Randomized Algorithms for
Computing the Rank Profile of a
Matrix over a Finite Field

by

Alex Krueger

A research paper
presented to the University of Waterloo
in partial fulfillment of the
requirement for the degree of
Master of Mathematics
in
Computational Mathematics

Supervisor: Prof. Arne Storjohann

Waterloo, Ontario, Canada, 2014

© Alex Krueger 2014

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

[understand that my report may be made electronically available to the public.

i

Abstract

Randomized algorithms are given for the problem of computing the row rank profile of
a matrix A € K™ for K, a field. We give an algorithm that computes the row rank profile
of A in mr?+ §r® + O(mr +1* + |A]) field operations from K, where r = rank(A) and |A|
denotes the number of nonzero elements of A. The algorithm is Monte Carlo randomized
and returns the correct solution with probability (1 — #)7 Improvements to the algorithm
are discussed to guarantee that the algorithm produces the correct profile with probability
at least 1/2.

We give a Monte Carlo certification for the rank profile that takes as input the matrix A,
a claimed row rank profile P, and a certificate (Q, (R, L), (Rr—1, Lr—1),- -+, (R1, L1))),
where Q is a list of column indices, and ((R,, L), - -, (R1, L)) is claimed to be a unique
decomposition of the claimed inverse of the r x r submatrix of A composed of the rows
indicated in P and the columns indicated in Q. The certification runs in 4r% + O(r + |A|)
field operations from K. If P is in fact the row rank profile of A and B is the claimed
inverse, then the algorithm will return TRUE. Otherwise, the certification will incorrectly
return TRUE with probability at most 2/#K. Improvements are discussed to ensure that
that P is incorrectly certified as the row rank profile of A with probability at most 1/2.

1l

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Arne Storjohann, for
all the guidance, support and encouragement. I would also like to thank Prof. Romain
Lebreton for his feedback on this project.

v

Dedication

For my family.

Table of Contents

1 Introduction

1.1 Monte Carlo Computation
1.2 Monte Carlo Certification
1.3 New Results
1.4 Notation e

Improved Random Row Rank Profile

2.1 Useful Properties

2.2 A Deterministic Approach

2.3 Useful Properties for a Randomized Algorithm
2.4 Monte Carlo Computation of the Row Rank Profile

2.5 Handling Cases with Low Probability of correctness

2.5.1 Improvement Through Multiple Runs

2.5.2 Improvement Through Multiple Column Samples

2.5.3 Comparing the Methods of Improvement

3 Row Rank Profile Certification

3.1 Inverse Decomposition L

3.2 Monte Carlo Certificate of Row Rank Profile

3.3 Handling Cases with Low Probability of Correctness

4 Conclusion and Future Work

vi

L T O NC R S

11
14
16
16
18
19

21
21
22
25

27

Chapter 1

Introduction

Let A € K™ for some finite field K with rank r. The row rank profile of a matrix A
is the lexicographically minimal list P = [i,...,4,] such that the rows of A7, the r x m
submatrix of A consisting of the rows listed in P, are linearly independent.

The row rank profile is the list of rows containing the pivot elements when the matrix
is transformed to column echelon form using the following elementary column operations:
interchanging two columns, adding a multiple of one column to another column. For
example, consider a 10 x 10, rank 6 matrix. Let e denote a known nonzero element and
x denote a possible nonzero element, and blank sections denote blocks of zeroes. Suppose
the matrix has the following column echelon form

* K K X X K X X X O
¥ K K X X K X X @
* K K X X X @

¥ K ¥ X @

* X ¥ @

The row rank profile is also the list of indices of the nonzero rows of A after transforming
the matrix using the following elementary row operations: adding a multiple of one row to

lower row. For example, suppose the matrix has the following form if Gaussian elimination
(row operations) without pivoting is performed

In either case, the row rank profile P = [1,2,4,6,7,9] is revealed.

To compute r = rank(A), Gaussian elimination can be run to reduce either the rows or
columns in A in O(nmr) field operations from K. The algorithms presented herein use the
idea of doing Gaussian elimination on the rows without pivoting to find the first r linearly
independent rows.

Note that if a vector a is sparse, then for any vector z, the dot product a'z can be
computed in O(|a|) operations by only considering the nonzero terms in a. Thus, the
matrix-vector product Az can be computed in O(|A|) field operations from K, which may
be considerably faster than the typical bound of O(nm) field operations. We will therefore
exploit the sparsity of A to reduce the runtime of the algorithms presented herein.

In Section 1.1, we will first present previous algorithms. We will then introduce our
new results and then present some notation used throughout this paper.

1.1 Monte Carlo Computation

Some work has been done to develop algorithms to solve the problem of computing the
row rank profile or a matrix A € K™ with rank(A) = r, where r may not be known and
is computed as the length of the row rank profile. Note that since computing the row rank
profile of A involves computing linearly independent rows, the work required is similar to
the work required to solve the linear system Ax = b, for some vector b € K™, This is
the approach Storjohann and Yang take in [1]. Counting the number of field operations

(+, —, X, =) from K required to run the algorithm, classical Gaussian elimination can
be used to solve the system with a runtime of O(nmr) field operations. If the pivot rows
are carefully chosen to ensure that the row indices form a lexicographically minimal list
of maximal size, then the resulting Gaussian elimination process can be used to generate
the row rank profile of A. Note that since < min(m,n), many of the algorithms focus
on having the runtime depend more on r, rather than m and n, the dimension of A. This
is particularly useful for low rank applications, where r < min(m,n), since in these cases
r® < mnr. Thus an algorithm whose runtime depends also on the rank will be faster in
certain instances than an algorithm that depends only on the dimension.

Storjohann and Yang [!] introduce the use of a linear independence oracle. Given a
matrix £ € K™ a linear independence oracle is a binary tree 7' describing various linear
combinations of columns of A. Given a vector v € K!*" testing whether vR is the zero
vector can be done by computing dot products with the vectors stored at the nodes in
T. If vR # 0, the search from the root to the bottom level returns the index of the
first nonzero element of vR. Using linear independence oracles, a Las Vegas algorithm
RandomOracleSolve [!] is presented that takes as input a rank r matrix A € K**™_ where
r is unknown, as well as a vector b € K™! and computes the solution x € K™*! such
that Az = b, or a certificate of inconsistency u € K™ such that uA = 0 and ub # 0. If
A is dense, then RandomOracleSolve runs in 213 + O(r?(logn + logm) + r(n + m)) field
operations from K, where the logarithmic factors are from the construction of and search
through 7. Similarly, if A is sparse, then the runtime bound is r* + O(r?*(logn + log m) +
n+m + |A7|logm + |Ag|logn). As a side effect, this algorithm also computes a list of
row indices P of length at most r such that the submatrix A” is full rank, as well as a
list of column indices Q such that the submatrix Ag has generic rank profile, where Ag is
the n x r submatrix of A made of the columns indicated in Q. That is, the algorithm also
finds a list Q such that every square leading submatrix of AZ is invertible. The Monte
Carlo algorithm ImprovedRankProfile exploits this to generate the row rank profile of A.
ImprovedRankProfile first generates a random vector g € K™*! and computes b = Ag.
The matrix A and vector b are then passed into RandomOracleSolve, since there is a
solution to the system Az = b. With probability at least (1 — #)r(l — #)“Ogﬂ”“‘)g?m],
the list P returned by RandomOracleSolve will be the row rank profile of A. If the field
size is sufficiently small and the dimension or rank of A are sufficiently large, then the lower
bound on the probability of correctness of the algorithm will be small, and even possibly
less than 0. In the case of a small field, field extensions can then be used to guarantee a
lower bound on the probability of correctness |1, Corollary 20].

1.2 Monte Carlo Certification

The idea of Monte Carlo certification is to allow verification of whether or not a claimed
solution is correct in less time than it would take to compute the answer without the
certificate. Certification takes as input the parameters for the problem, the claimed solution
and a certificate, which is a tuple of useful results with some claimed properties.

For example, let A € K®™*™ and B € K™"*". Suppose we are given C' € K"*" with the
claim that C' = AB. One could simply compute AB in O(n?) field operations and compare
the results. However, directly computing the product is costly and does not make use of
the fact that C' may be the product of A and B. Freivalds’ Algorithm [2] exploits the fact
that if AB = C, then for every ¢ € Zy*!, ABc = Cc, which can be computed in O(n?)
field operations. However, if AB # C', the probability that ABc = Cc is at most 1/2.
Moreover, if using p certificates ¢, the probability that ABc = Cc for all p choices c is less
than 1/2P, assuming AB # C. No certificate tuple is required for this verification.

Similarly, Kaltofen, Nehring and Saunders [1]| describe certification for the nonsingu-
larity of a matrix A € Z™*"™ using a certificate (p, B) with the claim that p is prime and
B = A7! mod p. Note that if A is singular, then no such B can exist for any prime p.
The matrix B can then be tested as the inverse of A mod p as in Freivalds’ algorithm [I]
by testing that ABc = Ic for some ¢ € Z;*'. These tests can be run in O(n?) operations
from Z,, which is linear in the size of the input. However, certification is Monte Carlo and
may indicate that a solution is correct when it is not.

1.3 New Results

In Section 2.4, we give a new Monte Carlo algorithm, Algorithm 2 (RandomRowRankPro-
file), which computes the row rank profile of A. Algorithm 2 (RandomRowRankProfile)
is a modification of the ImprovedRankProfile from [4]. Algorithm 2 (RandomRowRank-
Profile) eliminates the need for a linear independence oracle. As a result the algorithm
runs in mr? + $r% + O(mr + r? 4 | A|) field operations, whereas the algorithm in [1] has a
runtime of 73 + O(r?(log n +log m) +n+m+|A”|logm + |Ag|logn). Note that if r = m,
the upper bound on the running time of RandomRowRankProfile is Lr® + O(r? + |AJ).
While the leading coefficient of the runtime is larger, and the leading term also depends

on m, RandomRowRankProfile has the following advantages over ImprovedRankProfile.

e The run time has no logarithmic terms.

e The probability of correctness depends only on the rank of A and size of K, not on n
or m.

e The probability of correctness of the algorithm is always positive over any field and
for any rank. As a result, in case of a small field, field extensions are not necessary
to increase the likelihood of correctness of the algorithm.

e There is no need to construct a linear independence oracle. The algorithm can be
run in place.

In Section 3.2, we present a Monte Carlo certification algorithm, Algorithm 3Ran-
domRowProfileCertificate, adapted from Algorithm 2RandomRowRankProfile. Given a
claimed row rank profile P, and a certificate (Q, B) with the claim that B = (A7), the al-
gorithm tests whether P is the row rank profile of A. The algorithm runs in 4r2+O(r+|AJ).
If P is the row rank profile of A, then the algorithm returns TRUE with certainty. Other-
wise, if P is not the row rank profile of A, then the algorithm will incorrectly confirm that
it is the row rank profile of A with probability at most 2/#K. Improvements to the algo-
rithm are then discussed to guarantee that the probability that the algorithm falsely returns
TRUE is lower than some desired upper bound. Thus, as with RandomRowRankProfile,
field extensions are not necessary.

1.4 Notation

Recall that P = [iy,...,is] is a list of distinct positive integers and Q = [ji, ..., Js] be
similarly defined. Let =P =[i |1 <i<mn, i¢gPland -Q=[j]|1<j<m, j&Q
Finally, when s > 1, let P_y = [i1,...,is—1] and Q_1 = [j1,. .., js—1], respectively.

Chapter 2

Improved Random Row Rank Profile

In this chapter we present a Monte Carlo randomized algorithm for computing the row
profile of an input matrix A € K™*™ of unknown rank . The algorithm runs in mr? +
3% 4+ O(mr + r? + | A]) time and produces the correct result with probability (1 — #)T

2.1 Useful Properties

The following properties are in [1]. Let P = [i1,...,is] and Q = [ji,...,Js] be given.
Suppose AJ and its leading (s — 1) x (s — 1) submatrix, Ag’fl, are invertible.

Lemma 1. Let ¢ € =P. Consider the augmented matrizc

AR | AP,
(2.1)
[i] (2]
AL Al

Then Al € Rowspace(A”) if and only if AE]Q - Ag(Ag)_lAfQ =0

Proof. A block Gaussian elimination of the matrix in (2.1) gives the following:

I 0| | A5 | a7, A% AP,

—ARAR) 1| | Al Al 0 | A%, — Al(AB) AP,

Let t := AE]Q — Ag(Ag)_lAfQ. Note that t is the row vector corresponding to .AE}Q that
results from eliminating Ag using A as a block pivot. Thus, if t = 0 then Al is some
linear combination of the rows of A”. If ¢ # 0 then Al is linearly independent of the rows

of AP. O
Let

Py
ap=| Ao || ek, (23)

v | d

where u := AES’]], V= A[gil, and d := ABZ]] The inverse of A7 is

B+ (Buw(wB) | —(Bu)w (2.4)

—w(vB) | w

where B := (A5)7}, and w := (d — vBu)~'. The correctness of (2.4) as the inverse
of (2.3) can be verified by direct computation.

Lemma 2. Let s > 1. If B = (142’_11)_1 is precomputed, the inverse of AL can be computed
in 65> + O(s) field operations from K.

Proof. The products vB and Bu can be computed in 2s* + O(s) operations each, while the
product (Bu)w(vB) and sum B+ (Bu)w(Bv) can be computed in s2+O(s) field operations
each. The rest of the operations are dot products, sums and matrix-scalar multiplications
that can be done in O(s) time each, giving a total runtime of 6s?+O(s) field operations. [

7

Corollary 3. Let b¥ € K**'. Assuming BbP-*, Bu and vB are precomputed, we can
compute (AD)~1b" in O(s) field operations from K by using the form given in (2.4), i.e.,

BYP 4 (Bu)w((vB)b) — (Bujub*

(AB) P = (2.5)

wblsl — w(vB)b—1

Proof. Given that Bu, vB, BbP-' are precomputed, this update can be done in 2 dot
products, 2 vector-scalar multiplications, 2 vector additions and subtractions, totalling
8s + O(1) operations. O

Corollary 4. Consider the following product within (2.2):
(AB)1 A,

If (Ag’_ll)_lAfa_l is precomputed, then (AD)™ A%, can be computed by considering each

column of (Ag__ll)_lAfél_l separately, using (2.5), without needing to consider column js.
This computation can be done in 8(m — s)s + O(m + s) field operations from K.

Proof. The proof follows from Corollary 3. Recall that AfQ € K(m=s)xs 5o each of the
m — s column vectors of size s can be updated in 8s 4+ O(1) field operations, giving an
overall cost of 8(m — s)s + O(m + s) field operations from K. O

2.2 A Deterministic Approach

The lemmas and corollaries from the previous section give rise to Algorithm 1 (RowRank-
Profile) to compute the row rank profile of an input matrix A € K"*™.

The idea behind Algorithm 1 (RowRankProfile) is to use the criterion of Lemma 1 at
each step to find the first row that is linearly independent from all previously found rows.
The row index of the next linearly independent row is then added to P and the loop is
iterated. The matrices B and BAfQ are used for each index s. Note that once a row Al
is found to be dependent on some subset of the row rank profile [iy, ..., i,_1], then Al will
be dependent on [iy, .. .,is|. For this reason, once a row is examined, it is never reexamined.

Algorithm 1 RowRankProfile

Input: A € K™
Output: P = [iy,...,1,], the row rank profile of A
{B stores (A5)™" after each step}
{C stores (A)' A"}
{Note that if P =[] or Q = [], the submatrices they denote have a dimension of 0}
Initialize P, Q < [],
B,C «+ []e K™
s+ 1
for ¢ from 1 to m do
if t .= A"y — AYC # 0 then
Let j € =Q such that ¢;; # 0 be minimal
V= Ag, u = AE}, d .= AB’J]
Precompute vB and w = (d — vBu)™', extract Bu := CY;
ls 41, Js < J
P — [P7 is]’ Q <~ [Q?]S:I
B+ (Bu)w(vB) | —(Bu)w

Update B «

—w(vB) | w
Update C' similarly using Corollary (4)
s4s+1
end if
end for
return P

The overall cost of updating B for every increment of s is,

T

D (65° + O(s)) = 2" + O(r?)

s=1
The overall cost of updating BA”, for every increment of s is,

r 8)
> (8(m — s)s + O(m + 5)) = 4mr® — grd + O(mr +12)
s=1
Computing ¢ at a given iteration i with associated step s is an 2ms — s2 + O(m + s)
operation. In the worst case, the row rank profile of A will be the first r rows, and then
s=rforr+1<i<n. Socomputing ¢t has an overall cost of
T m 1

Z(Qms — 52+ 0(m +3s)) + Z (2mr —r? + O(m + 1)) = 2m*r — 2mr? + 57“3

s=1 i=r+1
The vector Bu is precomputed as columns j of C'; while the cost of computing vB at every
step s is 2s* + O(s). The overall cost of computing vB is

T

3257+ 0(s) = = + 00

The amortized cost of multiplying BA”, by each row of A is O(m|A|). Algorithm 1
(RowRankProfile) therefore has cost 2m?r + 2mr? + £r® + O(mr + r 4+ m| Al).

Example 1. At step s we have the augmented system

P P
AQ—ll AﬁQl—l
AP
o * k
[is] [is]
A AQf 1 A_‘Q—l
* %

10

After using Agj to zero the entries below it, we have

P-1
AQ,] * | % *
Py P
AQ—1 A_‘Q—l
P-1\—1 g P-1
AﬁQ—1 _AﬁQ—l(AQ_l) AﬁQ_l ° %
* | % %

Recall that blocks are left blank if they are necessarily 0. The entry e is the first nonzero
entry in the first nonzero row, giving indices is and js.

2.3 Useful Properties for a Randomized Algorithm

The idea in [4, 5] to achieve a randomized algorithm with a better runtime compared to
the deterministic Algorithm 1 (RowRankProfile) is to take a random linear combination
b € K™ of the columns of A € K®*™. Then, the first nonzero row in the Schur complement
Ao —Ag(AD) A, can be found with high probability by finding the first nonzero entry
in the single vector b — Ag(AZ)~'b".

Let b € K™ be sampled randomly and uniformly from the column space of A, i.e.,
b = Ag for some uniformly and randomly chosen g € K™*!. Consider the following system
and

AR | oAr, |

11

Then the transformation of b equivalent to the transformation of A_g through the
transformation in (2.2) is b — Ag(AB)~'b".

AB AP, br

(2.6)

0 A_.Q — AQ(AZ)_IALDQ b— AQ(AZ)_le

The following lemma and theorem are useful results from [4].

Lemma 5. Let P = [i1,...,1is] be a proper prefiz of the row rank profile of A. Then if

At -G (ag) T ATg, # 0 (27)
then . ; P
plis] _ A[éSL(AQj)*le—l #0 (2.8)

with probability (1 — z¢).

Proof. Let AESQ]i1 — A[SL(AZ:E)?A?&; # 0. There is only 1 possible value bl can
take within K for which b} = Al (af)~'bP-1. Therefore, with probability (1 —), if
Al AR (AL AP 0, then ol — AL (AT)"1pP £ 0. O

The following theorem follows from Lemma 5 and is paraphrased from [, Theorem 6].

Theorem 6. Let R = [iy,...,1i,] be the row rank profile of A and Q = [j1, ..., Jjr] be a list
of column indices such that Ag has generic rank profile. Let Rs and Q, denote the prefizes
of R and Q of length s, 1 < s <r. Then all r field elements

pli) — AL (AR R plia) AR AR2) Rl Al ARy 1R

are nonzero simultaneously with probability (1 — #)T

12

Algorithm 2 RandomRowRankProfile

Input: A € K™*™
Output: P = [iy,..., 1], the row rank profile of A
{B stores (AD)™" after each step}
{a stores (AD) 0" after each step}
{Note that if P =[] or Q = [], the submatrices they denote have a dimension of 0}
Choose g € K™ randomly and uniformly
Compute b := Ag
Initialize P, Q <[], B+ [] € K?0 x « [] € K1,
541
for ¢ from 1 to n do
if b — Adz # 0 then
v = Ag
Precompute vB
t:= A, —vBAP,
Let j € =Q such that t;; # 0 be minimal
u = AE], d:= AB.]]
Precompute Bu, vz and w := (d — vBu)™!

Update B « { B +_(iz(2g§1’3) I _(fz]u)w]
T+ (Bu)w(px) — (Bu)wbl!]
wblsl —woz

Update x + [
Is 1, Js <]
P« [Pa is]v Q — [Qa]@]
s s+1
end if
end for
return P

13

2.4 Monte Carlo Computation of the Row Rank Pro-
file

Algorithm 2 (RandomRowRankProfile) runs exactly the same as Algorithm 1 (RowRank-
Profile), except we precompute b := Ag and then, to find the next linearly independent
row in a Monte Carlo fashion, we iterate through the transformation b — Ag(A5)b” of the
single vector b instead of the transformation A,g — Ag(Ap) t A% of the entire matrix. A
considerable amount of computation is saved since the matrix (A7) 'A%, does not need
to be computed.

Theorem 7. Monte Carlo Algorithm 2 (RandomRowRankProfile) computes the row rank
profile P of a matriz A € K™™ with probability (1 — #)” The algorithm runs in mr? +

5r3 + O(mr + 12 + |A]).

Proof. The correctness of the algorithm follows from the lemmas. The probability follows
from Theorem 6. The time to compute AZ is 273 overall, and is the dominant cost in the
algorithm. From Lemma 2 and Corollary 3, the time to compute B and Bb” is

D (65° + O(s)) = 2" + O(r?).

s=1

The cost of computing AgBAfQ for a giyen step s is 2s% + O(s) operations for‘AgB,
and 2ms — 2s* + O(m + s) operations for AgBAfQ. Subtracting the result from Al is an
O(s) operation.

i(?ms +0(m+8)) =mr? +O(mr +r?)

s=1

While vB is precomputed as AgB , the cost of computing Bu at every step s is 2s% +
O(s). This gives the following overall cost for computing Bu:

r

S(252 + 0(s)) = 21 + O(r?).
3

s=1

Since ¢ iterates from 1 to n with no back tracking through the entire algorithm, and
since (AZ)_1 is precomputed, the algorithm will access each nonzero element of A at most
twice, while ignoring the zeroes. Thus, we have a total runtime of O(]A|) to compute each

plil — Agx.
So the total runtime of the algorithm is mr? + 53 + O(mr 4 r? + |A|). O

14

Example 2. At step s we have the augmented system:

P P P
AQfll A—'Qlfl b
AP-1 || pP-
B * * *
[is] [is] is
A b AS AR pli]
* * *
After reduction we have
P_ P- P
Ao’ Ao, b

Ao, —Ag (AT TAPG b — Ag , (AG)10P

P
Ag | x| * * pP-1
—1
% | % %
[] k []
% | % % *

Recall that x indicates a possible nonzero. The row index of the nonzero in b —

AQ_I(AZ__II)_IbP—l gives index iz, The column index j, is found by computing AESQ]_l —

15

A[SJI(AZ:)”A?@;. Note that there may still be nonzero rows before is that are missed

because their respective entries in b — Ag_, (Ag’l)Pt are zero.
-1

2.5 Handling Cases with Low Probability of correct-
ness

First note that the probability of correctness of Algorithm 2 (RandomRowRankProfile)
depends on the size of the field and rank of the input matrix. As such, there will be certain
cases where the algorithm is more likely to fail than succeed. For example if K = Z3 and A
has a rank of 4, then the probability that P is actually the row rank profile of A is 0.198.

The chance of correctness can be improved in two ways at the expense of runtime. Let
p be a positive integer parameter. The first method is to simply run the algorithm p times,
generating a new g € K™*! each time. We call this method MultiRun(A,p). The second
method is to generate p vectors for b instead of a single vector, and use them all in a single
run. Then, when checking if bl — Agx = 0, all p samples are checked. We call this method
MultiColumn(A,p).

MultiRun(A,p) Run RandomRowRankProfile p times. Return the lexicographically mini-
mal computed P that is of the longest length.

MultiColumn(A,p) Run RandomRowRankProfile with g € K”*?, checking that all p ele-
ments of a row give a nonzero before declaring the row linearly dependent. Return
P as computed this way.

We will show that algorithm MultiColumn(A,p) is the better approach. Algorithm
MultiColumn(A, p) runs faster and is more likely to produce the correct result compared
to MultiRun(A, p). Moreover, if a lower bound on the probability of correctness is desired,
a smaller lower bound on parameter p is required by MultiColumn(A,p) to ensure the
desired lower bound on the probability.

2.5.1 Improvement Through Multiple Runs

First consider Algorithm MultiRun(A, p).

16

Theorem 8. Let P be the result from Algorithm MultiRun(A,p). The probability that P
is the row rank profile of A is 1 — (1 —(1— #)T)p and the algorithm runs in p(mr? + 53 +
O(mr + 12+ |A|)) field operations.

Proof. The runtime is correct since the modification simply involves running RandomRow-
RankProfile p times. The correctness of the probability follows from the independence of
successive runs. Each run has a probability of correctness of (1 — #)T, from Theorem 7.

Thus each run, independently, has a probability of failure of 1 — (1 — #)7 Thus, the

probability that at least one of the p runs succeeds 1 — (1 — (1 — #)’")p. O

Given the probability of correctness in Theorem 8, it is interesting to find a lower bound
for p to ensure the probability of correctness of MultiRun(A, p) is at least 1/2. By setting
the probability of correctness to be 1/2, and solving for p, we obtain the following corollary.
Note that if the rank is not known, min(n,m) can be substituted for r since this can only
result in making p larger than necessary.

Corollary 9. If
-1

p>
log,(1 = (1= Zg)")

then Algorithm MultiRun(A, p) will produce the correct result with probability at least 1/2.

Example 3. Suppose that while running MultiRun(A,p), on 2 distinct runs ¢ and gz,
RandomRowRankProfile is running at some step s, and P is correct thus far. Let by, , by,
where 1 < q1,q2 < p, denote 2 distinct samples from the column space of A. These vectors
are the b vectors from trials ¢ and qz. Suppose by, — Ao, and by, — Agx,, are as follows

bfh - Ame = ’bQ2 - AQxQQ =

**%*OOOO|
**.OOOOO|

On trial q1, is = 4 will be identified, while on trial qs, iy will be misidentified as row
6, illustrating how the probability of correctness is increased - it is unlikely that several

17

samples will all be bad. However, the profile found in trial qo s necessarily going to be
erroneous, since no information is shared between 2 runs.

2.5.2 Improvement Through Multiple Column Samples

Now, consider Algorithm MultiColumn(A, p), running the algorithm with more vectors b,
i.e., let b € K™ rather than b € K**1,

Theorem 10. Algorithm MultiColumn(A,p) returns the correct result with probability
(1— (#)p)”. The running time of the algorithm is mr?+ (2p+ 2)r® + O(pmr+pr? 4+ p|A)
field operations.

Proof. The run time follows from the cost of updating r and computing Ag, which are
increased by a factor of p times greater than it was originally. The rest of the algorithm
has an identical runtime since we only create and update one instance of B, which has
the same size and complexity as in the original algorithm. The probability of correctness
follows from the independence of each column of b. From Lemma 5, the probability that
any given column of b has a false zero in row i is 1/#K. So by the independence of each
choice of column, the probability that all columns have false zeroes on a given row is
(1/#K)P. Thus the probability that the algorithm successfully returns the row rank profile
of Ais (1 — (#)p)r. O

Thus, as in Corollary 9, the probability of correctness is at least 1/2 if the following
lower bound for p holds. It can be derived by solving for p. As in Corollary 9, substitute
min(m,n) for r if the rank is not known, as this can only make the algorithm more likely
to succeed.

Corollary 11. If
—logy(1— (3)7)
log, (#K)
then Algorithm MultiColumn(A,p) will succeed with probability at least 1/2.

Note that the MultiColumn(A,p) is both faster and succeeds with higher probability
for a given p. Moreover, MultiColumn(A, p) has a smaller lower bound on p to guarantee a
certain probability of correctness. However, the MultiRun(A, p) is more readily parallelized,
since the runs can simply be run without requiring that different processes communicate
during execution

18

Example 4. Suppose, using MultiColumn(A,p), RandomRowRankProfile is running at
some step s, and P is correct thus far. Let by, by,, where 1 < qi,q2 < p denote 2 distinct
samples from the column space of A. These vectors are columns q; and gs of b. Suppose
bigi.qe] — AQT[g1,q0] 15 as follows

b[qwn] - Agx[QLCIQ] =

* ¥ % x 6 O O O
* ¥ 0 O O O OO

Note that by considering all samples simultaneously, 15 will be found to be 4 despite the
fact that column qs has a false zero at row 4. Since q; does not have a false zero, the row
will not be dismissed as linearly dependent. Using multiple samples to mutually confirm
whether a row is linearly dependent allows certain samples to occasionally give poor results
without compromising the output of the algorithm, ensuring that the result is more likely
to be correct.

2.5.3 Comparing the Methods of Improvement

For a fixed p, the MultiColumn(A, p) has a better runtime than MultiRun(A,p). Further-
more, if a lower bound on the probability of correctness is desired, the lower bound on p
given by Corollary 11 for MultiColumn(A, p) is considerably smaller than the bound given
by Corollary 9 for MultiRun(A,p). Thus, MultiColumn(A,p) is the better approach for
increasing the probability of correctness of Algorithm 2 (RandomRowRankProfile).

Example 5. The Table below illustrates the lower bound on p required for each method
to guarantee that Algorithm 2 (RandomRowRankProfile) succeeds with probability at least
1/2 for various matrices A.

19

Field K | rank(A) | Correctness Prob. || MultiRun bound | MultiColumn bound

Zo 5 0.0312 22 3
Z, 11 0.00049 1420 5
Zs 5 0.1317 5 2
Zs 11 0.0116 60 3
Zio1 120 0.3030 2 2
Zoior 200 0.1367 5 2
T 120 0.4505 2 2
Zs1 200 0.2648 3 2

Note that the lower bound on p is consistently much smaller if using MultiColumn(A, p)
than if using MultiRun(A,p). This is because the correctness of MultiRun(A, p) depends
on generating some correct vector g € K™ after p trials, while MultiColumn(A,p) can
use information from all p samples to better determine linear independence of a row.

20

Chapter 3

Row Rank Profile Certification

We now present a Monte Carlo certificate to verify the accuracy of a given row rank profile
P. The algorithm runs in 4r% + O(r + |A|). If the result is FALSE, then P is not the
row rank profile of A. If P is the row rank profile of A, the algorithm returns TRUE with
certainty. If P is not the row rank profile of A, the probability that TRUE is incorrectly
reported is bounded by 2/#K.

3.1 Inverse Decomposition

The following Lemma, from [5, Section 7.1], is useful for storing a decomposition of the
inverse of A7 and all its leading submatrices. If A7 has generic rank profile, then (A5) ™
has a unique decomposition (A5)™! = (R,L,)- - (RiLy).

Lemma 12. Let Ag have generic rank profile and r = rank(A). For any s such that
1 < s <r, the inverse of the leading s X s submalrix of Ag 1s the leading s X s submaltriz
of the product of unique factors (RsLs)(Rs—1Ls—1)--- (R1L1), where

c err’Li _ c KT

Irfi [7’77:
Thus all 7 of the inverses of the leading submatrices of A7 can be stored in ©(r?) space.

21

3.2 Monte Carlo Certificate of Row Rank Profile

Certification requires the input matrix A € K", the claimed solution P and a certificate
(Q,((Lr, Ry), (Ly—1, Rr1),- -+, (L1, Ry))), where P and Q are lists of row and column in-
dices respectively, and (R,., L,.),- -+ , (Ry, L1) claimed to be the decomposition of the inverse
of AL. The correctness of P as the row rank profile of A can be certified using Algorithm 3
(RandomRowProfileCertificate). The algorithm proceeds in two steps. First, certify
that A7 is invertible, and that the inverse is (R,L,)--- (RiLy1). It then follows that A7
has generic rank profile. Thus P is at least a set of linearly independent rows, required of
the row rank profile, so failing this test causes FALSE to be reported. Second, Algorithm
2 (RandomRowRankProfile) is modified to run using already computed values for P and
Q and (Ag)’1 to test the claimed linear dependence of rows in —P. If, at any point, the
algorithm finds a row index ¢ € =P that should be in P, RandomRowProfileCertificate
terminates and FALSE is reported since the row rank profile must be lexicographically min-
imal and have length rank(A). If all tests are passed, then RandomRowProfileCertificate
returns TRUE. However if P is not the row rank profile of A, then the algorithm will in-
correctly return TRUE with probability at most 2/#K.

The analysis of Algorithm 3 (RandomRowProfileCertificate) requires some lemmas
to establish the probability of correctness.

Given AS and (R.L,)(R,—1L,—1)---(R1Ly), we can certify that the decomposition
(RrLy)(Ry—1Ly—1) -+ (R1Ly) is the inverse of A} in a Monte Carlo fashion as follows:
for some randomly and uniformly chosen ¢ € K™, if BAZc # ¢, then B is not the inverse
of Ag. The following Lemma is an adaptation of Frievalds’ algorithm for certifying the
product of 2 matrices.

Lemma 13. Let AL, B := (R,L,)--- (R Ly) € K" and ¢ € K™ be chosen uniformly and
randomly. If AZ and its leading submatrices are invertible, then BAZC = c with certainty.
If B is not the inverse of AG, then BADc = ¢ with probability at most 1/#K.

Proof. Let BAGc = c. First consider the case when B = (A5)™!. Then BAZc = ¢ with
certainty. So we need to consider the case when B # (A5)~'. So (BAL — I)c = 0, but
(BAL—1I) # 0. Asin Lemma 5, (BAS —I)llc = 0, for some nonzero row i, with probability
1/#K. Since BAZ — I # 0, there must be at least one row of BAS — I which is nonzero.
Then BAZDc = ¢ with probability 1/#K. So when B # (A7)~!, then BADc = ¢ with
probability at most 1/#K. Moreover, if AGc # ¢ then B # (AL)™" with certainty. O

Note that if there are p nonzero, linearly independent rows in (R, L,) - - - (RlLl)AS —1,
then (R,L,)---(RiL1)AGc = ¢ with probability (1/#K)?, which is much smaller than

22

Algorithm 3 RandomRowProfileCertificate

Input: A e K™ P, Q and ((R,,L,),(R._1,L,_1), -+, (R, L))
Output: FALSE if P is shown to be incorrect, TRUE otherwise

{Ps and Qy are prefixes of length s of P and Q}

{x stores (A5)~1bP* for each step}

Choose ¢ € K™! randomly and uniformly

if ((RTa Lr)a (Rr—h Lr—1)7 T (Rla Ll))AgC 7é ¢ then

return FALSE

end if

Choose g € K™*! randomly and uniformly

Compute b := Ag

Initialize z + [] € K®!

s+ 0
for 7 from 1 to n do
if i € P then
s+ s+1
Update x + R L, [bﬁ] }

else if bl — A[gsx # 0 then
return FALSE
end if
end for
return TRUE

23

1/#K. Thus the estimate in Lemma 13 is a worst case upper bound. Also note that if
(RyLy) -+ (RiLy) = (A)™", then A” has full row rank, and rank(A)> |P|.

Lemma 14. Assume (R,L,)---(RiL1) = (A5)~'. If P is the rank profile of A then
Algorithm 3 (RowRankProfileCertificate) returns TRUE.

We now try to bound the probability that an incorrect P misses detection in the
algorithm.

Lemma 15. Assume (R,L,)---(RiL1) = (AZ)™" and let b € K™ be uniformly and
randomly sampled from the column space of A. Suppose there exists an i € =P such that
A s linearly independent of rows AP, where s is such that i, < i < i,1 with i =0 and
ipi1 =n+1. Then bl — AE]QS (A%)17 = 0 with probability 1/#K.

Proof. Note that if ¢ € =P is the index of a row that is linearly independent from the
rows in AP+, then the row AE]QS - Ags(Agi)*lAfSQS # 0. Thus, as with Lemma 5, the
probability that bl — AL, (AT)=1pP = 0 is 1/#K O

Lemma 16. Assume (R, L,)---(R1Ly) = (AZ)~" but P is not the rank profile of A. Then
there exists an i ¢ P such that row A is linearly independent of rows APs.

We now establish the runtime and probability of correctness of Algorithm 3 (Random-
RowProfileCertificate) using Lemmas 13 and 15. Recall that the algorithm takes as in-
put a matrix A € K" a claimed solution P and a certificate Q, (R, L,.),- -+ , (R1, L1))),
with the claim that A% has full rank and generic rank profile, that (R, L,) - -- (R1L;) is its
inverse, that P is lexicographically minimal and of maximal length.

Theorem 17. Monte Carlo Algorithm 3 (RandomRowProfileCertificate) has the fol-
lowing properties:

o [f FALSE is returned, then P is not the row rank profile of A.

e [f P is the row rank profile of A, TRUFE returned.

e [f P is not the row rank profile of A, then with probability at most 2/#K, TRUE is

incorrectly returned.

The algorithm runs in 4r* + O(r + |A|) field operations from K.

24

Proof. The correctness of Algorithm 3 (RowRankProfileCertificate) and the probability
that TRUE is incorrectly returned follows from Lemmas 13, 14, 15 and 16. If B # Ag, the
probability that the algorithm will fail to detect this is at most 1/#K. The probability that
P incorrectly appears to be the correct row rank profile of A by the algorithm is 1/#K.
Combining these gives a total probability of having a false positive returned bounded by
2/#K. Note that if P is the row rank profile, then it must pass the tests.

We now establish the runtime. First, the vector (L,R,)--- (L1 R1)ADc is computed.
O(|AZ)) field operations from K are required to compute AGc. The subsequent 7 sets of
two products require 4s — 4 field operations for each s such that 1 < s < r, since the
sparsity structure of Ly and Rj is exploited. This gives a time of

O(IAB)) + 3" (4s — 4) = 2% + O(r + | AD)).
s=1

Second, Algorithm 3 (RowRankProfileCertificate) requires r updates to z = Bb” each
requiring 4s — 2 field operations from K for each step s from 1 to r. This gives a time of

T

D (4s—2) =2+ O(r).

s=1

Similarly, there are n—1 tests for each row in =P. Running all of these tests takes O(|A™7])
since it involves n — r dot products with the rows in —P.

This gives a total runtime of 4r? + O(r + |A|). O

3.3 Handling Cases with Low Probability of Correct-
ness

Similar to Algorithm 2 (RandomRowRankProfile), the probability of correctness of Algo-
rithm 3 (RandomRowProfileCertificate) depends on the size of K. As such, a sufficiently
small field gives a high probability of incorrectly certifying that the given list P is the row
rank profile. As in the case of Algorithm 2 (RandomRowRankProfile) we can increase the
likelihood of correctness by running the algorithm p times, or by taking p samples from the
column space of A, i.e., g € K™P = b := Ag € K"*P_ In either case, we show in the follow-
ing 2 theorems that the probability TRUE is incorrectly returned is bounded by 2/(#K)?.
Both methods result in the same cost increase as well. Using multiple runs, the runtime is

25

increased by a factor of p over the cost the original certification, i.e., p(4r* + O(r + |A])).
Similarly, if using one run with several samples, the cost of computing BAZC, updating

x and multiplication AE]Qx will increase by a factor of p more giving a total runtime of

p(4r? + O(r + |A])).

Theorem 18. [f MultiRun is used to run Algorithm 3 (RandomRowProfileCertificate)
p times, then the probability that the algorithm incorrectly reports that P is the row rank
profile of A p times is at most 2/(#K)P. The runtime is p(4r? + O(r + | A])).

Proof. For MultiRun to report a false positive p times, then all tests must give false positives
independently. Both of the tests fail to detect an incorrect profile with probability 1/#K
for each run. Thus, ecach test in the algorithm will incorrectly return TRUE p times with
probability 1/(#K)P. This gives an overall probability 2/(#K)P. The runtime is simply p
times the runtime of Algorithm 3 (RandomRowProfileCertificate). U

Theorem 19. If MultiColumn is used to run Algorithm 3 (RandomRowProfileCertsfi-
cate) with p independent samples, i.e. letting c € K™ and g € K™*P then the probability
that the algorithm incorrectly reports that P is the row rank profile of A is at most 2 /(#K)?.
The runtime is p(4r? + O(r + |A])).

Proof. Each step of Algorithm 3 (RandomRowProfileCertificate) would have to report a
false positive p times before moving on to the next step. The probability of this happening
for any given step is at most (1/#K)? since each report would be independent. Thus the
overall probability that TRUE is incorrectly returned is 2/(#K)?. Moreover, the cost of
the algorithm comes from updating = and testing bl — Ags # 0. These updates take p
times longer than if ¢ and = were individual vectors, so the runtime is increased by a factor
of p, giving the total runtime of p(4r? + O(r + |A])). O

Note that MultiRun and MultiColumn both yield identical runtimes and probabilities of
correctness. Knowing this, we can derive the a bound for p for either method to guarantee
that the probability that the algorithm incorrectly returns TRUE when P # R is at most
1/2. This bound can be derived by solving for p.

Corollary 20. Suppose P is not the row rank profile of A. If
2
log,(K)

then the algorithm will incorrectly certify that P is the row rank profile of A with probability
at most 1/2.

p >

26

Chapter 4

Conclusion and Future Work

We've shown two algorithms that operate over a finite field K. The algorithms can
work on any field F by selecting a sufficiently large subset K C F to use. Algorithm 2
(RandomRowRankProfile) and Algorithm 3 (RandomRowProfileCertificate) work for
any field of numbers. Algorithm 2 (RandomRowRankProfile) computes the row rank profile
of A € K™™ in a Monte Carlo fashion in mr?+ 513+ O(mr+r?+|A|) field operations from
K, where r = rank(A) and |A| is the number of nonzero entries in A. With probability at
least (1 — #)’", the list returned by RandomRowRankProfile is the row rank profile of A.
As compared to ImprovedRankProfile in [!], RandomRowRankProfile has no logarithmic
factors in the run time and does not require field extensions to increase the likelihood
of correctness. It would be interesting to improve RandomRowRankProfile to reduce the
runtime’s dependence on m.

Algorithm 3 (RandomRowProfileCertificate) can certify that a claimed row profile
P of A is correct in a Monte Carlo fashion in 412 + O(r + | A]) field operations from K.

27

Bibliography

[1] M. Nehring E. Kaltofen and B. Saunders. Quadratic-time certificates in linear algebra.
In Proc. Int’l. Symp. on Symbolic and Algebraic Computation: ISSAC’11, pages 171—
176. ACM Press, New York, 2011.

[2] R. Freivalds. Probabilistic machines can use less running time. In IFIP Congress,
volume 839, page 842, 1977.

[3] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.

Journal of the ACM, 27:701-717, 1980.

[4] A. Storjohan and S. Yang. Linear independence oracles and applications to rectan-
gular and low rank linear systems. In Proc. Int’l. Symp. on Symbolic and Algebraic
Computation: ISSAC’14. ACM Press, New York, 2014.

[5] S. Yang. Algorithms for fast linear system solving and rank profile computation. Mas-
ter’s thesis, University of Waterloo, 2014.

[6] R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. EUROSAM 79,
pages 216226, Marseille, 1979.

28

