The Application of Deep Kernel
Machines to Various Types of Data

by

Xiaohui Wang

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Mu Zhu

Waterloo, Ontario, Canada, 2011

(© Xiaohui Wang 2011

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

[understand that my report may be made electronically available to the public.

i

Abstract

Typically, kernel machines are linear classifiers in the implicit feature space. We argue
that linear classification in the kernel’s implicit feature space may sometimes be inadequate,
especially in situations where the choices of kernel functions are limited. When this is the
case, one naturally considers nonlinear classifiers in the feature space. We show that
repeating this process produces something we call deep kernel machines. We apply this
new algorithm to a various of data with different types of kernels. Results show that these
deep kernel machines can make a tangible difference in classification performance.

il

Acknowledgements

I would like to thank my supervisor, Professor Mu Zhu, for his help and guidance with
this research project.

v

Table of Contents

List of Tables vii
List of Figures viii
1 Introduction 1

2 Deep Kernel Machines 3
2.1 A Simple Kernel Machine o 3
211 A General Form o 3

2.1.2 A Simple Kernel Machine 3

2.2 Deep Kernel Machines o 4
2.2.1 The implicit feature space F 4

2.2.2 Linecar classification in F 5

2.2.3 Nonlinear classification in F 5

2.2.4 Deep Kernel Machines 7

2.2.5 A heuristic for choosing h(F) 8

2.3 Support Vector Machines 8

3 Application 12
3.1 Several Kinds of Data and RBF Kernels 13
3.1.1 RBF Kernels 13

3.1.2 Data, 13

3.1.3 Results. 14

3.2 Graph and Diffusion Kernels 14
3.2.1 Diffusion Kernels 0o 14

322 Datao 16

323 Results. 17

3.3 Text and Latent Semantic Kernels 17
3.3.1 Latent Semantic Kernels 20

3.32 Datao 21

333 Results. oo 22

3.4 Protein and Pairwise Kernels 22
3.4.1 Kernels for pairs of proteins o000 24

3.4.2 Datao 26

343 Results. o 26

3.5 Additional Insight 27
3.6 More Explanation 30

4 Summary 31
References 33

vi

List of Tables

3.1 Summary of data sets and classification tasks. The regular data type means
the inputs are simply vectors in ¢

3.2 Summary of the WebKB data after the preprocessing steps

vii

List of Figures

2.1

3.1
3.2
3.3
3.4
3.5
3.6

Two separating hyperplanes, one with a larger margin than the other. . . . 9
Results for the Datasets in this section 15
Results for the Enron Dataset 18
Results for the Lawyer Dataset 19
Results for WebKB data 23
Results for Protein-Protein Interaction 28
Visualizing the kernel matrices, using the (smallest) “Lawyer” data set. . . 29

viil

Chapter 1

Introduction

Over the last ten years, much attention has been paid to kernel machines and a number of
powerful kernel based learning machines have been proposed [l], such as Support Vector
Machines (SVMs) (Vapnik, 1995) [10], kernel Fisher discriminant (kFD) [!], kernel Princi-
pal Component Analysis (kPCA) (Scholkopf,et al. 1998) [11], Gaussian Process Classifier
(Neal, 1998) [12], and so on.

However, kernel machines are linear classifiers in the implicit feature space which may
be not sufficient in certain situations, especially when the choices of kernel functions are
limited, for example, when dealing with more “exotic” types of data such as networks and

texts. As deep networks, such as neural nets with many hidden layers [7], attract more
and more amount of attention in the machine-learning community [5] - [¢], Cho and Saul
described a type of kernel machines [9] that “mimics” these deep networks.

In this research project, we present a novel kernel machine called Deep Kernel Machines
which considers nonlinear classifiers in the feature space. We developed these composite
(or deep) kernel functions while working with node classification problems on graphs. But,
as can be expected, our motivation was rather different from Cho and Saul. We think our
motivation is a lot more direct, and provides a valuable, alternative point of view for deep
learning with kernels. In fact, we do not derive our motivation externally from attempt-
ing to mimic something else (namely multi-layer networks); instead, our motivation comes
from internal considerations having to do with kernel machines themselves.

Kernel machines have been successfully applied to various areas, such as time-series

prediction (Muller et al., 1997) [3], text categorization (Joachims, 1998) [13], prediction
of protein-protein interactions (Huel et al., 2010) [22], etc. In the “Application” part of
our research project, we will explain different types of kernels briefly and apply our new
algorithm to some real-world data with adequate kernels.

The paper is organized as follows. In Chapter 2, we provide some background knowledge
on kernel machines and introduce our novel algorithm - Deep Kernel Machines. In Chapter
3, we present some empirical evidence using a variety of types of kernels and data to show
that DKMs are useful. In Chapter 4, we end with a short summary and some further
remarks.

Chapter 2

Deep Kernel Machines

2.1 A Simple Kernel Machine

2.1.1 A General Form

For convenience, we simply discuss the two-class problems throughout the whole article.
But it does not mean that our discussion is only limited to binary classification problems.

Suppose that there is a training set X = {x1,Xa,...,xn} C R%. Associated with each
vector in the training set, there is a label y; € {1,2}, i = 1,2, ...,n. Typically, a kernel
machine has the form,

f(x)=a+ Z o, K(x,x;) (2.1)

for each vector x in the test set Z. Here, K(-,-) is a kernel function and the coefficient «;
often depends on the class labels.

2.1.2 A Simple Kernel Machine

In order to crystalize the gist of our ideas, we mostly work with a very simple kernel ma-
chine in this section. But when doing the experiments, we use the Support Vector Machines.

To classify xg € Z, we can use the function,

Jx(X0) = — Kx (x0,%;) Kx (%0, %; 2.2
(x0) = x§1 T x%:Q) (2.2)
where ny and ny are total number of vectors in X with class label 1 and 2, respectively.
For xg, this is simply the difference between its average similarity to class 1 and its average
similarity to class 2. For example, we can classify xq¢ to the class which it is more similar
to, i.e.,
- 1, i fx(xo) > ¢

Yo = { 2, otherwise. (2:3)

Y

for some thresholding constant c.

It is easy to see that the function fx(x) in (2.2) is of the general form of (2.1), with

ap =0, oy = L or —niQ depending on whether y; = 1 or 2, and K = Kx. In other

ni
words, (2.2) is a simple kernel machine. This simple kernel machine can be construct-

ed without invoking expensive optimization procedures in order to determine the coeffi-
cients, ap, a1, g, ..., O, 41, A more sophisticated kernel machine such as the SVM requires
quadratic programming to find these coefficients.

2.2 Deep Kernel Machines

2.2.1 The implicit feature space F

A key idea behind kernel machines is that kernels can be regarded as calculating inner
products in an implicit feature space, call it F. That is,

Ky (xi,%x;5) = (¢(x1), ¢(x;)), where ¢: X — F. (2.4)

We will write ¢(x;) and ¢;, Kx(xi,x;) and Kx(,j) interchangeably. This means the
kernel Kx necessarily induces a distance function in F,

dr(xi, x;)
=llo(x;) — o(x3) | 5
—\/ (Qi, Di) — 2(s, 05) + (@5, b5) 2
:\/KX Z,Z —2KX<27])+KX<]7])

2.2.2 Linear classification in F

Using the distance d — more specifically the squared distance d%, the decision rule (2.3)
is equivalent to nearest-centroid classification in the feature space F. To see this, notice
that nll > o(x;) and n%z > o(x;) are class centroids in F. Nearest-centroid classification
simply declares gy = 1 if xq is closer to the centroid of class 1, i.e., if

2
1
H Xp) — — Z P(xi)|| < ||¢(x0) — o > o(xi) (2.6)
yl—l 2 Yi=2
The left-hand side is equivalent to
2 ‘ 1
(6(0), ¢(x0)) — -~ > (oxi), d(x0)) + > > (o), o(x) (2.7)
yi=1 Yiy;=1
and similarly for the right-hand side:
2 1
(6(x0), ¢(x0)) = -~ > (o(xi), d(xo)) + po > (o(x), d(xy)) (2.8)
yi=2 Yiryj =2
Canceling out (¢(xo), ¢(xo)) and dividing by —2, we obtain
n_lzKX X, Xj) —%ZKX(XO,Xi)—C<X)>O, (2.9)

yi=1 Yi=2

where

Z Kx (x,%;) 2 K (x;,%j) (2.10)

yz y;=1 yz y;=2

is a constant that depends only on X and not on xq. Clearly, this is equivalent to (2.3).
Being equivalent to nearest-centroid classification, the kernel machine (2.2) is therefore a
linear classifier in the feature space F, just like all other kernel machines, including SVMs.

2.2.3 Nonlinear classification in F
However, it is quite possible that a linear classifier in F is not sufficient. Being able to rely

on a simple, linear classifier means the feature space F is, in some sense, “optimal”. But,
in practice, there is no way to guarantee that this is the case, especially when the choices

5

of kernel functions are limited, e.g., the node classification problem.

On the other hand, there is nothing in principle that prevents us from using other, more
flexible classifiers in F. For example, using the distance dz, we may consider a classifier
based on kernel density estimates. Let

pe(x) = nik S Knom (dr(x, 1)) (2.11)

. XiEX
yi=k

be a kernel density estimate of the distribution for class k. Many kernel functions can be
used for density estimation, e.g.,

Kir)(dr) = \/%;h(}_)%p (— thjir}-)) : (2.12)

where h(F) is a bandwidth parameter, which serves to scale the distance dz. We shall
write
I(}'(Xi7 Xj) = Kh(]:) (d]:(Xi, Xj)) . (213)

Using (2.13) for Kj(r), Kr is nothing but the well-known radial-basis or Gaussian ker-
nel, except it uses the distance function dz rather than a distance defined on the original
training set X. Therefore, (2.11) is a density estimate in the space F rather than on the
original training set X. The subscript F and the notation h(F) are used to emphasize
this fact and to differentiate Kr from K, the kernel on the original training set X that
induced the space F.

Based on the kernel density estimates in (2.11), for each xg in test set, we can predict
its class label gy depending on whether p;(xo) — p2(Xo) is positive or negative. In other
words, the decision function is simply

1 1
fr(xe) = — E Kr (x9,%;) — — E K7 (x9,%;) . (2.14)
& XiE)I(N2 Xi€)2(
Yi= Yi=

It is easy to see that (2.14) is another kernel machine of the same form as (2.2). The
only difference is that (2.14) uses the kernel Kz whereas (2.2) uses the kernel Ky.

2.2.4 Deep Kernel Machines

Let us summarize what we have said so far. The space F is the implicit feature space
for Kx. A kernel machine fx (2.2) using the kernel Kx is a linear classifier in F. If
linear classifiers are not sufficient in F, we can relax linearity and choose to work with
a nonlinear classifier, e.g., by constructing kernel density estimates in F via the implied
distance metric dz(x;,x;) — equation (2.5). This gives rise to a new kernel machine fr
(2.14), using the kernel Kz (x;,x;) — equation (2.13). If we use (2.12) for kernel density
estimation, the kernel updating formula from Ky to Kz is simply, putting (2.5), (2.12),
and (2.13) together,

1 KX(Xi,Xi) —2Kx(Xi,Xj)+Kx(Xj,Xj)

Kr(xi,x5) = \/ﬁ—h(}_) X exp | — 2h(F)2

(2.15)

The choice of h(F) will be discussed in next section.

However, there is no reason why the process must end here. The kernel Kz has its
implicit feature space as well; let’s call it F2. The kernel machine fr (2.14) using the
kernel K is a linear classifier in F2. We can relax linearity in JF?2, if necessary, and choose
to work with a nonlinear classifier, again, by constructing kernel density estimates in F2
via the implied distance metric,

dr2(x1,%5) = / Kr(i,1) — 2K (i, §) + K#(5, 7). (2.16)

By the same argument, this would give us yet another kernel machine, say fz2, of
exactly the same form as fx and fr, except it would be using the kernel

K}—?(Xi?Xj)
:Kh(]-'Q) (d]:2(Xi,Xj))
_ 1 X exp _K]:(Xi,Xi> — 2K]:(Xi,Xj) + K]:(Xj,Xj)
2N(F?)?

V21h(F?)

(2.17)

It is easy to see that this process can be repeated recursively. We refer to kernel
machines generated by this recursive process as Deep Kernel Machines (DKMs). The
one using the original kernel K is referred to as a level-0 DKM; the one using the kernel
K7, alevel-1 DKM; the one using the kernel Kz, a level-2 DKM; and so on.

2.2.5 A heuristic for choosing h(F)

To carry out density estimation in F, a bandwidth parameter h(F) must be specified.
While users are certainly free to optimize this parameter in practice, this can be tedious
for DKMs because, as we go from X to F, F?, F3, ..., there is a bandwidth parameter for
each space, h(F), h(F?), h(F?),..., so a heuristic is desired. A reasonable heuristic is:

h(F) = %Z S (31, %), (2.18)

xi,Xj€X

That is, h(F) can be chosen to be the average pair-wise distance in the space of F. We
use this heuristic in all of our experiments below.

2.3 Support Vector Machines

Even though, in our discussions so far, we have focused only on a specific simple kernel
machine, it is easy to see that the recursively defined deep kernel function (2.15) can be
plugged into any kernel machine. As we will use Support Vector Machines in all of our
experiments below, we briefly introduce the idea of SVMs in this section.

In a two-class classification problem, SVM seeks an optimal hyperplane to separate the
two classes [11]. A hyperplane in R? consists of all x € R? that satisfy the linear equation:

f(x) = 8%+ 5 (2.19)
A hyperplane is called a separating hyperplane if there exists ¢ > 0 such that
yi(B'x+ Bo) > ¢, Vi=1,2,....,n. (2.20)
We can scale the hyperplane so that (2.19) becomes

yi(ﬁlx+ﬁﬂ) Z 17VZ = 1727 RPRLE (221)

A separating hyperplane satisfying condition (2.21) is called a canonical separating hy-
perplane (CSHP).

N : *, l
Margin (Worse)

Margin (Better)

Figure 2.1: Two separating hyperplanes, one with a larger margin than the other.

If the two classes are perfectly separable, then there exist an infinite number of sepa-
rating hyperplanes. Figure 1 shows two competing hyperplanes in such a situation. The
SVM is based on the notion that the best canonical separating hyperplane to separate
two classes is the one that is the farthest away from the training points. This notion is
formalized mathematically by the margin of a hyperplane hyperplanes with larger margins
are better. In particular, the margin of a hyperplane is equal to

margin = 2 x min{y;d;,i = 1,2, ...,n} (2.22)

where d; is the signed distance between observation x; and the hyperplane; see Figure (2.1)
for an illustration. Figure 1 also shows to a certain extent why large margins are good on
an intuitive level.

It can be shown that [15] d; is equal to
1 /

Then, equations (2.21) and (2.22) together imply that the margin of a CSHP is equal

to
2
margin = 2 X min{y;d;,i = 1,2,...,n} = AT (2.24)

To find the best CSHP with the largest margin, we are interested in solving the following
optimization problem:

1 <
win 812 4936
=1
subject to y;(B'x + o) > 1 — &, Vi.

(2.25)

where the extra variables ; are introduced to relax the separability condition (2.21) be-
cause, in general, we cant assume the two classes are always perfectly separable. The term
7> & acts as a penalty to control the degree of such relaxation, and v is a tuning param-
cter.

The dual form of SVMs is as follows:

n 1 n n
max Z =3 Z Z QO Y Y X Xj
1'7:11 i=1 j=1 (2.26)
s.t. Zaiyi =0 and «; > 0,Vi.
i=1

The optimal g is
B= > ayx (2.27)

i:a; >0

The resulting hyperplane can be written as

fx)=B%+b = > owixix+ B (2.28)

i:a; >0
In order to obtain i, one solves (2.26), a problem that depends on the predictors x;

only through their inner-products xjz;; once the a;s are obtained, the ultimate decision
function (2.28) is also just a function of inner-products in the predictor space.

10

Using “kernel tricks” [16], the kernel form of SVM is

max Z o — % Z Z Oéioéjyz'yth(Xia Xj)
=1

i=1 j=1

- (2.29)
s.t. Z%‘yi =0 and o; > 0,Vi.
i=1
and the decision function (2.28) becomes
fx)=B%+po=> oiKu(xi,x;) + Bo (2.30)
i:o; >0
The boundary is linear in the space of ¢(x) where ¢(-) is such that

K (7;2) = ¢(x)'¢(z) (2.31)

We dont even need to define the mapping ¢(-) explicitly; all we have to do is to pick a
kernel function Kj,(x;z). This makes the SVM very general.

11

Chapter 3

Application

In this chapter, we apply our novel algorithm Deep Kernel Machines to various data sets
with different types kernel accordingly.

Table 3.1 summarizes a number of different data sets, which we used to perform em-
pirical experiments in the following sections.

Table 3.1: Summary of data sets and classification tasks. The regular data type means the
inputs are simply vectors in R?

Name Type of Data Ky Class 1 Class 2
Breast regular (10 features) radial basis 212 357
Corel regular (50 features) radial basis 100 100
Digit38 | image (16 x 16) radial basis 658 542
Wavel2 | regular (21 features) radial basis 175 152
Wavel3 | regular (21 features) radial basis 175 173
Wave23 | regular (21 features) radial basis 152 173
Yeast regular (8 features) radial basis 457 243
Enron network (182 nodes) diffusion 16 166
Lawyer | network (36 notes) diffusion 20 16
WebKB | text (indexed by 56,532 terms) latent semantic 631 396
Protein | pairs of protein (Score matrix) | pairwise Mommoth 40 160

12

All experiments used the SVM as the base kernel machine, with the penalty on the
sum of slack variables (often called the “cost” parameter in most SVM packages) tuned
by cross validation on the training set alone. All results are averages from 25 repeated
runs, each time using a random 50-50 split of the data set into training and test sets. The
random splits are stratified by class label so that the fraction of data belonging to each
class is roughly the same in the training and test sets.

3.1 Several Kinds of Data and RBF Kernels

RBF kernels are the most widely used kernels and have been extensively studied in neigh-
bouring field. In this section, we introduce the RBF kernels and do some experiments with
several kinds of data using this type of kernels.

3.1.1 RBF Kernels

Suppose that {x1,Xa,...,X,} is a set of data. The Gaussian kernel is defined as:

Il —x; 112

K(Xi,Xj) =e 202 (31)

where o > (is a parameter to be determined. Note that we are not restricted to using the
Euclidean distance in the input space [17].

Those functions in (3.1) form the hidden units of a radial basis function network, and
hence using this kernel will mean the hypotheses are radial basis function networks. It is
therefore also referred to as the radial basis function (RBF) kernel.

The parameter o controls the flexibility of the kernel. Small values of o allow classifiers
to fit any labels, hence risking overfitting. In this case, the kernel mattix becomes close to
the identity matrix. On the other hand, large values of o gradually reduce the kernel to a
constant function, making it impossible to learn any non-trivial classifier.

3.1.2 Data

Totally seven experiments have been shown in this section. Their details are as follows.

13

Breast, Corel, and Yeast These data sets were obtained from the well-known U-
CI machine-learning repository, http://archive.ics.uci.edu/ml/datasets/. For the
“Corel” data, we randomly downloaded 100 images of dinosaurs and another 100 images
of mountains. The images were 384 x 256, and we used the first 50 principal components
as features.

Digit38 This is a subset of the “ZIP code” data from http://www-stat.stanford.edu/
~tibs/ElemStatLearn/data.html, consisting of only threes and eights.

Wavel2, Wavel3, and Wave23 These are subsets of the (simulated) “waveform” da-
ta from http://www-stat.stanford.edu/~tibs/ElemStatLearn/data.html. “Wavel2”
consists of only class 1 and class 2; “Wavel3” consists of only class 1 and class 3; and so
on.

3.1.3 Results

Figure (3.1) shows the test-set performance of DKMs on the data sets described afore-
mentioned. In all cases, the tuning parameter for Kx is selected by cross validation. The
horizontal axis stands for the data set and level of DKM. The vertical axis stands for the
percent of possible improvement in classification accuracy over level-0, defined as %
where a; is the accuracy at level-j. Thus, a negative bar means the performance is worse
than level-0.

Note that most bars are positive, which means that DKMs are beneficial.

3.2 Graph and Diffusion Kernels

In this section, we introduce the diffusion kernels and do some experiments with graph
data using this type of kernels.

3.2.1 Diffusion Kernels

Suppose that G = (V, E) is a graph, where V' = {vq, va, ..., vy, } is its set of vertices (nodes)
and F is its set of edges. Associated with each node v; is a class label y; € {1,2,...,C}.

14

15 20 25 30

5 10

0

% Possible Improvement in Accuracy over Level-0

Breast Corel Digit38 Wave12 Wave13 Wave23 Yeast

Figure 3.1: Results for the Datasets in this section

15

The adjacency matrix for graph G is defined as:

. 1, if there is an edge between v; and vj;
Ac(i j) = { 0, otherwise.

Let
di =Y Ac(i.j) (3.3)
J#i
be the degree of node. The Graph Laplacian matrix for G is defined by
LG = DG — AG (34)
where D¢ = diag{dy, ds, ..., d, }.
The diffusion kernel is defined as
/8 m

m!

Ko — cap(—ALa) = 3
m=0
where > 0 is a tuning parameter [29].

To measure the similarity between v; and vj, the diffusion kernel takes into account the
number of paths of length m between v; and vj, for all m, and gives shorter paths more
weight [31].

To compute the diffusion kernel, let Ly = UXU’ be the spectral decomposition of the
Laplacian matrix, where ¥ = diag(s,,). Using the fact that L has the same eigenvectors
for all m, the diffusion kernel can be computed by

K¢ = Udiag (e77*) U’ (3.6)

3.2.2 Data

Two experiments have been shown in this section. Their details are as follows.

16

Enron In 2001, a USA-based gas and electricity company named Enron was found guilty
of serious accounting frauds. As part of the investigation, the US Federal Energy Regu-
latory Commission confiscated its corporate email database and made it publicly avail-
able. From the website http://cis.jhu.edu/~parky/Enron/enron.html, we obtained a
184 x 184 adjacency matrix, Ax, that indicated whether there was email communication
between any two of 184 unique email accounts, as well as the status of these 184 email
account owners, e.g., CEO, employee, etc. We removed two accounts that never sent an
email to another account.

Lawyer Lazega citcLazega:01 studied collaborative working relationships and social in-
teractions in a New England law firm. Thirty-six (36) partners were interviewed and asked
to express opinions about issues regarding how the law firm should be managed, such as
whether the company should adopt a less flexible workflow. We obtained the data directly
from Professor Lazega, and our initial diffusion kernel K was based on a similarity (rather
than adjacency) matrix defined as

AG<Z7]) = 0.5 x Ifriends(i7j) + 0.5 x Icollabomted(i:j): (37)

where Ljends(4, 7) = 1 if v; and v; were friends and 0 if not; and likewise for Ioousporatea(?, J)-

3.2.3 Results

Figure (3.2) and (3.3) display performance results of enron data set and lawyer data set
respectively, for a range of tuning parameters. In these two data sets, the ratio of the
two classes is about 1:10. In unbalanced situations like this, it is commonly held that
classification accuracy (equivalently total misclassification error) is not the best measure
of performance [19]. Thus, we use the area under the receiver-operating characteristic
(ROC) curve [20], or simply AUC (for area under the curve) as the performance measure
for this task instead.

3.3 Text and Latent Semantic Kernels

In the last decade, natural language text gradually took the place of multivariate data and
became the most important data format for applications. We introduce the latent semantic
kernels for text in this section and show the efficiency of DKMs to text data.

17

AUC

0.50 0.55 0.60 0.65 0.70

0.45

Enron

N ‘.
+
—— level 0 : ¥
. -4 - level 1 :
-+ level 2
level 5 A

A - -7
{ o=
o o
+ A
! T T T T T
0.005 0.010 0.020 0.050 0.100 0.200

Diffusion Kernel Parameter, B (log scale)

Figure 3.2: Results for the Enron Dataset

18

Accuracy (%)

64

62

60

58

56

54

52

Lawyer

i —— Jlevel 0
-&- |evel 1
-+ level 2
level 5
A
— i
P N K
Fo AT e o
1 FRRIRET o ,
K ‘\\ // ..
~o 1 4+
\\ 1
[~. ’
[o] A
T T T T T T
0.005 0.010 0.020 0.050 0.100 0.200

Diffusion Kernel Parameter, B3 (log scale)

Figure 3.3: Results for the Lawyer Dataset

19

3.3.1 Latent Semantic Kernels

We introduce the definition of Latent Semantic Kernels according to Chapter 10 in [17].

Refer to the full set of documents {d;, ds,...,d;} as the corpus, and the set of terms
{t1,1s,...,tx} occurring in the corpus as the dictionary. View a document as a bag of
terms and represent it as a vector in a space in which each dimension is associated with
one term from the dictionary

¢ d— ¢(d) = (Lf(ty,d), tf(ta, d), ...t f(tn,d)) € RN (3.8)

where ¢ f(t;,d) is the frequency of the term ¢; in the document d. In this way, a document
is mapped into a space of dimensionality N. We notice that the vector associated with a
given document is sparse since it only contain a few number of terms in the dictionary.

Define the following matrix as the document-term matrix of a corpus:

tf(ti,d) - tf(tn, dy)
D= : : (3.9)

tf(t,dy) - tf(tn, dp)

The term-document matrix is the transpose D’ of the document-term matrix. The
term-by-term matrix is given by D'D and the document-by-document matrix is
DD’

Define vector space kernel as

N
K(d, d) = ((ds), (dy)) =D tf (be, di)t f (tx, dy) (3.10)
k=1
Accordingly, the kernel matrix is:
K = DD’ (3.11)

The vector space kernel ignores any semantic relation between words. To address this
shortcoming, we consider a transformation of the type: k(d) = k(d)S. We call S the
semantic matrix. Accordingly, we have:

k(d;, dy) = k(d;)SS'k(d;) = R(d;)R(d;) (3.12)

20

Consider the singular value decomposition of the matrix D’:
D' =UxV’ (3.13)
where ¥ is a diagonal matrix of the same dimensions as D, and U and V are unitary

matrices whose columns are the eigenvectors of D'D and DD’ respectively.

Let S = U,Uj. Then the documents are projected into the space spanned by the first
k columns of U, using these new k-dimensional vectors for subsequent processing:

d— ¢(d)Uy (3.14)

where Uy, is the matrix containing the first &£ columns of U.

In this way, the eigenvectors for a set of documents can be viewed as concepts described
by linear combinations of terms chosen in such a way that the documents are described as
accurately as possible using only k& such concepts.

Thus, we have the matrix of Latent Semantic Kernels:

w(di, d;) = k(d;) UL U k(d,) (3.15)

According to the dual representation, latent semantic kernels can be implemented as:

N|=

l

J

k
¢(d)Uy = (A; (vi);k(d;, d)) (3.16)

1

where \; and v; are eigenvalue and eigenvector pairs of the the kernel matrix.

3.3.2 Data

In this section, we use the WebKB data to do experiments. The WebKB data consist of
8282 web pages taken from various universities in 1997. These web pages were manually
classified into 7 categories: staff, department, project, student, faculty, course, and other.
Some preprocessing steps had been taken before running the experiments [21]. The final

term-document matrix we used to perform our experiments consisted of 5893 documents
(see Table 3.2) indexed by 56,532 terms.

21

Table 3.2: Summary of the WebKB data after the preprocessing steps

Category Number Percentage
Staff 74 1.2
Department 177 3.0

Project 396 6.7
Student 622 10.6
Faculty 631 10.7
Course 642 10.9

Other 3351 56.9

Total 5893 100.0

3.3.3 Results

Here, we also measure performance by classification accuracy. Figure (3.4), together with
figure (3.2) and figure (3.3), show that SVMs using high-level kernels such as Kz and Kz
often performed better than SVMs using the initial (level-0) kernel Kx. At the same time,
we can see that going up to higher levels such as level-5 can sometimes lead to over-fitting,
as onc would expect because the models become more complex. In practice, one can use
cross validation to determine how deep to go.

3.4 Protein and Pairwise Kernels

The prediction of protein-protein interactions is essential to understanding the molecular
mechanisms inside the cell. It can be viewed as a binary classification problem, “interact-
ing” and “non-interacting”. In 2005 Ben-Hur et al. proposed the tensor product pairwise
kernel for protein-protein interactions [26] and then in 2006 Vert et al. proposed another k-
ernel for pairs of proteins — the metric learning pairwise kernel[27]. In this section, we will
introduce these two kinds of kernels and apply DKMs to the prediction of protein-protein
interactions with them.

22

Accuracy (%)

90

93

92

91

89

88

—— level 0
-&- Jlevel 1
-+ level 2
level 5
T T T T T
20 40 60 80 100

Number of Latent Dimensions

Figure 3.4: Results for WebKB data

23

3.4.1 Kernels for pairs of proteins

Suppose that {p1,pa,...,pn} are a set of proteins and our objective is to predict whether
each pair of these proteins, (p;, p;), is interacting or not.

First of all, we need to define a kernel for the single protein. There are many approaches
to build kernels based on sequences of proteins, such as the spectrum kernel (Leslie et al.,
2002) [33], the motif kernel (Ben-hur and Brutlag, 2003) [31] and the Pfam kernel (Gomez
et al., 2003) [35]. But since proteins have 3D structures, kernels based on structures of
proteins are undoubtedly more accurate. In 2010, Hue et al. proposed a method to build
kernels protein structures [22]. They build kernels by alignment algorithms which create
an alignment between two proteins and compute a score reflecting the alignment’s quality,
such as CE [23], DALI [21] and MAMMOTH [25]. Treat the output of these methods as
an arbitrary score, denoted as s(p, q). To convert the score to a kernel, we have to subtract
the negative portion of the eigenvalue spectrum because the alignment quality score is not
positive semidefinite and thus can not be used as a kernel function directly.

Suppose that M is the similarity score matrix. Consider its singular value decomposi-
tion:

M =UYV (3.17)
Then the kernel matrix for the single protein can be defined as:
K=UvYX)V (3.18)

where V(X)) = diag(V (A1), U(A2), ..., U(\,)), with W(A) =1+ X if A >0 and U(\) =0 if
A <0.

Suppose that (p1,p2) and (¢1, g2) are two pairs of proteins and K is the kernel between
proteins. In order to derive the pairwise kernels K((p1,p2), (¢1,¢2)) between two pairs of
proteins from the single protein kernels K(p, q) between two proteins, we need to find a
general method to build a kernel for pairs of objects from any kernel for objects. We
introduce two of this kind of methods as follows.

The first one is called the Tensor product pairwise kernel (TPPK) [28]. It is
obtained by a tensorization of the initial feature space. In this approach, two pairs of
proteins are considered to be similar to one another when each protein from one pair is

24

similar to one protein of the other pair. For example, if p; is similar to ¢; and ps is similar
to g2, then the pair (p;,p2) and (q1,q2) are similar. Thus, the TPPK between pairs of
proteins can be translated as:

Krppr((p1,12), (41, ¢2)) = K(p1, 1) K(p2, ¢2) + K(p1, ¢2)K(p2, 1) (3.19)

However, TPPK has a counter-intuitive property that two protein pairs can be consid-
ered similar when the underlying protein pairs are strongly dissimilar [22]. Because if the
base kernel function K can return negative values which yield a positive value for Krppg
when multiplied together. To avoid this artifact, we can add 1 to the base kernel function.

The second one is called the Metric learning pairwise kernel (TPPK) [27]. It
came from the idea of using distance metric learning to solving the problem of graph
inference [30]. MLPK between pairs of proteins is defined as:

Kupi((p1,p2), (@1, @) = [K(p1, 1) + K(p2, @2) — K(p1,42) — K(pa, 1)]> (3.20)

We will compare these two kinds of pairwise kernels in the following. The rationale
behind TPPK is that the comparison between a pair (py,p2) and (g1, ¢2) is done through
the comparison of p; with ¢; and ps with ¢, using the kernel between individual proteins,
on the one hand, and the comparisons of p; with ¢ and ps with ¢;, on the other hand.

Since the formula of the MLPK might seem less intuitive than that of the TPPK, we
use some simple algebra here to help better understand the MLPK. Any positive definite
kernel can be written as an inner product:

K(x1,%x2) = ¢(x1) - p(x2) (3.21)

Hence the MLPK can be rewritten as follows by plugging 3.21 into 3.20:
Kurrx((p1,02), (a1, 02)) = [(6(01) — ¢(p2)) - (8(a1) — (a2)))? (3.22)

So up to the square exponent, MLPK is an inner product between pairs after mapping
the pairs (p1,p2) and (q1,g2) to ¢(p1) — é(p2) and ¢(q1) — #(gz), respectively. Thus, the
major difference between TPPK and MLPK is that the former involves comparison be-
tween individual proteins of the first pair and individual proteins of the second pair, while
the later compares pairs through the differences between their elements in the feature space.

25

Combining TPPK and MLPK by simply adding them together. In [27], they show
that MLPK nearly always provides better prediction performance than TPPK, and that
the combination of MLPK and TPPK together almost always leads to the best results.
More kinds of combination of pairwise kernels can be found in [28].

3.4.2 Data

The data we use in this section comes from the Database of Interacting Proteins (DIP) [32].
The complete database contains 88,618 interactions among 27,496 proteins. Two different
data sets are generated [22]: the “core” data set (It contains 6,175 proteins, with 1,581
interacting pairs involving 824 proteins and 4,743 non-interacting pairs. These interactions
are considered reliable based on expression data and the presence of paralogous interacting
protein pairs.) and the “small-scale” set (It contains 6,187 proteins, with 1,392 interact-
ing pairs involving 1,175 proteins and 4,176 non-interacting pairs. These interactions are
verified by small-scale experimental method, using techniques that reliably indicate direct
physical interaction of proteins). Due to memory limited, in our experiment, we just choose
a small subset from the “core” data set, which contains 200 proteins, with 50 interacting
pairs and 150 non-interacting pairs. We download the PDB IDs and their labels (“DIP
CORE”) and kernel matrix for the single proteins (“MAMMOTH kernel matrix”) from
the website http://noble.gs.washington.edu/proj/pips.

3.4.3 Results

In our experiment, we use MAMMOTH [25] to build the single kernel based on protein
structures and use the simple combination of TTPK and MLPK to build the pairwise
kernel for pairs of proteins.

The proportion of non-interacting pairs with respect to interacting pairs is equal to
r = 4 and this ratio will be much higher in realistic setting. Thus, we can not measure the
result by accuracy. Besides, when dealing with highly skewed datasets, Precision-Recall
(PR) curves give a more informative picture of an algorithm’s performance than ROC
curves do. It is because when the number of negative examples greatly exceeds the num-
ber of positives examples, a large change in the number of false positives can lead to a
small change in the false positive rate used in ROC analysis. PR analysis, on the other
hand, by comparing false positives to true positives rather than true negatives, captures
the effect of the large number of negative examples on the algorithm’s performance [30].

26

Therefore, we will use F-measure to measure the result in this section which is similar to
what the authors did in [22].

First of all, we will introduce some related concepts of F-measure. For classification
problems, the terms true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) compare the predicted class labels assigned by a classifier with the actual
class labels. Precision is defined as:

TP
SION = ———— 3.23
precision = op s (3.23)
and Recall is defined as:
Il = &y (3.24)
recall = —— TEN .

F-measure is a measure which combines precision and recall:

P meqsure — 9 » PTECISioN X recall (3.25)

precision + recall

Figure (3.25) is the F-measures for DKMs. As we expected, the results of level-1 to level-4
are better than that of level-0.

3.5 Additional Insight

Using the (smallest) “Lawyer” data set (see Section 3.2.2), Figure (3.6) shows an example
of how the kernel matrix typically evolves as we move to higher-level feature spaces, starting
from Kx with § = 0.1. Here, we see that the initial kernel matrix, Kx, is close to being
diagonal, which is not very informative. The subsequent kernel matrices, Kz and Kz, are
much more informative, which partially explains the improved classification performance.
As we move to even higher levels, however, the kernel matrix starts to lose its “richness”
again. To some extent, this explains the diminishing returns for going to higher levels,
as well as the eventual deterioration in classification performance by going to very high
levels (over-fitting). Though Figure (3.6) contains just one specific example, the kind of
phenomenon depicted there is quite typical and representative.

27

F-measure

F-measure for Protein—Protein Interaction
0.81 . . . :

0.805} -

0.8 . 8
0.795 / \ .
0.79F , \ -
0.785} / -
0.78} . VA
0.775% 1

0.77} N

0.765 L L L L
0

level

28

Figure 3.5: Results for Protein-Protein Interaction

0 [9AST
L [9AS7]

Z 19AaT
L 19A97

Figure 3.6: Visualizing the kernel matrices, using the (smallest) “Lawyer” data set.

29

3.6 More Explanation

From equation (2.13), we know that K is a function of dz:
Kr(xi,%;) = ¢1(dr (xi,%;)) (3.26)
From equation (2.5), we know that dr is a function of Ky:
dr (%, %5) = V2 (Kx (%5, %), Kx (%5, %;), Kx (%5, %)) (3.27)

Thus,
Kr(xi,%5) = (1 - o) (Kx (x5, %:), Kx (X3,%;), Kx(X5,%;5)) (3.28)

Then a natural question comes: why not writing our deep kernels as the composition
of functions instead of generating them from the original kernel recursively?

The reason is there is no guarantee that every kernel can be written out as a function,
for example, the diffusion kernels on graph nodes, which are defined in section (3.2.1) as
equation (3.5). If the original kernel Ky is a diffusion kernel, there is no expression for
us to calculate each element Kx(x;,X;) in the kernel matrix. We have to compute the
entire matrix by equation (3.6). In this case, it is impossible to calculate high level kernels
directly from one composite function, without calculating the original kernel matrix in
advance.

Besides, we note that from equation (2.18), in order to compute h(F), we have to know
the entire vector dr, which means that the kernel matrix Kx should be known in advance.

30

Chapter 4

Summary

Kernel Machines are very useful and popular in all kinds of areas. However, sometimes
linear classification in the implied feature space F may be inadequate, especially when
there are limited choices of kernel functions, e.g., when dealing with more “exotic” types
of data such as networks and texts. Based on the premise, we apply the “kernel trick”
again in the implicit feature space itself and repeat this process recursively. Then we can
get our novel kind of kernel machines — Deep Kernel Machines (DKMs).

We apply this algorithm to various data sets with different types of kernels, such U-
Ci data with RBF kernels, Proteins data with Pairwise kernels, and so on. The results
supported our point of view. The same linear classifier often produced better results in
high-level feature spaces such as F? and F2 than in the initial feature space F. As such,
a DKM can be said to possess an “automatic kernel correction” capability. It essentially
provides us with a recursive algorithm to find good feature spaces.

Two common challenges faced by all deep-learning algorithms are:

e the existence of many tuning parameters;

e the question of how deep one should go.

While these decisions are often necessarily problem-dependent and can always be made, in
principle, by cross validation for lack of better procedures,we have attempted to provide
some heuristics (Section 2.2.5) and guidelines (Section 3.5) for how to make these decisions
in practice.

We are especially intrigued by Figure (3.6) and the possibilities it suggests. Given a
kernel matrix K, how do we quantify the amount of information it contains, and how does

31

the notion of ”information richness” correlate with classification performance? We are
trying to answer these questions as part of our continuing research.

32

References

1]

Klaus-Robert Muller, K.-R. Muler, A. J. Smola, G. Rasch, B. Schokopf, J. Kohlmor-
gen, and V. N. Vapnik, An Introduction to Kernel-Based Learning Algorithms, IEEE
TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 2, MARCH 2001.

G. E. Hinton and R. R. Salakhutdinov, Reducing the dimensionalily of data with neural
networks, Science, 313:504507, 2006.

Klaus-Robert Muller, Sebastian Mika, Gunnar Rasch, Koji Tsuda and Bernhard
Schokopf, Predicting time series with support vector machines, IArtificial Neural
Networks-ICANN’97. ser. Springer Lecture Notes in Computer Science, vol. 1327, pp.
9991004, 1997.

S. Mika, G. Rasch, J. Weston, B. Schokopf, and K.-R. Muler, Fisher discriminant
analysis with kernels, IEEE, pp. 4148, 1999.

I. Sutskever and G. E. Hinton, Deep narrow sigmoid belief networks are universal ap-
proximators, Neural Computation, 20:26292636, 2008.

Y. Bengio, Learning deep architectures for Al Foundations and Trends in Machine
Learning, 2(1):1127, 20009.

G. E. Hinton, S. Osindero, and Y. Teh, A fast learning algorithm for deep belief nets,
Neural Computation, 18:15271554, 2006.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin, Fxploring strategies for train-
ing deep neural networks, Journal of Machine Learning Research, 10:140, 2009.

Y. Cho and L. Saul, Kernel methods for deep learnings, In Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 342350. Curran Associates, Inc., 2009.

33

[10] C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning, 20, 1995.

[11] Bernhard Scholkopf, Sebastian Mika, Alex Smola, Gunnar Ratsch and Klaus-Robert
Muller, Kernel PCA Pattern Reconstruction via Approximate Pre-Images, 1998.

[12] R. M. Neal, Support-Vector Networks, Regression and classification using gaussian
process priors, In J. M. Bernardo et al. (Eds), Bayesian statistics 6, 475-501, Oxford
University Press.

[13] T. Joachims, Text categorization with support vector machines, European Conferece
on Machine Learning (ECML), Springer-Verlag, 1998.

[14] Mu Zhu, Kernels and Ensembles, The American Statistician, May 1, 2008, 62(2):
97-109.

[15] T. Hastie, R. Tibshirani and J. H. Friedman, The Elements of Statistical Learning,
Springer, 2001.

[16] Nello Cristianini and John Shawe-Taylor, An introduction to support Vector Machines:
and other kernel-based learning methods, Cambridge University Press, 2000.

[17] Nello Cristianini and John Shawe-Taylor, Kernel Methods for Pattern Analysis, Cam-
bridge University Press, 2004.

[18] E. Lazega, The Collegial Phenomenon: The Social Mechanisms of Cooperation Among
Peers in a Corporate Law Partnership, Oxford University Press, 2001.

[19] R. J. Bolton and D. J. Hand, Statistical fraud detection: A review, Statistical Science,
17(3): 235255, 2002.

[20] M. S. Pepe, The Statistical Evaluation of Medical Tests for Classification and Predic-
tion, Oxford University Press, 2003.

[21] Alexandra Laflamme-Sanders and Mu Zhu, LAGO on the unit sphere, Neural Net-
works, 21: 1220-1223, 2008.

[22] Martial Huel, Michael Riffle, Jean-Philippe Vert and William S Noble, Large-scale
prediction of protein-protein interactions from structures, BMC Bioinformatics, 11: 144,
2010.

[23] Shindyalov IN and Bourne PE, Protein structure alignment by incremental combina-
torial extension (CE) of the optimal path, Protein Engineering, 11:739-747, 1998.

34

[24] Holm L and Sander C, Protein Structure Comparison by Alignment of Distance Ma-
trices, Journal of Molecular Biology, 233:123-138, 1993.

[25] Ortiz AR, Strauss CEM and Olmea O, MAMMOTH (Matching molecular models
obtained from theory): An automated method for model comparison, Protein Science,
11:2606-2621 ,2002.

[26] Martin S, Roe D and Faulon JL, Predicting protein-protein interactions using signature
products, Bioinformatics, 21(2):218-226, 2005.

[27] Vert JP, Qiu J and Noble WS, A new pairwise kernel for biological network inference
with support vector machines, BMC Bioinformatics, 8(Suppl 10):S8, 2007.

[28] Ben-Hur A and Noble WS, Kernel methods for predicting protein-protein interactions,
BMC Bioinformatics, 21(suppl 1):138-i46, 2005.

[29] J. Lafferty and G. Lebanon, Diffusion kernels on statistical manifolds, Journal of
Machine Learning Research, 6:129163, 2005.

[30] Vert JP and Yamanishi Y, Supervised Graph Inference, In Advances in Neural In-
formation Processing Systems Volume 17, Edited by: Saul LK Weiss Y, Bottou L.
Cambridge, MA: MIT Press: 1433-1440,2005.

[31] E. D. Kolaczyk, Statistical Analysis of Network Data, Springer-Verlag, 2009.

[32] Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM and Eisenberg D, DIP:
the Database of Interacting Proteins, Nucleic Acids Research, 28:289-291, 2000.

[33] Leslie,C., Eskin,E. and Noble,W.S., The spectrum kernel: A string kernel for SVM
protein classification, Proceedings of the Pacific Symposium on Biocomputing, New
Jersey. World Scientific, Singapore, pp. 564575, 2002.

[34] Ben-hur,A. and Brutlag,D., Remote homology detection: a motif based approach,
Bioinformatics, 19 (Suppl 1), i26-133, 2003.

[35] Gomez,S.M., Noble,W.S. and Rzhetsky,A., Learning to predict proteinprotein interac-
tions, Bioinformatics, 19, 18751881, 2003.

[36] Davis J and Goadrich M, The relationship between precision-recall and ROC' curves,
Proceedings of the International Conference on Machine Learning, 2006.

35

