|+|edges arising by assuming remaining vertices have degree vi|+
1Grinstead and Roberts used ∆ instead of ϕ; however, as ∆ has a common interpretation in graph theory, I use

alternate notation.
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|add or subtract the edges missing or added from the assumption|.

Summing over all vertices,

ne =
∑
v

|H2(v)|+
∑
i

(vi)
2si +

∑
i≥0

∑
deg(v)=vi

∑
j≥0

(i− j)βij.

For fixed i, j,
∑

v βij has (i−j) as a coefficient, and
∑

v βji has (j− i) as a coefficient. Thus,
these terms cancel in our above formula.

By definition, |H2(v)| ≥ e(p, q − 1;n − deg(v) − 1), and this is an equality if v is a full
vertex, also by definition.

Thus,
ne ≥

∑
i≥0

e(p, q − 1;n− vi − 1)si + (vi)
2si,

=
∑
i≥0

(e(p, q − 1;n− vi − 1) + (vi)
2)si.

This shows ϕ ≥ 0. Further, each vertex which is not full contributes at least 1 to the value of
ϕ, so there are at least n− ϕ full vertices in G.

Using this formula, Graver and Yackel improved the bounds on many Ramsey numbers and
on the minimum number of edges in Ramsey graphs. Specifically for R(3, 9), Grinstead and
Roberts used this to derive a sequence of lemmas on the structures of various subgraphs of
(3, 8; 27; 80)-graphs. They computationally proved these such structures in (3, 8; 27; 80)-graphs
cannot exist, thus showing R(3, 9) = 36. We will follow their method and use a SAT+CAS to
perform and verify the computational results, where viable.

Lemma 3. e(3, 7; 19) = 37

Proof. We use an encoding which asserts the existence of a (3, 7; 19;≤ 36)-graph. The SAT+CAS
returns UNSAT in 249 seconds and verifies in 326 seconds. Using the SAT+CAS, we find an
assignment of a (3, 7; 19; 37)-graph in 32 seconds which verifies in 24 seconds. Edge counts
were encoded using the totalizer counter.
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Grinstead and Roberts proved this result by first proving a (3, 7; 19; 36)-graph must contain
either a full vertex of degree 3 or a full vertex of degree 4. They computationally showed this
does not occur by gluing a graph such a vertex with known (3, 6; {14, 15})-graphs and checking if
extensions of this contain triangles or 7-cliques. Graver and Yackel proved 36 ≤ e(3, 7; 19) ≤ 37
using formula 7.1 and constructing a cyclic (3, 7; 19; 37)-graph.

Lemma 4. e(3, 7; 20) = 44

Proof. We use an encoding which asserts the existence of a (3, 7; 20;≤ 43)-graph. The SAT+CAS
returns UNSAT in 907 seconds and verifies in 2701 seconds. Using the SAT+CAS, we find an
assignment of a (3, 7; 20; 44)-graph in 62 seconds which verifies in 27 seconds. Edge counts
were encoded using the totalizer counter.

This was proven by Graver and Yackel using (7.1) and a constructive method to find a
(3, 7; 20; 44)-graph.

Lemma 5. e(3, 7; 21) = 51

Proof. We use an encoding which asserts the existence of a (3, 7; 21;≤ 50)-graph. The SAT+CAS
returns UNSAT in 451 seconds and verifies in 897 seconds. Using the SAT+CAS, we find an
assignment of a (3, 7; 21; 51)-graph in 127 seconds which verifies in 130 seconds. Edge counts
were encoded using the totalizer counter.

Grinstead and Roberts proved this result by first proving a (3, 7; 21; 50)-graph must contain
either a full vertex of degree 4 with two vertices of degree 4 and two vertices of degree 5 as
neighbours. They computationally showed this does not occur, using a similar method to the
approach outlined in lemma 3. Graver and Yackel show 50 ≤ e(3, 7; 21) ≤ 51 using formula 7.1
and constructing a cyclic (3, 7; 21; 51)-graph.

Lemma 6. If G is a (3, 7; 22;≤ 62)-graph, then δ(G) ≥ 5

Grinstead and Roberts showed this does not occur by assuming a vertex of degree 4 exists
and applying a similar method to the approach outlined in lemma 3. Vertices of degree ≤ 3 are
ruled out by the degree bounds.

This could be performed with a SAT+CAS which allowed graph gluings. Otherwise, 22
different encodings could be solved whereby each encoding enforces a different vertex to have
degree 4. Based on the run times of the prior lemmas, which are of a similar order, we do not
expect this to involve a significant amount of computation.
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Lemma 7. If G is a (3, 8; 27; 80)-graph, then δ(G) ≥ 5.

Proof. This is a theoretical proof and relies on the previous lemmas. δ(G) ≥ 4 by the degree
constraints. Let v be a vertex of degree 4 with two vertices of degree 4 as neighbours, say w1 and
w2. Then w2 ∈ H2(w1) and w2 has degree at most 3 in H2(w1). But H2(v) is a (3, 7; 22)-graph
and by the degree constraints, H2(w1) has no vertices of degree 3. Thus, each vertex of degree
4 in G has at most one neighbouring vertex of degree 4. Hence, if v is a vertex of degree 4, then
Z(v) ≥ 19, and so |H2(v)| ≤ 61. By lemma 6, H2(v) has no vertex of degree 4, and so G has at
most two vertices of degree 4. Using formula and 7.1 and counting the edges and vertices in G,

ϕ = 2160− 86s0 − 80s1 − 76s2 − 76s3 ≥ 0,

160 = 7s0 + 6s1 + 5s2 + 4s3,

27 = s0 + s1 + s2 + s3.

By taking cases on s3 = 2 and s3 = 1 (in this case, s3 corresponds to the number of vertices of
degree 4), we reach contradictions.

Lemma 8. If G is a (3, 8; 27; 80)-graph, then G contains either a full vertex of degree 6 with all
neighbours of degree 6, or a full vertex of degree 5 with fours neighbours of degree 6 and one
neighbour of degree 5.

Proof. We use the system of inequalities given in the proof of lemma 7 and set s3 = 0, yielding:

s2 = s0 + 2,

s1 = 25− 2s0,

ϕ = 8− 2s0 ≥ 0.

Hence, s0 ≤ 4 and 2 ≤ s2 ≤ 6. Thus, s0 ≤ 4 and 2 ≤ s2 ≤ 6. As e(3, 7, 20) = 44 and
e(3, 7, 21) = 51, if deg(v) = 5 then Z(v) ≤ 29 and if deg(v) = 5 then Z(v) ≤ 36. This implies
the number of edges between vertices of degrees 5 and 6 is at least as great as the number of
edges between vertices of degrees 6 and 7.

Case 1: s2 ≤ 4 Each vertex of degree 5 has at most four neighbours of degree 6, and no vertex
of degree 6 is adjacent to a vertex of degree 7 but not a vertex of degree 5. Thus, there are at most
16 vertices of degree 6 adjacent to a vertex of degree 5 or 7. By solving for s1, we see there are
at least 21 vertices of degree 6, hence there is a vertex of degree 6 with neighbours all of degree
6.
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Case 2: s2 = 5 If no vertex of degree 6 with neighbours all of degree 6, then degree 6 vertex
has at least one neighbour of degree 5. As there at 19 vertices of degree 6, there are at least 19
edges between vertices of degree 5 and 6. There are only 5 vertices of degree 5, so some vertex
v has at least 4 neighbours of degree 6. As Z(v) ≤ 29, v must have exactly four neighbours of
degree 6 and one neighbour of degree 5.

Case 3: s2 = 6 In this case, ϕ = 0, so every vertex is full by lemma 2. If v has degree 7,
then Z(v) = 43 as e(3, 7, 19) = 37. v must have at least one neighbour of degree 7. By the
inequalities, there are four vertices of degree 7. Hence, there are only four possibilities for the
subgraph generated by these vertices as there can be no triangles. Let v be a vertex of degree 7
which has i neighbours of degree 7. Then v has (i − 1) neighbours of degree 5 as Z(v) = 43.
Thus in each of the four possibilities, there are at most four edges between vertices of degree 5
and 7. As there are six vertices of degree 5, there must be a vertex w of degree 5 not adjacent to
any vertex of degree 7. As Z(w) = 29 as e(3, 7, 21) = 21, w has four neighbours of degree 6
and one neighbour of degree 5.

Lemma 9. No (3, 8; 27; 80)-graph exists.

Proof. Again, Grinstead and Roberts applied a similar method to the approach outlined in lemma
3, where the glued graphs are the graphs generated by the full vertices described in lemma 8 with
either (3, 7; 20; 44)-graphs or (3, 7; 21; 51)-graphs.

There are 19 canonical (3, 7; 20; 44)-graphs and (3, 7; 21; 51)-graphs [18]. We used a SAT+CAS
to find all such graphs. Using a SAT+CAS which allows graph gluing methods, lemma 9 could
also be solved and verified in this manner.

Grinstead and Roberts estimated 5 × 1010 machine operations and 2.5 × 104 seconds of
computation, but note the time could be further improved with machines with more efficient
bit-string operations. Computations were performed on a Honeywell Level 66 computer.

We apply a parallelised SAT+CAS to an encoding asserting the existence of a (3, 8; 27; 80)-
graph to prove directly lemma 9. In doing so, we do not rely on the prior lemmas. However, the
trade-off for this is an expected increase in computation time.
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Chapter 8

PySMS

Independently, another research group developed a similar tool, PySMS [29]. This uses the SAT
solver CaDiCaL [3] in conjunction with a non-CAS method to check the canonicity of partial
solutions, known as SAT Modulo Symmetry (SMS). The developers also included a Python
tool to build CNF files for various common graph constraints. However, this does not include
the partial static symmetry breaking constraints described previously. These constraints were
not used in conjunction with SMS during our testing using this tool. The authors use a different
definition of canonicity which concatenates across the rows in the upper diagonal part of a graph’s
adjacency’s matrix, as opposed to the MathCheck method which uses the columns in the upper
diagonal. By using columns, the first i columns, 1 ≤ i ≤ n, form the upper diagonal of an
adjacency matrix, which is subgraph of a graph on n vertices. Blocking a non-canonical partial
solution corresponds to blocking all extensions of this subgraph.

Results given using SMS can also be verified using a DRAT proof checker. Learned sym-
metry breaking clauses can be verified in a similar fashion to verification using a SAT+CAS and
accounting for the change is canonicity definition. This is performed by checking each blocking
clause corresponds to a non-canonical matrix. This is performed in the following fashion:

1. A blocking clause is converted to the partially assigned adjacency matrix A it blocks.
Unassigned entries are given a unique value.

2. The permutation q applied during solving to check canonicity is applied to the adjacency
matrix, resulting in matrix Q.

3. The partially assigned matrices are compared to determine if Q is in fact lexicographically
lesser than A. It is important to account for the unassigned entries. If for some i, j, ai,j ̸=
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qi,j , where ai,j ∈ A, qi,j ∈ Q both unassigned, and all relevant previous entries of the
matrices were unable to determine the lexicographical ordering of A and Q, then q is not a
witness not the non-canonicity of A, and the verification fails.
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Chapter 9

Ablation Study

We compare elements of the encoding on R(3, 7; 23) and R(3, 8; 28) which are exhaustive searches.
The times presented here represent the solve times summed with simplification times, if any.
Times associated with instance generation are excluded. Verification times are excluded, how-
ever, times spent during solving to write to a proof file are included.

These were performed on an Intel E5-2683 v4 running at 2.1GHz. From Table 9.1, the
SAT+CAS significantly outperforms the SAT-only solver. For the easier instance, R(3, 7; 23),
it appears a simpler encoding is the fastest method to solve the instance. However, this did not
hold for the harder instance. We note that as the easier instance is solved very quickly, variations
of a couple of seconds, perhaps due to external factors, change the interpretation of the fastest
method.

Further constraints were experimented with for MathCheck – maximum clique free and tri-

Instance SAT MathCheck MathCheck+
DC

MathCheck,
reduced simp

R(3,7;23) > 86,400 s 18 s 23 s 17 s
R(3,8;28) > 100 hr 69 hr 57 hr > 100 hr

Table 9.1: CPU time of different techniques, s stands for seconds, and hr stands for hours.
The headings of the table are: SAT uses a SAT-solver on the standard encoding, MathCheck
uses MathCheck on the standard encoding, MathCheck+DC includes degree constraints to the
standard encoding, MathCheck, reduced simp uses 10k conflicts for simplification of the standard
encoding, rather than the full 100k
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Instance SMS SMS+ DC SMS+ MCF SMS+
DC+ MCF

R(3,7;23) 17 s 12 s 14 s 20 s
R(3,8;28) 28 hr 31 hr 24 hr 18 hr

Table 9.2: CPU time of different techniques, s stands for seconds, and hr stands for hours. The
table headings are: SMS uses the SMS solver on the basic encoding, SMS+ DC uses the SMS
solver on the basic encoding with degree constraints, SMS+ MCF uses the SMS solver on the
basic encoding with maximal p-clique free constraints, SMS+ DC+ MCF uses the SMS solver
on the basic encoding with degree constraints and with maximal p-clique free constraints.

angle constraints, see Chapter 5. However, these did not improve solve times, nor using them in
conjunction with each other or the degree constraints, and are thus excluded from the table.

Table 9.2 shows the results of a similar study using SMS. As the maximum p-clique free
constraints were beneficial for solving R(3, 8), they are included in the table. For the easier
instance, it appears adding further constraints is not that beneficial, although as noted previously,
variations of a couple of seconds, perhaps due to external factors, change the interpretation of
the fastest method.
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Chapter 10

Related work

In this section, we will examine the approaches of some other papers using SAT solvers to find
Ramsey numbers. Note that only the first two papers below tackles the same class of Ramsey
problem as our paper, and the others are variations.

In April 2024, Thibault and Brown formally proved R(4, 5) = 25 using a SAT solver [17].
This result was originally proved by McKay and Min in 1992 [37] using unverified computational
methods. Thibault and Brown method is based on the method of McKay and Min, although used
an interactive theorem prover, generalisations and a SAT solver.

The method relies on gluing various (3, 5;n1)-graphs with various (4, 4;n2)-graphs. These
graphs are known, as mentioned in McKay and Min’s paper. Thibault and Brown first define
generalisations, which are coloured graphs with some edges uncoloured. A (p, q)-graph gener-
alisation with one uncoloured edge represents the (p, q)-graph where the uncoloured edge can
be coloured red or blue. Thibault and Brown constructed exact covers for the sets of (3, 5;n1)-
graphs and (4, 4;n2)-graphs. A set of generalisations G∗ is an exact cover for a set of (p, q;n)-
graphs G if G =

⋃
G∗∈G∗G∗. By constructing exact covers for (3, 5;n1)-graphs and (4, 4;n2)-

graphs, and gluing generalistions, rather than graphs, the authors reduced the graph gluing re-
quired. For example, there are 1,449,166 (4, 4; 12)-graphs but their cover construction method
yielded 26,845 generalisations. The cover construction method for (p, q;n)-graphs begins by se-
lecting a graph currently not covered. An edge is randomly selected to be uncoloured, subject to
criteria to ensure the cover does not include non-(p, q;n)-graphs, and each generalisation is not
too large. The authors later developed a simplicity heuristic to estimate how simple two glued
graphs would be to solve. This heuristic proved reasonably accurate and the authors used this to
select edges that result in low simplicity scores, rather than random selection. The graph gluing
problems were solved using a SAT solver, which took over 900 days computational time. The
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authors estimate 44 years computational time without using generalisations.

In 2013, a soft-constraint approach was used which improved the lower bound of R(4, 8)
from 56 to 58 [14]. Soft constraints refer to additional constraints passed to the SAT solver. If
the solver returns UNSAT, the soft constraints are scored, and a proportion of the highest-scoring
soft constraints are removed. Scores are proportional to the number of direct or indirect conflicts
a soft constraint causes. The authors note that different proportions were better for different
problems, but found 20% to be a reasonable default value.

In deriving their result, the authors used two sets of soft clauses, zebra soft-constraints (Z-
SC) and unit soft-constraints (U-SC). Z-SC are new propositional variables zd. These variables
result in a striped pattern in the adjacency matrix of any SAT result, hence their name. They
are defined as eij ≡ zd (0 ≤ i < j < n, j − i = d) for 1 ≤ d ≤ n − 1. Assignment for
an eij can then quickly propagate to ekl where k − l = j − i. Thus only n − 1 variables need
to be determined, as opposed to the n(n− 1)/2 variables used to color a graph. We note that
unless all soft constraints are removed, the search is not exhaustive. U-SC refers to unit clauses.
In the authors’ case, they chose unit clauses corresponding to the coloring of a graph without a
blue 4-clique and without a red 7-clique on 48 vertices. In their result, the authors note that the
removal of the U-SC did not occur, and the remaining edges were colored entirely by Z-SC.

In 2015, the tri-color Ramsey problem R(4, 3, 3) was found, with heavy use of a SAT solver [9].
The tri-color Ramsey problem R(4, 3, 3) searches for the smallest n ∈ Z such that any colouring
of Kn contains a blue 4-clique, a red triangle or a green triangle. Similar to a (p, q)-graph, define
a (p, q, r)-graph as a complete coloured graph without a blue p-clique, a red q-clique or a green
r-clique. They use a symmetry-breaking technique [10] and nauty [36] to reduce the number of
graphs generated. There are two key intermediate results in the authors’ approach:

• if a (4, 3, 3)-graph exists on 30 vertices, each vertex must be incident to 13 blue edges, 8
red edges, and 8 green edges (denoted as ⟨13, 8, 8⟩ regular)

• finding all 3-colorings on 13 vertices without any monochromatic triangles, i.e., all (3, 3, 3)-
graphs of order 13

Based on prior theory, the authors knew that on 30 vertices such a (4, 3, 3)-graph must be regular
in one of the following combinations:

⟨13, 8, 8⟩, ⟨14, 8, 7⟩, ⟨15, 7, 7⟩,
⟨15, 8, 6⟩, ⟨16, 7, 6⟩, or ⟨16, 8, 5⟩

They instantiated a problem by taking valid assignments of combinations of the above ⟨a, b, c⟩-
regular graphs and inserting them along the main diagonal of a 30 × 30 matrix. This represents
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a partial coloring of K30 in 3 colors. The remaining edge colors were determined using a SAT
solver. After a total run time of over 350 hours, all combinations returned UNSAT except for
⟨13, 8, 8⟩.

To find all (3, 3, 3)-graphs of order 13, the authors used a SAT solver in conjunction with
degree sequences and degree matrices. A degree sequence of an undirected graph is a non-
increasing sequence of its vertex degrees. A degree matrix of a graph of order n and in k-colors
is an n× k matrix where entry (i, j) is the number of j-colored edges on vertex i. The list of all
possible degree sequences was shortened to 280 using a tri-color vertex degree constraint. Each
degree sequence was encoded into CNF form. This resulted in a set of sub-problems that were
easier to solve. 80 of the sequences were valid left-most columns for a degree matrix represent-
ing a (3, 3, 3)-graph on 13 vertices. The sequences were extended to represent degree matrices,
totalling 11,933 degree matrices. Each matrix was combined with their tri-color Ramsey encod-
ing on 13 vertices and passed to a SAT solver to yield 999 matrices for a (3, 3, 3)-graph on 13
vertices. The degree sequence and degree matrix section took over over 500 hours of computa-
tional time. Using these final matrices, a SAT solver, and nauty for graph isomorphism checking,
the authors generated all 78,892 distinct canonical form (3, 3, 3)-graphs on 13 vertices. Thus
combining these with various pairs of canonical graphs on 8 vertices to form partial solutions,
they use a SAT solver to show no (4, 3, 3)-graphs on 30 vertices exist. The total solving time for
this was 128.31 years (running in parallel on 456 threads).

The lower and upper bounds on directed Ramsey graphs were both recently improved to 34
and 47 respectively for R(7) using a SAT solver [39]. For the purposes of this paper, we will
only describe details and differences of ‘directed’ Ramsey numbers where necessary. We define
a tournament as an orientation of the complete graph, such that for all pairs of distinct vertices u
and v, exactly one of the edges uv or vu is in the tournament. A sub-tournament on k vertices is
called transitive if it is a sub-graph of a tournament and for all vertices u, v, and w, the existence
of edges uv and vw implies the existence of edge uw, denoted TTk. The authors described
several encodings of the directed R(7) problem, such as employing self-subsuming resolution.
They noted this encoding performed better, likely as it maintained arc consistency. To find the
lower bound, the authors used a SAT solver. However, the upper bound required considerably
more theory and computation. The authors used graph theory techniques to split the problem
into several cases based on the degrees of the vertices. Most cases are solved through the use of
a SAT solver. All TT6-free tournaments on order 23, 24, and 25 vertices were cataloged. Along
with a SAT solver, they used these to show that no extensions exist without a TT7 on 47 vertices.
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Chapter 11

Formal Verification and Result

The value of the Ramsey number R(3, 8) = 28 is concluded by obtaining an UNSAT result on
the encoding asserting the existence of a 28-vertex (3, 8)-graph and a SAT result on the encod-
ing asserting the existence of a 27-vertex (3, 8)-graph. R(3, 8) on 28 vertices was found to be
UNSAT after 57 hours. A 31 GB DRAT file was generated and verified in 89 hours.

The R(3, 8; 27; 80) problem was solved using the MathCheck parallelised pipeline. This
generated 13.7k cubes. Each cube returned UNSAT. A combined 245 days in CPU time were
spent cubing, solving and verifying. With parallelisation, this was approximately 2 days. The
combined proof files were 1.1TB. This result, combined with aforementioned theory, and the
known result R(3, 9) > 35 yields R(3, 9) = 36.

All run times in this paper were performed on a CPU with an Intel E5-2683 v4 running at
2.1GHz.

Correctness of proofs is a standing problem in the field of computer-assisted proofs—especially
for exhaustive searches. For example, recent work uncovered consistency issues in previous com-
putational searches on Lam’s problem—highlighting the difficulty of relying on special purpose
search code for nonexistence results [5]. Thus, the correctness of the result is crucially dependent
on the encodings and computational tools we use. Results given by the SAT+CAS paradigm can
be verified, as the method generates certificates allowing an independent third party to certify the
SAT solver’s search is indeed exhaustive and also that the learned clauses provided by the CAS
are correct. Thus, one only needs to trust the correctness of the proof verifier, rather than the SAT
solver or the CAS. Typically proof verifiers are much simpler pieces of software that can be for-
mally checked [33]. Verification was performed using the DRAT-trim proof checker [44] slightly
modified to support the addition of trusted clauses [33]. MapleSAT generates a DRAT (deletion,
reverse asymmetric tautology) proof file consisting of the clauses learned by the solver. The
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Figure 11.1: Solve time for the 10.1k cubes solved by SAT+CAS. Unsolved cubes were further
cubed. Cubes solved during simplification are excluded.
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proof checker then verifies whether each clause can be derived from the previous clauses using
logically consistent rules. The CAS-derived blocking clauses are verified by evidencing that the
clause blocks graphs whose adjacency matrices are not canonical. This is verified by checking
a permutation applied to the blocked graph’s corresponding adjacency matrix produces a matrix
smaller in lexicographical order. The permutation is derived by the CAS during solving and
recorded as a witness for the trusted clauses in the DRAT proof.
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Chapter 12

Conclusion

Using a CAS, we significantly improve the efficiency of a SAT solver on Ramsey problems and
provide the first independently-checkable proof of the result R(3, 8) = 28 of McKay and Min.
We prove and verify R(3, 9) ≤ 36, first solved by Grinstead and Roberts, using a parallelised
SAT+CAS, and had a lesser reliance on theory.

SAT+CAS has been demonstrated to be an effective problem solving and verifying tool for
Ramsey problems. When combined with domain knowledge to reduce Ramsey problems, the
search space can be reduced and thus the effectiveness of SAT+CAS is improved. Future ap-
plications of SAT+CAS to Ramsey problems include an automated verification of R(4, 5), or
solving the unknown values of R(3, 10) or R(4, 6).
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