
Splitting Methods
in

Convex Optimization

by

Xuetong Wang

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Waterloo, Ontario, Canada, 2022, 7:18pm

© Xuetong Wang 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this report, we survey splitting methods for solving optimization problems that are
modelled as minimizing the sum of two convex functions. Splitting methods provide an
iterative update scheme that deals with the two functions separately. We review several
popular splitting algorithms in the report, such as the the Forward-Backward method, the
Douglas-Rachford method, the Peaceman-Rachford method, and Alternating Direction
Method of Multipliers.

iii

Acknowledgements

I sincerely thank Prof. Henry Wolkowicz and Prof. Walaa Moursi. Thank you for
guiding my report with patience and extensive knowledge. This work would not have been
possible without your help.

iv

Table of Contents

List of Figures vi

1 Introduction and Preliminaries 1

1.1 Overview . 1

1.2 Convex Analysis . 1

1.3 Convex Sets . 1

1.4 Convex Functions . 2

1.5 Subdifferential Operators and Normal Cones 3

1.6 The Conjugate of Convex Functions . 8

1.7 Differentiability of Convex Functions . 11

1.8 The Proximal Mapping . 13

2 Operators and Mappings 15

2.1 Zeros of the sum of monotone operators: a static framework 15

2.2 Firmly Nonexpansive and Averaged Mappings: A Dynamic Framework . . 16

3 A Catalogue of Splitting Methods 18

3.1 The Forward-Backward Method . 18

3.2 The Douglas–Rachford Method . 19

3.3 The Peaceman–Rachford Method . 20

3.4 Alternating Direction Method of Multipliers (ADMM) 20

4 Conclusion 22

Index 23

References 24

v

List of Figures

1.1 Example of convex and non-convex set . 2

1.2 Lower Semicontinuous Function . 4

1.3 Geometrically Explanation . 9

vi

Chapter 1

Introduction and Preliminaries

1.1 Overview

Splitting methods are first order iterative methods that have their roots in partial differ-
ential equations.

Popular splitting algorithms include: the Douglas–Rachford and the Peaceman–Rachford
algorithms [8], e.g., (projected) gradient methods, e.g., the celebrated Fast Iterative Shrinkage-
Thresholding Algorithm (FISTA) [1], the method of alternating projections [4], the Dykstra
algorithm [2] and the popular Alternating Direction Method of Multipliers (ADMM) [7].

Applications of splitting methods in optimization include: image processing, e.g., med-
ical imaging and inverse problems; data science and machine learning e.g., empirical risk
minimization, support vector machine, and the least absolute shrinkage and selection op-
erator (LASSO) problems; and physics e.g., computerized tomography and electron mi-
croscopy. See, e.g., [3], [5], [6], [9], and the references therein.

1.2 Convex Analysis

In this section, we will review basic definitions and facts that we need from convex analysis.
Throughout the report, X is a finite-dimensional real Hilbert space, with inner product
⟨·, ·⟩ and induced norm ∥ · ∥.

1.3 Convex Sets

Definition 1.1 (affine subspace). Let C ⊆ X. Then C is an affine subspace if C ̸= ∅ and

x, y ∈ C, λ ∈ R =⇒ λx+ (1− λ)y ∈ C.

1

Figure 1.1: Example of convex and non-convex set

Examples of affine sets are: a point; a line; a plane; a hyperplane.

Definition 1.2 (convex set). Let C ⊆ X. Then C is convex if

λ ∈]0, 1[, x, y ∈ C =⇒ λx+ (1− λ)y ∈ C.

Examples of convex sets in Rd are: ∅ ⊆ Rd, a ball C = {y ∈ Rd | ∥y − x∥ ≤ γ}, an affine
subspace, a half-space C = {x ∈ Rd | ⟨x, u⟩ ≤ η} where u ∈ Rd, η ∈ R, and γ ∈ R are
fixed.

Let C be a subset of X. The affine hull of C, denoted by aff C, is the intersection of
all affine subspaces containing C (smallest affine set containing C). The convex hull of C,
denoted by convC is the intersection of all convex sets containing C (smallest convex set
containing C).

Theorem 1.3. The intersection of an arbitrary collection of convex subsets of X is convex.

Proof. Let I be an index set (not necessarily finite). Let (Ci)i∈I be a collection of convex
subsets of X. Set C :=

⋂
i∈I

Ci. Let λ ∈]0, 1[and let (x, y) ∈ C × C. Because each Ci is

convex, we learn that (∀i ∈ I)λx+(1−λ)y ∈ Ci. Hence, λx+(1−λ)y ∈
⋂
i∈I

Ci = C. Thus,

C is convex.

Definition 1.4 (convex combination). A linear combination λ1x1 + · · · ·+λmxm is called
a convex combination of the vectors x1, · · ··, xm, if

∑m
i=1 λi = 1, λi ≥ 0,∀i.

1.4 Convex Functions

Convex functions are particularly important in the study of optimization problems because
they have many convenient properties. In particular, any local minimizer of a convex
function is a global minimizer.

2

Definition 1.5 (epigraph). Let f : X →]−∞,∞]. The epigraph of f is epi (f) = {(x, α) |
f(x) ≤ α} ⊆ X × R.

Definition 1.6 (domain). Let f : X →] − ∞,∞]. Then domain of f is dom f = {x ∈
X | f(x) < +∞}.

Definition 1.7 (proper). Let f : X →]−∞,∞]. Then f is proper if dom f ̸= ∅.

Definition 1.8 (convex function). Let f : X →]−∞,∞]. Then f is convex if

x, y ∈ X,λ ∈]0, 1[=⇒ f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Fact 1.9. Let f : X →]−∞,∞]. Then f is convex if and only if epi f is convex.

Corollary 1.10. Let f : X →]−∞,∞] be convex. Then dom f is convex.

Proof. If dom f = ∅ then the result is clear. Now suppose that x, y ∈ dom f . Let λ ∈
]0, 1[, z = λx + (1 − λ)y. Then f(z) = f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) < +∞.
Hence, z ∈ dom f .

Definition 1.11 (indicator function). Let C ⊆ X. Then the indicator function ιC(x) :
X →]−∞,+∞] of C is defined by

ιC(x) :=

{
0, if x ∈ C;

+∞, otherwise.
(1.1)

Definition 1.12 (local and global minimizers). Let f : X →]−∞,∞] be proper and let
x̄ ∈ X. Then, x̄ is a local minimizer of f if (∃δ > 0) such that ∥x−x̄∥ < δ =⇒ f(x̄) ≤ f(x);
and x̄ is a global minimizer of f if (∀x ∈ dom f) f(x̄) ≤ f(x).

Fact 1.13. Let f : X →] −∞,∞] be convex and proper. Then every local minimizer of
f is a global minimizer.

1.5 Subdifferential Operators and Normal Cones

In many optimization problems, the functions are not necessarily smooth, differentiable,
which motivates the notion of the subdifferential operator.

Definition 1.14 (lower semicontinuous function). Let f : X →]−∞,∞], and let x ∈ X.
Then f is a lower semicontinuous function (lsc) at x if for every sequence (xn)n∈N in X,
xn −→ x =⇒ f(x) ≤ lim inf f(xn). Moreover, f is lsc if f is lsc at every point in X.

3

Figure 1.2: Lower Semicontinuous Function

Definition 1.15 (subgradient and subdifferential). Let f : X →] −∞,∞] be proper, let
x ∈ dom f and u ∈ X. Then u is a subgradient of f at x if (∀y ∈ X)f(y) ≥ f(x)+⟨u, y−x⟩.
The subdifferential of f is ∂f : x 7→ {u ∈ X | f(y) ≥ f(x) + ⟨u, y − x⟩}.

Theorem 1.16 (Fermat’s theorem). Let f : X →]−∞,∞] be proper. Then

argmin f = {x ∈ X | 0 ∈ ∂f(x)}.

Proof. Let x ∈ X. Then

x ∈ argmin f ⇐⇒ (∀y ∈ X) f(x) ≤ f(y)

⇐⇒ (∀y ∈ X) ⟨0, y − x⟩+ f(x) ≤ f(y)

⇐⇒ 0 ∈ ∂f(x).

Definition 1.17 (cone). Let C ⊆ X. Then C is a cone if for every c ∈ C, for every λ ≥ 0
we have λc ∈ C.

Definition 1.18 (normal cone). Let C be a nonempty convex subset of X and let x ∈ X.
The normal cone of C at x is

NC(x) =

{u ∈ X | sup
c∈C

⟨c− x, v⟩ ≤ 0}, if x ∈ C;

∅, otherwise.
(1.2)

Fact 1.19. Let I be a finite indexed set, let (∀i ∈ I) fi be a family of functions from X to
]−∞,∞].

4

1. Suppose (∀i ∈ I) fi is convex. Then
∑
i∈I

fi is convex.

2. Suppose (∀i ∈ I) fi is lsc. Then
∑
i∈I

fi is lsc.

Fact 1.20. Let I be an indexed set and let (∀i ∈ I) fi be a family of convex and lsc functions
on X. Then epi F =

⋂
i∈I

epi fi.

Proposition 1.21. Let I be an indexed set and let (∀i ∈ I) fi be a family of convex and
lsc functions on X. Then sup

i∈I
fi is convex and lsc.

Proof. Set F = sup
i∈I

fi. We have epi F =
⋂
i∈I

epi fi by Fact 1.20. Since (∀i ∈ I)fi is convex

and lsc, we conclude that (∀i ∈ I) epi fi is convex and closed. Since the intersection of an
arbitrary collection of convex sets in X is convex, we learn that epi F =

⋂
i∈I

epi fi is convex.

Similarly, epi F =
⋂
i∈I

epi fi is closed. Then F = sup
i∈I

fi is lsc.

Definition 1.22 (The support function). Let C be a subset of Rd. The support function
of C is

σc(x) : u −→ sup
c∈C

⟨c, u⟩.

Example 1.23. Let C = [a, b] ⊆ R+. Then (∀x ∈ R)

σc(x) = sup
c∈[a,b]

cx =

{
bx, if x ≥ 0;

ax, otherwise.

Example 1.24. Let f : R → R : x 7→ |x|. Then, by Theorem 1.34 we have

∂f(x) =

{−1}, if x < 0;

[−1, 1], if x = 0;

{1}, if x > 0.

Proof. Let x ∈ dom f and let u ∈ X which is a subgradient of f at X. Then, (∀x ∈ X)
we have f(y) ≥ f(x) + ⟨u, y − x⟩ where u = ∂f(x). We can rewrite as u ∈ [a, b] where

a = limy→x−
f(y)−f(x)

y−x
and b = limy→x+

f(y)−f(x)
y−x

. Consider,

1. When x > 0, a = limy→x−
f(y)−f(x)

y−x
= limy→x−

y−x
y−x

= 1 and b = limy→x+
f(y)−f(x)

y−x
=

limy→x+
y−x
y−x

= 1. Then, u = {1}.

2. When x < 0, a = limy→x−
f(y)−f(x)

y−x
= limy→x−

−y+x
y−x

= −1 and b = limy→x+
f(y)−f(x)

y−x
=

limy→x+
−y+x
y−x

= −1. Then, u = {−1}.

5

3. When x = 0, a = limy→x−
f(y)−f(x)

y−x
= limy→x−

−y+x
y−x

= −1 and b = limy→x+
f(y)−f(x)

y−x
=

limy→x+
y−x
y−x

= 1. Then, u = [−1, 1].

Fact 1.25. Let ∅ ̸= C ⊆ X. Let x ∈ C. Then, NC(x) is a nonempty closed convex cone.

We denote Sn to be the set of all n× n symmetric matrices.

Example 1.26. Let f : Sn → R : X 7→ λmax(X) (the maximum eigenvalue of X). Let
X ∈ Sn, let v be a normalized eigenvector of X (i.e., ∥v∥ = 1) associated with λmax(X).
Then vvT ∈ ∂f(X).

Proof. (∀Y ∈ Sn) f(Y) ≥ f(X) + ⟨vvT , Y −X⟩. Then λmax(Y) ≥ λmax(X) + tr(vvT (Y −
X)).

λmax(Y) = max
∥u∥=1

uTY u

≥ vTY v

= vT (Y −X+X)v

= vT (Y −X) + vTXv

= tr(vT (Y −X)v) + λmaX(X)∥v∥2

= tr(vvT (Y −X)) + λmax(X)

= λmax(X) + tr(vvT (Y −X)).

Example 1.27. Let f : R →]−∞,∞]. Then,

x 7→

{
−
√
x, if x ≥ 0;

+∞, otherwise.

Suppose for eventual contradiction that ∂f(0) ̸= ∅. Let u ∈ ∂f(0). By the Defini-
tion 1.15. (∀y ∈ R) f(y) ≥ f(0) + u(y − 0) = uy ⇐⇒ (∀y ≥ 0) − √

y ≥ uy. If

y = 1 =⇒ u ≤ −1 < 0 =⇒ u2 > 0. If y = 1
2u2 =⇒ −

√
1

2u2 ≥ 1
2u
. Squaring both sides yields

1
2u2 ≤ 1

ru2 ⇐⇒ 2u2 ≤ 1 ⇐⇒ |u| ≤ 1√
2
.

Fact 1.28. Let f : X →]−∞,∞] be convex and proper. Then int (dom f) ⊆ dom ∂f ⊆
dom f .

6

Fact 1.29. Let f : X → R be convex. Then f is subdifferentiable over X, i.e., (∀x ∈ X)
∂f(x) ̸= ∅.

Fact 1.30. Let f : X →] − ∞,∞] be proper, α > 0. Then, (∀x ∈ dom f) ∂(αf)(x) =
α∂f(x).

Fact 1.31. Let f1, f2 : X →]−∞,∞] be proper and convex and suppose that x ∈ dom f1∩
dom f2. Then,

1. ∂f1(x) + ∂f2(x) ⊆ ∂(f1 + f2)(x).

2. Suppose that x ∈ int (dom f1)∩ int (dom f2). Then ∂f1(x) + ∂f2(x) = ∂(f1 + f2)(x).

3. Suppose that x ∈ ri (dom f1) ∩ ri (dom f2). Then, ∂f1(x) + ∂f2(x) = ∂(f1 + f2)(x).

Fact 1.32. Let f, g : X →]−∞,∞] be convex lsc and proper. Suppose one of the following
holds:

1. int (dom f) ∩ (dom g) ̸= ∅.

2. ri (dom f) ∩ ri (dom g) ̸= ∅.

Then, ∂(f + g) = ∂f + ∂g.

Fact 1.33. Let f : X →]−∞,∞] be convex and proper. Let x ∈ X and let u ∈ X. Then

u ∈ ∂f(x) ⇐⇒ (u,−1) ∈ Nepi (x, f(x)).

Theorem 1.34. f : X →]−∞,∞] convex and proper. Suppose that x ∈ int (dom f). If
f is differentiable at x then ∂f(x) = {∇f(x)}.

Proof. Since f is convex, proper, x ∈ int (dom f) ⊆ dom ∂f we have ∂f(x) ̸= ∅. Let
x∗ ∈ ∂f(x). Then,

(∀z ∈ X) f(z) ≥ f(x) + ⟨x∗, z − x⟩.

Fix h ∈ X and let z = x + th, where t > 0. Then f(x + th) ≥ f(x) + ⟨x∗, x + th − x⟩ =
f(x) + t⟨x∗, h⟩. Rearranging,

⟨x∗, h⟩ ≤ f(x+ th)− f(x)

t

≤ lim
t↓0

f(x+ th)− f(x)

t
= ⟨∇f(x), h⟩.

Thus, we have ⟨x∗−∇f(x), h⟩ ≤ 0. Setting h = x∗−∇f(x) yields ∥x∗−∇f(x)∥2 ≤ 0 ⇐⇒
x∗ = ∇f(x).

7

Fact 1.35. f : X →] − ∞,∞] convex and proper, and let x ∈ int (dom f). If f has a
unique subgradient at x then it is differentiable at x and ∂f(x) = {∇f(x)}.

Example 1.36. f : Rn → R, f(x) = ∥x∥2 =
√∑n

i=1 x
2
i . Then,

∂f(x) =

{
x

∥x∥2 , if x ̸= 0;

ball(0; 1), if x = 0.

where ball(0; 1) = {y ∈ Rn | ∥y − 0∥ < 1} (i.e., open ball centered at 0 with radius 1).

1.6 The Conjugate of Convex Functions

Definition 1.37. Let f : X →]−∞,∞]. The Fenchel conjugate of f is

f ∗ : X →]−∞,∞]

: u 7→ sup
x∈X

(⟨x, u⟩ − f(x)).

Definition 1.38 (The support function). Let C be a subset of X. The support function of
C is σC : u → sup

c∈C
⟨c, u⟩.

Example 1.39. Let C be a nonempty closed convex subset of X and set f = ιC. Then
f ∗ = σC.

Proof. Let u ∈ X. By definition, we have

f ∗(u) = sup
x∈X

(⟨x, u⟩ − ιC(x))

= sup
x∈X

(⟨x, u⟩) = σC(u).

Theorem 1.40. Let f : X → −]∞,∞]. Then f ∗ is convex and lsc.

Proof. Indeed, let u ∈ X. f ∗(u) = sup
x∈X

(⟨x, u⟩ − f(x)). Set (∀x ∈ X) hx = ⟨x, u⟩ − f(x).

Then hx is affine, hence lsc and convex. Consequently, f ∗ is a supremum of convex, lsc
functions which means f ∗ is convex and lsc, by Proposition 1.21.

Exercise 1.41. Let f : R → R : x 7→ ex. Then, f ∗ =

u ln(u)− u, if u ≥ 0;

0, if u = 0;

+∞, otherwise.

8

Proof. Let u ∈ X. Then,
f ∗(u) = sup

x∈X
(xu− ex).

1. if u = 0: f ∗(u) = sup
x∈R

(−ex) = 0.

2. if u > 0: f ∗(u) = sup
x∈R

(xu − ex). Set g(x) = xu − ex then g′(x) = u − ex. Setting

g′(x) = 0 yields x = lnu which implies f ∗(u) = u(lnu)− elnu = u lnu− u.

3. if u < 0: we learn that g′(x) = u− ex < 0. Therefore,

sup
x∈R

(xu− ex) = lim
x→−∞

(xu− ex) = +∞.

Fact 1.42. Let f : X →]−∞,∞] be proper and convex. Then f ∗ is proper.

Theorem 1.43 (Fenchel-Young inequality). Let f : X →]−∞,∞] be proper. ∀(x ∈ X)

∀(u ∈ X) f(x) + f ∗(u) ≥ ⟨x, u⟩.

Proof. By definition of f ∗ we have

f ∗(u) = sup
y∈X

(⟨u, y⟩ − f(y))

≥ ⟨u, x⟩ − f(x)

Since f(x) ̸= −∞ then f ∗(u) + f(x) ≥ ⟨u, x⟩. We have f ∗(u) = sup
y∈X

(⟨u, y⟩ − f(y) ≥

⟨u, x⟩ − f(x). Since f(x) ̸= −∞, we have f ∗(u) + f(x) ≥ ⟨u, x⟩.

Figure 1.3: Geometrically Explanation

Definition 1.44. The biconjugate of a function f is defined (∀x ∈ X) f ∗∗(x) = sup
x∈X

(⟨x, y⟩−

f ∗(y)) = f ∗∗(x).

9

Fact 1.45. Let f : X →] −∞,∞] be convex, lsc and proper. Let x ∈ X and let u ∈ X.
Then

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = ⟨x, u⟩.

Fact 1.46. Let f : X →]−∞,∞] be convex, lsc and proper. Then f ∗∗ = f .

Proposition 1.47. Let f : X →]−∞,∞] be convex, lsc and proper. Then

u ∈ ∂f(x) ⇐⇒ x ∈ ∂f ∗(u).

Proof. Let u ∈ ∂f(x) =⇒ f(x)+f ∗(u) = ⟨x, u⟩ by Fact 1.45. Set g = f ∗. Then g is convex
lsc and proper. Moreover, g∗ = f ∗∗ = f by Fact 1.46. Hence,

u ∈ ∂f(x) ⇐⇒ f(x) + f ∗(u) = ⟨x, u⟩
⇐⇒ g∗ + g(u) = ⟨x, u⟩
⇐⇒ x ∈ ∂g(u) = ∂f ∗(u).

Definition 1.48. The primal problem associated with the order pair (f, g) is

min
x∈X

f(x) + g(x),

and its Fenchel dual problem is

min
u∈X

f ∗(−u) + g∗(u).

We set µ = min(f+g)(X) and µ∗ = min(f ∗◦(− Id)+g∗)(X). Observe that by Theorem 1.43
we have µ ≥ −µ∗.

Definition 1.49 (Fenchel-Rockafellar Duality). Let Y be a Euclidean space and let A :
X → Y be linear, f : X →] − ∞,+∞], g : Y →] − ∞,+∞] and proper. The primal
problem associated with the sum of two proper function is

min
x∈X

f(x) + g(Ax),

and its Fenchel-Rockafellar dual problem is

min
u∈X

f ∗(−ATu) + g∗(u).

We set µ = min(f + g ◦ A) and µ∗ = min(f ∗ ◦ (−AT) + g∗). Thus, we can have µ ≥ −µ∗.
The duality gap is µ+ µ∗.

10

1.7 Differentiability of Convex Functions

Fact 1.50. Let f : X →] − ∞,∞] be convex, lsc, and proper. Suppose that dom f
is open and convex and that f is differentiable on dom f . Then ∇f is monotone, i.e.,
(∀x ∈ dom f) (∀y ∈ dom f) ⟨x− y,∇f(x)−∇f(y)⟩ ≥ 0.

Definition 1.51. Let L ≥ 0. A function f : X →] −∞,∞] is said to be L-smooth over
a set D ∈ X if it is differentiable over D and ∇f is L-Lipschitz continuous over D, i.e.,
(∀x ∈ D) (∀y ∈ D) ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥.

Lemma 1.52 (The descent lemma). Let L ≥ 0 and let f : X →] −∞,∞] be L-smooth,
i.e., ∇f is L-Lipschitz over D ∈ X. Then

(∀x ∈ D) (∀y ∈ D) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2.

Proof.

f(y)− f(x) =

∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩dt

=⇒ |f(y)− f(x)− ⟨∇f(x), y − x⟩| =
∣∣∣∣∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x), y − x⟩dt
∣∣∣∣

≤
∣∣∣∣∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥∥y − x∥dt
∣∣∣∣

(since ∇f is L-Lipschitz) ≤
∣∣∣∣∫ 1

0

L∥x+ t(y − x)− x∥∥y − x∥dt
∣∣∣∣

=

∣∣∣∣∫ 1

0

tL∥y − x∥2dt
∣∣∣∣

= L∥y − x∥2 t
2

2
|10

=
L

2
∥y − x∥2.

Fact 1.53. Let f : X → R be differentiable and convex and let L > 0. The following are
equivalent:

1. ∇f is L-Lipschitz continuous.

2. (∀x ∈ X) (∀y ∈ X) f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2
∥x− y∥2.

3. (∀x ∈ X) (∀y ∈ X) f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ 1
2L
∥∇f(x)−∇f(y)∥2.

4. (∀x ∈ X) (∀y ∈ X) ⟨∇f(x)−∇f(y), x− y⟩ ≥ 1
L
∥∇f(x)−∇f(y)∥2.

11

Remark 1.54. By the Lemma 1.52 we can get (i) =⇒ (ii). Indeed, consider f = −1
2
∥ · ∥2.

(∀x ∈ X) ∇f(x) = −x, ∇f(x) is 1-Lipschitz. So (i) =⇒ (ii). Now, −f is convex since f
is concave, we have (∀x ∈ X) (∀y ∈ X) 1

2
∥y∥2 ≥ 1

2
∥x∥2 + ⟨x, y − x⟩. Observe that:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩

= f(x) + ⟨∇f(x), y − x⟩+ 0

2
∥y − x∥2.

But ∇f(x) is not 0-Lipschitz.

Fact 1.55. Let f : Rm → R be twice continuously differentiable and convex. Then the
following are equivalent:

1. ∇f is L-Lipschitz for some L ≥ 0.

2. λmax(∇2f(x)) ≤ L for any x ∈ Rm.

Definition 1.56. Let f : X →]−∞,∞] be proper. Then f is β-strongly convex for some
β > 0 if

(∀x ∈ X) (∀y ∈ X) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− β

2
λ(1− λ)∥x− y∥2.

Fact 1.57. f : X →] − ∞ + ∞] convex, lsc, proper, β > 0. Then the following are
equivalent:

1. f is β-strongly convex.

2. (∀x ∈ dom ∂f) (∀y ∈ dom f) (∀u ∈ ∂f(x)) f(y) ≥ f(x) + ⟨u, y − x⟩+ β
2
∥y − x∥2.

3. (∀x, y ∈ dom ∂f) (∀u ∈ ∂f(x)) (∀v ∈ ∂f(y)) ⟨x− y, u− v⟩ ≥ β∥x− y∥2.

Fact 1.58. Let β > 0 and let f : X →] − ∞,∞] be β-strongly convex, lsc and proper.
Then the following hold:

1. f has a unique minimizer x∗.

2. (∀x ∈ dom f) f(x)− f(x∗) ≥ β
2
∥x− x∗∥2.

Fact 1.59. Let f : X →] − ∞,∞] be convex, lsc, proper and let g : X →] − ∞,∞] be
β-strongly convex, proper. Then f + g is β-strongly convex.

Fact 1.60. Let β > 0 and let f : X →] − ∞,∞] be convex, lsc, and proper. Then the
following hold,

1. ∇f is 1
β
Lipschitz and f is convex =⇒ f ∗ is β-strongly convex.

2. f is β-strongly convex =⇒ ∇f ∗ is β-Lipschitz.

12

1.8 The Proximal Mapping

Definition 1.61. Let f : X →] −∞,∞] be convex, lsc, and proper. The proximal point
mapping of f is

proxf (x) = argmin
u∈X

(f(u) +
1

2
∥u− x∥2).

Theorem 1.62. Let f : X →] − ∞,∞] be convex, lsc, and proper. Then (∀x ∈ X)
proxf (x) is a singleton.

Proof. Indeed, let x ∈ X. Set (∀y ∈ X)

gx(y) = f(y) +
1

2
∥y − x∥2.

Observe that f is proper, hence gx is proper. Also, f is lsc, 1
2
∥ · −x∥2 is smooth (hence

lsc) =⇒ gx is lsc by Fact 1.19. In addtion, f is convex, 1
2
∥ · −x∥2 is β-strongly convex for

every β ∈]0, 1[. We have gx = f + 1
2
∥ · −x∥2 is strongly convex by Fact 1.59. Therefore,

by Theorem (1.58) we conclude gx has a unique minimizer over X.

Example 1.63. Let C be a nonempty closed convex subset of X. Then proxιC = PC.

Proof. Let x ∈ X and let p ∈ X. Then

p = proxιC (x) ⇐⇒ p = argmin
y∈X

(ιC(y) +
1

2
∥y − x∥2)

⇐⇒ (∀y ∈ C) ιC(p) +
1

2
∥p− x∥2 ≤ ιC(y) +

1

2
∥y − x∥2

⇐⇒ (p ∈ C) (∀y ∈ C) ∥p− x∥2 ≤ ∥y − x∥2

⇐⇒ (p ∈ C) (∀y ∈ C) ∥p− x∥ ≤ ∥y − x∥
⇐⇒ p = PC(x).

Fact 1.64. Let f : X →] − ∞,∞] be convex, lsc, and proper. Let x ∈ X and p ∈ X.
Then

p = proxf (x) ⇐⇒ (∀y ∈ X) f(y) ≥ f(p) + ⟨y − p, x− p⟩.

Corollary 1.65. Let C be a nonempty closed convex subset of X, let x ∈ X and p ∈ X.
Then p = PC(x) ⇐⇒ (p ∈ C) and (∀c ∈ C) ⟨p− x, p− c⟩ ≤ 0.

Proof. Recall the Proposition (1.64) we have proxιC = PC . Now,

p = PC(x) ⇐⇒ (∀y ∈ X) ιC(y) ≥ ιC(p)+⟨y−p, x−p⟩ ⇐⇒ (p ∈ C) and (∀y ∈ C) ⟨y−p, x−p⟩ ≤ 0.

13

Proposition 1.66. Let f : X →]−∞,∞] be convex lsc and proper. Then

x̄ ∈ argmin
x∈X

f(x) ⇐⇒ x̄ = proxf (x̄).

Proof. Let x̄ ∈ X. Recall that by Proposition (1.64) we have

x̄ = proxf (x̄) ⇐⇒ (∀y ∈ X) f(y) ≥ f(x̄) + ⟨y − x̄, x̄− x̄⟩ ⇐⇒ (∀y ∈ X) f(y) ≥ f(x̄).

Thus, x̄ minimizes f over X as claimed.

Example 1.67. Let f : R → R : x 7→ λ|x|, λ > 0. Clearly f is convex lsc and proper.
Moreover, (∀x ∈ R)

proxf (x) =

x− λ, if x > λ;

0, if |x| ≤ λ;

x+ λ, if x < −λ.

This is known as the soft thresholder.

Fact 1.68. Let f : Rm →] −∞,∞] be given by (∀x = (x1, ..., xm) ∈ Rm) f(x1, ..., xm) =∑m
i=1 fi(xi), where (∀i ∈ {1, ...,m}) fi : R −→]−∞,+∞] is convex, lsc, and proper. Then

(∀x = (x1, ..., xm) ∈ Rm) proxf (x) = (proxfi(xi))
n
i=1 = (proxf1(x1), ..., proxfm(xm)).

14

Chapter 2

Operators and Mappings

2.1 Zeros of the sum of monotone operators: a static

framework

Let A : X 7→ X be a possibly set-valued operator, i.e., A(x) ⊆ X. Then A is monotone, if

⟨x− u, y − v⟩ ≥ 0,∀(x, u), (y, v) ∈ gra(A),

where gra(A) denotes the graph of A defined by

gra(A) = {(x, u) ∈ X ×X : u ∈ A(x)}.

It is a maximally monotone operator if gra(A) cannot be properly extended without de-
stroying monotonicity. In the following we assume that

A and B are maximally monotone operators on X.

Splitting algorithms have been successfully employed to solve, when a solution exists,
various monotone inclusion problems of the type:

Find x ∈ zer(A+B) =
{
x ∈ X

∣∣ 0 ∈ Ax+Bx
}
. (2.1)

We denote the resolvent of A, JA = (Id+A)−1, and the reflected resolvent of A,
RA = 2JA − Id. Both the resolvent and the reflected resolvent are of central impor-
tance Let T : X → X. Recall that the fixed point set of T , FixT , is given by FixT ={
x ∈ X

∣∣ x = Tx
}
.

Fact 2.1. Let γ > 0 and let α ∈]0, 1]. The following hold:

1. zer(A+B) = JA(Fix((1− α) Id+αRγBRγA)).

2. Suppose that B : X → X. Then zer(A+B) = Fix(JγB(Id−γA)).

15

Connection to Subdifferential Operators

In the following we assume that

f, g : X →]−∞,+∞] are proper lower semicontinuous, not necessarily smooth, convex functions.

A classical optimization problem takes the form.

Problem 2.2.
Find x̄ ∈ argmin

x∈X
f(x) + g(x).

Recall the subdifferential of f is the the set-valued operator

∂f(x) =
{
u ∈ X

∣∣ f(y) ≥ f(x) + ⟨u, y − x⟩ , ∀x, y ∈ X
}
. (2.2)

It follows from Rockafellar’s fundamental result that ∂f is maximally monotone. The
subdifferential operator is a powerful tool in optimization. By Theorem 1.16

0 ∈ ∂f(x) ⇔ x is a global minimizer of f. (2.3)

By Fact 1.31, assuming an appropriate constraint qualification to guarantee the sum rule
∂f + ∂g ̸= ∅ holds (e.g., ∂(f + g) = ∂f + ∂g), Problem 2.2 reduces to (2.1), where
A and B are maximally monotone operators on X, namely the subdifferential operators
∂f and ∂g of the functions under consideration. Constrained optimization problems of
minimizing an objective function f over a constraint set C are typically modelled in the
form of Problem 2.2. In this case, we set g = ιC , the indicator function of the set C, i.e., it
has the value 0 on C, and +∞, otherwise.

2.2 Firmly Nonexpansive and Averaged Mappings: A

Dynamic Framework

Definition 2.3. Let T : X → X, let α ∈]0, 1[and let β > 0. Then

1. T is nonexpansive if (∀(x, y) ∈ X × X) ∥Tx− Ty∥ ≤ ∥x− y∥, i.e., 1- Lipschitz
continuous.

2. T is firmly nonexpansive if (∀(x, y) ∈ X×X) ∥Tx− Ty∥2+∥(Id−T)x− (Id−T)y∥2 ≤
∥x− y∥2.

3. T is α-averaged if there exists a nonexpansive mapping N : X → X such that T =
(1− α) Id+αN .

4. T is β-cocoercive if βT is firmly nonexpansive.

16

Remark 2.4. It is straightforward to verify that T is firmly nonexpansive if and only if T
is 1

2
-averaged.

The class of maximally monotone operators is closely related to the class of (firmly)
nonexpansive mappings via the corresponding resolvent (and also reflected resolvent) as
we demonstrate in the following fact.

Fact 2.5. Let T : X → X , set R = 2T − Id and A = T−1 − Id. Then the following hold:

1. T = JA.

2. T is firmly nonexpansive ⇔ R is nonexpansive ⇔ A is maximally monotone.

Example 2.6. Let f : X →]−∞,+∞] be convex lower semicontinuous and proper and let
L > 0. The following hold:

1. proxf = J∂f . Hence proxf is firmly nonexpansive.

2. Suppose that f is differentiable and that ∇f is L-Lipschitz continuous. Then 1
L
∇f

and Id− 1
L
∇f are firmly nonexpansive.

Fact 2.7. Let m ∈ {1, 2 . . .}, set I = {1, . . . ,m} and let (αi)i∈I be a family of real numbers
in]0, 1[. Suppose that (∀i ∈ I) Ti : X → X is αi-averaged. Set

T = Tm . . . T1 and α =

∑
i∈I

αi

1−αi

1+
∑
i∈I

αi

1−αi

. (2.4)

Then α ∈]0, 1[and T is α-averaged.

The notion of firm nonexpansiveness (and more generally averageness) is very useful
when studying the iterative behaviour of the corresponding operators as we recall in the
following fact.

Fact 2.8. Let T : X → X and let α ∈]0, 1[. Suppose that T is α-averaged and that
FixT ̸= ∅. Let x0 ∈ X and (∀n ∈ N) update via

xn+1 = Txn. (2.5)

Then (∃x∗ ∈ FixT) such that (xn)n∈N converges weakly to x∗.

17

Chapter 3

A Catalogue of Splitting Methods

Recall that A and B are maximally monotone operators on X, a Hilbert space. We assume
that the set of zeros

zer(A+B) ̸= ∅. (3.1)

In view of (3.1), we observe that setting (A,B) = (∂f, ∂g), implies

argmin(f + g) = zer(∂f + ∂g) ̸= ∅. (3.2)

In this section we provide a collection of prominent splitting methods. Each of the methods
listed below produces a sequence that converges to a point in zer(A+B).

3.1 The Forward-Backward Method

In view of (3.1), an immediate consequence of Fact 2.5, Fact 2.1(1), and Fact 2.7 is the
following convergence result of the forward-backward method.

Fact 3.1. Let β > 0. Suppose that A is β-cocoercive. Let γ ∈]0, 2β[. Then the forward-
backward operator TFB = JγB(Id−γA) is averaged. Let x0 ∈ X and (∀n ∈ N) update via:

xn+1 = TFBxn. (3.3)

Then the sequence (xn)n∈N converges weakly to a point in zer(A+B) = FixTFB.

The proximal gradient method

Suppose that f is smooth and that ∇f is L-Lipschitz continuous for some L > 0. Observe
that, by the Baillon–Haddad Theorem, ∇f is 1

L
-cocoercive. Set (A,B) = (∇f, ∂g) and let

γ ∈
]
0, 2

L

[
. The forward-backward operator in this case reduces to the proximal gradient

operator TFB = proxγg(Id−γ∇f). Recalling (3.2), the sequence (xn)n∈N defined in (3.3)
converges weakly to a point in argmin(f + g).

18

3.2 The Douglas–Rachford Method

The Douglas–Rachford operator associated with the ordered pair (A,B) is

TDR = 1
2
(Id+RBRA). (3.4)

Note that RA = 2proxf − Id and RB = 2proxg − Id. Also, it follows from the nonexpan-
siveness of RA and RB (see Fact 2.5(2)) that the Douglas–Rachford operator defined in
(3.4) is firmly nonexpansive, i.e., 1

2
-averaged. The convergence of the Douglas–Rachford

algorithm is summarized in the following result.

Fact 3.2. Let T be the Douglas–Rachford operator associated with the ordered pair (A,B)
and let x0 ∈ X. (∀n ∈ N) update via:

yn = JAxn, (3.5a)

xn+1 = Txn. (3.5b)

Then the governing sequence (xn)n∈N converges weakly to a point in FixT and the shadow
sequence (yn)n∈N converges weakly to a point in zer(A+B) = JA(FixT).

Douglas–Rachford method in optimization settings

Set (A,B) = (∂f, ∂g). The Douglas–Rachford operator in this case reduces to the operator
TDR = 1

2
(Id+(2 proxg − Id)(2 proxf − Id)). Recalling (3.2), (3.5a) in view of (2.6)(1), the

sequence (proxf xn)n∈N defined in (3.5a) converges weakly to a point in argmin(f + g) =
zer(∂f + ∂g).

Parallel Splitting and Pierra’s Product Space Technique

Let m ∈ {2, 3, . . .}, set I = {1, . . . ,m} and let (Ai)i∈I be a family of maximally monotone
operators from X to X. Using Pierra’s product space technique, the Douglas–Rachford
algorithm can be recast to find a zero of

∑
i∈I

Ai (provided that one exists) at the expense

of working in the product space Xm. A utility version of this adaptation is stated in the
following fact.

Fact 3.3. Let m ∈ {2, 3, . . .}, set I = {1, . . . ,m} and let (Ai)i∈I be a family of maximally
monotone operators from X to X. Suppose that zer

∑
i∈I

Ai ̸= ∅. Let (yi,0)i∈I ∈ Xm and

(∀n ∈ N) update via:

pn = 1
m

∑
i∈I

yi,n, (3.6a)

xi,n = JAi
yi,n, i ∈ I, (3.6b)

qn = 1
m

∑
i∈I

xi,n, (3.6c)

yi,n+1 = yi,n + 2qn − pn − xi,n, i ∈ I. (3.6d)

19

Then (pn)n∈N converges weakly to some point in zer
∑
i∈I

Ai.

3.3 The Peaceman–Rachford Method

The Peaceman–Rachford operator associated with the ordered pair (A,B) is

T = RBRA. (3.7)

The convergence of the Peaceman–Rachford algorithm is summarized in the following re-
sult.

Fact 3.4. Suppose that A is uniformly monotone. Let T be the Peaceman–Rachford oper-
ator associated with the ordered pair (A,B) and let x0 ∈ X. (∀n ∈ N) update via:

yn = JAxn, (3.8a)

xn+1 = Txn. (3.8b)

Then the shadow sequence (yn)n∈N converges strongly to a point in zer(A+B) = JA(FixT).

Peaceman–Rachford method in optimization settings

Suppose that f is uniformly convex. Observe that ∂f is uniformly monotone. Set (A,B) =
(∂f, ∂g). The Peaceman–Rachford operator in this case reduces to the operator T =
(2 proxg − Id)(2 proxf − Id). Recalling (3.2), (3.8a) in view of Example 2.6(1), the sequence
(proxf xn)n∈N defined in (3.8a) converges strongly to a point in argmin(f + g).

3.4 Alternating Direction Method of Multipliers (ADMM)

Let Y be a Hilbert spaces, let A : X → Y , be a continuous and linear, and let h : Y →
]−∞,+∞] be convex, lower semicontinuous and proper. Consider the convex optimization
problem

minimize
x∈X

f(x) + h(Ax), (3.9)

and its Fenchel–Rockafellar dual

minimize
y∈Y

f ∗(−A∗y) + h∗(y). (3.10)

Fix γ > 0. The augmented Lagrangian associated with (3.9) is

L : X × Y × Y : (x, y, z) 7→ f(x) + h(y) + ⟨z, Ax− y⟩+ γ
2
∥Ax− y∥2. (3.11)

20

The ADMM scheme consists in minimizing the augmented Lagrangian (3.11) over x then
over y and then update the dual variable. Let (x0, y0, z0) ∈ (X × Y × Y). The ADMM
scheme updates (x0, y0, z0) via

xn+1 ∈ argmin
x∈X

{f(x) + ⟨zn, Ax⟩+ γ
2
∥Ax− yn∥2}, (3.12a)

yn+1 = argmin
y∈Y

{h(y) + ⟨zn, y⟩+ γ
2
∥Axn+1 − y∥2}, (3.12b)

zn+1 = zn + γ(Axn+1 − yn+1). (3.12c)

Convergence of ADMM

Under appropriate constraint qualifications, the dual problem (3.10) is equivalent to the
monotone inclusion problem

Find y ∈ Y such that 0 ∈ ∂(f ∗ ◦ (−A∗))(y) + ∂h∗(y). (3.13)

It is well-known that applying Douglas–Rachford method to solve (3.13) reduces to the
scheme in (3.12).

21

Chapter 4

Conclusion

In this report, we presented various splitting methods to solve the problem of the sum
of two convex functions. We learned that splitting methods split the original objective
into two parts and solve two convex optimization problems. In addition, we compared
the differences of various splitting methods and learned what method to use in what case.
Also, these methods can be applied to other fields, such as machine learning (e.g., support
vector machines, regularization), data science, and image processing.

22

Index

JA = (Id+A)−1, resolvent of A, 15
NC , normal cone on subset C, 4
Nepi, normal cone on epigraph, 7
Proxf , proximal operator on a function f ,

13
RA = 2JA − Id, reflected resolvent of A, 15
Sn, set of all n-by-n symmetric matrices, 6
Xm, product space with dimension m, 18
FixT =

{
x ∈ X

∣∣ x = Tx
}
, fixed point set,

15
Id, identity operator, 15
β-cocoercive, 16, 18
δc, the support function, 5
epi , epigraph, 2
graA, graph of A, 15
ιC , indicator function, 16
λmax, the maximum eigenvalue, 6
Rd, a real space with dimension d, 2
Rm, a real space with dimension m, 12

ADMM, Alternating Direction Method of Mul-
tipliers, 1

aff, affine hull, 2
Alternating Direction Method of Multipli-

ers, 20

ball, 2

conv, convex hull, 2

dom, domain, 3
domain, dom, 3
Douglas–Rachford operator, 19

epigraph, epi , 2

FISTA, Fast Iterative Shrinkage-Thresholding
Algorith, 1

fixed point set, FixT =
{
x ∈ X

∣∣ x = Tx
}
,

15
forward-backward operator, 18

half-space, 2

indicator function, ιC , 16
inf, infimum, 3
int, interior, 6

lim, limit, 3
lower semicontinuous, lsc, 5
lsc, lower semicontinuous, 5

max, maximize, 3
maximally monotone operator, 15
maximize, max, 3
min, minimize, 3
minimize, min, 3
monotone, 15

Peaceman–Rachford operator, 20
proper, 3

reflected resolvent of A, RA = 2JA − Id, 15
resolvent of A, JA = (Id+A)−1, 15
ri, relative interior, 6

sup, supremum, 3

zer, zero set, 18

23

References

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009. 1

[2] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959. 1

[3] Jonathan Eckstein and Dimitri P Bertsekas. On the douglas—rachford splitting method
and the proximal point algorithm for maximal monotone operators. Mathematical
Programming, 55(1):293–318, 1992. 1

[4] René Escalante and Marcos Raydan. Alternating projection methods. SIAM, 2011. 1

[5] Masao Fukushima. The primal douglas-rachford splitting algorithm for a class of mono-
tone mappings with application to the traffic equilibrium problem. Mathematical Pro-
gramming, 72(1):1–15, 1996. 1

[6] Pontus Giselsson and Stephen Boyd. Linear convergence and metric selection for
douglas-rachford splitting and admm. IEEE Transactions on Automatic Control,
62(2):532–544, 2016. 1

[7] Xin Luo, MengChu Zhou, Shuai Li, Zhuhong You, Yunni Xia, and Qingsheng Zhu. A
nonnegative latent factor model for large-scale sparse matrices in recommender systems
via alternating direction method. IEEE transactions on neural networks and learning
systems, 27(3):579–592, 2015. 1

[8] Walaa M Moursi and Matthew Saurette. On the douglas-rachford and peaceman-
rachford algorithms in the presence of uniform monotonicity and the absence of mini-
mizers. arXiv preprint arXiv:2201.06661, 2022. 1

[9] Yunzhang Zhu. An augmented admm algorithm with application to the generalized
lasso problem. Journal of Computational and Graphical Statistics, 26(1):195–204, 2017.
1

24

	List of Figures
	Introduction and Preliminaries
	Overview
	Convex Analysis
	Convex Sets
	Convex Functions
	Subdifferential Operators and Normal Cones
	The Conjugate of Convex Functions
	Differentiability of Convex Functions
	The Proximal Mapping

	Operators and Mappings
	Zeros of the sum of monotone operators: a static framework
	Firmly Nonexpansive and Averaged Mappings: A Dynamic Framework

	A Catalogue of Splitting Methods
	The Forward-Backward Method
	The Douglas–Rachford Method
	The Peaceman–Rachford Method
	Alternating Direction Method of Multipliers (ADMM)

	Conclusion
	Index
	References

