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Abstract

Analysis of historical data spanning the last 60 years reveals a concerning increase in the
frequency and severity of extreme catastrophic losses. For instance, an analysis of aggregate loss
values from North America in 2005 revealed an estimated loss exceeding the exhaustion threshold,
raising concerns about possible insurer bankruptcies. Hurricane Katrina’s devastating impact on
the United States, with $96.8 billion in property damages, $4.03 billion in crop damages, and
1,451 weather-related fatalities, demonstrated the harsh reality. This alarming trend has given
rise to new challenges for insurers and reinsurers, necessitating the development of urgent and
innovative loss-layering strategies. To address this pressing issue, we present an innovative
loss-layering approach comprising two interwoven steps to offer a compelling solution.

Loss layering offers insurers an integrated framework that allows them to retain specific loss
layers while ceding higher layers to reinsurers or solidarity agencies. Our approach then begins
with classifying regional losses into “near maximum’” and “near minimum” values. Subsequently,
the approach allocates the layers, namely the attachment and exhaustion thresholds, by employing
non-linear regression for the near maximum and minimum loss values. After the loss-layering,
this project provides respective management instruments for each layer to guide insurers in further
adaptation planning.

This paper represents pioneering efforts in employing the approximation of the second deriva-
tive of a stochastic process for loss-layering, encompassing all losses rather than solely focusing
on the tail of the loss distributions. Categorizing regional losses into distinct layers allows insur-
ers to strategically allocate assets, diversify risk, and provide higher and better coverage levels
for catastrophe perils, benefiting policyholders. The loss-layering framework paves the way for
effective responses to evolving climate patterns and severe weather events, bolstering insurers’
adaptation, and extending tailored coverage against catastrophic losses.
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Chapter 1

Introduction

1.1 Climate Change Crisis in North America

In recent two decades, the global scenario has undergone an extraordinary transformation, marked
by a growing and intricate interaction between climate change and the rise of natural disasters
[16]. This period is characterized by unparalleled risks associated with these natural hazards,
necessitating urgent and effective measures for managing these risks. Discussing these hazards
has extended well beyond scientific inquiry, influencing various aspects of society, natural envi-
ronment, and more importantly economics [32]. The consequences of climate change are evident
in the alarming increase in climate-related disasters which are occurring more frequently and with
greater severity, emphasizing the importance of strong risk management strategies for proactive
approaches to adapt and mitigate the escalating losses caused by these disasters [5][8].

As the third-largest continent on Earth, North America’s diverse ecosystems and economies
have been increasingly strained by the consequences of a warming planet. One of the most
noticeable manifestations of climate change in North America has been the rise in temperatures.
Over the past two decades, average temperatures have steadily increased, resulting in more fre-
quent and intense heat waves across the continent. For example, California and Quebec have
experienced record-breaking heat, exacerbating the effects and putting vulnerable populations at
risk. The prolonged heat waves have strained energy resources, increased demand for cooling,
and heightened health risks, emphasizing the urgent need for adaptive measures and sustainable
urban planning [9][45][44]. Critical to regulating the global climate system, the Arctic region
has undergone rapid and unprecedented changes in the past two decades. The melting of Arctic
ice due to rising temperatures has accelerated, leading to rising sea levels that threaten coastal
communities across North America. Coastal cities and Canada’s Maritime provinces, such as



Prince Edward Island, have witnessed increased flooding and erosion, challenging infrastructure
resilience and requiring substantial investments in adaptation strategies [9][46]. The frequency
and severity of extreme weather events have become a defining feature of the climate change
crisis in North America. Hurricanes, wildfires, droughts, and flooding have struck with alarming
regularity, causing devastating economic losses, displacement, and loss of life. The severe hurri-
canes in the past two decades highlighted the vulnerability of Gulf and Atlantic coastal regions,
while unprecedented wildfires in California and Canada’s western provinces have destroyed vast
swathes of land and led to hazardous air quality levels [62][39][10]. The climate change crisis
has environmental ramifications and far-reaching social and economic consequences. Dispro-
portionate impacts on marginalized communities, including Indigenous populations, low-income
neighborhoods, and people of color, have highlighted the intersectionality of climate change and
social justice. Displacement due to extreme weather events, loss of livelihoods in agriculture and
fisheries, and increased healthcare costs due to heat-related illnesses are straining communities
and exacerbating existing inequalities [14].

Hence, at this crucial time, there is an immediate requirement to develop and implement
policies, representing a pivotal moment in the global efforts to reduce climate-related disaster
risks. This urgency is emphasized by the fact that governments, insurers, and financial institutions
all bear a substantial burden due to these risks. The effectiveness of adaptation policies in shaping
climate disaster risk management is becoming increasingly evident, aligning with fundamental
principles of risk governance and building resilience.

1.2 Effect of Climate Change on Insurance Industry

The climate change crisis casts a large shadow over the insurance and reinsurance industries,
ushering in unprecedented challenges and complex risk assessment. As the planet’s climate
evolves, the industry grapples with a shifting landscape of natural disasters, extreme weather
events, and mounting financial liabilities. As previously mentioned, climate change has magnified
the frequency and severity of natural disasters, propelling the insurance industry into a new
territory. The increase in extreme weather events, such as hurricanes, wildfires, floods, and
droughts, has led to a surge in insurance claims, placing immense strain on insurers’ resources [38].
Furthermore, due to fast changing frequency and severity of weather-related events, insurance
industry grapples with the need to recalibrate their risk models. As a result, insurers face the
challenge of accurately pricing policies to reflect the new normal of climate-related risks while
ensuring their financial sustainability [1].

Amidst these challenges, the insurance industry is responding with innovative strategies to
build resilience. Insurance enhances financial resilience and serves as a catalyst for solutions
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that promote social and environmental sustainability. Within this context, the insurance industry,
encompassing roles as risk managers, carriers, and investors, holds the potential to contribute
significantly to sustainable development. As an essential player in risk management, the insurance
sector is central in addressing the challenges posed by climate-related disasters. Insurers are
exploring advanced technologies such as satellite imagery, aerial drones, and artificial intelligence
to assess risks and monitor claims more effectively [2][33].

However, the expanding scope of climate-related risks has led to an uninsurability for the in-
surance industry. Properties that were once insurable are now facing uncertainty due to heightened
exposure to climate hazards. For example, coastal properties prone to storm surges increasingly
face challenges in securing affordable coverage. This has significant implications for homeown-
ers, real estate markets, and financial institutions, potentially leading to decreased property values
and hindering economic growth [6]. Therefore, a critical evaluation of the industry’s approach
reveals limitations in coverage for policyholders for various climate and weather-related perils,
exposing one of the intricate obstacles within this landscape [43].

1.3 Problem of Classifying Climate and Weather-Related Dis-
asters

As we delve deeper, one of the reasons of this obstacle is the classification of loss, a critical
aspect of loss layering. Disaster classification based on severity (incurred loss) categorizes
economic losses or damages from particular events or situations [7]. The task of classifying
climate and weather-related losses based on severity is not an easy task. If the classification
model is poorly constructed, then it can lead to wrong estimations of the potential impact of
climate and weather-related disasters, subsequently affecting risk assessment models. Disasters
might be underestimated, meaning their potential impact would not be fully recognized, leading
to insufficient reserves by the insurer and less coverage for policyholders. Conversely, hazards
might be overestimated, resulting in excessive reserves for the insurer and high premiums for
policyholders, which subsequently, leads to a low number of insurance policies that offers coverage
for climate and weather-related perils.

1.4 Loss Layering in Insurance

Risk or loss layers, or risk-layering, originates from the insurance sector and it is one of important
aspects in risk management and governance. It represents a form of non-proportional reinsurance,



a mechanism for transferring risk grounded in loss retention. In this framework, an initial insurer
offers coverage up to a predetermined threshold. Beyond this point, a sequence of risk transfers
comes into play utilizing the excess of loss strategy. Essentially, the primary insurer retains
responsibility for the insured risk until a pre-agreed limit is reached. When this limit is reached,
which is often referred to as the attachment threshold, the risk shifts to the following insurance
entity in line. This subsequent insurer offers coverage up to another designated limit, known as
the the exhaustion threshold. Following this principle, a cascade of excess-of-loss insurance is
constructed, with each layer of risk being managed by a separate insurance provider. If losses
exceed the exhaustion threshold, it would strain the initial insurer financially or may even lead
to insolvency and bankruptcy. This intricate arrangement ultimately facilitates the attainment
of substantial insurance coverage for policyholders [21]. Risk layers are applied across various
disciplines [40], including agricultural insurance risk management, medical research, social
sciences, and environmental science. For instance, medical studies use risk layers to analyze the
cumulative effects of risk factors on conditions like diabetes [48], asthma [56], or the effect of
gambling on public health [49]. In insurance loss layering is a great tool since it facilitates the
expansion of insurers’ capacity to underwrite catastrophic risks [21]. For example, loss layering
can be extended to encompass both direct and indirect effects and presents a holistic approach
to address intricate challenges in disaster risk management and sustainable development [21].
However, there is no systematic approach on how the indirect risks affect the direct risks, and with
that, how both the direct and indirect risks affect the loss layering as a whole. Furthermore, loss
layering could be used to explore the integration of ambiguity into a risk-layer framework, focusing
on risk insurance and mitigation and offering a closed-form solution to assess the implications of
ambiguity on the adoption of insurance and risk mitigation using a parametric approach over the
tail of loss distribution and using value at risk (VaR) to construct the attachment and exhaustion
thresholds [4]. However, the time-dependency of the thresholds are removed due to parametric
nature of the approach.

1.5 Classification and Loss Layering Method

Classifying losses is considered the initial step of loss layering, allowing insurers to categorize
and understand the various risk components. With a robust classification framework, however,
the process of loss layering can become significantly more straightforward, as the lack of clear
categorization may hinder the accurate allocation of loss layers. Another major challenge is the
limited amount of available data. This makes it difficult to rely solely on the highest and lowest loss
values within small incremental periods to create our regression models. To overcome this issue,
this paper used a technique called second-order differencing. This method allows us to categorize



data points in a systematic way, removing the need for subjective judgment in selecting the data.
Importantly, this approach is supported by mathematical reasoning. Furthermore, catastrophic
losses are dynamic and can evolve, especially disasters that are by-products of changes in climate.
Therefore, insurers must consistently adjust the loss layers over time. As a result, an appropriate
loss classification, with proper mathematical rigor, is an excellent tool for creating effective loss
layering strategies. By categorizing various types of catastrophic events based on their historical
severity, insurers can set specific thresholds that outline the boundaries between different layers
of risk.

Henceforth, to overcome the obstacle of insufficient coverage for policyholders, this paper
seeks to construct a model that facilitates determining acceptable loss levels for insurers amidst
the ongoing trend of climate-related hazards. The aim is to simplify this complex issue, assisting
insurers and policymakers in bolstering their ability to underwrite more policies that will provide
coverage for catastrophe perils.

To do so, this paper offers two approaches, where each approach has two interconnected steps
for creating loss layers. The first approach uses the aggregated total loss values and the second
approach uses the cumulative probabilities of the aggregated total loss values. Both approaches
aim to, first, classify loss values into two categories, namely, the “near minimum” and ‘“near
maximum’” loss values, and then use the two categorizes of losses to construct the attachment
and exhaustion thresholds. After setting the thresholds, we can construct the loss layers, namely
the low-medium, medium-high and high loss layers.

Initially, we began by applying a second-order difference to the loss values, and with that,
we assessed the curvature of this distribution across different time segments. If the sign of the
second-order for a time segment was negative, then this segment would be a concave segment.
However, if the sign of the second-order difference was positive, then this segment would be
convex segment. We classified losses that belonged to a concave segment to be near maximum
losses and those that belonged to a convex segment to be near minimum losses.

However, we noticed that the actual loss values can become very large, without a definitive
upper boundary. Therefore, we used empirical cumulative probability function (ECDF) to nor-
malize the loss values, with the upper boundary of 1 (since ECDF takes probability values). In
similar fashion, we applied a second-order difference to cumulative probabilities across different
time segments. This analysis allows us to classify the cumulative probabilities into distinct near
maximum and near minimum categories, which are then mapped back to their corresponding
actual loss values. We can accomplish this task, as there is a one-to-one correspondence between
the loss and the empirical cumulative probability values, and since there this is the case, we can
use the same classification of probabilities for the losses.

This classification process is the foundation for establishing a time-dependent framework
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(thresholds) that effectively partitions the loss spectrum into two discernible categories. Follow-
ing this classification, we use a combination of log-transformed losses within each designated
category and a linear regression approach to establish the two layers. The initial layer, constructed
through the regression method by calculating the average (expected) value of near minimum loss
values, represented as the attachment threshold, will give the low-medium loss layer. Following
that, a similar process was employed to establish the second layer, utilizing regression model on
the near maximum loss values to construct the exhaustion threshold, giving us the medium-high
loss layer. The losses above the exhaustion threshold will be considered the high loss layer. After
constructing the layer, this paper provides a lists of possible financial mechanisms that can help
the insurer to properly plan for future drastic natural hazards.

This methodology hopes to surpass the conventional approach by incorporating direct and
indirect risks (total losses). By using the second-order difference assessment of curvature to
classify loss values, using both the loss and cumulative probability space, this method aptly cap-
tures the complex dynamics of loss behavior in simple mathematical formulations. This process
enables insurers to tailor their risk allocation and reinsurance structures to match the severity
of each classified event, ensuring a robust and adaptable framework for managing catastrophic
risks. In essence, the process of classifying losses empowers insurers to make informed decisions
when designing their loss layering strategies. This innovative approach, offers a potent solution to
enhance global risk management strategies, particularly aligning with goals such as Sustainable
Development and Disaster Risk Reduction frameworks.

1.6 Second-order Difference

In section 1.5, we mentioned utilizing the second-order difference for the classification task.
The central second-order difference is a mathematical concept for analyzing time series data.
It involves calculating the difference between consecutive data points in a time series and then
computing the difference again on the resulting sequence of differences. This technique is
beneficial for identifying patterns, trends, or changes in the rate of change within a time series.
It can help uncover more subtle insights into the underlying information of the data and assist
in various applications, such as detecting turning points or fluctuations in a time-dependent
phenomenon. The definition of the central second-order difference for a time-dependent loss
vector x is given as following.

Definition 1.6.1 (Second-order Difference of Loss). Let {x;} denote the sequence of loss values

at different time points ¢ = 1, 2, ..., 60. The central finite difference of the loss at time ¢, denoted

d2

as d;;’ ~ %/, is defined as:

ﬁ;/ =X+l — 2Xt + Xi—1 (1601)
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where x;41 represents the loss at time ¢ + 1, x; represents the loss at time 7, and x;_; represents the
loss at time 7 — 1. Evaluating the second-order difference for all loss values through time will give
us a vector £”. In this formula, x; represents the central second-order difference of the vector x at
time ¢. It is calculated by subtracting twice the value of x; from the sum of its adjacent values x;
and x;_1. It considers the differences between three consecutive points in the vector, or a segment
within a vector, providing insights into the rate of change of the original data [54][58][57].

For the boundaries of the second-order difference, at ¢t = 1, at the initial time index in time,
we have
R =x0-2x1+x2
A reasonable assumption, based on Neumann boundary condition [51] is to let £ = £J. Then
we will have
X0 =3x1 —3x3 +x3

Substituting the new term for xo into £]" will give us

al’

X =x1—2x2+x3
which is the forward difference scheme.

At t = 60, at the initial time index in time, we have

ol

Xgo = X59 — 2x60 + X61

4

A reasonable assumption (based on Neumann boundary condition) is to let X7y = £,
will have

Then we

X61 = 3x60 — 3Ps59 + X583
Substituting the new term for x¢; into £¢, will give us

)?go = X0 — 2X59 + X58
which is the backward difference scheme.

This central second-order difference operation helps to capture information about the acceler-
ation or curvature of the time series data. Please see proof of the second-order difference schemes
at Appendix A.1.

1.7 Regression Modelling

In Section 1.5, we mentioned utilizing regression modelling for constructing the attachment and
exhaustion thresholds. The following is a summary of how these models are constructed, and the
full detail of their usage will be shown in the methodology Chapter 2.
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1.7.1 Linear Regression

Linear regression is a statistical method used to model the relationship between a dependent
variable and one or more independent variables by fitting a linear equation to the observed data.
Linear regression aims to find the best-fitting straight line (or hyperplane in higher dimensions)
that minimizes the difference between the observed data points and the predicted values given by
the linear equation. The fitted line represents the expected value of the dependent variable for
a given unit change in the independent variable. Mathematically, for a simple linear regression
model with one independent variable x and a dependent variable y, the fitted line can be expressed
as

y=PBo+pPix+e (1.7.1.1)

where, y is the target variable (actual value mapped from x), x is the independent variable,
Bo is the intercept term, B is the coefficient associated with the independent variable x, and €
represents the error term which is normally distributed with a mean of 0 and standard deviation
o (e ~ Norm(0,0)). Since the fitted value y includes an error term, then the fitted line equation
can be written as

y=pBo+pbix (1.7.1.2)
where y is an approximation of the function y. We can further write that

Elylx] = Bo+ Bix (1.7.1.3)

since the fitted value represents the expected value of the dependent variable y for a given unit
change in the independent variable x [22].

1.7.2 Polynomial Regression

Similarly, the polynomial regression extends linear regression by using higher powers of the
independent variable to model complex non-linear relationships. The model equation is

§=Bo+Prix +Pox” + ...+ fux" (1.7.2.1)

where y is the approximation of the target variable, x is the independent variable, n is the degree
of the polynomial, By, 81, ..., B, are the coeflicients [22].



1.7.3 Linear Regression Models with Logarithmic Transformations

In log-transform of dependent variable regression [22], the dependent variable y is transformed
using a logarithmic function before performing regression analysis. The model can be represented
as

Iny = fBo + Bixx (1.7.3.1)

where Hl—; is the natural logarithm of the approximation of y, the target variable. We an use

exponential to get y as
§ = ePorhx (1.73.2)

1.7.4 Solving for Regression Models

Solving regression models involves finding the optimal coefficients, S, that best represent the
relationship between variables y and x. The least squares method is a central concept aiming to
minimize the sum of squared differences between observed and predicted values. This method
leads to the formulation of Normal equations, which provide a system of equations to solve for
the coefficients directly. To accomplish this task we can use the 1m() function in R software [22].

1.7.5 Goodness of Fit and Significance

The following measures provide valuable insights into the quality, significance, and complexity
of regression models, helping researchers choose the most appropriate model for their data [22].

Coefficient of Determination - R>

R? is a statistical measure representing the proportion of the variance in the dependent variable
explained by the independent variables in a regression model. It quantifies the model’s good-
ness of fit to the observed data, ranging from O — 1, where higher values indicate a better fit.
Mathematically, for linear regression, we can evaluate R? as

, _ Variation Explained 2 (yi— 9i)?
Total Variation Y (yi—y)?

(1.7.5.1)



P-value

The p-value is a measure used to assess the statistical significance of the relationship between
independent variables and the dependent variable in a regression model. It indicates the proba-
bility of observing the obtained results (or more extreme results) if the null hypothesis is true. A
small p-value (typically less than 0.05) suggests the relationship is statistically significant.

Akaike Information Criterion - AIC

AIC is amodel selection criterion that balances the goodness of fit of a model with its complexity.
It penalizes models with a larger number of parameters to prevent overfitting. AIC aims to find
the model that best explains the data while avoiding unnecessary complexity. AIC is given as

AIC = =2log (L) + 2k (1.7.5.2)

where L is the likelihood of the model and & is the number of parameters. In the case of AIC,
a smaller value is preferred. A lower AIC suggests that the model fits the data well while using
fewer parameters, which reduces the risk of overfitting and promotes model simplicity.

Bayesian Information Criterion - BIC

Similar to AIC, BIC is another model selection criterion that penalizes complex models. BIC
places a stronger penalty on additional parameters, making it more stringent in model selection.
BIC is given as

BIC = -2log (L) + klog (n) (1.7.5.3)

where n is the number of observations. Analogous to AIC, a smaller BIC value is preferred.
A smaller BIC indicates that the model fits the data well, balancing goodness of fit and model
complexity. However, BIC penalizes model complexity more strongly than AIC, making it more
inclined towards simpler models.

1.8 Financial Mechanisms for Loss Layers

Currently, there are strategies available for insurers to prepare for each loss layer. These strate-
gies are more appropriate for the North America region, however, they could be used in other
geographical regions.
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For the low-medium loss layer (losses until attachment threshold), this paper suggests strate-
gies that mainly focus on investing in structural improvements and increasing financial reserves
through premiums and reinvesting of these premiums. However, cost-effective risk reduction
techniques become more challenging as loss values escalate to higher layers. Therefore, for
the medium-high loss layers, insurers must explore options such as public and donor support or
publicly backed insurance (through solidarity) or risk transfer mechanisms (through reinsurance)
[37]. To bolster an insurer’s resilience in such scenarios, exploring the various risk financing
approaches available is prudent. For example, they can effectively leverage mechanisms like gov-
ernment and humanitarian aid, savings, credit, informal risk sharing, and alternative risk-transfer
instruments to finance recovery.

Insurers can implement diverse strategies in the context of high loss layers, including reliance
on government support mechanisms like guarantees, bailouts, and contributions from private
and public entities. Government backing is a stabilizing force, reinforcing insurers’ capacity to
manage substantial losses effectively [23][30]. Challenges intensify in small and highly exposed
countries as governments encounter post-disaster fiscal constraints, reducing their ability to sup-
port private and public insurers to reach their obligations to the policyholders. However, in these
circumstances, international assistance emerges as a lifeline from a collective front comprising
individuals, non-governmental organizations (NGOs), and governments in the global community
[3]. Leveraging government guarantees and bailouts, insurers can address losses exceeding the
exhaustion threshold, ensuring financial stability, timely compensation for policyholders, and
enhanced resilience, particularly when extraordinary events strain insurers’ resources and require
supplementary liquidity injection from governments or international assistance. By capitalizing
on solidarity and the combined support of government guarantees, bailouts, and donations from
organizations, insurers can navigate the challenges inherent in the high loss layer.

To effectively address losses within the medium-high loss layer (between attachment and ex-
haustion thresholds) through solidarity, insurers are encouraged to (1) leverage emergency relief
funds and (2) engage in private-public partnerships to strengthen their capacity to handle losses
[37]. These strategic approaches offer valuable resources, financial support, and collaborative
frameworks that can enhance insurers’ resilience and response capabilities. Emergency relief
funds designed explicitly for climate disasters and insurance defaults provide insurers with im-
mediate access to liquidity during times of crisis. These funds are established by governments,
international financial institutions, or specialized insurance facilities to ensure the swift provision
of financial support.

For example, the Federal Emergency Management Agency (FEMA) administers the National
Flood Insurance Program (NFIP), an emergency liquidity fund designated to support policy-
holders in the United States facing flood-related losses [19]. This program provides emergency
funding and liquidity to insurers to ensure the timely payment of flood insurance claims, helping
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stabilize the insurance market during climate disaster events. Emergency Liquidity Assistance
(ELA) in Canada is another facility that supports financial institutions, including banks, in times
of liquidity stress. The ELA program allows eligible financial institutions to borrow funds from
the Bank of Canada by pledging collateral, typically government securities or other high-quality
assets. Like other financial institutions, insurance companies can access ELA if they meet the
eligibility criteria during severe liquidity constraints. However, the specific terms and conditions
for insurance companies to access ELA would depend on the circumstances and the assessment
of the Bank of Canada [13].

In addition to solidarity and public strategies, insurers are encouraged to leverage traditional
reinsurance methods to manage and mitigate risks within the medium-high loss layer. Traditional
reinsurance allows insurers to transfer a portion of the risk associated with the medium-high loss
layer to reinsurers [27]. This approach provides insurers a safety net and enables them to meet
their obligations to policyholders within the medium-high loss layer. In addition to traditional
reinsurance, financial reinsurance offers insurers specialized coverage for specific financial risks
within the medium-high loss layer. Financial reinsurance differs from traditional reinsurance,
focusing on addressing financial risks rather than insurable ones. While traditional reinsurance
transfers the risk of potential losses from one insurer to a reinsurer, financial reinsurance goes
a step further by providing coverage for specific financial concerns faced by insurers. Finan-
cial reinsurance arrangements often involve the transfer of financial exposures such as reserve
inadequacy, credit risk, or variations in financial performance [59].

Furthermore, the insurers can utilize non-traditional reinsurance for the medium-high loss
layer. An example of non-traditional commercial reinsurance for managing risks within the
medium-high loss layer is the utilization of catastrophe bonds. Catastrophe bonds provide
insurers with a unique tool where investors assume the financial risks associated with predefined
catastrophic events, explicitly targeting the medium-high loss layer. By incorporating catastrophe
bonds into their risk management strategy, insurers can effectively transfer and mitigate the
financial risks within the medium-high loss layer while leveraging investor participation [11].
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Chapter 2

Methodology

2.1 Data Review

The project uses data from the Emergency Events Database (EM-DAT) database, a renowned and
widely-used resource for documenting and analyzing global disaster events. EM-DAT, maintained
by the Centre for Research on the Epidemiology of Disasters (CRED), compiles comprehensive
information on natural and technological disasters worldwide [17][25][50].

On this natural disasters are categorized into six groups (geophysical, meteorological, hydro-
logical, climatological, biological, and extraterrestrial), which cover 15 specific disaster types and
over 30 sub-types. There are various sources that contribute to the database, including govern-
ments, United Nations agencies (such as UNEP, UNOCHA, WFP, and FAO), non-governmental
organizations, research institutions, insurance companies, and media reports. Inclusion criteria
for the database involve events with a minimum of ten fatalities, at least one hundred individ-
uals affected, the declaration of a state of emergency, and/or a call for international assistance.
Data entries are recorded at the country level, containing attributes such as location, date, casu-
alties (deaths, injuries, and missing persons), displacement (homeless or affected individuals),
economic losses (direct and indirect), international aid contributions, and composite indicators.
The classification system used in the database is adapted from Integrated Research on Disaster
Risk (IRDR) Peril Classifications. The data entry guidelines follow three levels. At Level 1,
information about the disaster event includes its group, sub-group, disaster type, sub-type, and
sub-sub-type. Moving to Level 2, geographic and temporal details, physical characteristics, and
status are provided. This level includes spatial divisions specifying the continent, country, re-
gion, latitude/longitude coordinates, International Organization for Standardization (ISO) code,
start/end dates, and local time. The physical characteristics encompass the event’s origin, as-
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sociated disasters, and scale/intensity measured in relevant units (e.g., wildfire area coverage or
earthquake magnitude on the Richter scale). Level 3 contains the source of information and a
reliability score (ranging from one to five). This level also covers the human impact, including
deaths, missing persons, homelessness, injuries, and affected individuals needing immediate as-
sistance. The economic impact details are also part of level 3, such as total estimated damages,
reconstruction costs, insured losses, and the overall disaster impact [17][15].

Since this project’s scope was to analyze the damages from climate events and catastrophes,
then the dataset used in this project focuses specifically on the direct and indirect tangible
cost caused by climatological, hydrological, and meteorological events, estimated by EM-DAT
database. These events include but are not limited to, various phenomena such as extreme
temperatures, storms, floods, landslides, wildfires, glacial lake outbursts, and droughts. Direct
tangible costs are expenses incurred directly due to the physical impact of an event, including
damages to infrastructure and property such as buildings, vehicles, livestock, and crops. The
estimated damages reported in the dataset represent the combined value of all damages and
economic losses directly or indirectly linked to the disasters. These estimated damages are
inflation-adjusted to provide a more accurate representation of the economic impact of the events
over time. The consumer Price Index (CPI) adjustment was employed bt EM-DAT database to
adjust estimated losses to the 2021 USD [17].

In short, the data utilized in this study represents the estimated annual total aggregated losses,
which aims to capture the direct tangible costs associated with the events under investigation ((see
Figure 2.1). This project focuses on estimated damages and losses in North America from 1963
to 2022. Let us review some of the events that have happened during this period.

In August 1992, Hurricane Andrew made landfall in South Florida as a Category 5 hurricane,
leaving behind a path of destruction. With winds reaching a ferocious 165 mph, the hurricane
resulted in estimated damages of $27.3 billion. The scale of devastation was extensive, with
126,000 single-family houses destroyed, 9,000 mobile homes damaged, and 65 fatalities recorded.
The profound impact of Hurricane Andrew led to significant revisions in building codes and
disaster preparedness measures in the region, aiming to mitigate future hurricane-related losses
[55]. A case study indicated that 78.2% of households with hurricane damage were covered by
property insurance, while approximately 6% of insured households received no settlements, likely
due to damages falling below their insurance policy deductibles. The average compensation for
Miami-Dade County (Florida state) was about $32,000 [52].

Remarkably, seven of the ten most expensive hurricanes in U.S. history occurred within a 14-
month period from August 2004 to October 2005. In September 2004, Hurricane Ivan impacted
multiple countries in the Caribbean region and made a second landfall in the United States,
battering the Gulf Coast as a powerful Category 4 hurricane. On September 16, 2004, Hurricane
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Ivan struck the Florida-Alabama coastline with winds exceeding 140 mph, accompanied by
torrential rainfall, storm surge, and coastal flooding 10 to 16 feet above normal tide levels. The
hurricane caused damage to 75,000 homes and forced 50,000 people to evacuate from Florida’s
westernmost counties of Escambia and Santa Rosa. The region was declared a federal disaster
area, leading the Federal Emergency Management Agency (FEMA) to provide aid through water,
ice, and food distribution to assist affected residents. This widespread devastation prompted a
reevaluation of hurricane evacuation procedures and emergency response plans in the United
States. Following Hurricane Ivan, the National Flood Insurance Program (NFIP) paid $869
million for 9,800 claims in Florida [41]. In August 2005, Hurricane Katrina struck the Gulf
Coast, with New Orleans, Louisiana, facing the brunt of its devastating impact. This hurricane
was deemed one of the most catastrophic in U.S. history. Private insurers incurred significant
losses, with estimates ranging from $40 to $60 billion, making Hurricane Katrina the costliest
natural disaster ever recorded in the country, surpassing even the expensive Hurricane Andrew in
1992 [28]. The toll was not merely financial but also human, with 1,392 lives lost. The extensive
damage caused by Hurricane Katrina was estimated between $97.4 billion and $145.5 billion,
primarily affecting New Orleans and its environs in late August 2005 [29]. The 2005 wildland
fire season in Canada, specifically in British Columbia (BC), Ontario (ON), and Québec (QC),
has exhibited a level of activity close to the ten-year average. By the end of 2005, Canada had
registered a total of 7,438 fires, consuming approximately 1,706,445.49 hectares of land [24].
In the same year, Hurricane Wilma caused at least eight reported deaths in Mexico, resulting in
significant insured and total damage estimates. Insured damages in Mexico were estimated to be
between $1 to $3 billion, while the total damage reached approximately $2 to $5 billion. The
region, particularly the Cancun area, faced extensive structural damage, severe flooding, downed
trees and power lines, and a substantial accumulation of debris [12].

In 2021, winter Storm Uri brought unprecedented cold temperatures and heavy snowfall
across the southern United States, including Texas. The extreme cold led to power outages,
water supply disruptions, and loss of lives, with an estimate economic loss that is estimated to
be around $90 billion [42]. Furthermore, a combination of dry conditions and high temperatures
fueled widespread wildfires along the West Coast of the United States, particularly in California,
Oregon, and Washington. These fires caused an estimated 3,800 civilian deaths, 14,700 civilian
injuries, and $15.9 billion in direct property damage [20]. Poor air quality due to smoke mixed
with the COVID-19 pandemic has had far-reaching health implications [60].
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Figure 2.1: Estimated aggregate total losses for Central and North America region from EM-DAT
databsase.
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2.2 Aggregated Losses - Loss Classification Approach I

To begin the classification task, we utilize the second-order difference over the loss values. We
used the second-order difference Definition 1.6.0.1 of Section 1.6.1 for the loss values. The
second-order difference in terms of is the rate of change of the rate of change. In other words, it
measures how the rate of change of the loss values is itself changing. This concept helps us to
make assessment over the curvature loss over 3 time steps (a segment of loss values). Therefore,
a positive second-order difference indicates an increasing rate of change loss values, suggesting
a potentially reaching a maximum loss value throughout the period of # + 1, ¢ and ¢ — 1, giving
us a convex segment of loss values. Conversely, a negative second-order difference implies a
decreasing rate of change, indicating a potential reaching a minimum loss value throughout the
period of  + 1, f and ¢ — 1, giving us a concave segment of loss values.

Then we use the concave and convex segments of the aggregate loss to formally define the
near maximum and near minimum classification of loss values.

Definition 2.2.1 (Loss classification using the Second-order Difference of Loss). Let £” be the
discrete values of the second-order difference of the loss space with respect to time. We partition
x in two subsets using £” as following. The first subset, namely xV"", represents the concave
segments of the loss values, which classifies the near maximum loss values, defined as

X Nmax = {x: € x| the second-order difference is negative at time 7: ;" < 0} (2.2.0.1)

The second subset, xV™" represents the convex segments of the loss values, which classifies the

near minimum loss values, defined as

X Nmin = {x; € x| the second-order difference is positive at time ¢: £, > 0} (2.2.0.2)

Figure 2.2 illustrates this loss classification using this approach.

17



Estimated Loss (Billion USD)

Classification of loss °

m Near Minimum: x" >0
m Near Maximum: x{" <0

150 200 250

o
= .
® ’ o © ®
o °
v
. . °° ... O eue o.. Y
o o..o‘o.°o.”00 o..O'...‘oo o. o’ o0 ¢
1970 1980 1990 2000 2010 2020
Year

Figure 2.2: Classification of losses using the second-order difference of the loss values.
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2.3 Cumulative Probabilities - Loss Classification Approach
II

In empirical studies for hazards and catastrophes, the empirical cumulative distribution function
(ECDF) are essential tools for analyzing and understanding the frequency and severity of events.
Intuitively, the more severe events tend to happen with a smaller probability (less frequently), and
the less severe events tend to happen with a larger probability (more frequent). Based on observed
data, the empirical cumulative distribution represents the cumulative probability associated with
a specific event or hazard. An advantage of using probabilities is that they are bounded between
0 — 1 (see Figure 2.3), however, there is no specific upper boundary for loss values (see Figure
2.1). We can use this advantage to normalize the loss values before applying similar methodology
to classify loss values. We define the ECDF for estimated loss values as following.

Definition 2.3.1 (Empirical Cumulative Distribution Function). Let vectorx = (x1, X2, ..., X¢, ..., X60)
represent the aggregated (estimated) loss values for a region. The empirical cumulative function
1s given as

60
. 1

F = — Lo <x 2.3.0.1
(x) 0 ;:1 (i<} ( )

where F (x) is an estimation of the real cumulative distribution function F(x) for aggregate losses.
Note that the cumulative distribution function is non-decreasing.

Our main objective is the quantify how fast the probabilities are accelerating or decelerating,
which in turn provide information about the changes in the rate of change of the loss values. To
do so, we need to approximate the second derivative (convexity/concavity) of the probabilities
trajectory. We utilize the second-order difference to approximate the second derivative.

Definition 2.3.2 (Second-order Difference of Cumulative Probability Function). Let {p;} denote

the sequence of cumulative probabilities at different time points = 1, 2, ..., 60. The central finite

2
difference of the cumulative probability at time ¢, denoted as d dt’;’ ~ p7, is defined as:

Pi = Pl = 2pi + Pt (2.3.0.2)

where p,.; represents the cumulative probability at time 7 + 1, p, represents the cumulative
probability at time ¢, and p,_; represents the cumulative probability at time 7 — 1. Evaluating the
second-order difference for cumulative probabilities will give us a vector p”’. The boundaries of
the second-order difference can be constructed using the Neumann boundary condition similar to
definition 2.2.1.
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Similarly, use the concave and convex segments in the cumulative probabilities to classify
loss as following.

Definition 2.3.3 (Loss classification using the Second-order Difference of the cumulative Proba-
bility). Let p” be the discrete values of the second-order difference of the cumulative probability
space with respect to time. We partition p in two subsets using p” as following. The first subset,
namely p©¥, represents the concave segments of the cumulative probabilities, which is defined
as

pEN = {p, € p| the second-order difference is negative at time ¢ : p; < 0} (2.3.0.3)

The second subset, p¢X represents the convex segments of the cumulative probabilities, defined
as

ptX = {p; € p| the second-order difference is positive at time 7 : p; > 0} (2.3.0.4)

By using the definition above, namely the two sets p¢~ and pX, we can classify the near
maximum and near minimum losses, by mapping back the these cumulative probabilities back to
their corresponding losses. We define group x y,qx Of losses that contains the mapped values of
elements from pCN to x, which are classified as near minimum loss values, as following.

XNmax = {x; € x| there exists p; € pCN such that F'l(p,) =X} (2.3.0.5)

Furthermore, we define the x y,,;, of losses that contains the mapped values of elements from
pCX to x, which are classified as near maximum loss values, as following.

X Nmin = {X; € x| there exists p; € p¥ such that F~1(p,) = x;} (2.3.0.6)

Figure 2.4 illustrates this loss classification using this approach.
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Figure 2.3: Cumulative probabilities for the estimated aggregate total losses.
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Figure 2.4: Classification of losses using the second-order difference of the cumulative probability
values.
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2.4 Loss Layers

Now that we have determined the the near maximum and minimum losses, we construct a
regression model to approximate the expected values of near maximum and minimum losses,
given a year. Consider the following regression models

log(mein) — ﬁNminmein +e (2.4.0.1)
and

log(meax) — ﬁNmaxmeax +e (2.4.0.2)
where yN™4¥ and yN™" are the corresponding years for the near maximum and near minimum

loss values. We then use these coefficients to construct log-transformed linear regression as y as
the independent variable and /og(x) and the target. We will get the two following functions.

log(x) = pNminy (2.4.0.3)
and
log(x) = g™y (2.4.0.4)

Note that the X7, represents the expected value of the low-medium, and X,z represents the
medium-high losses, given a year. Thereforem to set up each layer, we use these expected values.
That is,

LM Layer = m = ghminy (2.4.0.5)
MH Layer = log(x) = g¥"*y (2.4.0.6)

where n = 60 is the number of years, LM stands for low-medium losses and M H stands for
medium-high losses. Please refer to appendix A.2 for the algorithm of the classification of loss
and the loss layering.
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Chapter 3

Results and Discussion

3.1 Results

3.1.1 Loss Classification

The classification of losses in the North and Central America region, utilizing the second-order
difference method, has provided significant insights into the repercussions of natural disasters
spanning over years.

Figures 2.2 and 2.4 depict the classified losses, using both approach of classifying by second-
order difference of the losses observed over time and the cumulative probabilities in the North
America region, wherein notable events such as Hurricane Andrew in 1992, Hurricane Ivan in
2004, Hurricane Katrina, Hurricane Wilma and wildfires in 2005, severe flooding in 2006, and
wildfires in 2021 have had a considerable impact.

Notably, in Figure 2.2, the aggregated losses for these years have been classified as near
maximum losses due to their considerable financial toll and significant impact on human lives, as
we discueesed in Section 2.1. Figure 2.4 presents the alternative approach to loss classification,
utilizing the loss space for the second-order difference. This method exhibits variations in the
classification of losses. The main reason for this behavior is that the ECDF is a non-linear
transformation of loss values. Therefore, the increment and decrements between two consecutive
losses do not decrease or increase proportionally when transformed into cumulative probabilities.
This non-linear transformation will lead to disparities in the concave and convex segments and
subsequently affect the classification of losses. Utilizing cumulative probability offers a scaled
approach, placing losses on a standardized range between 0 and 1 before assessing the curvature
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of segments and classification, providing a clearer view of the underlying changes. However,
this approach may overlook certain subtleties and extreme events linked to outliers in the data.
Conversely, employing loss space captures the impact of rare and extreme events, which can
result in a more conservative classification of losses.

For example, during the period encompassing 2004 and leading into 2005, the region under
study faced a series of unprecedented meteorological events, giving rise to considerable fluc-
tuations in loss values. The quick increase of losses during these events influenced the overall
convexity and concavity of the cumulative probability function and loss values, leading to signif-
icant shifts and alterations in the loss classification. Figure 2.3 reveals that the shift in cumulative
probability between 2004 and 2005 is not substantial, with 2005 exhibiting the lowest cumulative
probability (indicating the least likelihood of occurrence or occurrence of the most significant
loss), leading to a concave segment in the cumulative probability function, and consequently,
a classification near the maximum loss. However, the actual losses during this period undergo
drastic changes. Specifically, the loss in 2004 is considerably smaller than in 2005 and closer to
the loss observed in 2003, resulting in a classification near the minimum loss.

3.1.2 Loss Layers

Figures 3.1 and 3.2 provide visual insights into the regression-derived near minimum and near
maximum loss layers spanning from 1963 to 2022. Within this framework, each best-fit line
signifies the anticipated average value of categorized loss values for specific years for the near
minimum or maximum classified loss values. The attachment and exhaustion thresholds, separate
distinct zones of loss classification. Losses beneath the attachment threshold signify a low-
medium layer, where the reimbursement responsibility is for the original insurer. Between the
attachment and exhaustion thresholds lies the medium-high loss layer, shifting insured payouts
responsibility to the secondary insurer, assuming the original insurer’s risk. Exceeding the
exhaustion threshold places the liability on the original insurer once more, potentially straining
their finances, and may lead to bankruptcy of the original insurer.

Furthermore, in Figures 3.1 and 3.2, whether losses classified by actual loss values or cumu-
lative probabilities highlight a clear exponential growth pattern in both attachment and exhaus-
tion thresholds, indicating a significant and concerning trajectory marked by escalating losses
attributed to climate-induced disasters. This noticeable trend is further corroborated by the sys-
tematic classification of these losses, emphasizing the severity of climate-related risks as they
progressively amplify over time. This dual approach, combining mathematical analysis with a
structured categorization framework, offers a robust perspective on the increasingly urgent and
intensifying challenges posed by the evolving climatic and weather conditions.
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Climate change in North America has instigated significant shifts in weather patterns, lead-
ing to more frequent and severe extreme weather events such as hurricanes, wildfires, floods,
and heatwaves [47]. This exponential increase in climate losses can be partially attributed to
the amplification of feedback loops resulting from climate-induced shifts and heightened atmo-
spheric and sea temperatures. For example, rising temperatures accelerate polar ice and glacier
melt, culminating in elevated sea levels. These rising sea levels translate to floods and storm
surges, particularly impacting coastal cities and precipitating substantial economic losses and
property damage [18][34]. Additionally, ocean warming contributes to the energy and intensity
of hurricanes, intensifying their landfall effects [61][35]. Prolonged heatwaves and droughts,
exacerbated by climate change, heighten the probability and severity of wildfires, resulting in
extensive property destruction and ecosystem degradation [36]. These interconnected feedback
loops, the increase of the atmosphere and ocean surface, and anthropogenic green house gas ef-
fect, create a self-perpetuating cycle of climate-related disasters, contributing to the exponential
rise in average losses.
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the second-order difference of the actual losses per year.
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3.2 Discussion

The analysis begins by examining Figures 3.1 and 3.2, which illustrate a noteworthy observation
regarding the attachment threshold. It is evident that when employing the probability space for
loss classification, the attachment threshold is notably lower than when using the loss space. This
intriguing finding holds the potential for both advantageous and disadvantageous implications.
On the one hand, the lower attachment threshold signifies an increased reliance on reinsurers and
innovative risk transfer mechanisms. These entities serve as a critical safety net by absorbing a
portion of the insurer’s risk, thereby safeguarding the insurer from the potential insolvency risk
associated with significant catastrophic losses. Moreover, reducing reserves due to low attach-
ment thresholds allows insurers to allocate more capital, enabling them to unlock resources for
business expansion, product development, or other growth initiatives. However, this heightened
dependence on external mechanisms comes with inherent costs, including reinsurance premiumes,
fees, and potential complexities tied to innovative risk transfer methods. These factors can impact
an insurer’s profitability and financial stability, warranting a comprehensive evaluation of the
trade-offs involved.

Nevertheless, a pivotal question persists: How does the methodology employ a logarithmic
transformation of losses before the threshold construction process? Addressing this inquiry, our
approach involves utilizing various regression models designed to shape this crucial facet of the
methodology. For a comprehensive analysis, we focus on Tables 3.1 and 3.2, where an intricate
evaluation unfolds, meticulously comparing models across both the attachment and exhaustion
thresholds. Each model undergoes scrutiny based on key metrics such as r?, p-value, AIC, and
BIC. Specifically, Table 3.1 presents models derived from losses classified by their actual values,
while Table 3.2 showcases models constructed using cumulative probability values.

In Table 3.1, among the models for the attachment threshold, itis evident that the log-transform
(log (loss) = —129 + 0.0659 year) exhibits the highest coefficient of determination (> = 0.750)
and the smallest p-value (1.87 x 107'1), indicating a robust fit and vital statistical significance.
Furthermore, this model possesses the lowest AIC (71.6) and BIC (76.3) values, implying a
superior balance between goodness of fit and model complexity. Thus, the log-transform appears
to be the most favorable choice for the attachment threshold, effectively capturing the underlying
relationship between the loss and year variables. Similarly for the exhaustion threshold, the
model with log-transform (log (loss) = —119 + 0.0614 year) is also a preferred, as this model
achieves a significant (#> = 0.772) and a relatively small p-value (7.53 x 10~°), underscoring
its strong predictive capability and statistical significance. Furthermore, the associated AIC
(52.4) and BIC (56.0) values are comparatively lower than those of other models. From Table
3.2, we notice that for the model that best defines the attachment threshold is the log-transform
(log (loss) = —122 + 0.0624 year) exhibits the highest coefficient of determination (> = 0.759),
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the smallest p-value (3.36 X 107?), and lowest AIC (49.1) and BIC (52.9) values. The model
that best the exhaustion threshold in Table 3.2 is also the log-transform model which provides
superior balance between fit quality and model complexity. Figures 3.3, 3.4, 3.5, and 3.6 show
the different constructed models in these two tables, and show cases the superiority of capturing
the expected value of the two classified losses.

It becomes evident that, for both thresholds, the model employing a logarithmic transformation
of loss values shows superior goodness of fit and significance compared to the alternative models.
This tendency to effectively capture the relationship between loss and year variables, and the
actuality that climate and weather-related disaster have been exponentially [31][26][53], highlights
the rationale behind choosing the logarithmic transformation as the optimal approach. As aresult,
the methodology adopts this model for tracing attachment and exhaustion thresholds.
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Regression Model ‘ r? ‘ p-value ‘ AIC ‘ BIC ‘
Attachment Threshold

loss = —2035 + 1.03 year 0.489 | 2.93x 10™° | 304 | 309
loss = 117000 — 118 year + 0.03 year” 0.574 | 1.17 x 1075 | 300 | 306
loss = —5459000 + 8273 year — 4.18 year” + 0.0007 year® | 0.538 | 4.52x 10® [ 301 | 309
log (loss) = —129 + 0.0659 year 0.750 | 1.87 x 10~'1 | 71.6 | 76.3
loss"> = —494 + 0.2502 year 0.680 | 1.11x107° | 177 | 182
loss ™3 = —93.1 + 0.0472 year 0.348 [ 1.92x 10™* | 109 | 113
Exhaustion Threshold

loss = —5798 + 2.94 year 0.614 | 3.56x 107° | 265 | 268
loss = 205900 — 210 year + 0.05 year? 0.669 | 5.27 x 107 | 263 | 268
loss = 11870000 — 17780 year + 8.88 year” — 0.0015 year® | 0.678 | 2.14 x 107> | 264 | 270
log (loss) = —119 + 0.0614 year 0.772 | 7.53 x 10™° | 52.4 | 56.0
loss’> = =765 +0.3900 year 0.763 | 1.18 x 10=% | 146 | 150
loss ™0 = —27.6 + 0.0146 year 0.488 | 1.02x 10™* | 123 | 160

Table 3.1: Comparison of regression models for thresholds (classified by aggregated total loss
values): linear, quadratic, and cubic polynomial powers, and log transformation, square root
transformation, and inverse square root transformation of the loss target variable.
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Regression Model \ r? \ p-value \ AIC \ BIC ‘

Attachment Threshold

loss = —1285 + 0.651 year 0.589 | 2.95x107® | 197 | 201

loss = 66650 — 67.6 year + 1.712 year” 0.671 | 1.59x 107 | 193 | 198

loss = —1985000 + 3022 year — 1.53 year” + 0.0003 year® | 0.675 | 7.96 x 107 [ 194 | 201

log (loss) = —122 + 0.0624 year 0.759 [ 3.36 x 1072 [ 49.1 [ 52.9
loss"> = —403 — 0.2040 year 0.743 | 7.59x 107 | 115 | 119
loss ™ = —109 + 0.0552 year 0.353 | 1.09x 107> | 190 | 194
Exhaustion Threshold

loss = —4454 +2.26 year 0.468 | 1.14x 107 | 351 | 356

loss = 132500 — 135 year + 0.0345 year? 0.494 [ 3.60 x 107 | 352 | 358

loss = 5472000 — 8174 year + 4.07 year” — 0.0007 year® | 0.497 | 1.52x 10~* | 354 | 361

log (loss) = —103 +0.0535 year 0.706 | 9.67x 10710 [ 71.2 | 75.7
loss™> = =629 + 0.3209 year 0.640 | 2.33x 1078 | 199 | 204

loss ™0 = —24.8 + 0.0132 year 0.501 | 4.11x107° | 76.3 | 121

Table 3.2: Comparison of regression models for thresholds (classified by probability space): lin-
ear, quadratic, and cubic polynomial powers, and log transformation, square root transformation,
and inverse square root transformation.
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(ii) (C) Cubic thresholds. (D) Non-linear thresholds using log-transform of loss.

Figure 3.3: Different regression models for setting attachment (green) and exhaustion (magenta)
thresholds for losses classified by aggregated total loss values.
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(i) (E) Non-linear thresholds using square root transformation of loss. (F) Non-linear thresholds using
inverse square root transformation of loss.

Figure 3.4: Different regression models for setting attachment (green) and exhaustion (magenta)
thresholds for losses classified by aggregated total loss values.
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(ii) (C) Cubic thresholds. (D) Non-linear thresholds using log-transform of loss.

Figure 3.5: Different regression models for setting attachment (blue) and exhaustion (
thresholds for losses classified by cumulative probability values.
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Figure 3.6: Different regression models for setting attachment (blue) and exhaustion (
thresholds for losses classified by cumulative probability values.
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3.3 Conclusion

This project has introduced a methodical approach to classify losses based on their magnitudes,
culminating in a unambiguous categorization scheme. As we saw in section 3.1, that the classi-
fication of loss correctly categorized losses in years that extreme disasters had affected the North
America region. Furthermore, the classification of losses through the second-order difference
method, coupled with observing an exponential surge in the two classified loss categories, holds
essential significance in comprehending the amplification of climate catastrophes. This empirical
evidence underscores the fast increase of losses linked to climate-related events and emphasizes
the necessity of adaptive policies for (re)insurers to mitigate the impact of increasing losses. The
simplicity of this model is an accomplishment, as the model does not require a granular analysis
of a range of factors, such as property damage and casualties, which significantly reduces the
complexity of the classification model, and provides a simple, but helpful model for the insurer
and policymaker.

Furthermore, our research has forged a resilient framework for allocating loss layers, effec-
tively determining attachment and exhaustion thresholds. The effectiveness and robustness of
this framework stem from a rigorous exploration of diverse regression models in section 3.2, cul-
minating in the identification of a model that not only demonstrated the highest level of statistical
significance but also conformed seamlessly with the prevailing literature concerning climate and
weather-related disasters. The careful selection of this model, aligned with established research
paradigms, further highlights the usefulness of this approach for an insurer.

By successfully classifying losses and constructing loss layers, an insurer can use this model
as a helpful tool to increase their coverage for the policyholders for climate and weather-related
disasters.

Moving forward, several promising avenues for future research emerge from our current
findings, offering opportunities to enrich and expand upon the established framework. An
interesting possibility lies in extending our model to encompass diverse geographical regions.
Exploring how our methodology performs across different locales, each characterized by unique
climatic dynamics, can provide valuable insights into our approach’s broader applicability and
robustness. However, this possibility heavily relies on the availability of estimated loss data for
regions other than North America. A further refinement of our model is to address specific
meteorological, climatological, and hydrological events presents an exciting avenue. So far, we
have used the aggregated loss over these events. By tailoring the framework to individual event
types, we can reveal patterns and relationships that may not be evident in a broader context,
thus enhancing our methodology’s predictive power. Furthermore, incorporating additional
features into our regression model holds promise for a more comprehensive understanding of loss
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allocation dynamics. Variables such as the frequency of disasters and the number of affected
people in the region can contribute to a model that captures a wider spectrum of influences,
potentially bolstering the prediction of the thresholds’ accuracy. A logical progression involves
extending our model to embrace a probabilistic paradigm for each loss layer, such as a Markov
chain, which will help the insurer to construct long-term transitional probabilities for losses within
each loss layer.

These avenues of future work enhance the depth of our methodology and inform more effective
disaster risk management strategies, thereby contributing to a more resilient and prepared future
in the face of evolving climatic challenges.
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Appendix A

A.1 Difference Method Proofs

Central difference. We have a series of discrete values, {x;} = (x; : t = 1,2, ...,60) at annual
intervals of time. Consider 3 time indices, namely index ¢ — 1, ¢, and ¢ + 1, corresponding to
current and next time indices. Since we have annual data points, then let Az = h = 1 represent
the loss intervals. Furthermore, let us use Newtonian notation for derivatives, namely, x7, x/’, ....
The first-order difference scheme that follows from expanding the Taylor series at# + 1 and ¢ — 1
according to

]’l2 h3

X—1 =X, — hx) + Ex;’ - ;x;” +O0(h% (A.1.0.1)
h? &

X1 = X + hx) + 5x;’ + gx;” +0(hY (A.1.0.2)

Using the appropriate differencing coefficients and subtracting the term A.1.0.1 from A.1.0.2
yields
r X+l — X

= L Lo?) (A.1.0.3)
By setting & = 1, then the first-order difference is estimated as

X~ Ry = Xl — Xi— (A.1.0.4)

By adding A.1.0.1 and A.1.0.2, without any coeflicient adjustment, we can write the second-
order difference scheme to approximate the second derivative of p; as
s 2x; + X1

X/ = % +0(h?) (A.1.0.5)
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By setting & = 1, then the second-order difference is estimated as
x) & R =X = 2%+ X (A.1.0.6)

O

Forward difference. Similarly, we have a series of discrete values, {x;} = (x; : t = 1,2, ...,60)
at annual intervals of time. Consider 3 time indices, namely index ¢, t + 1, and ¢ + 2. The
second-order difference scheme that gives the initial Neumann boundary condition follows from
expanding the Taylor series at these time indeces according to

h2
Xre1 = X+ B+ o] + O(h’) (A.1.0.7)
(2h)2 14

X2 = X + (2h)x] + x! +0(h%) (A.1.0.8)

2!

Using the appropriate differencing coefficients, we have
1
Xe1 = X — 2hx) + 5hzx;’ +O(h) (A.1.0.9)

X132 = X — 4hx) + 2h%x! O (h?) (A.1.0.10)

Further, subtracting twice A.1.0.9 from A.1.0.10 will yield

= 2Xp1 +
X = 12 h);t“ o) (A.1.0.11)

By setting 4 = 1, then the second-order difference is estimated as
x; ~x] = X = 2Xp41 + X (A.1.0.12)

]

Backward difference. We have a series of discrete values, {x;} = (x; : t = 1,2, ...,60) at annual
intervals of time. Consider 3 time indices, namely index ¢t — 2, ¢t — 1, and #. The second-order
difference scheme that gives the final Neumann boundary condition follows from expanding the
Taylor series at these time indeces according to

2

h
—x" +0(h%) (A.1.0.13)

’
Xi—1 =X — hx; + o]

46



(2h)?

X X! +0(h%)

Xr—2 = X = (2h)x; +

Using the correct differencing coefficients, we have
1
Xi—1 = X; + 2hx] + Ehzx;’ +0(h%)

Xi—p = X; + 4hx; + 2h2x;’0(h3)
Further, subtracting twice A.1.0.15 from A.1.0.16 will yield

nw _ Pt=2— 2-xl—1 + X¢

+O(h)

By setting & = 1, then the second-order difference is estimated as

X!~ x) = xmp = 2x-1 + Xy
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A.2 Algorithm for loss classification and loss layering

Algorithm 1 Second-order Difference Loss Classification Using Exceedance Probability Algo-
rithm

1:

— e e e e e e e
A A T o S vl

D A R

Input: exceedance probability vector p with 60 elements, where 0 < p < 1 and h = 1.
Set class 1 for near maximum and 2 for near minimum loss values.
for t =2to59 do

X1 —2X X1

P
az h2

end for
ay «— % (initial Neumann boundary condition)

) ..
agy — )%29”59 (final Neumann boundary condition)

forr = 1to 60 do
if a; < 0 then
xleax — va— 1 (pt)
x'[’l.egass] — (sz max ‘1) (near maximum loss values)
else if a; > 0 then
xlei” «— F_l(p[)
ﬁ.egass] — (x;v min ) (near minimum loss values)

end if

: end for
: retarn x"¢%

Algorithm 2 Near maximum and near minimum regression coefficients

2:

4:

Input: Data set [y, x], where x is either near maximum or minimum loss values and y is the
vector of years for the corresponding loss values

Input: Confidence level «

Compute log-transform of x as z = Inx

Calculate coefficients using normal equations as 8 = (zz7)~'z”y

return S
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Algorithm 3 Near maximum and near minimum loss layers

Input: Data set [y, x|, where x is all the available losses and their corresponding years y
2: Input: Confidence level «

Input: V"% and beta™N™" coefficients
4: Compute log-transform of x as z = Inx

Compute the predicted values: V"% = gNmaxy,
6: Compute the predicted values: 2V™n = ghminy,

return exp[2"”%*] as LM loss layer and exp[2"""] as MH loss layer
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