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Abstract

We propose a multigrid method to solve elliptic Monge-Ampere equations (MAE).
This method is based on full approximation scheme (FAS). The motivation for developing
a solver for MAE comes from its application in image registration. Though there are many
numerical methods proposed to solve these equations, the convergence is typically slow for
large problems. A second order discretization is used to develop the FAS. Performance
of the proposed method is tested on problems varying from smooth to mildly singular.
Comparison is drawn with the existing relaxation scheme in terms of the computation
time.
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Chapter 1

Introduction

Monge-Ampere equations were first studied by Gaspard Monge in 1784 [3] and later by
Andre-Marie Ampére. Monge-Ampere equations (MAE) have applications in the areas of
differential geometry, the calculus of variations, and several optimization problems, such
as the Monge-Kantorovich mass transfer problem [3, 10].

1.1 Motivation

The motivation for this paper comes from the application of MAE in image registration.
Image registration is a process of aligning data in multiple images obtained by possibly
different imaging sources (e.g., X-ray, CT scan, MRI, etc.). This is an important technique
in the field of medical imaging. Among many applications, it is used to provide critical
pre-operative and intra-operative information.

One approach to find an optimal mapping for the image registration problem, is to apply
the Monge-Kantorovich problem of mass transport [14, 13]. To understand the application
of MAE, let us consider two images given by I1(z) and Iy(z), z € RY. Find a one to one
mapping M from R? to R? which satisfies

L(z)dx = | L(x)dx, ACR? (1.1)
M—l/(A) A/

to preserve the mass while aligning the two images [15]. The LP Kantorovich-Wasserstein



metric to define distance between I1(z) and I(z) is given by
(L, ) = inf/ 2 — M(2)|]” I (z) da, (12)

where M (z) satisfies (1.1). The optimal mapping M, which minimizes this integral gives
the optimal transfer of mass from I; to Is. Thus, it represents the solution of the image
registration problem.

Moreover, the mapping M can be given by, M = V), where ¢ satisfies the following
Monge-Ampere equation

det(D2p(z)) — Iﬁ%)'

Here det(D*(z)) denotes the determinant of the Hessian of 1. In R?, this can be equiva-
lently written as:

v
02 Oy? Oxdy’

The importance of MAE in this problem formulation motivates us to develop a fast solver
for these nonlinear equations.

det(D*(x))

1.2 Monge-Ampere Equation

The Monge-Ampeére equation is a nonlinear second order partial differential equation
(PDE). The general form of MAE is

U Uy — uiy = QUgy + 2bUyy + cuy, + f, on € (1.3)

where the coefficients a,b,c depend on variables x, y, the unknown function w, and its
derivatives u,, u,.

In general, to determine the type of a nonlinear PDE, F'(D?*u, Du,u,x) = 0, one lin-
earizes I’ in the variables of its arguments. The type of the equation is then given by the
type of PDE of the linearized operators [11]. In case of MAE this exercise is reduced to
determining the sign of the expression © = f + ac + b%. © > 0 corresponds to an elliptic
type; © = 0 to a parabolic type; and © < 0 to a hyperbolic type [3].

It is known that if the domain, €2 is not strictly convex, then no general classical solution
exists for Dirichlet problems of fully nonlinear second order PDEs [11]. Futhermore, there



may exist multiple other solutions, (e.g. concave) to the MAE, however, for a Dirichlet
problem, a strictly positive f ensures existence of a unique convex solution [, 4].

From [16], we know that the solution « must be convex for the Monge-Ampeére equation
to be elliptic. The elliptic MAEs do not have a unique solution without the convexity
constraint.

We know that solving a nonlinear PDE analytically for solutions can be very compli-
cated. So it is natural to consider numerical methods to approximate the solutions of
MAE. There are a number of published papers devoted to solving MAE numerically. Dean
and Glowinski [8, 7, 6] have proposed schemes based on Lagrangian and least square meth-
ods. However, their method does not converge for problems with moderate singularities.
Oberman in [17] introduced a convergent finite difference scheme to solve MAE. Further-
more, in [16] Benamou, Froese, and Oberman propose two second order methods to solve
elliptic MAE with possible singularities. We will discuss these two methods in the report
subsequently.

1.3 Discussion of content

In this paper, we study the elliptic Monge-Ampere equations on a square domain,  C R?,
with a positive source term f : {2 — R and Dirichlet boundary conditions. This paper
adopts a finite difference discretization presented by Jean-David Benamou, Brittany D.
Froese, and Adam M. Oberman in [16]. In [I6] this discretization was used to develop
an iterative method which performs well in case of generic (possibly singular) problems,
an area which most of the previous methods did not succeed in. However, the proposed
iterative method exhibits slow convergence as the size of the problem increases. We know
that for the multigrid methods, the convergence usually is independent of the mesh size.
Therefore exploring multigrid to develop a fast and efficient method to solve the MAE
appears to be the obvious next step.

The contents of this paper are organized as follows. Chapter 2 gives a detailed descrip-
tion of two discretizations for the elliptic MAE, followed by discuss on viscosity solution for
MAEs and monotone finite difference schemes. Chapter 3 provides an overview of multi-
grid method, followed by our development of Multigrid for MAE in Chapter 4. In Chapter
5 we implement our method on several example Monge-Ampere equations and discuss the
results. In Chapter 6 we discuss the conclusions drawn.



Chapter 2

Discretization of Monge-Ampere
Equation

In this chapter we discuss two discretizations of the elliptic Monge-Ampere equation (1.3)
on a uniform grid €2, with grid size h. In the first two sections, we discuss the mathematical
formulation of a second and fourth order discretizations, respectively. In the third section
we discuss viscosity solutions for MAE and a monotone finite difference scheme proposed
by Oberman in [17].

2.1 First Discretization

First discretization was proposed by Benamou, Froese, and Oberman [10]. It involves
standard central differencing for second derivatives gy, tyy, and ug,. The clliptic Monge-
Ampere equation considered in this paper is given by

det(D*u) = f in QCR? (2.1)

u=g ondf) (2.2)
or equivalently,
Uz Uyy — uiy = f(z,y)
u=g onodf) (2.3)

where 2 is a square [0,1] x [0, 1] in xy-plane. We can see that (2.1) can be obtained from
the general MAE (1.3) by setting a =b=c=0.
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In the domain 2, consider a uniform sequence of N grid points along z and y axes
denoted as x;,y;, where ¢,7 = 1,2, ..., N, respectively. We refer to this discretized domain
as )y,, where h = lel is the mesh size. Furthermore, consider an arbitrary grid point given
by (z;,y;). The objective is to approximate the value of the solution u(x;,y;), denoted by

Ui,j,fOI"lSZ.,jSN.

Now, consider the solution values at grid points in a 9 x 9 neighborhood of the discrete
domain €,
Ui—1,5+1 Ui,j+1 Ui41,5+1
Ui—1,5 Us 5 Uit1,j
Ui—1,5—1 Ui, j—1 Ui41,5-1
Discretizing the second derivatives from (2.1), gy, tyy, sy, using central differencing on
the uniform grid, we obtain

(D2, ui ) (D} ui ) — (D3 ui ) = fi, (2.4)

where the finite difference operators are given by

1

2

Dpyu = 5 ltirg = 25 + tivagl,

D2y = i . Qs .
wyt = h2 [UWH — 2l + ul,]*1]7

D? oy = L 2.5
U = 4—hg[ui+1,j+1 U1 o1 — Ui — Uis1jg)- (2.5)

From (2.4) and (2.5), we have

1
ﬁ(um,j + i1 — 2w ) (Wijr + i1 — 24 5)
1

2
= gt (Wit T Uim ot = Wi — Uisgo1)” = fige

Equation (2.6) is a quadratic in wu;;. Since we are using centered differencing for the
derivatives, the discritization in (2.6) is second order accurate. Relaxation scheme based
on (2.6) performs well for smooth to singular problems.

Furthermore, in the same paper [16], the authors discuss another discretization based on
the Laplacian of u, which involves solving a Poisson equation. However, this discretization
converges very slowly for a non-smooth solution. Thus we will not discuss this approach
here.



2.2 Second Discretization

This second discretization was obtained by Chen in 2009 [3] from the truncation analysis
of the errror associated with the discrete MAE.

In [3], they consider a Monge-Ampere equation given by

(1 = g ) (1 — uyy) — U?gy = f(=z,y), (2.7)

with Dirichlet boundary conditions on a unit square, £ = [0, 1] x [0, 1] in xy-plane. They
also assume f(x,y) > 0 on Q. The equation (2.7) can be obtained from the general MAE
equation (1.3) by setting a = 1,0 =0, ¢ = 1, right hand side = f — 1. Here, © > 0, so the
equation (2.7) is elliptic.

To discretize (2.7) on a uniform grid €, the authors consider a discretization of form

L' (u) = w"(f) (2.8)

where
L'u = (1 — Ay(a1)Dyru)(1 — DyyAy(ar)u) — (Dyyu)?, (2.9)
Wt f = el Au(az) + Ay(a))f + SF. (2.10)

Here a;, ag, and c are constants, and the finite difference operators, D,,, D,,, and D,
are as described in Section 2.1. The averaging operators, A,(a) and A,(a), and weighting
operator S are given by

1

Ay (a)u = [T % lawi—1j + w;j + auitq ],
Ay(a)u = rlm[aui’jﬂ +u; ;4 au; 1),
Sf=dficrj+ firnj + ficjm + firnal;
(2.11)
where d is a constant. The truncation error of (2.8) can be calculated as
7 =w"f — L"u= Eh*+ O(h%), (2.12)

where E is a function of aq, as, ¢,d and partial derivatives of u. The idea is to obtain a
4% order compact discretization by selecting the parameters aj, as, ¢, d such that E is as
small as possible. Chen suggests four possible choices for aq, as, ¢, d. Each combination of
parameter value leads to a different discretization. Some examples are listed below
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1. MV discretization: This is obtained by setting a; = %, as = i, c= % and d = 0 in

(2.9), (2.10) and (2.11).
2. CY discretization: For this discretization, we set a; = i, az=1,¢c= 5 and d = 0.

3. Standard discretization: This is obtained by setting a; = 0,a, = 0,¢c = % and d = 0.

4. Conservative discretization: This is obtained by setting a; = %, as = 0,c = % and

d=0.

This discretization is claimed to be fourth order accurate. Furthermore, Chen has
proposed a multigrid method based on this discretization (2.8). The convergence rate for
this method can range from 0.2653 to 0.99. Thus for some cases, the convergence can be
very slow.

2.3 Discussion on Viscosity solution and Monotone
Discretization

In practice, it may be desirable that the numerical scheme will give the viscosity solution.
We recall the definition of viscosity solution [12] for the problem (2.1), (2.2), followed by
the definition of a monotone scheme.

Definition (Viscosity Solution): Let u € C(€2) be convex and f > 0. The function u,
satisfying condition (2.2), is called a viscosity supersolution (subsolution) of (2.1), if for
any ¢ € C* and g € Q, such that (u — ¢)(z) > (<)(u — ¢)(zo) we have

det(D*¢(x0) < (=) f(z0).
The function w is called a viscosity solution if it is both a wviscosity supersolution and a
subsolution.
Definition (Monotone Scheme): A scheme U = B(U™; j), is monotone, if

0
Bl ) > o
T (U"4) >0, Vi, jU

This means that the value of Uf“ cannot decrease as a result of an increase in U".

In [9] Feng and Nilan present a finite element method to approximate the viscosity
solution. Their approach is based on vanishing moment method, which involves approxi-
mating a second order boundary value problem by a fourth order boundary value problem.
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This requires additional boundary conditions which do not seem to be consistent with the
original equation in the limit of regularization parameter tending to zero [17].

Furthermore, we know that solutions of a consistent, monotone finite difference scheme
converge uniformly to the unique viscosity solution (Barles-Souganidis convergence). In
[17], Oberman proposes a monotone finite difference approximation scheme to solve the
MAE. They develop a wide stencil scheme to build this monotone method. The main idea
is to discretize the direction vector, say 7, of the second derivatives and restrict them to
the direction, say v that aligns with the grid. They call this the directional derivative. Let
df be the directional resolution of the grid, the distance measure between 7 and . Then
df, will approach zero as the stencil width is increased. For grid points near the boundary,
not all values would be available as required by the wide stencil scheme. In this case,
they use quadratic interpolation near boundary to develop a lower accuracy stencil for
directional derivative. Obviously, the wide stencil schemes are more complex than narrow
stencil schemes.

Our focus on MAE stems from its application in image processing, for which even a
second order accurate method is sufficient. Therefore, we consider a simple discretization
given in Section 2.1 corresponding to the MAE (2.1).

We will give an overview of multigrid methods in the following chapter before discussing
multigrid in particular for Monge-Ampeére equations in Chapter 5.



Chapter 3

Multigrid Overview

Multigrid is one of the most efficient methods for solving a wide variety of partial differ-
ential equations. The computational work involved per iteration step is proportional to
the number of unknowns [5]. Also, the convergence rate for a multigrid method is often
independent of the size of the finest grid in multigrid cycle [5]. In contrast, for standard
iterative methods the convergence becomes slower as the mesh size is reduced.

Multigrid is an algorithm for solving differential equations using a hierarchy of coarse
grids. Problems solved by multigrid methods include general elliptic PDEs, nonlinear and
eigenvalue problems,; and systems of equations from fluid dynamics [5]. The main idea
behind multigrid is to accelerate the convergence of a basic iterative method by solving a
coarse problem to reduce the error, from time to time. This is achieved by first smoothing
the error of an approximate solution, followed by approximation of the smooth error on a
coarse grid, i.e. a grid with substantially fewer grid points. This chapter gives an overview
of the multigrid method.

3.1 Multigrid components

We briefly discuss four main components to develop a multigrid method below,

e Smoother - Smoother is a relaxation scheme which reduces high frequency (or oscil-
latory) errors, leaving the smooth error to be approximated by multigrid cycle.

e Coarse Grid - This is a selection process where we reduce the number of grid points
under consideration to define a coarser grid.



e Restriction - This is an operator which downsamples the discrete function from fine
to a coarser grid.

e Prolongation - This operator interpolates a correction computed on a coarse grid
onto the finer grid.

3.2 Multigrid algorithm

To illustrate the steps involved in multigrid algorithm, consider the one dimensional Poisson
equation

Uz = f(2), 0<z<l1
u(0) = u(1) = 0. (3.1)

Define a uniform sequence of N grid points in [0,1] denoted by z;, i = 1,2, ..., N, where
r1 = 0 and xny = 1. We refer to this discretized domain as €2, where h = ﬁ is the mesh
size. The objective is to approximate the value of the solution u on €2, i.e. approximate
u(z;)) =,1<i<N.

Applying a finite difference or a finite element method, the problem, (3.1), can be
discretized on {2, and represented by

Apup = fn, (3.2)

where Aj, is the discrete Laplacian matrix. Let uf be the k™ approximation on ;. The
error associated with uf is composed of high and low frequency components. We know that
to approximate an oscillatory function we require much more number of data points, than
to effectively capture a smooth function. We apply this idea to a multigrid iteration by
dividing the error approximation into two stages. First, we apply a relaxation scheme to
reduce the high frequency component of the error on a fine grid. Second, the low frequency
or the smooth error is approximated on a coarser grid. Thus found error approximation

can be used to improve the approximate solution u to obtain uﬁ*l.

We now discuss a two-grid algorithm to obtain a better approximation uﬁ“. In a two-
grid method the problem is defined on a fine grid §2;, and the smooth component of the
error is approximated on a coarse grid, given by {2, where H is the mesh size of the coarse
grid.

uft™ = MultiGrid(Ap, fu, uf, a1, ag, level) (3.3)
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1. Presmoothing

e Compute @} by applying «; iterations of a relaxation scheme (e.g., Gauss-Seidel,
Jacobi, etc) with uf as initial guess:

@l = Smoother(uy, Ay, fr, 1) (3.4)

2. Coarse Grid Correction
In this step the problem is restricted to and solved on the coarse grid.

e Compute the residual, r} on the fine grid

Tﬁ = fh — Ahﬂi (35)
e Restrict the residual onto the coarse grid Qu
= RiIr}. (3.6)

Here, R is the restriction operator. Now the coarse grid problem is the error
equation defined on Qg, given by
Ak, =k (3.7)
and the objective at this level is to approximate e¥,. Here Ay is the coarse grid
matrix.
e Compute the solution, €% to (3.7) by employing a direct solver.

e Interpolate the error correction onto the fine grid, €2,
ef = Ihek (3.8)
where I is the Prolongation operator.

e Update the solution on the fine grid, )y,.
k CEC iy + e (3.9)

3. Postsmoothing

e Compute uh+1 by applying «, iterations of the relaxation scheme with uk CGC

as initial guess:
uf*t = Smoother(uf %Y, A, fr, az) (3.10)

The number of iterations for presmoothing, , in (3.4), is typically a small number, e.g.
1 or 2. In (3.10), the number of sweeps for postsmoothing is usually equal to presmoothing,
i.e. ag = . Furthermore, to compute the coarse grid matrix for equation (3.7), we can use
the Galerkin matrix, Ay = RH A,I%. Alternatively, the problem (3.2) can be discretized
on the coarse grid, g, to obtain Ag.

11



3.3 The Multigrid cycle

For a problem defined on a very fine grid, the two-grid method is not practical since the
coarse grid problem is still expensive to approximate. Thus, to reduce the computational
complexity, we can recursively apply the idea to restrict the problem (3.7) to an even
coarser grid than Q. On the coarsest grid, the problem can be solved for a suitable
approximation which can be interpolated through all the intermediate grids to the fine
grid €2;. Each grid in the cycle is referred to as a Level.

Usually, to obtain a good approximate solution of (3.7), it is sufficient to perform the
coarse grid correction a few, say (3, times. The case when 3 = 1, is called a V-cycle.
In a V-cycle the problem is restricted all the way to coarsest grid and then correction is
interpolated to the fine grid. Another interesting case is 3 = 2, which is referred to as a
W-cycle. See Figure 3.1 for structure of multigrid cycle for 3 = 1,2 on different grids.

(a) (b)

()

Figure 3.1: Structure of multigrid cycles for different grids and (. (a) Three-grid method
with 3 = 1. (b) Three-grid method with 8 = 2. (c¢) Four-grid method with 3 = 2.

The algorithm for multigrid cycle can be summarised as:

1. Define problem on fine grid and specify number of Levels for multigrid

12



2. (a) If Level =1,
Employ a fast solver for the problem (i.e. by a direct solver or many relaxation
sweeps)
(b) else,
Solve the problem approximately by applying 3 times the (Level-1)-grid cycles
with zero as the initial approximation.
(i.e. solve recursively with (Level = Level -1) and Go to 2(a))

For more information about multigrid methods, please refer to Trottenberg et al [
and Brandt [2].

13



Chapter 4

Multigrid for Monge-Ampere
Equation

As highlighted in Chapter 1 and 2, many numerical methods have been proposed to solve
the MAEs. However, for the larger problems the computations are expensive and conver-
gence is slow. From Chapter 3, we know that the convergence of multigrid is independent
of the grid size. Additionally the computational work for multigrid is proportional to the
number of unknowns. Therefore we explore multigrid to devise an efficient and fast method
to solve the elliptic MAEs.

In Section 2.2, we described the discretization proposed by Ye Chen [3] for the elliptic
MAE. The author also developed a multigrid method to solve the discrete equation (2.8).
He uses bilinear interpolation and full weighting. Gauss-Seidel and Jacobi are derived
and used as smoothers. For a problem defined on 48 x 32 grid, the author compares the
performances (in terms of computation time) of his multigrid method and the relaxation
scheme on a single grid, which comes out to be 3 hours and 64.93 hours respectively.
Furthermore, the convergence factor for Gauss-Seidel and Jacobi range from 0.2653 to
0.99 and 0.3425 to 0.99, respectively. The huge variation in the convergence indicates
that the method can be slow for some cases. More specifically, for the optimal Gauss-
Seidel (unweighted), multigrid with V(1,1) has a convergence factor of 0.2653 while V(2,1)
corresponds to 0.3904 for the same data. Similarly, for optimal Jacobi (weighted with
w = 0.9), the convergence factors corresponding to V(1,1) and V(2,1) are 0.3425 and
0.4263, respectively. These results are surprising because we can see that two sweeps of
pre-smoothing leads to a slower convergence than the cycle with one sweep.

Our development of multigrid is based on the second order discretization of the non

14



linear elliptic MAE, as discussed in Section 2.1. The domain under consideration is a
square, €2 with N grid points along each coordinate axis and Dirichlet boundary conditions
are assumed. A reasonable choice for the initial guess is the solution of w,, + u,, = v/2f

[10].

4.1 Relaxation Scheme & Smoothing

In this section, we discuss the relaxation scheme which would be used to remove the high
frequency error. Consider the discretized MAE derived from (2.6)

1
dar — ugz)(ag — uij) — Z(a?’ —as)® = h'f g,

where
1
ay = §[Ui,j+1 + i1,
az = §[Uzt+1,j + Ufz—l,j}a
ag = §[ui+1,j+1 + Ui—l,j—1]7

ay = §[ui71,j+1 + Uig1,j-1]-

It can be rewritten as,
dui . — 4(ay + a)u;; + da —1( —ay)? —h'f;; =0
i, 1 2)Ui j 102 1 az — a4 i,j = Y.

Solving this quadratic equation for u; ; gives two roots:

Ui = %(al +ag) + %\/(al —a9)? + }L(ag —ag)? 4+ hAf(i, ). (4.1)

We select the smaller root to ensure a convex solution [16]. The convexity constraint is
necessary for the uniqueness. Otherwise, existence of a solution u implies that -u is also
a solution of (2.1) [16]. Considering u* to be the current approximation, the updated

15



solution @* is computed by
1
ay = §[uf,j+1 + Uﬁj—ﬁ?
1
az = §[ui‘€+1,j + ui‘il,j];
as = §[U§+1,j+1 + U§—1,j—1]5
a4 = 5[“?—1,]’—1—1 + u§+1,j—1];
& 1 1 , 1 ) Lirr
Uiy = a1+ a2) = 54 [ (a1 — a2 + 2 (a5 — aa)* + B (G, ). (4.2)

There is no convergence proof for this method. However, in our experiments this scheme
converges. We will use this relaxation scheme as the smoother for our multigrid method.

4.2 Multigrid Elements

In this section, we present the important choices with respect to the multigrid elements.

4.2.1 Coarse Grid

Given a fine grid €2, the most commonly used coarsening is to double the mesh size in
each direction to obtain a coarse grid, g, where grid size H = 2h. This is called full
coarsening. Another option for higher dimensional (2D and above) problems is to double
the grid size along any one coordinate axis. This is called semicoarsening. In this paper,
we will only consider full coarsening.

4.2.2 Restriction

A restriction operator maps functions, such as residual from 2, onto €y. One simple
approach is to consider the weighted average of all the neighboring points. This is called
full weighting operator. Consider the below scenario of solution values at grid points in
Q.. For notational convenience, here we represent a solution point on Qy,, uf (z;, y;) by u?J
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and a point u]f{(fﬁm ?Jj) on Qy by uzh;

h h h
Uimr g1 Wigpr Wit 541
h h h
Ui_1,j U, j Uiprj | - (4.3)

h h h
Ui 1,51 Usi-1 Wit1,5-1

In this case, the coarse grid point uf{] is given by:
1

1
H h h h h h
Uij = 7 {Uz] + 5 X [wg oy + g+l )

1
h h h h
+Z X [uig oy Uy g Uy e T U]

The restriction operator can be written in the stencil form as

1 1 17
4 2 4

1
H_ ~ |1 1
Rh74 2 1 2
1 1 1
4 2 4

This operator is used for all the results in this paper.

4.2.3 Prolongation

The function mapping from Qg to €, is called prolongation (also known as interpolation).
A commonly used prolongation operator is bilinear interpolation. Consider a neighbour-
hood of grid points in Qg

H H H
U2 5+2 . Us 5+2 . Uito j+2
H H H
u2727‘7’ . u,L7j . ul+27] . (4.4)
H H H
Ui—9.j—2 . Usj—2 . Uito -2

In this case the fine grid points v}, ; and u},, ;,, are given by

1
oo H H
Uiy = B X [uz] + ui+2,j]7

h o H H H H
Uit = 4 % [uij + Uita; + Uijs + Uit jiol-
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Bilinear interpolation, in stencil form, can be defined as

A T

4 2 4

ho_ |1 1
PH_2 1 2
111

4 2 4

4.2.4 Coarse Grid Problem

Since we are working with fully non linear equation, it is challenging to solve the problem
exactly even on a coarse grid. Hence we apply the relaxation scheme to solve the problem
approximately on the coarse grid. For instance, if the problem is of the form A(u) = f,
with the initial guess and k*" approximation given by u® ,u” respectively, then we can select
either of the following as the stopping criterion for the iterative scheme.

HrkH < Tolerance x HTOH (4.5)
or
||r*|| < Tolerance x || f]|. (4.6)

Here, r? denoted the residual corresponding to the ¢ approximation u?.

We use the condition from (4.5) as the stopping criterion for all the results in this
paper. A reasonable Tolerance in this case could be in the range 10~* to 1075.

4.3 Full Approximation Scheme

The multigrid method described so far uses the correction scheme, wherein the coarse grid
solution is an approximate correction to the fine grid. This approach is applicable to linear
problems as residual problem is dependent on the linearity of the operator.

Consider the discretized MAE from (2.6). For simplified notations, it can be rewritten
as Np(up) = fn (where Np(.) is a non linear operator), on 2, with the approximate
solution given by uf. The relation between exact and approximate solution is expressed

by uy, = uf + ef, where e} is the error. Furthermore, the error equation is given by

fn— Ni(uy) =}, (4.7)
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where 7 is called residual. The equation (4.7) can be rewitten as

Ni(un) — Na(up) = 14 (4.8)
or equivalently,
Nu(uf +ef) — Ny(uf) = rf. (4.9)
From (4.9) it does not seem straight forward to approximate ef.

To numerically solve nonlinear problems, we apply a generalized multigrid algorithm
called full approximation scheme (FAS). The primary idea behind nonlinear multigrid is the
same as the linear case. To begin with, the error of the solution is smoothed so that they
can be approximated on a coarser grid, followed by the restriction of problem onto coarser
grids, where the residual equation is solved. Subsequently the coarse grid correction is
interpolated to the fine grid, where the errors are again smoothed. The only difference lies
in the analog of the coarse grid problem. In case of FAS, we work with full approximation
of the solution on the coarse grid, rather than the errors, as in the case of linear multigrid.

Instead of working with residual equation on the coarse grid, FAS involves solving the
following equation for uf,

Ny (ufy) = RErk + Ny (RIup). (4.10)

Thus obtained u% is used to compute error on coarse grid, which is interpolated to fine
grid to give an improved approximation.

Given uf, the k' approximation to MAE on ), the stepwise nonlinear FAS algorithm
to obtain improved solution u’,ffl is described below

uf™ = FAS(uf, Ny, fn, a1, g, Level)

If Level = 1
- Apply Gauss-Seidel to solve the problem within Tolerance

else,

1. Presmoothing
Compute @} by applying a; iterations of the relaxation scheme (4.2) to uf

iy = Smoother(uy, Ny, fn, az).
2. Coarse Grid Correction
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(a) Compute the residual

= fn— Na(a).
(b) Restrict the residual
= Ry}
(c) Restrict af
ak = REar.

(d) Compute the right hand side
fa = T + Ny (@),
(e) Compute an approximate solution o4, of the coarse grid equation on Q
Ni () = fu.
For this solve (4.11) approximately by using @, as the initial approximation

% = FAS(@%, Ny, fu, a1, oo, Level —1).

(f) Compute coarse error
Cy = Uy — Uy,
(g) Interpolate the coarse error
ey = Pheék
h= Lutn-

(h) Update the solution on €,

kCGC _ ~k | sk
(s = Uy + €.

3. Postsmoothing

k+1

k,CGC
Compute u;

by applying v iterations of the relaxation scheme (4.2) to w;’

uf ™ = Smoother (u; RCCC Ny, s ).
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Chapter 5

Numerical Results

In this chapter, we apply the proposed multigrid method for MAE on five examples with
smooth to moderately singular solutions. Computations were performed on a Mac desktop
with 2.8GHz Intel Core 2 Duo processor and 4GB memory, using MATLAB running in
Mac OS X.6.

In particular, we are interested in comparing the performance of the multigrid solver
with the relaxation scheme proposed by Benamou, Froese and Oberman (4.2). The com-
parison is based on two measures, the number of iterations and the computation (CPU)
time.

All the examples that we consider here, were used by Oberman in [16]. Dean and
Glowinski [3] give results for example 1, 3 and 5. Their method converges for the first two
and diverges for the last.

For all the example problems, the initial approximation is the solution of ug, + u,, =
V2f. We use full coarsening to sclect the coarse grid points, while full weighting and
bilinear interpolation are used as restriction and prolongation operators respectively. Also,
the coarsest grid on which the problem is solved approximately is 5 x 5.

5.1 Example 1

Consider a problem [106, 8] given by

detD?*u = (14 |z[))el*l* inQ, (5.1)
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u = g on Jf.

Here  is a square the domain [—1, 1] x [—1, 1] with {2 representing the boundary. The
function ¢ is given by

(z) = ez ) op{r|—1<a <lay=1}and{z| -1 <z < 1,2y =—1}
g ez on{alry =1, -1 <33 < 1} and {x]z, = =1, -1 < x5 < 1}.

An exact solution of this problem is given by, u(zq,2s) = ezlel”,

This is a simple test example with a smooth solution. Surface plots for the approximated
solution and f are shown in Figure 5.1(a), 5.1(b), respectively. From Table 5.1, we observe
that the FAS solver converges in 5 to 6 iterations (or V-cycles) for all grid sizes it was
tested on. However, the computation time per iteration increases, as the grid is refined.
This is expected because finer the grid, deeper the V cycle, in other words more number
of intermediate grids between fine and the coarsest. On the contrary, the number of
iterations corresponding to the relaxation scheme increases (approx) four times as the grid
size is halved. In Figure 5.1(c), 5.1(d) we plot the number of iterations and computation
time against the number of grid points for both the methods.

N Iterations CPU Time (sec)
Relaxation Scheme | FAS | Relaxation Scheme FAS
17 300 5 0.460 0.064
33 1176 6 7.086 0.208
65 4647 6 114.858 0.764
129 20692 6 2282.684 3.443
257 - 6 — | 19.196
513 - 6 — 1 176.194

Table 5.1: Example 1- Number of iterations and computation times for relaxation method

and FAS.

Note: '~ in the table denotes that the problem took more than 5 hours to converge to
the exact solution. So the corresponding iterations and CPU time were too large.

5.2 Example 2

We again consider the same problem from Example 1, and study the effects of adding high
frequency sinusoidal noise to the right-hand-side, i.e., f(z,y) and the boundary conditions.
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Here the right hand side is given by

Fx) = (1+ |z)el’ + sin(40ma; + 40ma,) (5.2)
and the boundary conditions is:
ez 4 sin(40ma, + 407) on{z]|—1<mz <1l,z9 =1}
(z) = ez(H2D) 4 sin(40ma, — 407) and{z| -1 <z < 1,29 = —1}
TE=Y epaad) 4 psin(40m + 407 xs) on{zlx; =1,-1 < xy < 1}
ez 4y gin(—40m + 4072y)  and {z]zy = —1,—1 < x5 < 1}.

The noise added to the boundary conditions, pu, is dependent on the mesh size of the
problem. As the mesh is refined, a smaller pu is selected so that the scale of noise is not
very pronounced on the boundary. For instance, on a 17 x 17 grid, we consider pu = 0.01
and for 65 x 65, value of choice is ;1 = 0.001. For the function f, we add the same noise
with = 1. In Figure 5.2(c) we can see the scale of the error defined on 33 x 33.

Figure 5.2(b) illustrates the solution which is convex, except at the boundaries due to
the added noise. Although the input data is not smooth, see Figure 5.2(a) for plot of f.
Furthermore, the data from the Table 5.2 shows that the noise has no noticeable effect
on the convergence of either method. Also, for all the problem sizes, FAS is the faster
converging method of the two.

N [terations CPU Time (sec)
Relaxation scheme | FAS | Relaxation Scheme FAS
17 328 5 0.495 | 0.084
33 1298 6 7.881 | 0.198
65 5145 6 127.691 | 0.766
129 19863 6 2187.932 | 3.458
257 — 6 —130.122

Table 5.2: Example 2 - Number of iterations and computation times for the Relaxation
scheme and FAS.

5.3 Example 3

Consider the following exact solution on the square [0, 1] x [0, 1].

wat(z,y) = 2\/_(ﬂlj Ty flay) = !

u (5.3)
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Figure 5.2: Example 2 (a) Surface plot of f(x,y) on 65 x 65 grid. (b) Surface plot of solution
on 65 x 65 grid. (c) Error on 33 x 33 grid.
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This is a mildly singular problem as the right hand side function, f is unbounded at
the boundary point (0,0) and near the origin it can be large; see Figure 5.3(b). However,
according to [3], this problem has enough regularity, in terms of the solution being in H?(Q)
space, for their algorithm to be applied to obtain an approximation. Solution obtained by
application of our solver is smooth, as illustrated in Figure 5.3(a). Moreover, as we can see
from Table 5.3, both the methods converge to the exact solution. FAS converges in about
5 to 6 cycles and the iterations for the relaxation scheme increasing as the grid is refined.
Comparing the computation times, the FAS is significantly faster than the iterative method
for all problem sizes considered.

N Iterations CPU Time (sec)
Relaxation scheme | FAS | Relaxation scheme FAS
17 364 6 0.539 0.053
33 1451 6 8.784 0.141
65 5778 7 143.375 0.599
129 22996 7 2545.834 2.866
257 - 7 — | 17.595
513 - 7 — | 186.265

Table 5.3: Example 3 - Number of iterations and computation times for the relaxation
scheme and FAS.

Figure 5.3: Example 3 (a) Surface plot of solution on 129 x 129 grid; (b) Surface plot of
f(x,y) on 129 x 129 grid.
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5.4 Example 4

Next we study the following solution defined on 2 = [0, 1] x [0, 1],

u(z,y) = maz { (z=05)" ; (v =05 0.08} (5.4)

1 (2-05)2+(y—05) > 0.162
fla,y) = { 0 otherwise.

Here f(x,y) is discontinuous on a circle with radius 0.16, and centred at (0.5, 0.5); see Figure
5.4(b). Moreover, u,, does not exist near the boundary of this circle in Q. In (5.4), u is
a solution in the sense that it satisfies the MAE at all points inside as well as outside the
circular region. The solution w is flat, with grid value 0.08, in the circular region where f
is zero. Figure 5.4(a) illustrates the surface plot of solution wu.

As observed from Table 5.4, the convergence of FAS for this example is slower. The
number of V-cycles increases everytime the grid size is reduced by half, while for all the
preceding examples the iterations were in the range 5-7. Recall the underlying idea behind
multigrid; a smooth solution can be well approximated using fewer points than an oscilla-
tory one. In this example it is evident from the results, that the non-smooth solution is
not appromimated well on the coarsest grid (5 x 5), hence more iterations are required to
reach a good approximation. The convergence can be improved by performing one-sided
interpolation near the boundary of the circle and linear interpolation on the remaining
domain. Inspite of a higher number of iterations than usual, the computation time for
FAS is still considerably lower than the relaxation scheme.

N Iterations CPU Time (sec)
(Iter Method) | (FAS) | (Iter Method) | (FAS)
17 326 6 0.488 | 0.054
33 1297 9 7.864 | 0.204
65 5216 16 129.358 | 1.343
129 - 20 - 8.073
257 - 28 — 1 69.182

Table 5.4: Example 4 - Number of iterations and computation times for the relaxation
scheme and FAS.
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Figure 5.4: Example 4 (a) Surface plot of solution on 65 x 65 grid; (b) Surface plot of
f(x,y) on 65 x 65 grid.

5.5 Example 5

Consider another problem with exact solution defined on [0, 1] x [0, 1] given by,

uexact(x’ y) — _\/m’

2

(R—a2 — )%

For this problem, the case R = 2 is interesting, because then the gradient of f is unbounded
at (1,1). Furthermore, f is unbounded at (1,1), which leads to singularity. See Figure
5.5(a), 5.5(b). This example was also used for testing by Dean and Glowinski [3], and their
method is known to have diverged. It could possibly be due to the singularity that the
method proposed is unstable for this case. (Their method converges for R > 2 + 1071).
Table 5.5, shows that the proposed FAS and the iterative scheme from [16] converge to the
exact solution, with FAS being the faster method of the two.

f=
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N Iterations CPU Time (sec)
Relaxation scheme | FAS) | Relaxation scheme FAS
17 251 5 0.378 0.053
33 865 6 0.242 0.145
65 2900 6 72.045 0.528
129 - 6 - 2.436
257 - 7 - 17.511
513 - 8 — | 212.376

Table 5.5: Example 5 - Number of iterations and computation times for the relaxation

scheme and FAS.

Figure 5.5: Example 5 (a) Surface plot of solution on 129 x 129 grid. (b) Surface plot of

f(x,y) on 129 x 129 grid.
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Chapter 6

Conclusions

We have presented a full approximation scheme (FAS) for solving nonlinear elliptic Monge-
Ampere equation (2.1). We use a second order discretization for the equation. Since
solving a nonlinear problem exactly on a coarse grid can be complicated, we solve for an
approximation by applying the relaxation scheme (4.2). Using several test problems we
are able to demonstrate how our multigrid algorithm compares to the existing relaxation
scheme for MAE. The numerical results indicate that FAS outperforms (4.2) consistently,
in terms of computation time, when the exact solution is smooth. Moreover, even when
the exact solution is moderately non-smooth, FAS converges faster than the relaxation
scheme. However, in the latter case, FAS’s performance is slower when compared to the
results produced by its application on examples with smooth solutions.

30



References

1]

2]

3]

[7]

[9]

A.D. Aleksandrov. Certain estimates for the Dirichlet problem. Sov. Math. Dokl.,
1:1151-1154, 1961.

Achi Brandt. Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics.
GMD, 1984.

Ye Chen. Efficient and Robust Solvers for Monge-Ampere Equations. PhD thesis,
Clarkson University, 2009.

S.Y. Cheng and S.T. Yau. On the regularity of the Monge-Ampere equation
det(0*u/0z;0x;) = f(x,u). Commun. Pure. Appl. Math, 30(1):41-68, 1977.

U. Trottenberg Cornelis W. Oosterlee and Anton Schuller. Multigrid. Academic Press,
2000.

Roland Glowinski Edward J. Dean. An augmented Lagrangian approach to the nu-
merical solution of the Dirichlet problem for the elliptic Monge-Ampere equation in
two dimensions. Electron. Trans. Numer. Anal., 22:71-96(clectronic), 2006.

Roland Glowinski Edward J. Dean. On the numerical solution of the elliptic Monge-
Ampere equation in dimension two: a least-squares approach. In Partial differential
equations, volume 16 of Comput. Methods Appl. Sci., pages 43-63. Springer, Dor-
drecht, 2008, 2008.

R. Glowinski E.J. Dean. Numerical methods for fully nonlinear elliptic equations of
the Monge-Ampere type. Computer methods in applied mechanics and engineering,
195(13-16):1344-1386, 2006.

Xiaobing Feng and Michael Neilan. Mixed finite element methods for the fully non-
linear Monge-Ampere equation based on the vanishing moment method. SIAM J.
Numer. Anal., 47(2):1226-1250, 20009.

31



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Xiaobing Feng and Michael Neilan. Analysis of Galerkin methods for the fully non-
linear Monge-Ampere equation. J Sci. Comput, 47:303-327, 2011.

D. Gilbarg and N.S. Trudinger. Elliptic partial differential equations of second order.
Springer, 2001.

C.E. Gutierrez. The Monge-Ampere equation, progress in nonlinear differential equa-
tions and their applications. Birkhauser Boston Inc., 44, 2001.

Steven Haker and Allen Tannenbaum. Optimal mass transport and image registration.
In Proceedings of the IEEE Workshop on Variational and Level Set Methods, 2001.

Kazufumi Ito. On fluid mechanics formulation of Monge-Kantorovich mass transfer
problem. Technical report, Center for Research in Scientific Computation, North
Carolina State University, 2007.

Y. Brenier J.D. Benamou and K. Guittet. The Monge-Kantorovitch mass transfer and
its computational fluid mechanics formulation. Int. J. Numer. Meth. Fluids, 00:1-6,
2000.

Brittany D. Froese Jean-David Benamou and Adam M. Oberman. Two numerical
methods for the elliptic Monge-Ampere Equation. ESAIM: Mathematical Modelling
and Numerical Analysis, pages 737-758, 2010.

A.M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampere
equations and functions of the eigenvalues of the hessian. Discrete and Continuous
Dynamical Systems Series B, 10:221-238, 2008.

32



