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Abstract

Knowledge distillation (KD) is one of the prominent techniques for model compression.
In this method, the knowledge of a large network (teacher) is distilled into a model (student)
with usually significantly fewer parameters. KD tries to better-match the output of the
student model to that of the teacher model based on the knowledge extracts from the
forward pass of the teacher network. Although conventional KD is effective for matching
the two networks over the given data points, there is no guarantee that these models would
match in other areas for which we do not have enough training samples. In this work, we
address that problem by generating new auxiliary training samples based on extracting
knowledge from the backward pass of the teacher in the areas where the student diverges
greatly from the teacher. We compute the difference between the teacher and the student
and generate new data samples that maximize the divergence. This is done by perturbing
data samples in the direction of the gradient of the difference between the student and the
teacher. Augmenting the training set by adding this auxiliary improves the performance of
KD significantly and leads to a closer match between the student and the teacher. Using
this approach, when data samples come from a discrete domain, such as applications of
natural language processing (NLP) and language understanding, is not trivial. However,
we show how this technique can be used successfully in such applications. We studied the
effect of the proposed method on various tasks in different domains, including images and
NLP tasks with considerably smaller student networks. The results of our experiments,
when compared with the original KD, show 4% improvement on MNIST with a student
network that is 160 times smaller, 1% improvement on a CIFAR-10 dataset with a student
that is 9 times smaller, and an average 1.5% improvement on the GLUE benchmark with
a distilroBERTa-base student.
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Chapter 1

Introduction

During the last few years, we faced the emerge of a huge number of cumbersome state-
of-the-art deep neural network models in different fields of machine learning, including
computer vision [19, 17], natural language processing [31, 19, 21, 4] and speech process-
ing [2, 11]. We need powerful servers to be able to deploy such large models. Running these
models on edge devices would be infeasible due to the limited memory and computational
power of edge devices [11]. On the other hand, considering users’ privacy concerns, net-
work reliability issues, and network delays increase the demand for offline machine learning
solutions on edge devices. The field of neural model compression focuses on providing com-
pression solutions such as quantization [18], pruning [15], Low rank tensor factorization [13]
and knowledge distillation (KD) [16] for large neural networks.

Knowledge distillation (KD) is one of the most prominent compression techniques in
the literature. As its name implies, KD tries to transfer the learned knowledge from a
large teacher network to a small student. The idea of KD was proposed by [5] for the first
time and later this idea generalized by [16] for deep neural nets. The original KD method
concerns transferring knowledge from a teacher to a student network only by matching their
forward pass outputs. Later on, several works in the literature suggested other sources of
knowledge in the teacher network besides the logit outputs of the last layer. This includes
using intermediate layer feature maps [40, 11, 19], gradients of the network outputs w.r.t
the inputs [10, 38]), and matching decision boundaries for classification tasks [15]. Using
this additional information might be useful to get the student network performance closer
to that of the teacher.

In this work, we focus on identifying regions of the input space of the teacher and stu-
dent networks in which the two functions diverge the most from cach other. Moreover, we
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Figure 1.1: (a) Minimization Step: Using the teacher model knowledge for training the
student in KD (utilizing forward knowledge) (b) Maximization Step: Augmenting the input
dataset x with auxiliary data samples 2’ which is generated by the back propagation of
gradient through both networks (utilizing backward knowledge)

(a)

highlight the importance of incorporating backward knowledge of the teacher and student
networks in the knowledge distillation process. Our proposed iterative backward KD ap-
proach is comprised of: first, a maximization step in which a new set of auxiliary training
samples is generated by pushing training samples towards maximum divergence regions of
the two functions; second, a minimization step in which the student network is trained
using the regular KD approach over its training data together with the generated auxiliary
samples from the first step.

We show the success of our backward KD technique in improving KD on both classi-
fication and regression tasks over the image and textual data and also in the few-sample
KD scenario. We summarize the main contributions of this research in the following:

e Our technique extracts knowledge from both the forward and backward passes of the
teacher and student networks in order to identify the maximum divergence regions
between the two functions and generate auxiliary data samples around those regions.



e We provide a solution on how to address the non-differentiability of discrete tokens
in NLP applications.

e Our approach is generic and is applicable to any improved KD approach.

e The results of our experiments, show 4% improvement on MNIST with a student
network that is 160 times smaller, 1% improvement on the CIFAR-10 dataset with
a student that is 9 times smaller, and an average 1.5% improvement on the GLUE
benchmark with a distilroBERTa-base student.



Chapter 2

Background and Problem Definition

Model compression is one of the current challenging hot research topics among the ma-
chine learning community. In the last couple of years, deep learning-based models have
been applied successfully to solve various real-world problems. Most of the successful deep
models are large in terms of the number of parameters. They consist of millions and some-
times billions of parameters that require powerful computers with a considerable amount
of storage capacity to train and use them. On the other hand, the number of devices with
limited computational power like mobile phones and other edge-devices increases every
day. Because of the resource constraints on these devices, the applications that use deep
learning-based inferences provide their services online and on remote servers most of the
time. Moreover, because of the real-time inference and accessibility demand to these ser-
vices, we need to run them offline on the edge devices. The problem of model compression
is related to finding a way to reduce the size of these models and run them on edge devices
with minimum loss of accuracy.

It has been shown in the literature that the neural networks are over parameterized
[23]. It means, for a particular trained neural network, we must be able to find another
network with a smaller number of parameters which has almost similar behaviour and
accuracy. This problem has been attacked from different approaches, including low-rank
factorization, quantization, pruning and knowledge distillation. Each of these approaches
has its pros and cons. The presented work in this research paper is an attempt to improve
the current knowledge distillation methods. However, before investigating this method, it
would be useful to review some of the other model compression approaches briefly.



2.1 Pruning

One way to reduce the size of a neural network is pruning. The idea behind this approach
is removing the redundant and less important weights [13, 23]. Pruning can be done either
during or after training a neural network. This approach’s methods help to reduce the
number of parameters in a neural network, increase the inference speed, prevent overfitting,
and improve the generalization of a neural network. Dropout technique [39] is one of the
famous pruning techniques used to prevent overfitting. The pruning techniques can be
categorized as follows [J]:

e Weight pruning: In these techniques, the less important weights are removed from
the network [13].

e Neuron pruning: neurons with redundant outputs remove from the network as well
as all of its incoming weights [37].

e Filter pruning. These techniques have been developed to compress convolutional
neural networks (CNNs). Filter pruning techniques rank the importance of filters in
a CNN model and remove the least important filters [25].

e Layer pruning. These techniques try to remove one or more entire layer from a deep
neural network [7].

2.2 Low rank factorization

As we discussed in previous sections, deep models have redundancy in their parameters and
feature maps. Generally, this redundancy is reflected in weight matrices of these models
and makes them to have a lower rank. By exploiting this feature of weight matrices,
the low-rank factorization methods decompose the weight matrices of a deep model and
replace them with smaller matrices without any serious effect on models’ performance. The
most famous and general method used in this area is singular value decomposition (SVD)
[9]. This method, decomposes a matrix A € R™ " into three factors A = USVT, where
UecR™" ¥ cR™> and VT € R™". Here r is the rank of the matrix A and U, X, and
VT are smaller matrices than A. Low-rank factorization techniques can be applied either
on dense layers of feed-forward networks or on filters of CNNs [33]. Previous studies have
shown that these techniques can reduce the size of networks and improve the inference
time of them up to 30-50% in comparison to original networks [9].
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2.3 Knowledge distillation

Knowledge distillation (KD) [10] is another approach to reduce the size of a neural network.
In this method, we have a large and a small neural network in terms of the number of
parameters called the teacher and student networks. The teacher network has been trained
on a specific dataset and usually has a good performance. On the other hand, we want
to train the student network, which is usually similar to the teacher network, in order to
mimic the teacher’s behaviour. More precisely, the student is trained based on both the
target labels and the teacher’s outputs. The primary advantage of KD is leveraging the
acquired dark knowledge of the teacher network to train the student network better.

Recently it has been shown in the literature; the neural network models extract some
knowledge about the dataset after training, which does not exist in the original dataset.
This knowledge is sometimes called dark knowledge and can guide the smaller models
during training to achieve higher performance [16]. The original knowledge distillation
method [16] uses the following loss function to train the student network. (Here we consider
our dataset is {(xi,yi)}?zl)

Cip = oL, (U(S(JE)),@/) (=)t <U(Sf)) | 0<T(f)>> (2.1)

Where S(z) and T'(x) are student and teacher networks respectively. o(.) is the softmax
function. 7 is the temperature parameter and « is a coefficient between [0,1]. This loss
function is a linear combination of two loss functions. The first loss function £; minimizes
the difference between the output of the student model and the given true labels. The
second loss function £, minimizes the difference between the outputs of the student model
and the teacher model. Therefore the whole loss function minimizes the distance between
the student and both underlying and teacher functions. Since the teacher network is
assumed to be a good approximation of the underlying function, it should be close enough
to the data samples’ underlying function. Figure 2.1 shows a simple example with three
data points, an underlying function, a trained teacher and a potential student function
that satisfies the KD loss function in eq. 2.1.

2.4 Problem

In the original KD, even though the student satisfies the KD objective function and inter-
sects the teacher function close to the training data samples, there is no guarantee that



it would fit the teacher network in other regions of the input space (see Figure 2.1). In
machine learning problems, we always have access to a limited number of data samples
from the underlying function in a given dataset. The original KD method uses the teacher
function’s responses to these data samples as well as the target responses to training the
student network. Therefore, we only have information from the areas indicated by light
blue circles in Figure 2.1, and we do not consider the behaviour of the underlying and
the teacher functions in other areas. A high capacity model like a student network can
easily match to the teacher and underlying functions in the areas we have data samples
but diverge from them in other areas (Figure 2.1). Since we only have access to a limited
number of samples, we can not observe the underlying function’s behaviour in other areas.
However, the teacher network is a continuous function, and its behaviour is observable
everywhere on its domain. If we assume the teacher network as a good approximation
of the underlying function, we can leverage its continuity and train the student network
better. In this work, we try to address this problem by deploying the backward gradient
information w.r.t the input (we refer to as backward knowledge) in the two networks and
generate auxiliary data points in the areas that we have maximum divergences between
the student and teacher. In the next sections, we will see the details of this method.

yn
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Figure 2.1: Visualizing the data insufficiency issue for the original KD algorithm. It
demonstrates the behaviour of the teacher and the student function after training with
KD loss.



Chapter 3

Related Works

3.1 Sobolev training for KD

As we mentioned in section 2.4, the KD loss cannot guarantee the student and teacher
functions to match over the entire input space. The reason is training two networks based
on the original KD loss function would only match their output values on the training
samples and not their gradients. There are some works in the literature to address this
issue by matching the gradients of the two networks at given training samples during
training [10, 38]. However, since we usually deal with networks with multidimensional
inputs and outputs, the gradients of output vectors w.r.t input vectors give rise to large
Jacobin matrices. Matching these Jacobian matrices is not computationally efficient and
is not practical in real-world problems.

Sobolev training [10] proposes a solution to avoid large Jacobian matrices: instead
of directly matching the gradients of the two networks, one can match the projection of
the gradients onto a random vector v which is sampled uniformly from the unit sphere.
Although this approach can reduce the computational complexity of matching gradients
during the training, still computing Jacobian matrices before this projection can be very
computationally expensive (especially for NLP applications that deal with large vocabulary
sizes). To tackle this problem in our work, we define a new scalar loss function based on
an [y norm to measure the distance between the teacher and student networks (see Figure
4.1-(b)). Gradients of this scalar loss function is a vector with the same size as the input
vector = and can be used as a proxy for the network gradients introduced in [10, 38].



3.2 Knowledge distillation with adversarial samples

A good practice for knowledge distillation is transferring the teacher network’s decision
boundary to the student network in classification problems. One way to do this is by
using adversarial samples. Adversarial attack is called to a set of techniques that change a
data sample from a particular class into an adversarial sample of another class to confuse
a given classifier. Authors of knowledge distillation with adversarial samples method [15]
have been inspired by this idea and proposed a KD method to transfer the teacher’s decision
boundary to the student network. They proposed to perturb the data samples and generate
adversarial samples near the decision boundary of the teacher network. These samples are
called boundary supporting sample (BSS), and they can be used in the training phase of
the student network to transfer the teacher boundary (Figure 3.1).
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@  Boundary Supporting Sample (BSS)

Teacher networks decision boundary — = = Student networks decision boundary
— = = Swudent networks decision boundary after using BSS

without using BSS

Figure 3.1: Knowledge distillation with adversarial samples [15]. (a) shows the dataset with
two classes (blue and orange points). The red points are boundary supported samples (BSS)
generated based on the original samples. The blue line is the teacher decision boundary ad
the dashed green line is the student decision boundary without using BSS. (b) illustrates
the student decision boundary after using BSS.

Although utilizing BSS is a great idea for knowledge distillation, it is only applicable
to classification problems. The other problem is that the adversarial attack to a sample
point can fail, and a good BSS may find after several failure cases, which is not efficient.
In the next section, we propose a novel idea to address these shortcomings.



Chapter 4

Methodology

In this section, we propose our improved KD method based on generating new out of
sample points around the areas of the input domain where the student output diverges
greatly from the teacher. This approach identifics the areas of the input space X around
which the two functions have maximum distance. Then we generate out of sample points
X' C X from the existing training set X C X over those regions. These new generated
samples X’ can be labelled by the teacher and then X <+ X U X’ be deployed in the KD’s
training process to match the student better to the teacher over a broader range in the
input space (see Figure 4.1). We show that augmenting the training set by adding this
auxiliary set improves the performance of KD significantly and leads to a closer match
between the student and teacher. Our improved KD approach follows a procedure similar
to the minimax principle [3] : first, in the maximization step we generate auxiliary data
samples; second, in the minimization step we apply regular KD on the union of existing X
and generated auxiliary data X'.

To have a better understanding of how this can be cast as an instance of minimax
estimator, assume that we are given the data samples {x;, T(z;))}¥,. The goal is to esti-
mate T'(z) by S(x). We may seek an estimator S(z) attaining the minimaz principle. In
minimax principle, where 6 is an estimand and ¢ is an estimator, we evaluate all estimators
according to its maximum risk R(6,d). An estimator dy , then, is said to be minimax if:

ng sup R(6,0) (4.1)

i
0eC gco

sup R(0, o) =

0
That is we chose the estimator for the situation that the worst divergence between ¢ and
0 is smallest. We follow a similar insight: i.e. the maximization step computes X', where

there is the worst divergence between the teacher and the student. The minimization step

10



finds the weights of the student network such that the difference between the student and
teacher for this worst scenario is the smallest.

min max R(Ty, Sy..) (4.2)

w T

4.1 Maximization step: Generating auxilary data based
on backward-KD loss

In the maximization step of our technique, we define a new loss function (we refer to as
the backward KD loss or BKD throughout this paper) to measure the distance between
the output of the teacher and the student networks:

Lsxp = ||S(z) = T(2)[l3 (4.3)

Here the main idea is that by taking the gradient of Lzip loss function in eq. 4.3 w.r.t the
input samples, we can perturb the training samples along the directions of their gradients to
increase the loss between two networks. Using this process, we can generate new auxiliary
training samples for which the student and the teacher networks are in maximum distance.
To obtain these auxiliary data samples, we can consider the following optimization problem.

7' = max [|S(z) = T(x)[[; (4.4)

We can solve this problem using stochastic gradient ascent method. Therefore our pertur-
bation formula for each data sample will be:

v =2+ V, [|S(z) - T(@)]]3 (4.5)

where in this formula 7 is the perturbation rate. This is an iterative algorithm and i
is the iteration index. 2’ is a training sample at " iteration. Each time, we perturb
2! by adding a portion of the gradient of loss to this sample. In general, if we continue
the number of iterations until the convergence, there can be a risk for generating out of
distribution samples. To avoid this issue, in practice we do the perturbation steps for a
limited number of iterations to keep the generated auxiliary samples in data distributions.
That is because the data manifold is smooth (manifold assumption) and if we have limited
number of data perturbation epochs, the auxiliary samples will stay on a locally linear
patch of the manifold.

11



Figure 2.1 demonstrates our idea using a simple example more clearly. Figure 2.1
shows a trained teacher and student functions given the training samples (z1,y1), (22,y2),
(x3,y3). Figure 4.1-(b) constructs the Lprp between these two networks. Lpxp shows
where the two networks diverge in the original space. Bear in mind that Lgxp gives a
scalar for each input. Hence, the gradient of Lgxp with respect to input variable x will be
a vector with the same size as the variable x. Therefore, it does not need to deal with the
large dimensionality issue of the Jacobian matrix as described in [10]. Figure 4.1-(b) also
illustrates an example of generating one auxiliary sample from the training sample x,. If
we apply eq. 4.5 to this sample, after several iterations, we will reach to a new auxiliary
data point (x4). It is evident in Figure 2.1-(a) that, as expected, there is a large divergence
between the teacher and student networks in (z}) point.

4.2 Minimization step: Improving KD with gener-
ated auxiliary data

We can apply the maximization step to all given training data to generate their corre-
sponding auxiliary samples. Then by adding the auxiliary samples X’ into the training
dataset X < X' U X, we can train the student network again based on the original KD
algorithm over the updated training set in order to obtain a better output match between
the student and teacher networks. Inspired by [28], we have used the following KD loss
function in our work:

Lrxp=(1-a) H(U(S(I)),y) + 7% KL(U(@),O’(M)> (4.6)

T

where o(.) is the softmax function, H(.) is the cross-entropy loss function, K'L(.) is the
Kullback Leibler divergence, « is a hyper parameter, 7 is the temperature parameter, and
y is the true labels.

The intuition behind expecting to get a better KD performance using the updated
training data is as follows. Now given the auxiliary data samples which point toward the
regions of the input space where the student and teacher have maximum divergence, these
regions of input space are not dark for the original KD algorithm anymore. Therefore, it
is expected from the KD algorithm to be able to match the student to the teacher network
over a larger input space (see Figure 5.1). Moreover, it is worth mentioning that the
maximization and minimization steps can be taken multiple times. In this regard, for each
maximization step, we need to construct the auxiliary set X’ from scratch and we do not

12



need the previously generated auxiliary sets. However, in our few-sample training scenarios
where the number of data samples is small, we can keep the auxiliary samples. The
maximization steps happen along with the regular KD training. For a better explanation,
suppose regular KD needs n = e x (h + 2) epochs to train the student network. First
we perform the minimization step for e epochs. Then, after each minimization step, we
perform the maximization step for h times in order to generate the auxiliary samples, and
enrich the training dataset to achieve a better match between the teacher and student
models. These steps happen h times in the algorithm. Also, to pay more attention to the
original data samples rather than the auxiliary data samples, at the end of the training,
we fine-tune the student model with only the original data samples for e epochs. The next
section describes this procedure in more detail.

4.3 Backward KD algorithm

Algorithm 1 explains the details of the proposed method. Our proposed KD function’s
input variables are the student network S(.), the teacher network 7'(.), the input dataset
X, the number of training epochs e, the number of hyper epochs h, and the number of
samples perturbing steps {. This algorithm assumes that the teacher network 7'(.) has
trained and the student network S(.) has not trained yet. Also, we assume X' is the set of
augmented data samples. We first initialize X’ with data set X in line 3 of the algorithm.
The basic idea is that each time we train the student network using the Vanilla-KD function
(original KD method) for a few training epochs e in the outer loop of line 4. Then, in line
6, first, we re-initialize X’ with dataset X. In lines 7 to 11, we perturb data samples in X’
using the gradient of the loss between teacher and student iteratively in order to generate
new auxiliary samples. Then in line 12, we replace X with the union of X and X’ sets. In
the next iteration of the loop in line 4, Vanilla-KD function will be fed with the augmented
data samples X’. Note that just in the first iteration, Vanilla-KD function is fed with the
original data set X. Since we perturb the data samples based on the gradient of Lgxp
loss function, the input dataset needs to have a continuous domain. However, in cases like
natural language processing (NLP) where the domain is discrete, It is impossible to apply
this method directly. In the next section, we will see how we can adopt backward KD for
such applications.

13
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Algorithm 1
1: function PROPOSED-KD(S,7.X, e, h, [)
2 X X

3 fori=1to h+1do

4: VANILLA-KD(S,T, X’ e)

5: X« X
6
7
8

9

for 2’ in X’ do
for j=1to [ do
v’ 3" +nV,|[S(x") = T(2")|]3

: end for
10: end for
11: X+ X UuUX
12: end for
13: VANILLA-KD(S,T,X je)
14: return S

15: end function

4.4 Backward KD for NLP applications

In this section, we propose a solution to how this technique can be adapted for the NLP
domain. For neural NLP models, first, we pass the one-hot vectors of the input tokens to the
so-called embedding layer of neural networks. Then, these one-hot vectors are converted
into embedding vectors (see Figure 4.2). The key for our solution is that embedding
vectors of input tokens are not discrete and we can take the gradient of loss function w.r.t
the embedding vectors z. But the problem is that, in the KD algorithm, we have two
networks with different embedding sizes (see Figure 4.2). To address this issue, we can
take the gradient of the loss function w.r.t one of the embedding vectors (here student
embedding vector zg). However, then we need a transformation matrix like @) to be able
to derive the corresponding embedding vector zr for the teacher network form zg.

Theorem 4.4.1. If Wy € R4Vl be the embedding matriz of the student network and
Wy € REXIVI be the embedding matriz of the teacher network, where |V| is the vocabulary
size, dy and dy are the embedding vector size of the student and the teacher networks
respectively. If x € {0,1}"l be the one-hot vector of a token in a text document and if
zg = Wsx and zp = Wrx be the student and teacher embedding vectors of x, then there
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Figure 4.2: General procedure of utilizing auxiliary samples in NLP models. Here z is the
one-hot vector of input tokens, W is the embedding matrix, and z is the embedding vector

of x.

exists a transform matriz Q € R2*% such that:

ar = Qzs
Proof.

Zr = WTZE

8 = Ws.’I}

We want to find a transform matrix () such that:

Wr =QWs
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For this purpose we can solve the following optimization problem by using list square
method:

: 2
min |[Wr — QWs|| (4.11)

By solving the above optimization problem using the least squares method, we achieves
the following solution for Q:

Q= WrwIwwh)! (4.12)
Now, from Eq. 4.10 we have:
Wr = QW (4.13)
Wrax = QWix (4.14)
2 = Q2 (4.15)
O

In equation 4.12, term W (WsWa)~! is the pseudo inverse of Wg embedding matrix.
Therefore, to obtain the auxiliary samples, we can take the gradient of the Lgxp loss
function w.r.t the student embedding vector zg. Then by using equations 4.16 and 4.12,
we can re-construct zp during the steps of data perturbation as following.

o
zg" = z5 +1nV.sLBKD

: . 4.16
2t = WeWE(WsWg )~z (416)

We will see the details of the modified algorithm of backwad KD for NLP tasks in next
section.

4.5 Algorithm of backward KD for NLP tasks

Algorithm 2 explains the details of applying backward KD in NLP tasks. This algorithm
is almost similar to algorithm 1. However, instead of considering the one-hot index vectors
of tokens in the text documents, we consider the embedding vectors zg and zr of the input
vector x (see lines 5 and 6 in the algorithm). In line 15, we use the transform method
proposed in section 4.4 to transform student’s perturbed embedding vectors into teacher’s
embedding vectors.
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Algorithm 2

1: function PrROPOSED-KD(S,T.X, e, h, 1)
2: Wr <= EMBEDDING-MATRIX(T)

3: Wg <~ EMBEDDING-MATRIX(.S)

4 Zp +— WpX

5 ZS < st

6: Zip < Zr

T ng — Zg

8 fori=1to h+1do

9 VANILLA-KD(S,T,27., Z.e)

10: Zh — Zr

11: Zg < Zg

12: for (25, 27) in (Z§, Z7) do
13: for j=1to [l do

11 2 2+ V. |IS(%) — T(5)IE
15: Z% — WTWS(WSWE)_lzg
16: end for

17: end for

18: Zg < ZgU Zg

19: Zip = Zip U Zp

20: end for

21: VANILLA-KD(S,T,Zr, Zg,e)

22: return S

23: end function
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Chapter 5

Experiments and Results

Five experiments were designed to evaluate the proposed method. ! The first experiment is
designed based on synthetic data to visualize the idea behind this technique. The second
and third ones are on the image classification tasks, and the last two are in NLP. We
followed the general procedure explained in the algorithms of sections 4.3 and 4.5 for all
of these experiments. Also, the method explained in section 4.4 was applied for NLP
experiments. The next sections explain the details of these experiments.

5.1 Datasets

For image classification, we assess backward KD on MNIST [22] and CIFAR-10[20] datasets.
MNIST consists of 28 x 28 monochrome handwritten digits images with 10 classes. CIFAR-
10 contains 32 x 32 color images of 10 different classes. For the natural language inference
task, we employ the General Language Understanding Evaluation (GLUE) benchmark [14],
which is a collection of nine different tasks for training, evaluating, and analyzing natural
language understanding models. GLUE consists of Multi-Genre Natural Language Infer-
ence (MNLI) [17], Quora Question Pairs (QQP) [3], Question Natural Language Inference
(QNLI) [32], Stanford Sentiment Treebank (SST-2) [36], Corpus of Linguistic Acceptabil-
ity (COLA) [16], Semantic Textual Similarity Benchmark (STS-B) [6], Microsoft Research
Paraphrase Corpus (MRPC) [12], Recognizing Textual Entailment (RTE) [I], Winograd
NLI (WNLI) [21].

"'We used PyTorch (https://pytorch.org/) framework [30] for implementing all experiments and Hug-
gingface (https://huggingface.co/) framework [48] in the implementations of NLP experiments.
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5.2 Synthetic data experiment

For visualizing our technique and showing the intuition behind it, we designed a very
simple experiment to show how the proposed method works over a synthetic setting. In
this experiment, we consider a polynomial function of degree 20 as the trained teacher
function. Then, we considered 8 data points on its surface as our data samples to train
a student network which is a polynomial function from degree 15 (see Figure 5.1-(a)).
As it is depicted in this figure, although the student model perfectly fits the given data
points, it diverges from the teacher model in some areas between the given points. After
applying the backward KD method, we can generate some auxiliary samples in the diverged
areas between the teacher and student models in Figure 5.1-(b). Then, we augmented the
training data samples with the generated auxiliary samples and trained the student model
based on this new augmented dataset. The resulting student model has achieved a much
better fit on the teacher model as it is evident in Figure 5.1-(c).

student and teacher models result of proposed method

—— Teacher

8 student

= = student trained by augmented data
§{ ® data

® auxiliary data

—— teacher
8 student
® data

(a) (b) (c)

Figure 5.1: Visualizing the generation of auxiliary samples and their utilization in training
the student model.

5.3 MNIST classification

In this experiment, one of our goals was testing the performance of the proposed method
in the scenario of extremely small student networks. Because of that, we considered two
feed forward neural networks as student and teacher networks for the MNIST dataset clas-
sification task. The teacher network consists of only one hidden layer with 800 neurons
which leads in 636010 trainable parameters. The student network was an extremely sim-
plified version of the same network with only 5 neurons in the hidden layer. This network
has only 3985 trainable parameters, which is 160x smaller than the teacher network. The
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student network is trained in three different ways: a) from scratch with only training data,
b) based on the original KD approach with training data samples augmented by random
noise, and c) based on the proposed method. As it is illustrated in table 5.1, the student
network which is trained by using the proposed method achieves much better results in
comparison with two other trained networks.

Table 5.1: Results of experiment on the MNIST dataset

Model method #parameters accuracy on test set
teacher from scratch 636010 98.14
student from scratch 3985 87.62
student original KD 3985 88.04
student proposed method 3985 91.45

5.4 CIFAR-10 classification

The second experiment is conducted on the CIFAR-10 dataset with two popular network
structures as the teacher and the student networks. In this experiment, we used the
inception v3 [12] network as the teacher and mobileNet v2 [34] as the student. The teacher
is approximately 9 times bigger than the student. We repeated the previous experiment
on CIFAR-10 by using these two networks. Table 5.2 shows the results of this experiment.

Table 5.2: Results of experiment on CIFAR-10 dataset

Model method #parameters accuracy on test set
inception v3 (teacher) from scratch 21638954 95.41%
mobilenet (student) from scratch 2236682 91.17%
mobilenet (student) original KD 2236682 91.74%
mobilenet (student)  proposed method 2236682 92.60%

5.5 GLUE Tasks

The third experiment is designed based on General Language Understanding Evaluation
(GLUE) benchmark [11] and roBERTa family language models [26, 35]. roBERTa models
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(roBERTa-large, roBERTa-base, and distilroBERTa) are BERT [ 1] based language under-
standing pre-trained models where roBERTa-large and roBERTa-base are the cumbersome
versions which are proposed in [26] and have 24 and 12 transformer layers respectively.
distilroBERTa is the compressed version of these models with 6 transformer layers and has
been trained based on KD procedure proposed in [35] with utilizing the roBERTa-base as
the teacher. The general procedure in GLUE tasks is fine-tuning the pre-trained models
for its down-stream tasks and the average performance score. We fine-tuned the distil-
roBERTa model based on the proposed method by utilizing the fine-tuned roBERTa-large
teacher for each of these tasks. As it is shown in table 5.3, the proposed method could
improve the distilroBERTa performance on most of these tasks.

Table 5.3: Results of experiment on GLUE tasks

Model (Network) ColA  SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI Score
roBERTa-large (Teacher) 60.56 96.33 89.95 91.75 91.01 89.11 93.08 79.06 56.33 85.82
DistilroBERTa (Student) 56.61 92.77 84.06 8728 90.8 8414 91.36 65.70 56.33 78.78

Our DistilroBERTa (Student) 60.49 9251 87.25 87.56 91.21 85.1 91.19 71.11 56.33 80.30

5.6 GLUE tasks with few sample points

In this experiment, we modified the previous experiment slightly to investigate the perfor-
mance of the proposed method in the few data sample scenario. Here we randomly select a
small portion of samples in each data set and fine-tuned the distilroBERTa based on these
samples. For CoLA, MRPC, STS-B, QNLI, RTE, and WNLI, 10% of data samples and
for SST-2, QQP, and MNLI 5% of them are used for fine-tuning the student model. Table
5.4 shows the results of this experiment.

Table 5.4: Results of few sample experiment on GLUE tasks

Model (Network) ColA SST-2 MRPC STS-B QQP MNLI QNLI RTE WNLI Score
roBERTa-large (Teacher) 60.56 96.33 89.95 91.75 91.01 89.11 93.08 79.06 56.33 85.82
DistilroBERTa (Student) 43.82 91.05 76.96 81.51 8492 7588 83.94 52.07 56.33 71.90

Our DistilroBERTa (Student) 44.11 91.74 77.20 82.82 85.32 76.75 84.34 56.31 56.33 72.76
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Chapter 6

Conclusion

We have introduced the backward KD method and showed how we can use the backward
knowledge of teacher model to train the student model. Based on this method, we could
easily locate the diverge areas between teacher and student model in order to acquire
auxiliary samples at those areas with utilizing the gradient of the networks and use these
samples in the training procedure of the student model. We showed that our proposal
can be efficiently applied to the KD procedure to improve its performance. Also, we
introduced an efficient way to apply backward KD on discrete domain applications such
as NLP tasks. In addition to the synthetic experiment which is performed to visualize the
mechanism of our method, we tested its performance on several image and NLP tasks.
Also, we examined the extremely small student and the few sample scenarios in two of
these experiments. We showed that the backward KD can improve the performance of the
trained student network in all of these practices. We believe that all auxiliary samples do
not have the same contribution to improving the performance of the student model. Also
perturbing all data samples can be computationally expensive in large datasets.
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