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Abstract

Pricing American options gives rise to nonlinear Hamilton-Jacobi-Bellman (HJB) Partial
Differential Equations (PDEs). These HIB PDEs can be solved using a penalty or a direct
control approach. In this essay, we explore the characteristics of these two methods —
the direct control method and penalty method, under the American put option pricing
domain. We also examine a third method, a combination of the best properties of the
above mentioned methods. Included are algorithms and numerical results to support our
findings. In all cases, we use a positive coefficient discretization of the PDE to ensure the
numerical scheme converges to the viscosity solution.
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Chapter 1

Introduction

A financial option is a contract that entitles its holder to buy or sell an asset under certain
conditions at a future time. This asset, usually a stock, is referred to as an underlying asset
or simply an underlying. Options may be classified based on the rights a holder has and/or
when they can be exercised. For example, a put option is a contract that gives the holder
the right but not the obligation to sell an underlying at a specific price, known as a strike
price. The writer, the buyer of the option, is obliged to buy the underlying at the specified
strike price. A call option, on the other hand, is a contract that gives a holder the right
but not the obligation to buy an underlying at a specified strike price. The writer, this
time the seller, is obliged to sell the underlying at the specified strike price. An American
option allows its holder to exercise anytime before or up to the specified expiration date.
A European option, however, allows its holder to exercise an option only on the expiration
or maturity date. The profit an option holder stands to make from exercising an option
is called a payoff. This essay discusses the methods used to price the fair value of an
American put option at initial time.

Valuation of financial options is of both theoretical interest and practical relevance. Con-
sequently, considerable work has been done to find new approaches to solve for the pricing
of options, in addition to continuously improve upon existing ones. Existing approaches
include Monte Carlo simulations [1 1], lattice methods [17], and partial differential equation
(PDE) approaches [24].

For an underlying asset, Monte Carlo simulations generate several possible random price
paths forward in time. The value of an option is calculated by computing the present day
value of the average of the payoffs calculated for each simulated path. This approach is
advantagecous when we want to handle multiple underlying assets. However, it cannot be



easily used to handle an early exercise constraint. It also has the disadvantage of slow
convergence to a solution for problems it can handle.

For pricing an option using a lattice method, the duration from the initial time to the
option’s maturity date is split into discrete intervals (time discretization) known as time
steps, and possible stock prices are calculated at each discrete time step, over a lattice.
Then working backwards from the expiry date, the option prices at each point on the lattice
are calculated until initial time. The option price calculated for initial time is the value of
the option. It may seem that with this method, the entire lattice will need to be stored
in memory. But this is not the case, as calculating the price of an underlying depends
only on the price of the underlying in the previous time step, and the option values, on
the underlying price and option values at the next time step. This approach is easy to
implement for simple cases such as pricing a European option, but may become complex
for more complicated cases. The number of computations and approximation errors grow
exponentially with increasing number of time steps, and as a result, the lattice method can
become computationally expensive and numerically unstable unless the number of time
steps is restricted [24].

The price of an option over time may be posed as a partial differential equation (PDE).
The PDE approach may be used for many different types of options.To get the price of an
option given a PDE, the latter needs to be discretized, i.e. converted into a set of discrete
algebraic equations. There are several techniques that may be used to discretize a PDE.
These include finite difference, finite volume, and finite element methods. Finite difference
methods are more popular, mainly because they are relatively easy to implement, and
allow for easy calculation of hedging parameters, which are essential for risk-managing
financial derivatives [5]. After discretization, the equations are solved iteratively over
discrete time intervals in order to arrive at the option price. Our work in this essay focuses
on solving for the price of an American option using a PDE approach with finite difference
discretization. Under this approach, we will use two different means to represent the option
pricing problem, called the direct control and penalty methods.

1.1 Overview: The Direct Control and Penalty Meth-
ods

There are many models that have been used to represent the behavior of stock prices in
the market today. The most popular of these is the Black-Scholes model and the methods
under discussion in this essay will employ the famous Black-Scholes PDE, first developed



in 1973 by Black and Scholes in “The Pricing of Options and Corporate Liabilities”, to
assist in solving the American option pricing problem. The Black-Scholes PDE cannot be
solved as it is, but can be used in its closed form to solve for the price of a European
option [24]. Such a closed-form solution generally does not exist for an American option.
Instead, we use numerical methods, in this case, finite difference methods, to approximate
the price of an American-type option. An American option is more difficult to price than
its European counterpart, mainly because of its early exercise feature.

The early exercise constraint is an important factor to be taken into account when pricing
American options. For an American call paying no dividends, the option value is the same
as that of a European call on the same underlying with the same maturity date [22]. Hence
the optimal exercise policy here is to not exercise. However, for a put option, also paying
no dividends, it may be optimal to exercise before expiry time and doing so will affect the
value of the option. Therefore the optimal exercise policy must be known beforehand and
taken into consideration when pricing American options.

To price an American option using the PDE approach, we pose the pricing problem as a
differential linear complementarity problem! (LCP). This LCP is formulated as a Hamilton-
Jacobi-Bellman (HJB) PDE, discretized and solved using fully implicit or Crank-Nicolson
time stepping schemes, which are numerical schemes used to approximate partial deriva-
tives. We will explore two methods for formulating the LCP, a direct control method and
a penalty method.

The direct control method was originally proposed in [9] in the context of HJB PDEs and
adapted to the case of an early exercise option in [15, 21]. Using a direct control method,
the HJB PDE may be posed as an optimal control problem, and solved directly. This
is done by discretizing the optimal control problem, and solving the resulting non-linear
equations iteratively. The direct control method has the advantage of solving the exact
discretized LCP, with second order convergence within a specified convergence tolerance.

The penalty method has been studied by many authors [10, 27, 5] and found to be a
very efficient way to approximate the solution of an American option pricing LCP. In this
approach, a penalty term is introduced in the LCP in order to enforce the early exercise
constraint. The resulting problem is discretized and solved iteratively. This method can
be used on any type of discretization for one or multidimensional problems, and on un-
structured meshes. Quadratic convergence is observed for a reasonable penalty value as
time steps and mesh size tend to zero, using a variable time step selector as proposed in
[10], within a specified convergence tolerance. The addition of the penalty term, however,

'In general, given x, y € R, a linear complementarity problem is a problem of the form z > 0, y > 0;
r>0=y=0,y>0=x=0and y =azx+ b for some a,b € R.



introduces a penalty error in the solutions of the discretized PDEs and as a result, the
American constraint is only satisfied approximately [10].

Earlier work done on the direct control and penalty methods have shown that the two
are very competitive in terms of efficiency when solving for the price of an option. The
question we will like to answer with this work is which of the two is more efficient and why;,
for the problems under consideration in this essay.

1.2 Objectives

In this essay, we discuss two methods used to solve the problem of the valuation of American
options, namely the direct control and penalty methods, both of which fall under the PDE
approach, with finite difference discretization. We present an iterative algorithm, which
can be modified to work with either direct control and penalty approaches. Solving the
American option pricing problem with these methods using our iterative algorithm, we
observe the convergence rates associated with the methods, the maximum number of non-
linear iterations required by each method to solve the problem, and the performance of the
methods on a time-dependent American constraint.

The main results of this essay are:

e The direct control method can be modified to make it more efficient than it already
is.

e The penalty method is superior to the direct control method in converging to a
solution.

The essay is arranged as follows: Chapter 2 presents the American option pricing problem
mathematically, and defines models and formulas, including direct control and penalty
forms of the problem, that will be used in the rest of the essay. Following this, we discretize
the equations from Chapter 2 in Chapter 3, then describe an algorithm which will be used to
solve the discretized equations in Chapter 4. Chapter 5 presents some numerical results.
We show how the direct control method can be made more efficient in Chapter 6, and
summarize our work in Chapter 7.



Chapter 2

Model

In this chapter, we present the mathematical models and formulae which will lay a foun-
dation for the rest of the work in this essay.

Let S be the price of an underlying risky asset which we assume follows a stochastic process
in time ¢,

dS = pSdt + 0SdZ, S €(0,00) (2.1)
where dZ is the increment of a Weiner process, p is the drift, and o is the volatility.

We define V' (S,t) as the price of an option at ¢ when the market price is S, for some
function V' : (0,00) x [0, 7] — R, where T is the expiry date of the contract. Applying
Ito’s Lemma [22] to equation (2.1), leads to the Black-Scholes equation [22],

2
%s?vss +rSVs+ V=1V (2:2)

where r is the risk-free rate of return. Let 7 = T —t be the time in the backward direction.
Then V' can be redefined in terms of S and 7 as V(S, 7), and equation (2.2) can be rewritten
as

2
%52\/55 +rSVs — Ve =1V (2.3)

Equation (2.3) is the PDE which will aid us in solving for the price of an American put
option. We prefer to use backward time, 7, when solving for the price of an American
option, because then we can use as an initial condition to equation (2.3), the payoff,

V* = max(K — S,0),



which occurs at time T or 7 = 0. K is the strike price.

At 7 =0,
V(S,0)=V".

2.1 The American Option Constraint and the LCP

To prevent arbitrage (risk-free gain) for an American option, we enforce the constraint
V > V* It V < V* arbitrage can be easily realized by buying the option for V', exercising
it by selling the underlying for K, and then repurchasing the underlying in the market for
S, making a risk-free profit of K —V — S.

So with the constraint V' > V* enforced, where the option value V' > V* it is more
profitable for the holder to sell than to exercise. There, V satisfies the Black-Scholes
equation (2.3). Where V = V*, the option should be exercised. At those points, V is
not governed by the Black-Scholes equation (2.3). These constraints combined satisfy the
inequality

2
%SQVSS £ rSVs — Vi — 7V <0, (2.4)
Figure 2.1 shows the payoff, V* for an underlying, and its option value, V', before expiry.

We see in Figure 2.1 that the constraint V' > V* is enforced. So until it is profitable to
exercise, we have

vV > v (2.5)
%2521/35 +7rSVg =V, —rV = 0. (2.6)
When it is profitable to exercise we have,
Vv = Vv (2.7)
%252\/55 +rSVg =V, —rV < 0. (2.8)

Putting equations (2.5), (2.6), (2.7) and (2.8) together, we arrive at this partial differential
linear complementarity problem (LCP):

V, — LV

(V —Vv*) 0, (2.9)
and [(V-V*=0) or (V;—LV =0)],

v v



Payoﬁ)giagram for an American put option, and the option value prior to expiry, as functions of S

90 Payoff Value
— Option Value

80 B

70+ B

60 B

50 B

Value

40t -

30 B

20 B

10} .

0

0 100 200 300 400 500 600 700 800 900 1,000
S, underlying price

Figure 2.1: Payoff diagram for an American put option, illustrating the payoff, V*, option value, V.

where L is a linear differential operator and
o2
LV = (?SQVSS +rSVs — TV) . (2.10)

The LCP in (2.9) can also be formulated as the HJB equation
min [V, — LV, V — V*] = 0. (2.11)

Initial and Boundary Conditions
The Black-Scholes equation has infinitely many solutions, so we impose some initial and
boundary conditions to ensure we arrive at the viscosity solution.

For the American put option, our initial condition, as mentioned earlier, is
V(S,0) = max (K — S,0). (2.12)

For the boundary conditions, as S, the price of the underlying approaches zero at any time
7, the option is likely to be exercised and so the option price, V approaches K. However, as
S grows larger, the option is unlikely to be exercised and so V' loses value and approaches
zero. Therefore, we have the following boundary conditions:

7



Left-boundary condition:

limV (S,7) = K. (2.13)
S—0
Right-boundary condition:
Shm V(S,7)=0. (2.14)
—00

Now, with HJB equation (2.11) defined, and initial and boundary conditions specified, we
can define direct control and penalty forms of equation (2.11).

2.2 Direct Control Formulation

In control form, the HJB equation (2.11) can be written as

max [p(V —=V")—(1—¢) (V.= LV)]=0. (2.15)

where ¢ is a control parameter. Equation (2.15), may be solved directly. Hence the name
direct control. A value of ¢ = 1 implies early exercise is optimal. That of ¢ = 0 implies it
is optimal to hold the option.

It is natural to scale a direct control formulation (2.15) of the HJIB PDE (2.11). We do so
to ensure that all the variables to be compared in equation (2.15) are of the same units. In
addition, the use of an appropriate scaling factor allows for more accuracy in determining
the optimal control, ¢ on a finite precision arithmetic machine [13]. Using 2 as a scaling
factor, equation (2.11) becomes

min [V, — LV, Q(V — V)] =0, Q> 0, (2.16)
and then is re-written in a non-linear direct control form as

max [Qp (V —V*) — (1 — ) (Vs — LV)] = 0. (2.17)

pe{0,1}

2.3 Penalty Formulation

In penalized form, the HJB equation (2.11) may be written non-linearly as

h_r}r(% min[V, — LV, V = V* + (V. — LV)] = 0. (2.18)

8



The penalty form (2.18) of the LCP (2.9) is attained by replacing it with the non-linear

rbE 2 V- V,0
vV, - (%SZVSS +rSVs — rV) _ max(V7=V,0) (2.19)

€

Adding the penalty term, w to equation (2.19) ensures that the solution satisfies
(V*=V) <éfor 0 < < 1, as the positive penalty parameter ¢ — 0. Essentially, where
V* —V <0, equation (2.19) resembles the Black-Scholes equation (2.3). However, where
0 < V* =V <4, the Black-Scholes inequality is satisfied, assuring the early exercise rule
is not violated [5].

With a control ¢, equation (2.18) can be written as

V-V
lim |V, — LV — max ¢ ( )} = 0. (2.20)

e—0 pe{0,1} £
In (2.20), a value of ¢ = 1, implies early exercise is optimal, and ¢ = 0 implies holding the
option is optimal.
Typically we discretize equation (2.18). If we denote the discretization parameter by h,

then it is common to choose € = O (h), which means that the penalty method is formally
only first order convergent.



Chapter 3

Discretization

In this chapter, we transform equations (2.17) and (2.18) into a set of discrete non-linear
algebraic equations, using finite difference approximations to the partial derivatives.

Let

S={S0,Sy,....8" . 0<85 <S8, (3.1)
be a finite grid of points to approximate the underlying,
T"=nA7, 0< "< NAT=T (3.2)
be a set of discrete times, and
ve={vn VeV (3.3)
be the option price, where
V=V (S,T"). (3.4)
Then we can approximate the partial derivatives in equation (2.3) by
n+1 n
(AL 35)

Vﬁr‘é") _ (Vi”—VZil

02S2VSS " 0-232 ( Si+1*Si Si*Si_l
2 - 2 Siy1—Si—1

2

N—
—~
©w
D
~

3
<

3
12

rV* (3.7)

A 7

10



For the case of rSV;, there are three ways to discretize. We can use either forward,
backward or central differencing to yield

(rSV)! ~ rS; [ 2H—_ ) forward difference (3.8)
' Sit1 — S
or (rSVy); =~ rS, S5 ) backward difference (3.9)
i — Oi-1
n ‘/;11 _ ‘/;711 :
or (rSVy); =~ rS;| s———5— |, central difference. (3.10)
Sit1 — Si—1

Central differencing gives the highest accuracy among the three. But it may not always be
appropriate for discretizing equation (2.3), for reasons which we discuss in the next para-
graph. Substituting equations (3.5), (3.6), (3.7) and one of (3.8), (3.9), (3.10), depending
on the choice of differencing into equation (2.3) and rearranging, we arrive at

VIt =V (1 — (o + Bi + 1) AT) + V" AToy + VI AT, (3.11)
with
2Q2
central o SZ TSZ'
i = as = — 3.12
e (S — S-1) (Sir1 — Si1)  Sivr — Sis (3.12)
2Q2
central g Sz TSZ'
B - 3.13
h=p S = 5) (S —5) ~ Sm1— S (3.13)
or
2 Q2
forward g Sz
P = Qg = 3.14
“ = (5= 5 1) (S —5:1) (3.14)
2Q2
forward g Sz TS’i
= + 3.15
=5 Sim = 5) (51 = 5i0) S — 51, (3.15)
or
2 Q2
backward g Sz TSZ‘
we (Si — Si1) (Sit1 — Si1) S5 — i (3.16)
2Q2
ﬁi — ﬁg)a,cku)ard g Sz (317)

(Sig1 — i) (Sig1 — Sic1)’

We select o and f3 such that the coefficients of V"™, V* V| are always non-negative (pos-
itive coefficient discretization). We satisfy this constraint by choosing central differencing

11



whenever possible, provided o and  are positive. Naturally, it would be advantageous
to use central differencing always, since it gives second order accuracy, while forward or
backward differencing gives only first order accuracy. However we cannot choose central
differencing always, because o and [ may not always be positive when central differencing
is used. So at each node, we select a differencing method, using Algorithm 3.0.1, con-
sidering at each point, if we will obtain a positive coefficient or not. One of the central,
forward or backward differences will always have o and S positive. The PDE can converge
to many different solutions. Using a positive coefficient discretization ensures that the
solution converges to the viscosity solution [10].

Algorithm 3.0.1 Positive Coefficient Selection Algorithm
if afentral > 0 and 6;:6ntral > 0 then

a; = Oélgentral
ﬂ‘ — [central
' i d ¥ d
else if /""" >0 and g/““* > 0 then
__forward
_ pforward
ﬁz’ - ﬁz
else
a; = a?ackward
__ pbackward
Bi = pB;
end if

With the terms we have just discretized, we proceed to discretize the direct control (2.17)
and penalty (2.18) forms of equation (2.11).

3.0.1 Direct Control

Let £" be the discrete form of the £ operator and # indicate the time stepping scheme to
be used. Then the discretization of equation (2.17) gives

Vn+1
(1— i <j§;—-9£?VT+J> + Qv

1
= (1= + Qe

AT
H(L =@ ™A= 0(LIV"); i < limaa (3.18)
Vn—l—l V* . '
AT - AT; ¢ maz

12



with

. . Vn—l—l _ V;n o n

{pi*'} € arg{r(??f{ﬁw(‘fi —Vr = (=) ( p e LA Gl )>}
PEe,

(3.19)

We use

0— 1/2, for a Crank-Nicolson time stepping scheme
), for a fully implicit time stepping scheme

Fully implicit schemes arise from the use of backward differences, and Crank-Nicolson
schemes from central differences [21]. With second order accuracy, the Crank-Nicolson
scheme is the most logical choice for discretization. However, previous work has shown
that solutions of these discretized forms using a Crank-Nicolson scheme show spurious
oscillations. However, by using a Rannacher modification [20], we are able to observe
smoothness in the solution. The Rannacher modification consists of using, instead of a
Crank-Nicolson scheme throughout the duration of the problem, a fully implicit scheme in
the first two time steps. The variable 6 enables us to easily switch between schemes.

Let M be a tridiagonal matrix with entries
[Mvn]i = ai‘/z‘/ril — (ai -+ ﬂz —+ 7’) ‘/i” + Bz lil (320)

Then LV from equation (2.10) can be represented in discretized form as equation (3.20).
Using this substitution, the matrix form of equation (3.18) can be written as

1= ) (oo =00 ) + Q| Vi = (1Y) | (- 0) M| VY
AT AT

(3.21)
and equation (3.19) rewritten as
L if (VF=Vrh). Q> [MV? — (& —0M) (V" =V,
¢?+1 _ ;1 (V ' 14 )7, > [ 4 (A‘r )<V 4 )L . (322)
0, otherwise

1 is an 4,4, X imae identity matrix and V' is a vector of size i,,qz.

13



3.0.2 Penalty Method

Let £" be the discrete form of the £ operator and @ indicate the time stepping scheme to
be used. Then the discretization of equation (2.18) gives

Vn+1 n+1 V (pn+1
X — 0LV 4 Vf+1 e (s + (1 = 0)(Lhv™), i < imae (3.23)
T T
V;n-i—l B V*Z* ' o
AT - A’T, 1 = tmazx-
with
fert} e agmax{Z (v =)}, (3.24)
pefo,1y + €

where ¢ represents the penalty parameter.
Again
0— 1/2, Crank-Nicolson
B 1, fully implicit

Using M from equation (3.20), equation (3.23) can be simplified and written in matrix
form as

] ('On+1 ] Spn+1
— M+ |V = | — 1 -OM| V" TV 2
Ar +— }V {ATJF( ) :|V+ 8V (3.25)
and equation (3.24) as
1, if (V*—=Vnth) >0
=9 v )i >0 (3.26)
0, otherwise

I is an 4,4, X Imae identity matrix and V' is a vector of size i,,qz-
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Chapter 4

Solutions to the Discrete Equations

There is no analytical formula for the exact solution to the LCP in (2.9). We use the penalty
and direct control formulations of the HJB equation (2.11) to numerically approximate
the solution of the LCP in (2.9) using a policy iteration algorithm. The policy iteration
algorithm used to solve discretized (2.11) starts with the payoff, V*, as an initial state,
and at each time step, repeatedly generates a guess of the optimal control policy and uses
that guess in a linear system to solve for the option price until convergence. With the
exception of the first time step which uses V* as its initial state, all other policy iterations
used within the lifetime of the option use as an initial state, the state from the previous
iteration.

Formally put, policy iteration solves non-linear algebraic equations of the form

A(P)U = C(P),

with
P, = argmax{—A(P)U + C(P)},.
Pe{0,1}

A is a matrix of size imaz X imaz, and U, C' are vectors of size 4,,4,. P is a set of controls.

In the next sections, we define A, C, and P precisely for the direct control and penalty
methods, and illustrate the policy iteration algorithm.
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4.1 Direct Control method

Assuming we are at the kth iterative step of the policy iteration algorithm, during the nth
discrete time step, we have for ¢ < i,,4z,

[A (Pk> VL = (1-PFY KALT - 9M> V] P (4.1)
C(P*); = ((1 — P [é +(1-6) 1\4 V”) o+ QP (4.2)
J e - L, if (Vz* - Vik—’_l) Q> ([ka]z o ((ﬁ - GAI) (Vk+1 B Vk))z) (43)
‘ 0, otherwise
At i = Z'ma:m
Vimas Vimas

I'is an 4,40 X e identity matrix, and M is as defined in (3.20). €2 is the scaling factor.

4.2 Penalty Method

Assuming we are at the kth iterative step of the policy iteration algorithm, during the nth
discrete time step, we have for ¢ < 7,4z,

" I prtt
APH)V|. = — —0M ! . 4.
APVl = [(g-om)v] + 2w (5)
N I k41
C(P") = — 4+ 1=-0)M V" : - 4.
) = (g ra-om)v| +Ev (46)
Pl = Loif (V7 B Vi) >0 _ (4.7)
0, otherwise
At i = i’ﬂba"L‘7
V; v
ARy = tmaz. k _— Ztmaz 4.
[ VL AT’ ¢i AT (48)

118 an ipmmaz X imae identity matrix, and M is as defined in (3.20). ¢ is the penalty parameter.
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4.3 The Policy Iteration Algorithm

The following policy iteration algorithm, Algorithm 4.3.1 is used for both direct control
and penalty method implementations, substituting the values for A(P*)and C(P*) from
equations (4.1) and (4.2) for a direct control method, or (4.5) and (4.6) for a penalty
method. The policy iteration algorithm is used within each discrete time step, until the
LCP is solved.

Algorithm 4.3.1 Policy iteration
k=0
VF = V. V is the solution vector from the previous time step, or the payoff for the first
time step. V is of size i,,4z.
while (k > 0) do
PF € argmax{—A(P)V* + C(P)},
Pe{0,1}
Solve A(PF)V*+! = C(P¥)
‘derl _ V;k|

7

if £ > 0 and max < tol then

i max [scale, |Vlk+1H
break
end if
k=k+1
end while

The term scale used in Algorithm 4.3.1 is to ensure that unrealistic levels of accuracy are
not enforced. Typically, for options valued in dollars, we use scale = 1.

If the difference between time steps is constant throughout the solution of the problem, we
say we have used a policy iteration algorithm with constant time steps. Otherwise, we have
used wvariable time steps, where the difference between time steps changes. In this essay,
whenever we use variable time steps, we use the variable time step selector presented in
[10]. Using this selector, we take small time steps where the solution, V', changes rapidly
over the last two time steps, and larger time steps where the change between solutions is
not great.
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4.4 Effects of the Direct Control Scaling Factor and
Penalty Parameter on the Solution to the Discrete
Equations

4.4.1 Scaling Factor

Different choices of the scaling factor, €2, will lead to different direct control forms, all
converging to the same solution [11]. The size of Q affects how fast the policy iteration
algorithm, Algorithm 4.3.1 converges to a solution in finite precision arithmetic. The speed
referred to here is measured in terms of the iterations per step, which is the number of
iterative steps used by the policy iteration algorithm within each discrete time step.

Although 2 should only affect the speed of the algorithm for convergence to a solution,
for sufficiently small €2, the solution does not converge, as a result of using floating point
arithmetic [15]. Ideally,

1
Q= 4.
CAT’ (4.9)
with
20
S — 4.1
tolerance’ (4.10)
and ,
1 [tolerance\ . (AS);
C<ar (T) min (293302> ' (4.11)

d ~ 1079 (double precision). tolerance is the desired level of accuracy. 6 refers to either a
fully implicit or Crank-Nicolson time stepping scheme [15].

The scaling factor, €2, should have inverse units of time, so that the same units are being
compared in equation (2.17).

4.4.2 Penalty Parameter
The number iterations per step used by Algorithm 4.3.1 when solving (2.18) is insensitive
to the size of the penalty parameter, ¢, unless the algorithm does not converge due to

floating point error. However, a poor choice in penalty parameter, i.e. too large a value,
will result in poor convergence as the number of cells used to approximate the grid S
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approaches infinity and time steps are refined. This is because the introduction of the
penalty parameter, ¢(V, — LV), in equation (2.18) also introduces a penalization error,
which will be present at any finite grid size. Choosing too small a value can also introduce
round-off error, which causes the penalty method to not converge.

Let ¢ = CAT, where C' is a dimensionless constant. Then using the bounds for C' as pre-
sented in equations (4.10) and (4.11), the consistency error due to the penalty parameter,
e(V, — LV), is small compared to the discretization error at reasonable grid sizes and time
steps [15]. Using these bounds, convergence can be expected despite inexact arithmetic
effects on the solution of equation (2.18).
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Chapter 5

Numerical Results

This chapter outlines the numerical results obtained for pricing American put options using
both direct control and penalty methods using the policy iteration algorithm, Algorithm
4.3.1. The convergence properties of both methods are investigated, and the effects of the
scaling factor and penalty parameter as discussed in the previous chapter are demonstrated
numerically. The results also include a comparison of the total iterations, maximum number
of iterations out of all the iterations used within each time step, and the time used in solving
for the price of standard and time-dependent American put options, using the direct control
and penalty methods. This is to ascertain which of the methods is more efficient. The tests
are carried out on MATLAB R2012b on an Intel Core i7 machine with processor speed 3.1
GHz and 16GB of RAM.

5.1 Standard American put option

A standard American put option is an American put option with payoff max (K — S,0),
where K is the strike price and S is the price of the underlying.

5.1.1 Convergence properties
Using the data in Table 5.1 and a non-uniformly spaced grid with properties in Table 5.2,
we run Algorithm 4.3.1 for both methods, observing the differences in the option price

attained for the two methods at S = 100, as the non-uniform grid S is refined, and their
convergence ratios. Refinement of the grid is achieved by inserting new fine grids between
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each two coarse grid nodes. At each level of refinement, the time step control parameter is
halved. We also observe the average number of iterations each method uses per time step,
for each level of refinement.

The term convergence ratio or simply put, ratio, given a specific level of refinement, indi-
cates the ratio between (a) the change in solution between the previous level of refinement
and the one before it, and (b) the change in solution at the current level of refinement and
the one before it.

Value refers to the option price realized.

Itn/Step refers to the average number of iterations used per time step.

Risk free rate, r | Volatility, o | Maturity time, T' | Strike, K | tol | Smax
0.02 0.2 0.25 100 10-% | 1000

Table 5.1: Data for American put.

Level of Refinement | S Nodes | Time steps
1 129 38
2 257 72
3 513 140
4 1025 276
5} 2049 946
6 4097 1087
7 8193 2166

Table 5.2: Grid/time step data for convergence study, American put. On each grid refinement, new fine
grids are inserted between each two coarse grid nodes, and the time step control parameter is

halved.

We can see from Tables 5.3, 5.4, and 5.5 that the convergence ratios for the penalty method
decrease as the penalty parameter, € is increased. The decreasing convergence ratio can
be explained by the penalization error, caused by the term £(Vy — LV') in the penalty
formulation of the LCP in equation (2.18). As ¢ — 0, the penalty form of the LCP is
consistent with the LCP itself. But as ¢ increases, the penalization error increases, thus
affecting the solution and the order of convergence.

Mathematically, the scaling factor does not affect the solution to the option pricing prob-
lem. As discussed in the previous chapter, we see from Tables 5.3, 5.4, and 5.5 that the
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Level Penalty Method Direct Control Method
Value Ratio | Itn/Step Value Ratio | Itn/Step
1 3.7665475159 - 2.66 3.7665475191 - 2.42
2 3.7678662573 - 2.71 3.767866259 - 2.50
3 3.7681993041 | 3.96 2.74 3.768199305 | 3.96 2.48
4 3.7682839352 | 3.94 2.71 3.7682839356 | 3.94 2.41
5 3.7683053232 | 3.96 2.53 3.7683053234 | 3.96 2.22
6 3.7683107358 | 3.95 2.16 3.768310736 | 3.95 2.06
7 | 3.7683120902 | 4.00 2.03 3.7683120911 | 3.99 2.01

Table 5.3: Convergence study, option value at S=100. tol = 107 %,¢ = 1/Q =10"% x AT,

Level Penalty Method Direct Control Method
Value Ratio | Itn/Step Value Ratio | Itn/Step
1 3.7665149948 - 2.66 3.7665475191 - 2.42
2 | 3.7678484971 - 2.71 3.767866259 - 2.50
3 | 3.7681900567 | 3.90 | 2.71 3.768199305 | 3.96 2.48
4 | 3.7682793905 | 3.82 | 2.70 3.7682839356 | 3.94 241
5 | 3.7683031144 | 3.77 | 2.57 3.7683053234 | 3.96 2.22
6 | 3.7683096559 | 3.63 | 2.14 3.768310736 | 3.95 2.06
7 3.7683115727 | 3.41 | 2.03 3.7683120859 | 4.01 2.01

Table 5.4: Convergence study, option value at S=100. tol = 1076 ¢ = 1/Q =1072 x Ar.

Level Penalty Method Direct Control Method
Value Ratio | Itn/Step Value Ratio | Itn/Step
1 | 3.7636890939 - 2.63 3.7665475191 - 2.42
2 3.7663588379 - 2.69 3.767866259 - 2.58
3 3.7674436984 | 2.46 2.69 3.768199305 | 3.96 2.82
4 3.7679111774 | 2.32 2.61 3.7682839356 | 3.94 3.35
d 3.7681223967 | 2.21 2.21 3.7683053234 | 3.96 3.89
6 3.7682208685 | 2.14 2.06 3.7683106216 | 4.04 4.55
7 ] 3.7682678192 | 2.10 2.00 3.7683114187 | 6.65 5.92

Table 5.5: Convergence study, option value at S=100. tol = 107%,¢ = 1/Q =1 x AT.

size of the scaling factor affects how fast the policy iteration algorithm, Algorithm 4.3.1
converges to a solution, in terms of the number of iterations used per time step.
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We also see from Tables 5.3, 5.4, and 5.5 that the iterations per time step are generally
lower for the direct control method, for a good choice of the scaling parameter. This
indicates that the direct control method may be more efficient. We study the performance
in detail in the next subsection.

5.1.2 Performance

Here, we observe the iterations per step used for both direct control and penalty methods
in detail. We study the maximum and total number of iterations used by these methods
to solve the American option pricing problem at different levels of refinement. Both con-
stant and variable time steps are used on a non-uniform grid, densely populated in the
neighborhood of K, for 7 levels of refinement. Data used to carry out these tests is given
in Table 5.6.

M here refers to the total number of time steps, and N, the number of spatial nodes.

Max Itns refers to the maximum number of iterations used within a time step out of all
the iterations per time step.

Total Itns refers to the total number of iterations used.

Elapsed Time is measured in seconds and is the total time used to solve for the price of an
option at a given level of refinement.

A note of caution to the reader, concerning the elapsed time, is to not rely too heavily
on the time used as a means to judge the performance of both methods, since the time
used is dependent on the algorithm used, as well as the actual computer program used
to run the algorithm, assuming both programs are run on the same machine. Concerning
the algorithms, it is more expensive to compute the control for the direct control method
(equation (4.3)), than it is for the penalty method (equation (4.7)). However, it is less
expensive to solve the linear system within the policy iteration algorithm for the direct
control method, since the matrix in (4.2) can be created so that it is more sparse than the
matrix in (4.6). The elapsed time therefore can be used as a good measure of comparison
between tests for the same method, but not so reliable a measure for tests between different
methods, as the methods are implemented with different computer programs and with
different controls and linear systems which require different computational times to solve.
The value of the total iterations used is a better measure to be used for comparisons of the
performances of both methods.

We observe from Tables 5.7 and 5.8 that the number of maximum iterations, total itera-
tions, and time taken for the direct control and penalty methods increase with increasing
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r o |T|Smax | tol |eorl/Q| K
0.05 04| 1| 1000 | 107® | 107°A7 | 100

Table 5.6: Parameters for direct control and penalty methods, iterations study.

Direct Control Method | Max Itns | Total Itns | Elapsed Time

M, N = 201 35 455 0.03
M, N = 401 53 911 0.08
M, N =801 80 1826 0.22
M, N = 1601 121 3655 0.67
M, N = 3201 183 7288 2.59
M, N = 6401 275 14549 9.36
M, N = 12801 411 28953 35.81

Penalty Method Max Itns | Total Itns | Elapsed Time

M, N =201 8 442 0.03
M, N =401 13 894 0.07
M, N = 801 19 1805 0.21
M, N = 1601 28 3638 0.66
M, N = 3201 40 7319 2.57
M, N = 6401 29 14695 9.31
M, N = 12801 85 29303 34.12

Table 5.7: Maximum iterations study with constant time steps.

N. This suggests that the speed of convergence to a solution depends on N, the number of
spatial nodes. The dependence of the speed of convergence on N can be seen in the total
number of iterations, as they roughly increase by a factor of two, as the grid is refined and
N is increased approximately by a factor of two. The time used for both methods does not
roughly double, like N and the total number of iterations do, for the following reason: For
a particular method, a different sparse linear system is solved for each iteration, depend-
ing on the control used (equation (4.3) or (4.7)). The time required to solve each sparse
linear system depends on the number of nonzero elements, and so may vastly differ across
iterations and time steps. As a result, the total time used may not be proportional to the
total number of iterations.

It can also be seen that when both constant and variable time steps are used, the penalty
method starts off with a lower number of total iterations, but as grid and time step size are
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Direct Control Method | Max Itns | Total Itns | Elapsed Time

M =44, N = 201 19 141 0.02
M =86, N =401 22 273 0.05
M =170, N =801 24 529 0.13
M =337, N = 1601 27 1065 0.43
M =671, N = 3201 29 2087 1.77
M = 1337, N = 6401 32 4118 6.30
M = 2669, N = 12801 34 8111 25.18

Penalty Method Max Itns | Total Itns | Elapsed Time

M =44, N =201 ) 137 0.02
M =86, N =401 6 283 0.05
M =170, N = 801 7 577 0.13
M =337, N = 1601 7 1165 0.44
M =671, N = 3201 8 2342 1.81
M = 1337, N = 6401 8 4677 6.52
M = 2669, N = 12801 8 9227 26.00

Table 5.8: Iterations study. Variable time steps. On grid refinement, time step control parameter is
halved, and new fine grids are inserted between each two coarse grid nodes. Initially,
dnorm = 0.2, At = 0.001.

refined, the number of iterations used grow at a faster rate than that of the direct control
method, resulting in a higher number of total iterations than the direct control method.
Even though the penalty method uses more iterations than the direct control method for
constant time steps, it uses less time. This behavior does not occur when variable time
steps are used.

The maximum iterations used is a key element in finding out what happens to the total
number of iterations in Tables 5.7 and 5.8 as the grid size increases. Using the direct
control method, changing the data in Table 5.6, and the grid, by modifying its size and
inter-node distances, numerical experiments reveal that the direct control method uses its
highest number of iterations in its first time step. The penalty method does this at latter
time steps, close to the end of the lifetime of the option.

The free boundary is the dividing point between the region to exercise and the region to
hold the option. Both methods move one node per iteration [21] until the free boundary
is reached. However, the direct control method always starts to move from the exercise
boundary, the point on the grid where the strike price is, while the penalty method starts
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a little closer to the optimal solution for that time step. This difference in starting points
is due to the set of controls used (equations (4.3) and (4.7)). As a result, the direct control
method always uses more iterations in the first time step to arrive at the same intermediate
solution as the penalty method. After that time step, both methods behave in a similar
manner, arriving at the same intermediate solution at the end of each time step, with the
direct control method sometimes using one less iteration than the penalty method. This
explains why the penalty method uses a lesser number of maximum iterations than the
direct control method, but may end up with a higher number of total iterations. Table 5.9
compares the number of iterations per time step, using data from Table 5.6, on the same
grid used to carry out the tests in this subsection.

Time step # 1 12(3[4|5(6|7(8|9 10|11 |12|13 | ... | 168|169 | 170
Direct control | 24 |4 |3 |4|5|6|6|6|5| 6| 6|5 |6 |- 2 3 2
Penalty 514|13|4|6|6|6|6[6| 7 6|6 |T7]-- 2 3 2

Table 5.9: Iterations per step with strike, K’ = 100, N = 801. Variable time steps used.

Clearly, from Tables 5.7 and 5.8, the use of variable time steps is more advantageous in
comparison to that of constant time steps. It requires a smaller number of iterations and
uses less time. For this problem, using variable time steps, we can say that the direct
control method is more efficient than the penalty method.

5.2 Time-dependent American constraint

The numerical examples so far have used a fixed value for the strike price K, for the Amer-
ican constraint. We refer to this as a standard American constraint. A time-dependent
American constraint is one in which the strike price, K, is a function of time. For this
constraint, we change Algorithm 4.3.1 slightly by using within our while loop, values of
K(7) between K (0) = 100 and K (T') = 200, depending on the time left until the end of
the algorithm. Given 7 and T', we approximate K (7) using linear interpolation.

The next set of tests, using the above constraint, simulate the practical problem of pricing
a convertible bond with accrued interest effects [1, 12]. We test the performance of the
direct control and penalty methods for the simulations.
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5.2.1 Performance

The non-uniform grid from the previous section is modified for the tests in this section,
by making it densely populated in the neighborhood of the possible strike price values,
100 < K (7) < 200. Data used to carry out these tests is given in Table 5.10.

M refers to the total number of time steps and N, the number of spatial nodes.

Max Itns refers to the maximum number of iterations used within a time step out of all
the iterations per time step.

Total Itns refers to the total number of iterations used.

Elapsed time is measured in seconds and is the total time used to solve for the price of an
option at a specified level of refinement.

r o | T | Smax | tol | e=1/Q K(1)

0.05 [ 0.4 [ 1] 2000 [ 1078 | 1075Ar | K(0) + & x (K (T) — K (0))

Table 5.10: Parameters: direct control and penalty methods, time-dependent American constraint
study.

We see from Tables 5.11 and 5.12 that using constant time steps, the penalty method uses
a lower number of total iterations and time than the direct control method.

For this constraint the direct control and penalty methods do not always move one node
per iteration until convergence. There is a point after which they both move one node per
iteration until the free boundary is reached. We call the nodes from that point the path
to the free boundary. Before that point, the direct control mostly moves one node per
iteration. The penalty method may move one node per iteration, or even more, especially
for large grid sizes. As a result, the penalty method is more likely to use a lesser number
of total iterations than the direct control method does.

We realize through the numerical experiments conducted on this problem that the penalty
method is able to converge to a solution, much faster than the direct control method. It
uses a lesser amount of total iterations and time.

5.3 Conclusion

For a standard American put option, the direct control method solves the discretized HJB
equation using less iterations and time than the direct control method, especially when
variable time steps are used.
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Direct Control Method | Max Itns | Total Itns | Elapsed Time
M, N = 201 9 1205 0.11
M, N = 401 14 3003 0.34
M, N = 801 21 7676 1.27
M, N = 1601 31 20039 5.35
M, N = 3201 47 53376 28.69
M, N = 6401 69 144408 143.21
M, N = 12801 104 395182 731.11
Penalty Method Max Itns | Total Itns | Elapsed Time
M, N =201 7 1199 0.10
M, N =401 9 2993 0.33
M, N = 801 12 7660 1.22
M, N = 1601 16 20014 5.18
M, N = 3201 21 53337 27.68
M, N = 6401 29 144344 138.00
M, N = 12801 39 395065 696.66

Table 5.11: Time-dependent American constraint study with constant time steps. Other parameters in
Table 5.10.

The penalty method outperforms the direct control method, generally using lesser iterations
and time when both constant and variable time steps are used for solving for the option
price of a simulated convertible bond.

In [16], a semi-smooth Newton method for the underlying continuous variational inequality
in a suitable function space is analyzed and superlinear convergence shown. Reisinger and
Witte in [21] propose that direct control method in some sense is inherently discrete, and
that the penalty method can be seen as a discretization of the iteration in [16] and so has a
well-defined limit for vanishing grid size. This sheds some light on why the penalty method
seems to converge faster than the direct control method, especially noticeable in the case
of the time-dependent constraint, as the grid is refined.

Overall, the numerical performances of the methods on both problems are very similar for
small grid sizes, but the distinction between their performances grows clearer as grid data
and time step are refined. The direct control method has the advantage of solving the exact
discretized LCP in equation 2.9, while the penalty method solves an approximation of the
LCP, due to the addition of a penalty parameter. While this can be a disadvantage for
the penalty method, the choice of a good penalty parameter can make the error introduced
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Direct Control Method | Max Itns | Total Itns | Elapsed Time
M =31, N =201 14 247 0.03
M =68, N =401 19 695 0.09
M =141, N = 801 26 1874 0.34
M =286, N = 1601 37 5135 1.44
M =575, N = 3201 51 14097 7.88
M = 1154, N = 6401 72 39084 39.58
M = 2310, N = 12801 101 108845 219.68
Penalty Method Max Itns | Total Itns | Elapsed Time
M =31, N =201 14 242 0.02
M =68, N =401 19 689 0.09
M =141, N = 801 26 1866 0.33
M =286, N = 1601 37 5126 1.43
M =575, N = 3201 50 14038 7.42
M = 1154, N = 6401 68 38432 37.59
M = 2310, N = 12801 86 103555 202.65

Table 5.12: Time-dependent American constraint study with variable time steps. On grid refinement,
time step control parameter is halved, and new fine grids are inserted between each two coarse grid
nodes. Initially, dnorm = 0.2, AT = 0.001. Other parameters in Table 5.10.

by the addition of the penalty term smaller than the error introduced by discretization for
typical grid sizes [15], so that the penalization error may have less impact on the solution.
A good penalty parameter also causes the error due to round-off to be negligible. Using
a good penalty parameter, the penalty method has the advantage of being able to locate
the free boundary faster than the direct control method does.

With that being said, the author believes the use of the penalty method with a good
penalty parameter, should be the preferred method.
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Chapter 6

Proposal

In this chapter, we propose an alternative way of using the direct control method to solve
for the price of an American option, which makes it slightly more efficient than it already
is. This approach is a combination of the direct control and penalty methods and so we
will call it a hybrid approach. The hybrid approach is also proposed in [21], where the
similarities of the two methods are explored.

6.1 Approach

It has been mentioned earlier in this essay that when solving for the option price of a
standard American put option, the penalty method, for the first iteration within the first
time step, arrives at a solution closer to the optimal solution for that time step, than
the direct control method, due to the different controls used (equations (4.3) and (4.7)).
This gives it a good start, causing it to use less iterations in the first time step than the
direct control method. After the first time step, both methods behave in almost the same
manner. For the hybrid method, we propose that in that first iterative step of the first
time step, we use the control for the penalty method and in the following time steps until
the free boundary is found, we use the control for the direct control method. In doing so,
we take advantage of the penalty method’s good starting point.

The hybrid method should show an improvement over the direct control method, but the
improvement is not expected to be very great, since the only modification is only made in
the first time step of the direct control method.
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6.2 Numerical Results

We solve for the price of an American option using the hybrid approach in this section.
We observe the convergence rations, iterations and time used during the computation of
the option prices, to see how much of an improvement the hybrid method is over the direct
control method.

6.2.1 Convergence

Using data from Table 6.1, and a non-uniform grid with properties in Table 6.2 we study
convergence behavior when the hybrid method is used.

The term ratio or convergence ratio, given a specific level of refinement indicates the ratio
between (a) the change in solution between the previous level of refinement and the one
before it, and (b) the change in solution at the current level of refinement and the one
before it.

Value refers to the option price realized.

Itn/Step refers to the average number of iterations used per time step.

Risk free rate, r | Volatility, o | Maturity time, T' | Strike, K | tol | Smax
0.02 0.2 0.25 100 10-% | 1000

Table 6.1: Data for American put.

Level of Refinement | S Nodes | Time steps

1 129 38

2 257 72

3 513 140
4 1025 276
5 2049 546
6 4097 1087
7 8193 2166

Table 6.2: Grid/time step data for convergence study of the hybrid method, American put. On each
grid refinement, new fine grids are inserted between each two coarse grid nodes, and the time step
control parameter is halved.
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Level Value Ratio | Itn/Step
1 3.7665475191 - 2.39
2 3.767866259 - 2.49
3 3.768199305 | 3.96 2.46
4 3.7682839356 | 3.94 2.40
) 3.7683053234 | 3.96 2.22
6 3.768310736 | 3.95 2.06
7 3.7683120911 | 3.99 2.01

Table 6.3: Hybrid Method. Convergence study, option value at S=100.

Level Value Ratio | Itn/Step

1 3.7665475191 - 2.39

2 3.767866259 - 2.49

3 3.768199305 | 3.96 2.46

4 3.7682839356 | 3.94 2.40

) 3.7683053234 | 3.96 2.22

6 3.768310736 | 3.95 2.06

7 3.7683120859 | 4.01 2.01
Table 6.4: Hybrid Method. Convergence study, option value at S=100.
Level Value Ratio | Itn/Step

1 3.7665475191 - 2.39

2 3.767866259 - 2.57

3 3.768199305 | 3.96 2.81

4 3.7682839356 | 3.94 3.34

) 3.7683053234 | 3.96 3.89

6 3.7683106216 | 4.04 4.54

7 3.7683114187 | 6.65 5.92

e=1/Q=10"°%x Ar.

e=1/Q=10"%x Ar.

Table 6.5: Hybrid Method. Convergence study, option value at S=100. ¢ = 1/Q =1 x Ar.

We see from the results in Tables 6.3, 6.4, and 6.5 that modifying the direct control
method results in a slightly lower average number iterations per step, thus improving upon
the direct control method’s performance in Tables 5.3, 5.4, and 5.5. The hybrid method,
just like the direct control method still requires an appropriate scaling factor for faster

convergence.
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6.2.2 Performance

We study the performance of the hybrid method in greater detail here, for both standard
and time-dependent American constraints using the grid with properties in Table 6.7 and
data in Table 6.6.

Max Itns refers to the maximum number of iterations used within a time step out of all
the iterations per time step.

Total Itns refers to the total number of iterations used.

Elapsed time is measured in seconds and is the total time used to solve for the price of an
option at a specified level of refinement.

r o |T|Smax | tol |eorl/Q| K
0.05]0.4 |1 1000 |107% | 107°A7 | 100

Table 6.6: Parameters for direct control and penalty methods, iterations study.

Time steps
Level | .5 Nodes Standard Constraint Time—zependent Constraint
1 201 44 31
2 401 86 68
3 801 170 141
4 1601 337 286
5 3201 671 575
6 6401 1337 1154
7 12801 2669 2310

Table 6.7: Grid/time step data for hybrid method, American put option. On each grid refinement, new
fine grids are inserted between each two coarse grid nodes, and the time step control parameter is
halved.

Table 6.8 shows a comparison of the maximum iterations, time and total iterations used
for both standard and time-dependent constraints using a hybrid method. We see that
this approach causes a reduction in the maximum number of iterations used in the case
of a standard American constraint, and consequently, the total number of iterations, as
expected. However, its impact on the time is barely seen, except on the finest of the grids.
For the time-dependent constraint, the hybrid method barely shows an improvement, in
both total iterations and time values. This is because unlike the standard constraint, the
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direct control method on the time-dependent problem does not use its maximum iterations
in the first time step, neither is its number of iterations bounded above by that of the
penalty method. So modifying its first time step does not address the issue of why the
penalty method performs more efficiently for this problem.

The penalty method uses a lesser number of policy iterations for this problem because it
finds the path to the free boundary faster than the direct control method, by sometimes
moving more nodes per iteration than the direct control method for each time step. The
hybrid method will only work if applied to the first k iterations in each time step, where
k is the point after which both methods move one node at a time. For the problem of the
standard put, we realized that kK = 1. However for the standard constraint, k£ is unknown
and varies from one time step to the next. For this reason, applying the hybrid method is
does little for this problem.

The hybrid method for practical purposes may be used to yield higher efficiency, better
than that of the direct control and penalty methods for a standard American put option,
but for a time-dependent American put option, is of little use, as it still performs worse
than the penalty method. However, where the direct control method must be used, we
suggest the use of the hybrid method instead, as it gives some improvement over the direct
control method, and is easy to implement.
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Standard constraint

Level Direct Control Hybrid
Max Itns | Total Itns | Elapsed Time | Max Itns | Total Itns | Elapsed Time
1 19 141 0.02 5 127 0.02
2 22 273 0.05 6 256 0.05
3 24 529 0.13 6 510 0.13
4 27 1065 0.43 7 1043 0.43
5 29 2087 1.77 7 2063 1.75
6 32 4118 6.30 8 4091 6.25
7 34 8111 25.18 8 8081 24.72
Time-dependent constraint
Level Direct Control Hybrid
Max Itns | Total Itns | Elapsed Time | Max Itns | Total Itns | Elapsed Time
1 14 247 0.03 14 242 0.03
2 19 695 0.09 19 689 0.09
3 26 1874 0.34 26 1866 0.34
4 37 5135 1.44 37 5126 1.44
5 51 14097 7.88 51 14087 7.78
6 72 39084 39.58 72 39072 38.54
7 101 108845 219.68 101 108832 219.11

Table 6.8: Comparison of iterations and elapsed time (seconds) for the direct control and hybrid
methods for a standard and time-dependent American constraint. Variable time steps used.
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Chapter 7

Summary

Many methods have been developed to price American options today. The direct control
and penalty methods are examples of these methods which have been developed. They use
a partial differential equation approach to price American options, with a finite difference
discretization. In this paper, the efficiency of the direct control and penalty methods
used to price American put options were numerically compared. We used a Black-Scholes
model to represent the behavior of stock prices in the market, and a linear complementarity
problem (LCP) to represent the option pricing problem, using the Black-Scholes PDE. This
LCP was written in Hamilton-Jacobi-Bellman direct control and penalty forms, discretized
and solved using a policy iteration algorithm.

To compare the efficiency of the methods, we studied the number of iterations and total
time required for convergence. The convergence of the methods were studied to compare the
solutions the methods arrived at for the option pricing problem and how fast the methods
converged to a solution. This was done for various grid and time step refinements. The
performance of the direct control and penalty methods were observed, implementing them
for two different problems: a standard American put option and a simulated convertible
bond.

Numerical tests revealed that using variable time steps with the policy iteration algorithm,
the direct control method is more efficient than the penalty method for a standard American
put option, taking into consideration the number of iterations and time it takes to solve the
discretized HJB equation iteratively. For a simulated convertible bond (time-dependent
constraint), the penalty method performs more efficiently.

We also exploited the similarities of the direct control and penalty methods, to improve
on the direct control method, calling this improved method a hybrid method. The hybrid
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method was found to be slightly more efficient than the direct control method, using
numerical tests but not good enough to outperform the penalty method on the time-
dependent constraint.

The work done in this essay has shown that penalty method’s mechanism for determining
the free boundary works faster than that of the direct control’s. Although the direct control
method works more efficiently for the standard American put option, with a good penalty
parameter, the penalty method performs almost as well, and with its good mechanism
for finding the free boundary, as demonstrated for the time-dependent option, the author
recommends the penalty method as the method of choice. Where the direct control method
must be used, the author recommends the use of the hybrid method instead.
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