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Abstract

Bi-clustering is a technique that allows for the simultaneous clustering of observations and
features in the dataset. This technique is often used in bioinformatics, text mining, and
time series analysis. An important advantage of this method is the ability to uncover
multiple ”views” (or column groupings) in the data.

In this work, we discuss a bi-clustering version of the Gaussian Mixture Model based on
the covariance matrix restriction to be block-diagonal. We show that current implementa-
tions of the GMM-based bi-clustering algorithm impose severe limitations on the structure
of the covariance matrix. This project proposes multiple heuristics that relax the problem
and allow for greater applicability of the model.

We show that the clustering accuracy of the proposed model is comparable to other
known techniques. We demonstrate the proposed model’s advantages in topic modelling
and data exploration applications.
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Chapter 1

Introduction

1.1 Clustering Problem & Gaussian Mixture Models

Humans are particularly good at classifying objects into natural groups based on some
notion of similarity and the goal they want to achieve. However, as the set of objects to
organize and the number of features grows, we require faster and more memory-efficient
tools to complete the task. Clustering is an important area of unsupervised machine
learning that deals with the problem of grouping objects so that those in one cluster are
more similar to each other than to objects in other clusters[17]. The main applications of
clustering include data exploration and pattern recognition[7].

Clustering has been widely studied for decades, and many clustering algorithms have
been developed. Interestingly, the great variety of the available models can be attributed
to the fact that precisely defining a cluster presents a problem [39]. Some algorithms (e.g.
DBSCAN, HDBSCAN) leverage density assumptions by defining clusters as connected
dense regions in the space [31, 37]. Other approaches view clusters as mixtures of certain
distributions, with Gaussian Mixture Models (GMM) among the most popular ones [45].

The GMM clustering algorithm also proved effective in the presence of multi-view and
incomplete data [55], which is essential for modern applications. Additionally, Gaussian
Mixture Models can be easily adapted for semi-supervised settings [25]. Hence, we consider
building on top of this algorithm.
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1.2 Topic Modelling & Bi-Clustering

Topic Modelling [52] is an area of Natural Language Processing that solves the problem
of finding abstract human-interpretable topics in a collection of an arbitrary number of
documents. Essentially, the problem of grouping documents into unsupervised topics can
be solved by leveraging clustering techniques. However, classical clustering algorithms
will require additional data post-processing to provide interpretations of the topics they
produce [47].

Additionally, human language is incredibly complex. There are multiple possible group-
ings one can find in a set of documents, some having a stronger signals-no-noise ratio than
others. For example, Tripadvisor’s hotel reviews can be grouped by review sentiment
(recommend/do not recommend), hotel geographical location or more generalized hotel
features (has access to the beach, superb breakfast, polite managers etc.). Each of the
clusterings can be desired depending on the application. However, how do we tell the
model which type of grouping we aim to obtain?

One of the promising solutions to the above issues is bi-clustering. Bi-clustering is a
technique that allows for the simultaneous clustering of observations and features in the
dataset[29]. This technique is often used in bioinformatics, text mining, and time series
analysis [34, 35, 11]. An important advantage of this method is the ability to uncover
multiple ”views” (or column groupings) in the data. In addition, bi-clustering is a promising
approach for solving topic modelling problems as it can automatically provide column
cluster names if used for the documents-words matrix type of text data representation
[46].

1.3 Focus of the Work

In this work, we aim to review current bi-clustering algorithms and expand on the GMM-
based bi-clustering approach. In chapter 2, we argue that existing implementations for
mixture model-based techniques are overly restrictive. In chapter 3, we propose three
heuristics to estimate the general block-diagonal covariance matrix for the gaussian mul-
tivariate distribution, and we discuss an Expectation Maximization (EM) algorithm that
utilizes proposed estimators [14]. In chapter 6, we report on the results of the proposed
method’s performance on the topic modelling task.
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Chapter 2

Literature Review

Topic modelling is an essential tool in extracting latent structure from a large collection of
documents. Latent Dirichlet Allocation (LDA) [9] is one of the earliest and most frequently
used algorithms that view documents as generated from a mixture of hidden topics. In turn,
topics are generated by the mixtures of words. LDA demonstrates significantly elevated
performance compared to the earlier algorithms. However, it is sensitive to hyperparame-
ters and therefore requires a careful estimation procedure. Data sparsity is another problem
as LDA encounters issues when presented with large vocabulary sizes [50]. However, one
of the main limitations of the algorithms based on the bag-of-words is the complete un-
awareness of contextual and semantic relationships between words and sentences in the
data. Some of the recently published deep language representation models (e.g. BERT
[15]) proved to be highly effective in generating contextual word and sentence [44] vectors.
BERTopic [27] proposes solving the topic modelling problem via HDBSCAN clustering on
top of the modern text embeddings. Another major problem is the incredible complexity
of human language and the fact that most of the collections of text documents will likely
contain more than one set of topics. None of the algorithms mentioned above allow for
uncovering multiple ”views” or multiple contextual subspaces in the data. Bi-clustering is
one potential solution to this problem.

Similar to the cluster, there is no single definition of a bi-cluster. Therefore, a variety of
bi-clustering models exist. One of the first applications of bi-clustering to text documents
is based on the spectral graph [16] partitioning heuristic. Similarly, [32] shows that the
checkerboard structure of the data matrix can be inferred from its eigenvectors. There are
many greedy approaches proposed for the co-clustering of gene expressions [42, 12, 6]. For
instance, [5] introduces an approach that finds the hidden order-preserving sub-matrices
in the data matrix.
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Figure 2.1: Illustration of the block diagonal matrices with off-diagonal elements limited
to positive (left) and general (right) structure

Most model-based approaches assume the observations in the same row cluster and
column groups to follow the same distribution. One component of the gaussian mixture
model generates one row cluster that follows the same distribution N (µ,Σ). In turn,
column groups can be inferred from the structure of the covariance matrix. For illustration,
let us assume the structure of covariance matrix from Fig. 2.1. The distribution mean µ
and covariance Σ can be written as:

Σ =

Σ1 0 0
0 Σ2 0
0 0 Σ3

 , µ =
(
µ1 µ2 µ3

)
Where (µ1, Σ1), (µ2,Σ2), (µ3,Σ3) define three distinct column groupings. Note that col-
umn permutations may be required to achieve a checkerboard-like structure illustrated in
Fig. 2.1. This adds to the non-triviality of the estimation of block-diagonal covariance
matrix.

The initial model-based bi-clustering approaches introduced additional latent variables
to indicate column clusters [8, 28]. The authors in [24] propose a Gaussian model-based
clustering for high-dimensional data. They partition columns of the dataset twice - once by
means and once by variances. Others [49, 38] leveraged the bi-clustering framework rooted
in the latent factor analyzer approach. The important advantage of the factor-analyzer
structure is that it decreases the number of estimated parameters by assuming a latent
low-dimensional representation of high-dimensional variables. However, this representation
restricts the covariance matrix structure they are able to recover. For example, [36, 53]
requires the off-diagonal elements of the covariance matrix to 1. The authors in [49] relaxed
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some constraints by characterizing covariance as BTTB+D where B is binary, T is diagonal
matrix with positive entries and D is diagonal. This enforces all of the off-diagonal entries
of i-th covariance block to be equal to tii, where tii > 0 be definition, therefore it is not
able to reconstruct the covariance matrix from Fig. 2.1 (right). In addition, the parameter
estimation utilized in [49] has limitations in application to high-dimensional data due to
the increased complexity of finding column groupings.

In this work, we aim to build on the model-based bi-clustering procedure by fixing some
of the issues with gaussian mixture models. In particular, we allow the covariance matrix
of the underlying mixture components to have a general block-diagonal structure. Then
we explore multiple readily available covariance matrix estimators [33, 22, 10]. Neither
satisfies our desirable conditions for the estimator, namely (i) enforces the block-diagonal
structure on the covariance matrix; and (ii) allows for general covariance matrix structure
inside the blocks.
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Chapter 3

Estimation of Block-Diagonal
Covariance Matrix

This chapter discusses the model structure and parameter estimation procedure for Gaus-
sian Mixture Model-based bi-clustering algorithm. We propose three methods for estimat-
ing the block-diagonal covariance matrix (as illustrated on the Fig. 2.1 - which is a key
ingredient for the model-based GMM bi-clustering procedure. For simplicity, we derive an
estimation for one component of GMM. Chapter 4 discusses extending the techniques for
multiple mixtures.

As described in the literature review, many methods exist to estimate a general co-
variance matrix with a block-diagonal structure. However, there is no guarantee that
real-world data will indeed be generated from a model with such covariance. Therefore, we
need to impose this restriction artificially for bi-clustering purposes. The main aim of this
work is to propose an approach such that: (i) imposes a block-diagonal structure onto the
covariance matrix; (ii) does not restrict the covariance matrix structure inside the blocks.

3.1 Imposing Block-Diagonal Structure Onto General

Covariance Matrix

Let us assume that we have a normally distributed dataX ∼ N (µ,Σ). One way to compute
feature clusters, common for biclustering, is by estimating a block-diagonal covariance
matrix Θ that is close to the original Σ. In this work, we propose to parametrize Θ by the
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following:
Θ = D1ΣD1 + · · ·+DKΣDK (3.1)

where D1 + · · ·+DK = IK

∀k ∈ [1, n] : Dk[i, j] =

{
0, if i ̸= j

0 or 1, if i = j

In other words, theDk are binary diagonal matrices that sum up to identity. This allows for
each Dk to define a column cluster k. For example, D1 = diag(

[
1 1 1 0 0 0 0 0

]
)

for covariance matrices illustrated at Fig. 2.1, where where diag(⃗a) creates a diagonal
matrix using the element from the a⃗.

The proposed parametrization imposes a general block-diagonal structure on the co-
variance matrix. In the next three sections, we discuss three approaches to estimate Dk:
greedy, convex relaxation (numerical) and hierarchical.

3.2 Greedy Approach

Motivated by the approach in [49], we decided to adopt a greedy algorithm for estimating
Dk in the proposed parametrization of Σ deom eq. (3.1). Let us assume that we have
independent identically distributed data generated from one component of the Gaussian
Mixture Model:

X = {X1, X2, . . . XN}, where Xi ∼ N (µ,Σ), µ ∈ Rm,Σ ∈ Rm×m (3.2)

In the first step, we obtain Maximum Likelihood Estimates (MLEs) of the sample mean
and sample covariance:

µ̂ =

∑N
i=1Xi

N
,

Σ̂ =

∑N
i=1(Xi − µ̂)(Xi − µ̂)T

N
.

For the initialization of Dk, we apply Principal Component Analysis to form a matrix
P ∈ RK×m of the first K principal components of the scaled Σ̂ [38, 49]. For every col-
umn j we compute p = argmax(Pj), where Pj denotes j-th column of P . Then we put
Dp[j, j] = 1, which can be interpreted as assigning the j-th column to the p-th column
cluster.
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In the second step, we iteratively reassign column clusters by selecting such cluster for
the column j that maximizes data log-likelihood (Θ computed as in eq. (3.1)):

L(θ;X) = −N

2
log |Θ̂| − 1

2

N∑
i=1

(Xi − µ̂)T Θ̂−1(Xi − µ̂)

Starting with the first column j = 1, we choose:

p = argmax1≤k≤KL(Θ̂k), with Θ̂k =
K∑
i=1

DiΣ̂Di, Di=k[j, j] = 1 ∧Di ̸=k[j, j] = 0

The cluster assignment for the j-th columns is updated by setting Dp[j, j] = 1 and
Dk ̸=p[j, j] = 0. Conditioning on the first updated columns, we repeat the procedure for the
rest of them.

3.3 Convex Relaxation Approach

We propose estimating Dk by formulating a convex optimization problem. Given that
all off-diagonal elements of Dk are known to be zero, we can minimize the number of
parameters by introducing:

Dk = diag(s⃗k), s⃗k =
(
s1k . . . smk

)T
As assumed in the section above, we have independent identically distributed data gen-
erated from one component of the Gaussian Mixture Model (eq. 3.2) and there are K
column clusters. This approach is based on the maximization of log-likelihood. Note that
the proposed parametrization of the precision or covariance matrix is equivalent because
the inverse of a block diagonal matrix is block diagonal matrix. However, using the preci-
sion matrix will simply the derivatives. We denote Σ̂ to be a MLE of the true covariance,
and we set:

Θ−1 = D1Σ̂
−1D1 + · · ·+DKΣ̂

−1DK (3.3)

We want to maximize the log-likelihood function with respect to the block-diagonal struc-
ture of the covariance matrix:

L(θ;X) = −N

2
log |Θ| − 1

2

N∑
i=1

Tr(Θ−1(Xi − µ)(Xi − µ)T )
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L⋆(θ;X) =
1

N
L(θ;X) =

1

2
log |Θ−1| − 1

2

N∑
i=1

Tr(Θ−1R).

Where R = 1
N

∑N
i=1(Xi − µ)(Xi − µ)T . By construction, we have R = Σ̂. Alternatively,

we can rewrite eq. (3.3) as Θ−1 =
∑K

k=1DkR
−1Dk and section 3.3 as:

L⋆(θ;X) =
1

2
log |

K∑
k=1

DkR
−1Dk| −

1

2
Tr(

K∑
k=1

DkR
−1DkR). (3.4)

We utilize the properties of the trace and element-wise product operators to obtain

Tr(DkR
−1DkR) = s⃗ T

k (R−1 ⊙R)s⃗k (3.5)

Where ⊙ is element-wise or Hadamard product.

We aim to find S =
[
s⃗1 s⃗2 . . . s⃗K

]
that maximizes log-likelihood derived above

(3.4). Keeping in mind that s⃗k should be binary by definition of eq. (3.1), we obtain a
non-linear integer problem, which is known for its complexity [30]. To simplify, we relaxed
the s⃗k binary constraints and leveraged quadratic programming to solve the following:

maxL∗ st. ∀k : s⃗k > 0⃗ and
K∑
k=1

sk = 1⃗ (3.6)

Naturally, the optimal solution will be ∀k : s⃗k =
(

1
K

1
K

. . . 1
K

)T
as it results in

Θ−1 = Σ̂−1. To avoid the trivial solution, we added a penalty on the logarithm of the
determinant of STS. To push s⃗k towards binary values we add the

∑K
k=1 s⃗

T
k s⃗k −m term

to the objective function:

Q = L∗ + γ(
K∑
k=1

s⃗ T
k s⃗k −m)− λ log |STS| γ, λ ∈ R. (3.7)

Such optimization problem can be solved numerically utilizing gradient descent. Gradient
descent is an iterative, first-order optimization method that finds local minima or maxima
of the differentiable function. We aim to estimate the parameters S =

[
s⃗1 s⃗2 . . . s⃗K

]
by maximizing penalized log-likelihood eq. (3.7) given the observed data X ∼ N (µ,Σ). To
simplify the problem, we propose to estimate the columns of S iteratively, starting with s⃗1
and conditioning on the values of all other column vectors.

Let’s compute the partial derivatives of Q eq. (3.7) wrt s⃗k. Note that Dk = diag(s⃗k)
and ∂ diag(s⃗k) = diag(∂s⃗k):
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∂

∂s⃗k
(
1

2
log |

K∑
k=1

DkR
−1Dk|) = (T ⊙R−1)s⃗k (3.8)

Where T = (
∑K

k=1 DkR
−1Dk)

−1. We utilize the term rearrangement suggested in equation
3.5:

∂

∂s⃗k
(−1

2
Tr(

K∑
k=1

DkR
−1DkR)) =

∂

∂s⃗k
(−1

2

K∑
k=1

s⃗ T
k (R−1 ⊙R)s⃗k) = −(R−1 ⊙R)s⃗k (3.9)

Now we will take the partial derivatives of the penalty terms:

∂

∂s⃗k
(γ(

K∑
k=1

s⃗ T
k s⃗k −m)) = 2γs⃗k (3.10)

∂

∂s⃗k
(−λ log |STS|) = −2λ(S(STS)−1)k (3.11)

where Ak denotes the k-th column of A. Combining all of the above derivations:

∂Q
∂s⃗k

= (T ⊙R−1)s⃗k − (R−1 ⊙R)s⃗k + 2γs⃗k − 2λ(S(STS)−1)k (3.12)

To maximize the Q, at every iteration, we take a step in the direction of a positive gradient.
Let us denote ω ∈ R to be a learning rate, then the proposed update for s⃗k is defined as:

s⃗
(t+1)
k = s⃗

(t)
k + ω((T (t) ⊙R−1 −R−1 ⊙R + 2γ)s⃗

(t)
k − 2λ(S(STS)−1)

(t)
k ) (3.13)

3.4 Hierarchical Clustering Approach

Hierarchical clustering refers to a widely utilized family of clustering algorithms [40, 4,
18], that are based on an iterative procedure of either merging or splitting nested clusters.
Merging or splitting is also known as bottom-up and top-down approaches correspond-
ingly. Many readily available implementations and generalizations of the algorithm ensure
robustness on various input data configurations [3].
We propose to leverage the bottom-up hierarchical approach known as agglomerative clus-
tering to find the desired number of column clusters. However, instead of clustering the
transpose of the dataset, we propose to use the absolute values of correlations of the

10



columns as a (i) similarity/dissimilarity metric between variables or (ii) feature represen-
tations to cluster. Let us denote R̂ to be an estimate of the correlation matrix of columns
in the dataset X (eq.3.2) and Σ̂ to be an MLE of the covariance matrix, then

R̂ = diag(Σ̂)−
1
2 Σ̂ diag(Σ̂)−

1
2

R̂⋆ = abs(R̂) (3.14)

where abs(A) applies the absolute value element-wise to the matrix A and diag(A) creates
a diagonal matrix using the diagonal elements of the matrix A. Assuming correlations
as similarity metric (i), we define D = 1 − R̂⋆ to be a distance matrix input to the
clustering algorithm. Under this setting, every iteration of agglomerative clustering merges
two features in one cluster when they correlate the most with each other. Assuming the
second formulation (ii), we treat R̂⋆ as feature vectors. To be merged in one cluster, two
features not only need to be highly correlated, but their absolute values of correlations
with other features should also be similar. We compare two variations of the algorithm in
appendix A, which concludes that (ii) is more suitable for the topic modelling application
because it is more context aware. Next sections utilize the (ii) formulation.

The agglomerative clustering procedure starts by assigning every row of R̂⋆ into its
cluster. On every iteration, it merges two of the most similar clusters, as measured by
a selected similarity/dissimilarity metric, which is known as linkage criteria. On every
iteration, the proposed configuration of the agglomerative clustering approach will merge
the groups of columns that have the most similar correlations to all the columns, which is
what we need, given the assumptions of biclustering.

In hierarchical clustering, the linkage criterion is a metric that defines the distance
between two clusters A and B. The naming likely comes from the fact that it defines which
clusters will be merged or linked together at every iteration of the algorithm. In this section,
we discuss three of the most widely used linkage criteria [51], including single linkage,
complete linkage and average linkage. We also provide the reasoning behind selecting one
of them for the purposes of biclustering. Let l(A,B) denote the distance between two
clusters A and B (linkage) and d(a, b) denote a distance (e.g. Euclidean distance) between
any of the two cluster elements.
The single-linkage is defined as

l(A,B) = min
a∈A,b∈B

d(a, b) (3.15)

The agglomerative clustering based on a single linkage will merge two clusters with a
minimum distance between the closest observations. Therefore, it may not produce an
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G

space of the columns A..G, distance defined by the selected linkage criteria

example of the dendrogram produced by Agglomerative Clustering

iteration #0 A B C D E F G

iteration #1 A B C FG

iteration #2 C FG

D E

DEAB

iteration #4 FGDEABC

iteration #5 DEFG

iteration #6 ABCDEFG

ABC

Figure 3.1: Example of the feature space with distance defined by a selected linkage crite-
rion (left) and the result of iterations of agglomerative clustering (right)

optimal result in the presence of two columns that correlate significantly with each other,
but other columns in two different clusters are completely uncorrelated. The complete
linkage is defined in the following way

l(A,B) = max
a∈A,b∈B

d(a, b) (3.16)

The procedure based on complete linkage will merge two clusters with a minimum distance
between the furthest observations. This may not produce an optimal result when column
c correlates with ∀b ∈ B, but it also has a large correlation with one other column a ∈ A
st |A| = 1. In this case, the result of the next iteration will be A(t+1) = {a, c} and
B(t+1) = B(t). The average linkage is defined as

l(A,B) =
1

|A||B|
∑

a∈A,b∈B

d(a, b) (3.17)

We propose utilizing average linkage criteria for our purposes as this method results in
clusters with the highest cohesion and diminishes the disadvantages of the method discussed
above [48].
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Chapter 4

Model

There is no closed-form solution for estimating the parameters of the Gaussian Mixture
Model. Parameters of such models are usually estimated by leveraging the Expectation
Maximization (EM) algorithm or its variants. This section extends the proposed param-
eter estimation procedure for bi-clustering with multiple mixtures of GMM. The biggest
difference between the proposed procedure and the factor-analyzer model is in how the
covariance matrices are estimated.

Let’s denote X = {X1, X2, . . . XN}, Xi ∈ Rm to be a sample of N independent obser-
vations from a S-components Gaussian mixture. Let zis for i = 1, . . . , N and s = 1, . . . , S
be the latent variable with zis determening the probability of Xi to be generated from s-th
component. We start by defining a probability density function for a finite S-component
GMM,

P (Xi|θ) =
S∑

s=1

πsf(Xi|θs) (4.1)

EM is an iterative algorithm that finds local maximum likelihood estimates of the model
parameters θ. In one iteration, it alternates between the Expectation (E-step) and Max-
imization (M-step) steps. In the E-step, it computes Q(θ|θt) the expected value of the
log-likelihood function of θ given θt (model parameters computed during the previous iter-
ation). In the M-step, the algorithm finds the estimate of θ that maximizes the expected
log-likelihood from the E-step. For a S-component GMM the the expected value of the
log-likelihood function is

Q(θ|θt) = EZ|X,θt [logL(θ;X,Z)] =
N∑
i=1

EZi|Xi,θt [logL(θ;Xi, Zi)] = (4.2)

13



N∑
i=1

S∑
s=1

P (zis = 1|Xi, θ
t)[log πs −

1

2
log |Θs| −

1

2
(Xi − µs)

TΘ−1
s (Xi − µs)].

For bi-clustering purposes, we define the parametrization of Θs as in eq. (3.1).

Initializing latent variables. We start by splitting X into S clusters via KMeans
algorithm [20]. This provides an initial binary assignment for the latent variable zis.

M-step. The following θ updates are derived from eq. (4.2):

πs =
1

N

N∑
i=1

zis, µs =
1

N

N∑
i=1

zisXi (4.3)

Σs =
1

N

N∑
i=1

zis(Xi − µs)(Xi − µs)
T (4.4)

Note that Σs in eq. (4.4) is arbitrary. To convert it to block-diagonal Θs, we input the MLE
of Σs to one of the three proposed column clustering estimators (e.g. greedy, hierarchical,
numerical). Then we compute the estimate of the covariance matrix with K blocks Θs as:

Θs =
K∑
k=1

DksΣsDks. (4.5)

In the case of the common covariance matrix, we compute Σ =
∑

s πsΣs and repeat the
steps outlined above.

E-step. We recompute the values of latent variable zis as below:

zis = P (zis = 1|Xi, θ
t) =

πsf(Xi|µs,Θs)∑S
h πhf(Xi|µh,Θh)

. (4.6)

When the algorithm converges, we obtain row clustering by taking argmax over the mixture
components of the latent variable Z and column clusters by looking at the matrices Dk.

As was established empirically, practical implementation of the Gaussian Mixture model
algorithm requires the handling of multiple sources of numerical instabilities. Firstly, it is
not guaranteed that the covariance matrices Σs estimated during the maximization step
will have a full rank. Therefore Σ−1

s might not exist. We introduce a diagonal regularization
matrix Σreg = 10−6 × I to overcome this issue. We substitute Σs = Σs + Σreg.

Secondly, the exponentiation in the computation of f(Xi|µs,Σs) in eq. (4.6) sometimes
results in infinite values. To fix this, we compute G = maxs log f(Xi|µs,Σs) and rewrite:

zis =
elog πs+log f(Xi|µs,Θs)−G∑
s e

log πs+log f(Xi|µs,Θs)−G
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Chapter 5

Simulations & Experiments

In this chapter, we aim to conduct experiments with both simulated and real-world data
to establish the following:

• Out of the three proposed approaches for estimating the block-diagonal matrix, which
one is the most accurate and efficient? Section 5.1 compares the execution time
and accuracy of the three approaches while varying the number of observations in
the dataset. We find that the hieracherical approach is the the most accurate and
efficient one.

• How does hierarchical algorithm compares to other known covariance estimators?
In the section 5.2 we experiment with recovering two different structures of the co-
variance matrix with our vs state-of-the-art approaches, including Ledoit-Wolf [33],
Graphical Lasso [23], factor-analyzer UCUU [49] and MLE. We find that methods
that artificially enforce block-diagonal covariance structure are significantly more ac-
curate and the proposed method is indeed more robust than UCUU [49] for matrices
with negative covariances.

• How accurate and efficient is the best-proposed approach in the presence of varying
block-diagonal covariance structure? What are the limitations? Section 5.3 explores
the accuracy of the hierarchical method under varying number of features and blocks
in the covariance matrix. The approach exhibits > 90% accuracy for most of the
settings. We discovered that the usage of the hierarchical algorithm is limited when
estimating high number of small blocks.
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• How accurate and efficient is the proposed approach in the clustering scenario? In the
section 5.4 we compare the performance of our algorithm to the performance of two
clustering (KMeans [20], GMM [45]) and two bi-clustering (Spectral Co-clustering
[16], factor-analyzer UCUU [49]) approaches. For every tested dataset, we find that
our algorithm is comparable in accuracy and sometimes outperforms others.

5.1 Accuracy and Efficiency Comparison of the Pro-

posed Approaches

In this section, we investigate the accuracy and efficiency of the three proposed approaches
to the problem of recovering column clusters Dk. The experiment setup is similar to other
proposed in the literature [49]. For every experiment, the input dataX ∈ RN×8 is generated
from one component Gaussian Mixture Model with µ =

[
0 1 2 3 4 5 6 7

]
. Fig. 2.1

displays two options for the covariance matrix that are considered in the experiments: (1)
with non-negative entries only; (2) allowing negative entries. The choice of covariance
matrices is motivated by restrictions for off-diagonal elements to be strictly non-negative
utilized commonly in the literature [53, 49, 36]. In this work, we aim to recover a covariance
matrix of the general structure, including the possibility of negative off-diagonal elements.
Note that both matrices at Fig. 2.1 have a natural block-diagonal structure, which provides
us with ground truth for column cluster indicator matrices Dk. For example, for both Σ1

and Σ2 we have D1 = diag
(
1 1 1 0 0 0 0 0

)
.

Fig. 5.1 demonstates the result of our experiments with data generated from N (µ,Σ1).
We vary the number of data points to understand the impact on both clustering accuracy
and execution time of the proposed methods. For every size of dataset X, we run the
experiment 200 times. The accuracy is calculated as the total number of times when
an algorithm returned correct column clusters D1, D2, D3 divided by the total number of
attempts. Fig. 5.1 (right) demonstrates the average execution time in milliseconds over
200 runs together with it’s standard deviation.

From Fig. 5.1, it is clear that the hierarchical estimator of column clusters Dk is the
most accurate and efficient. It gets to 100% starting from 50 data points in the training set
and demonstrates solid accuracy > 90% even with 20 examples. The numerical estimator
benefits from the increasing dataset size. However, the time it needs to converge grows as
well. In this experiment, the greedy estimator proved to be the least efficient and the least
accurate.

Fig. 5.2 demonstrates the results of the analogous experiment with X generated from
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Figure 5.1: Comparison of accuracy & execution time over 200 runs for estimating Dk for
block-diagonal 8× 8 covariance matrix with 3 blocks, positive entries only. (Left) The
accuracy of the proposed approaches is given a number of the data points in the generated
dataset X. (Right) Execution time of the proposed approaches.
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Figure 5.2: Comparison of accuracy & execution time for estimating Dk for block-diagonal
8× 8 covariance matrix with 3 blocks, negative entries allowed. (Left) The accuracy of
the proposed approaches given a number of the data points in the generated dataset X.
(Right) Execution time of the proposed approaches.

N (µ,Σ2). Interestingly, the execution time of both numerical and greedy estimators in-
creases. While the numerical estimator demonstrates degraded accuracy, the greedy one
improves in the presence of negative covariances or a greater variety of values within a
covariance block. At the same time, the hierarchical approach leads in terms of both effi-
ciency and accuracy, and it can correctly cluster columns even for the matrix with negative
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covariances. For our next experiment, we proceed with the hierarchical approach.

5.2 Recovering Block-Diagonal Covariance Matrix &

Comparison with the Literature

In the previous experiments, we focused on the question of how accurate the detection of
blocks in the block-diagonal covariance matrix Σ is. In this experiment, we aim to estimate
the final block-diagonal covariance matrix Σ with the hierarchical method and compare it
with other methods commonly utilized in the literature[49, 33, 22].

true covariance emperical, MAPE = 26.0% Ledoit-Wolf, MAPE = 25.3% GraphicalLasso, MAPE = 22.1% Hierarchical, MAPE = 8.74% Tu, Subedi (2021), MAPE = 5.46%
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Figure 5.3: Recovering block-diagonal covariance matrix with only positive (top) / negative
(bottom) off-diagonal entries with five methods including MLE (empirical), Ledoit-Wolf,
Graphical Lasso, Hierarchical (proposed) & UCUU method from Tu, Subebi 2021 [49]

Fig. 5.3 (first column) shows two block-diagonal covariance matrices used to gen-
erate datasets X ∈ R300×12 with 300 observations of 12 features. We also used µ =(
1 2 . . . 12

)
in both cases. The figure demonstrates estimates of Σ produced by five

approaches and corresponding MAPE values (Mean Absolute Percentage Error). For every
estimate Σ̂ we compute MAPE % measure as following:

100×
∑

i,j |σij − σ̂ij|∑
i,j σij

. (5.1)

Our main conclusions from this experiment include: (i) artificially enforcing block-diagonal
covariance structure is justified for the problems when this covariance structure is expected
as such (hierarchical, UCUU) are at least two times more accurate (in terms of MAPE)
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than others; (ii) the proposed hierarchical method is robust in the presence negative off-
diagonal covariances, while UCUU [49] is not designed for such case.

In this example, MAPE is only helpful for relative algorithm accuracy comparison
but not for absolute estimation quality assessment. It allows the comparisons of the form
”method X is 2 times more accurate than Y”. However, we do not deduce that all methods
are highly inaccurate for the covariance matrix with negative off-diagonal entries because
the denominator of equation 5.1 is small. Therefore even small errors will result in large
percentages.

5.3 Impact of the Covariance Block Structure on the

Performance of Hierarchical Estimator

The previous sections concluded that the hierarchical estimator of column clusters Dk is
the most accurate and efficient among the three proposed ones. It quickly reached close to
100% clustering accuracy, even with small sample sizes (see Fig. 5.1).

This experiment aims to investigate the limitations of the hierarchical estimator by
applying it to the problems of growing complexity and measuring the resulting accuracy
of column clustering. In a nutshell, the complexity of the estimation of Dk from a data
sample X generated by N (µ,Σ) (where Σ is block-diagonal) is influenced by: (i) the size
of X or the number of rows in the input dataset; (ii) the dimensionality of µ,Σ or the
number of columns in the dataset (m); (iii) number of block in Σ or the actual number of
column clusters (K).

To set up the experiment, we fix (i) - the number of rows in the dataset to N = 50, and
we will vary (ii), (iii) to understand its impact on the estimator’s accuracy. This choice is
motivated by common real-life scenarios (e.g. genomics, natural language processing etc.)
when the number of observations is often limited compared to the number of potential
features.

We test the accuracy of the hierarchical estimator given three options for the number
of columns in the input dataset. For simplicity of comprehension, they will be referenced
as low, medium and high and summarized in table 5.1. We also define three levels (low-
medium-high) for the number of blocks in the covariance matrix Σ. The number of column
clusters at every level is proportional to the level of dataset dimensionality. For example,
the number of blocks in the low columns-low blocks is 3 × 20 = 3, while the number of
blocks in medium columns-low blocks is 3 × 21 = 6. The calculations are summarized in
the table 5.1.
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level low= 0 medium= 1 high= 2

m 24 96 384

K 3× 2column level 4× 2column level 8× 2column level

N 50 50 50

Table 5.1: Summary of different combinations of the number of columns and the number
of true column clusters in Σ. The number of column clusters (blocks) is proportional to the
level of data dimensionality (e.g. low number of blocks is 3 for the data with 24 columns
and 12 for the high-dimensional data with 384 columns)

medium-low medium-medium medium-high

Figure 5.4: Examples of covariance matrices Σi used to generate data for the simulation
study. In this example, the number of columns is fixed to medium=96 (table 5.1), and the
number of blocks varies from 6 (low) to 16 (high). Note the added noise.

For every level of columns and number of blocks, we run the experiment 500 times.
Every run i, we sample µi randomly from the multivariate continuous uniform distribu-
tion on the half-open interval [0, 1). We generate every block Bij of the block-diagonal Σi

independently as Bij = AT
ijAij. When Σi is constructed, we add random noise 0.5ET

i Ei

to bring this simulation closer to real-world scenarios of imperfect covariance matrix esti-
mators. Entries of Aij and Ei are independently generated from the continuous uniform
distributions U(1, 2) and U(0, 1) correspondingly.

Fig. 5.5 demonstrated the accuracy of the hierarchical estimator for different problem
complexities in two scenarios: known vs an unknown actual number of column clusters
(blocks of the covariance matrix). In the second case, we pick the number of clusters that
produces the maximum silhouette score with the search range n± 2

√
m, where n is a true
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Figure 5.5: Accuracy of the hierarchical estimator of column clusters Dk for different
problem complexities defined by the dimensionality of the dataset(low-high) and the true
number of blocks in the covariance matrix Σ (number of column clusters). Tested for the
scenario of known (left) and unknown (right) n clusters

number of clusters, m is a dimensionality of the data.

Fig. 5.5 proves that the proposed estimator is accurate for any covariance structure of
the low- and medium-dimensional data and mostly even high-dimensional one (although
the number of rows in the dataset is fixed to be 50). At the same time, the utility of the
estimator is limited for very heterogeneous high-dimensional data (high-high scenario). We
also see that accuracies for the scenarios of known vs unknown number of blocks are very
similar, which signifies the usefulness of the estimator even in the case when the number
of column clusters is unknown.

5.4 Clustering Performance

In this experiment, we test the row clustering performance of the proposed bi-clustering
approach - the Gaussian Mixture Model with a block-diagonal covariance matrix estimated
leveraging the hierarchical method. We compare the results of the proposed approach with
two other bi-clustering methods [49, 16] and KMeans [20] and vanilla Gaussian Mixture
Model [45]. We use KMeans, GMM and Spectral Co-Clustering implementations with
their default parameters from the sklearn library [43]. Additionally, we implemented the
factor-analyzer UCUU model [49] in Python.

This section reports on two sets of experiments. Firstly, we test the algorithms on well-
known low-dimensional datasets such as Wine [13], Olive [21] and Ecoli [41]. Secondly,
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we compare the algorithms’ performance on the high-dimensional genomics classification
problems, including Alon [2] and Golub [26]. We scale the input data before clustering to
the mean 0 and variance equal to 1. We compare the algorithm’s using the adjusted rand
index (ARI) [54], accuracy and computational time.

The results of the first set of experiments are summarized in the table 5.2 below. The
proposed algorithm compares with the known methods in terms of ARI and accuracy and
even outperforms others on the Ecoli dataset, but it is almost 10× slower in terms of
execution time than most of the listed approaches. However, the most similar algorithm
to our proposed method is the UCUU model which runs 400× slower than KMeans, GMM
and Spectral Co-Clustering.

We conclude that the proposed approach has similar accuracy compared to known row
clustering algorithms while having an advantage in terms of lower execution time compared
to the bi-clustering UCUU [49] model, which is very similar in utility.

Datasets Wine Olive Ecoli
ARI %, acc time (sec) ARI %, acc time (sec) ARI %, acc time (sec)

KMeans 0.897 96.6% 0.015 0.448 76.5% 0.047 0.509 65.2% 0.036

GMM 0.831 92.7% 0.009 0.601 78.1% 0.019 0.646 74.4% 0.015

UCUU [49] 0.948 98.3% 4.320 0.517 79.1% 19.62 − − −

Proposed 0.945 98.3% 0.120 0.574 80.4% 0.169 0.656 76.2% 0.138

Spectral Co-Clustering 0.738 90.9% 0.020 0.237 57.3% 0.042 0.394 56.4% 0.048

Table 5.2: Average adjusted rand index (ARI), accuracy and execution time over 10 fits
of different algorithms on given datasets.

In the second experiment, we compare the performance of the same pool of algorithms
on a more complex task of high-dimensional data clustering.

The preprocessed version of Alon [2, 38] data consists of 42 tumorous and 22 normal
observations of 461 genes. Unfortunately, we were unable to run the UCUU method [49] on
the full set of features because of (i) increasing computational time; (ii) author’s note that
this algorithm is not designed for the scenario when the number of features is significantly
higher than the number of observations. Therefore, we created Alon100 by subsampling
100 features with ANOVA F-test [19].

The first and third columns in the table 5.3 summarize the algorithm’s performance on
the restricted and full datasets, respectively. In the first case, the results of the proposed
method, UCUU and KMeans, are identical. This can be explained by the fact that only
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Datasets Alon100 Golub100 Alon-full Golub-full
ARI %, acc ARI %, acc ARI %, acc ARI %, acc

KMeans 0.592 88.7% 0.889 97.2% −0.003 55.1% 0.162 70.8%

GMM 0.553 87.4% 0.889 97.2% 0.042 58.3% 0.161 70.8%

UCUU [49] 0.592 88.7% 0.889 97.2% − − − −

Proposed 0.592 88.7% 0.889 97.2% 0.001 55.4% 0.212 73.6%

Spectral Co-Clustering 0.450 83.8% 0.837 95.8% −0.006 54.8% 0.185 72.2%

Table 5.3: Adjusted rand index (ARI) and accuracy of different algorithms on given
high-dimensional datasets and their preprocessed versions with 100 features selected with
ANOVA F-test[19].

100 best features were selected, not leaving much noise in the data. Unfortunately, the
performance of all methods degraded significantly the full Alon dataset, with the GMM
method achieving maximum accuracy of 58.3%.

Golub [26] comprises 2030 gene expressions of 72 patients, 47 of them are diagnosed
with acute lymphoblastic leukemia and 25 with acute myeloid leukemia. As previously,
we construct Golub100 with a restricted number of features selected with ANOVA F-test
[19]. The results of this experiment are similar to those above: four of the five methods
demonstrate the identical performance of the subsampled dataset, and the performance of
all the methods degrades on the full one. Golub data has 5× more columns than Alon,
and we now see that both bi-clustering algorithms (proposed and Spectral Co-Clustering)
perform better than row clustering ones. This can be attributed to the bi-clustering ability
to homogenize high-dimensional and heterogeneous data.
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Chapter 6

Application to Topic Modelling

In this chapter, we apply the proposed bi-clustering algorithm to the topic modelling
problem and discuss the results. We aim to demonstrate that the proposed algorithm is a
powerful tool for summarizing customer reviews data.

We test our algorithm on two real-world datasets of customer reviews. The first is Trip
Advisor hotel1 data that consists of 20491 unique free-text hotel reviews accompanied by
a numerical rating (from 1 to 5). The second one includes reviews and ratings of three
Disneyland2 branches. We use only a subset of the data that reviews Disneyland Paris
(13630 free-text responses). The language of reviews in both datasets is English.

For better explainability of the resulted topics and column groupings, we decided to
apply the bi-clustering algorithm to the document-terms matrix instead of document-
embeddings [27] data type. Testing the proposed algorithm with semantic text embeddings
is left for future work.

The entries of the document-terms matrix are term frequency-inverse document fre-
quency scores (TF-IDF) [1]. Let us define tf(t, d) as a relative frequency of the term t in
some document d. Then, the inverse document frequency of the term t given a collection
D of N documents is computed as idf(t, D) = log N

|d∈D:t∈d| .

To simplify, the term frequency measures how frequent a term is for a given docu-
ment. The inverse document frequency measures how rare this term is in the overall
collection of documents. We define a TF-IDF score of a term t int he document d as
tf-idf(t, d) = tf(t, d)idf(t, D). The score is maximized when a specific term is frequent in a

1https://www.kaggle.com/datasets/andrewmvd/trip-advisor-hotel-reviews
2https://www.kaggle.com/datasets/arushchillar/disneyland-reviews
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given document but uncommon for other documents. The TF-IDF score of the stop words
is close to zero, as, by definition, stop words have a high probability of being present in
every document in the collection.

Large collections of documents may include over a thousand unique words. Therefore,
before fitting the bi-clustering model, we select only 1000 features with the highest average
TF scores. Additionally, we utilize SelectKBest from the sklearn [43] Python library to
select 400 terms that are the most predictive of the review rating.

We used an elbow method and a silhouette score metric to select the optimal number of
row clusters for every dataset. The proposed algorithm also inputs the number of column
groupings. We discovered that small values k for the number of groups result in most
columns being grouped in one cluster, with other clusters consisting of 2−3 columns. This
is expected with hierarchical clustering. Therefore, we suggest selecting k > 15 for the
purposes of topic modelling. Additionally, we utilized a family of Gaussian models with a
shared covariance matrix. This simplifies the interpretation of feature groupings.

Fig. 6.1 and Fig. 6.2 demonstrate the column and row groupings for the Trip Advisor
and Disneyland Paris data. The heatmap entries are computed as the average TF-IDF
score of terms inside the column grouping A row cluster B divided by average TF-IDF
scores of A among all row clusters and multiplied by 100%. This can be interpreted as
how much ”more important” a column cluster A is for a row cluster B than average.

From Fig. 6.1, we infer that lower hotel ratings may be attributed to the cigarette smell,
rude managers, dirty conditions, problems with the check desk and unexpected credit card
charges. The highest ratings are correlated with access to public transport or the hotel’s
location within walking distance of the city’s landmarks, friendly hotel staff and beautiful
decorations of the premises. Fig. 6.2 demonstrates that both feature clusters of food (ice
cream and chips-burgers-fries) are highly associated with the lowest ratings of Disneyland
Paris. It may signal that the food quality is lower than expected. At the same time, people
are unhappy with closed attractions, rude staff, pushing and perhaps the fact that most
people in Paris speak exclusively French.
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Figure 6.1: Resulting column and row clusters from the Trip Advisor hotel reviews. Entries
of the heatmap represent how much “more important” a given column cluster is for a given
row cluster than average.

Figure 6.2: Resulting column and row clusters from the Disneyland Paris reviews. Entries
of the heatmap represent how much “more important” a given column cluster is for a given
row cluster than average.
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Chapter 7

Conclusions

In this work, we have proposed a bi-clustering algorithm based on a finite mixture of
multivariate Gaussian models. We demonstrated (table 5.2) that our approach has a
comparable clustering performance to the state-of-the-art algorithms in the field. We
provided an example of applying the proposed bi-clustering to real-world topic modelling
problems.

The following is left for future work:

• Proposed bi-clustering algorithm’s topic modelling performance with the semantic
embedding data. We assume it may result in higher-quality row clusters.

• Topic modelling based on clustering of separate subsets of the data features identified
by the output of bi-clustering. We think it will be equivalent to pulling distinct
homogeneous views from the multi-view data.

• Propose an algorithm for selecting the optimal number of column groupings such
that the resulting grouping sizes are better balanced.
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Appendix A

Hierarchical Approach Variations

This chapter compares two formulations of the hierarchical estimator suggested in the
section 3.4, based on the features correlation matrix R̂⋆ eq. (3.14): (i) D = 1 − R̂⋆ as
distance matrix to the clustering algorithm; (ii) cluster R̂⋆ directly, assuming rows of R̂⋆

to be the representation vectors of the dataset features.

We assume that two algorithms will have similar performance on the simple illustra-
tive examples of covariance matrices from section 5.1 and section 5.2. Therefore, we will
compare the performance of two methods in the setting of the experiments described in
section 5.3, on the clustering and topic modelling task.
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Figure A.1: Accuracy of the (i) (right) and (ii) (left) estimators of column clusters Dk for
different problem complexities defined by the dimensionality of the dataset(low-high) and
number of blocks in the covariance matrix Σ. Tested for the scenario of known K.

Fig. A.1 demonstrates that (i) performs significantly better on the simulations - in the
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presence of the true block-diagonal covariance matrix that used to generate the simulation
data. However, this is not often the case for real-world datasets. From table A.1 we
conclude that (i) and (ii) have very comparable accuracy, ARI and execution time on
clustering task with multiple real-world datasets. Fig. A.2 summarizes topics detected in
TripAdvisor hotel reviews with (i) method, which seem less coherent than those generated
with (ii) on Fig. 6.1. We conclude that (i) is more suitable for the tasks when the true
covariance matrix is known to be block-diagonal, while (ii) is more suitable for the topic
modelling applications because it is more context aware (two features are clustered together
not only by correlations with each other, but takes into consideration their correlations with
other features).

Datasets Wine Olive Ecoli
ARI %, acc time (sec) ARI %, acc time (sec) ARI %, acc time (sec)

Proposed (i) 0.911 97.1% 0.182 0.608 81.9% 0.226 0.653 76.1% 0.170

Proposed (ii) 0.945 98.3% 0.120 0.574 80.4% 0.169 0.656 76.2% 0.138

Table A.1: Average adjusted rand index (ARI), accuracy and execution time over 10 fits
of two algorithms on given datasets.

Figure A.2: Resulting column and row clusters from the Trip Advisor hotel reviews ob-
tained with (i) of the hierarchical approach. Entries of the heatmap represent how much
“more important” a given column cluster is for a given row cluster than average.
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