
Options Pricing under Shared-jump
Diffusion Model by Fourier Space

Time-stepping Method

by

Bangyao Xu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Supervisors: Prof. Peter Forsyth & Prof. George Labahn

Waterloo, Ontario, Canada, 2018

c© Bangyao Xu 2018

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

In this essay, a shared-jump diffusion model is introduced to describe financial shocks
and contagion effects. Under the shared-jump diffusion model for underlying assets, the
derivation of the Fourier Space Time-stepping (FST) method is demonstrated to solve the
corresponding partial integro-differential equations (PIDE). Numerical results of pricing
single- and multi-asset European options under three kinds of jump diffusion models are
presented. In addition, constant padding is proposed to reduce the wrap-around error in
one- and two-dimensional cases. The data from global financial markets in recent decades
are used to conduct the empirical analysis.

iii

Acknowledgements

I would like to thank my supervisors, Professor Peter Forsyth and Professor George
Labahn, for their guidance, support and encouragement throughout this year.

Also, I want to express my sincere thanks to Professor Yuying Li, for reading this eassy
and providing valuable suggestions.

To my parents, for their love and inspiration throughout my life.

To my dear friends, for always sharing ideas and making progress with me: Ershi,
Xukun, Wenqing, Kasun, Boon, Jessie, Fan, Linqi, Edward and Emily.

Last but not least, I want to thank our director, Dr. Jeff Orchard and coordinator,
Amanda Guderian, for their information and suggestion on daily life.

iv

Dedication

This is dedicated to Cheryl, the one I love.

v

Table of Contents

List of Tables ix

List of Figures xi

1 Introduction 1

2 Mathematical Models 4

2.1 Introduction . 4

2.2 One-factor Jump Diffusion Model . 5

2.3 Two-factor Jump Diffusion Model . 6

2.4 Shared-jump Diffusion Model . 8

3 Fourier Space Time-stepping Method 14

3.1 Introduction . 14

3.2 Continuous Fourier Transform . 14

3.3 Discrete Fourier Transform . 15

3.4 FST Method under a Shared-jump Diffusion Model 18

3.4.1 Fourier Transform . 18

3.4.2 Solving the Ordinary Differential Equation 20

3.4.3 Fourier Space Time-stepping . 21

3.4.4 Illustration of Method . 22

vi

4 Numerical Results 23

4.1 One-factor Jump Diffusion Cases . 23

4.1.1 Pricing Results . 24

4.1.2 Wrap-around Error . 25

4.2 Two-factor Jump Diffusion Cases . 32

4.2.1 Pricing Results . 32

4.2.2 Wrap-around Error . 34

4.3 Shared-jump Diffusion Cases . 37

4.3.1 Pricing Results . 37

4.3.2 Monte Carlo Results . 38

4.3.3 Wrap-around Error . 39

5 Empirical Data Analysis 43

5.1 Data Exploration . 43

5.2 Empirical Estimates . 47

6 Conclusions 51

APPENDICES 52

A Fourier Transforms of Distributions 53

A.1 Fourier Transform of Normal Distribution 53

A.2 Fourier Transform of Double Exponential Distribution 55

B Algorithms for European Options 56

B.1 FST under One-factor Jump Diffusion Model 56

B.2 FST under Two-factor Jump Diffusion Model 58

B.3 FST under Shared-jump Diffusion Model 59

vii

C Monte Carlo Approach 60

C.1 Methodology . 60

C.2 Algorithm for Monte Carlo Simulation . 63

References 64

viii

List of Tables

4.1 Parameters for a European put under the one-factor Merton jump diffusion
model . 24

4.2 Pricing results of a European put under the one-factor Merton jump diffusion
model: [xmin, xmax] = [−7.5, 7.5] . 24

4.3 Parameters for a European call under the one-factor Kou jump diffusion model 25

4.4 Pricing results of a European call under the one-factor Kou jump diffusion
model: [xmin, xmax] = [−7.5, 7.5] . 25

4.5 Parameters for wrap-around analysis: a European put option 28

4.6 Effect of wrap-around error on the value of a European put option: zero
padding and constant padding . 29

4.7 Parameters for wrap-around analysis: a European call option 31

4.8 Effect of wrap-around error on the value of a European call option: asymp-
totic padding . 31

4.9 Parameters for a European spread call under the two-factor Merton jump
diffusion model . 33

4.10 Pricing results of a European spread call under the two-factor Merton jump
diffusion model: [xmin, xmax]

2 = [−7.5, 7.5]2 33

4.11 Effect of wrap-around error on the value of a European spread call option:
no padding . 36

4.12 Effect of wrap-around error on the value of a European spread call option:
constant padding . 36

4.13 Parameters for a European spread call under the shared-jump diffusion model 37

ix

4.14 Pricing results of a European spread call under the shared-jump diffusion
model: FST method, [xmin, xmax]

2 = [−7.5, 7.5]2 38

4.15 Pricing results of a European spread call under the shared-jump diffusion
model: Monte Carlo simulation . 39

4.16 Parameters for wrap-around analysis: a European spread put option 40

4.17 Effect of wrap-around error on the value of a European spread put option:
no padding . 41

4.18 Effect of wrap-around error on the value of a European spread put option:
constant padding . 41

4.19 Convergence table of a European spread put under the shared-jump diffusion
model using constant padding: constant Ω, various ∆x 42

4.20 Convergence table of a European spread put under the shared-jump diffusion
model using constant padding: constant ∆x, various Ω 42

5.1 Descriptive statistics for daily log returns of S&P 500, Eurostox and FTSE 46

5.2 Descriptive statistics for monthly log returns of S&P 500, Eurostox and FTSE 47

5.3 Parameters estimated from daily data . 49

5.4 Parameters estimated from monthly data 50

5.5 Specific dates of jumps detected from monthly data 50

x

List of Figures

4.1 European call option pricing using zero padding and constant padding . . . 27

4.2 European put option pricing using zero padding and constant padding . . . 27

4.3 European call option pricing using asymptotic padding 30

4.4 Intuitive idea for constant padding in two dimensions 35

5.1 Prices of S&P 500, Eurostox and FTSE . 44

5.2 Log returns of S&P 500, Eurostox and FTSE 44

5.3 Scaled observed density and standard normal density of S&P 500 log returns.
Left: daily, Right: monthly . 45

5.4 Scaled observed density and standard normal density of Eurostox log re-
turns. Left: daily, Right: monthly . 45

5.5 Scaled observed density and standard normal density of FTSE log returns.
Left: daily, Right: monthly . 46

xi

Chapter 1

Introduction

In finance, a derivative is a contract between two or more parties whose value is based on a
particular underlying asset or a basket of underlying assets. The most common underlying
instruments include bonds, commodities, currencies, interest rates, market indices and
stocks. Some of the more common derivatives include forwards, futures, options, swaps,
and variations such as synthetic collateralized debt obligations (CDOs) and credit default
swaps (CDSs).

Derivatives are mainly used for speculating and purpose of risk management. By hold-
ing derivatives, speculators take risks to pursue potential quick, large profits. Meanwhile,
investors can effectively hedge various risks through the use of derivatives. That is, deriva-
tives offer market participants the chance to customize satisfactory risk profiles for their
own businesses.

An option is a contract which gives the buyer the right, but not the obligation, to buy
or sell an underlying asset at a specified strike price, on or before expiration. A European
option can only be exercised on expiration while an American option can be exercised on
any trading day before expiry.

To price derivatives, the assumption of a stochastic process model for the underlying
asset is required. The well-known Black-Scholes model was first proposed by Black and
Scholes (1973)[3]. In this model, the underlying asset price is assumed to follow a geometric
Brownian motion and the no-arbitrage price of options can be determined as the solution
of a partial differential equation (PDE). The jump diffusion model was first suggested
by Merton (1976)[14]. A Poisson-driven random jump component is added to geometric
Brownian motion in order to represent the abnormal changes in underlying price. When

1

the underlying asset follows a jump diffusion model, the pricing problem reduces to solving
a partial integro-differential equation (PIDE).

The Fourier Space Time-stepping (FST) method was first developed by Jackson, Jaimun-
gal and Surkov (2008)[8]. FST method uses the Fourier transform to solve the PDE or
PIDE numerically. The continuous Fourier transform (CFT) is a linear operator which
maps spatial derivatives into multiplications in Fourier space. Because of the convenient
properties of the Fourier transform, the PDE or PIDE in real space can be converted into
a linear first-order ordinary differential equation (ODE) in Fourier space, which can be
easily solved in closed-form. In practice, the discrete Fourier transform (DFT) is used to
approximate the CFT so the continuous domain is discretized for computational purpose.
Unfortunately, the FST method causes wrap-around error in the option value solution,
which needs to be addressed.

With the development of economic globalization, contagion effects tend to be inevitable
as the result of financial shocks. The contagion literature identifies at least three possible
mechanisms by which shocks in one market may spill over into other markets. First, Allen
and Gale (2000)[1] suggested that contagion occurs through a liquidity shock across all
markets. Second, Kiyotaki and Moore (2002)[9] claimed that contagion can be viewed as
the transmission of information from more-liquid markets or markets with more rapid price
discovery to other markets. Third, Vayanos (2004)[18] concluded that contagion occurs as
negative returns in the distressed market affect subsequent returns in other markets via a
time-varying risk premium.

Besides the theoretical research on financial contagion, plenty of empirical tests are
conducted as well. By constructing a set of dummy variables using daily news to capture the
impact of own-country and cross-border news on the markets, Baig and Goldfajn (1999)[2]
found that correlations in currency and sovereign spreads between the financial markets of
Thailand, Malaysia, Indonesia, Korea, and the Philippines increased significantly during
the Asian crisis period. Longstaff (2010)[12] found strong evidence of contagion in the
financial markets by investigating the pricing of subprime asset-backed collateralized debt
obligations (CDOs) and their contagion effects on other markets.

In this essay, a shared-jump diffusion model is introduced with the motivation of de-
scribing financial shocks and contagion effects. Under this model, two underlying assets
are assumed to go through abnormal changes at the same time. In other words, two un-
derlying assets share the same jump driven by unique Poisson process. The FST method
is implemented to solve the corresponding PIDE under the shared-jump diffusion model.
Also, constant padding is developed to remedy the wrap-around error in one- and two-
dimensional cases. Last but not least, empirical data analysis is carried out to estimate

2

the parameters and provide evidence for developing the shared-jump diffusion model.

The remainder of this essay is structured as follows. Chapter 2 introduces one-factor
jump diffusion model, two-factor jump diffusion model and the new shared-jump diffu-
sion model. Chapter 3 presents the derivation of the Fourier Space Time-stepping (FST)
method under shared-jump diffusion model. Chapter 4 provides numerical examples under
various models and the appropriate treatment of wrap-around error. Chapter 5 gives the
empirical analysis based on the real data from global financial markets. Chapter 6 lists
the conclusions. The Appendix provides the Fourier transform of distributions, the FST
algorithms for European options and methodology of Monte Carlo simulation.

3

Chapter 2

Mathematical Models

2.1 Introduction

The Black-Scholes-Merton (BSM) model for pricing of options, assumes the prices of un-
derlying assets follow geometric Brownian motion. By assuming certain ideal conditions on
financial markets and constructing a self-financing replicating portfolio, Black and Scholes
(1973)[3] show that the option pricing problem under the BSM model can be reduced to
solving a second-order partial differential equation (PDE).

In order to take random jumps into consideration, Merton (1976)[14] suggested a jump
diffusion model to describe the dramatic changes in underlying prices within a very short
time period. That model adds a Poisson process, which may cause discontinuities in sam-
ple paths, to the geometric Brownian motion. The distribution of random jump sizes are
commonly chosen to follow a log-normal distribution or a double exponential distribution
by Kou (2002)[10]. Under the jump diffusion model, as with the BSM model, the op-
tion pricing problem reduces to solving a second-order partial integro-differential equation
(PIDE).

In this chapter, a new two-asset jump diffusion model is introduced to capture the
extreme cases which happened in global financial markets such as the dot-com bubble1

in 2002 and the financial crisis2 in 2008. Under the shared-jump diffusion model, the

1A historic economic bubble and period of excessive speculation that occurred roughly from 1997 to
2001, a period of extreme growth in the usage and adaptation of the Internet.

2A crisis first started in the subprime mortgage market in the United States, and then developed into
a full-blown international banking crisis.

4

random jumps and their jump sizes are driven by the single Poisson process, which is quite
reasonable to characterize the financial shocks and the corresponding contagion effects on
global markets.

2.2 One-factor Jump Diffusion Model

The sample paths of the underlying price S are modelled by a stochastic differential equa-
tion:

dS

S
= µdt+ σdZ + (η − 1)dq, (2.1)

where

µ = drift rate,

σ = underlying volatility,

dZ = increment of standard Brownian motion,

η − 1 = impulse function producing a jump from S to Sη,

dq =

{
0, with probability 1− λdt,
1, with probability λdt,

λ = mean arrival rate of Poisson jump.

Let V(S, τ) be the option value, with τ = T − t, the time to expiry T . By Ito’s Lemma
and no-arbitrage arguments, a partial integro-differential equation (PIDE)for V(S, τ)[15,
19] can be written as:

Vτ =
σ2S2

2
VSS + (r − λκ)SVS − (r + λ)V +

(
λ

∫ ∞
0

V(Sη)g(η)dη
)

(2.2)

where

T = expiry time,

r = risk free rate,

τ = T − t,where t is current time,

κ = E[η − 1],where E[η] =

∫ ∞
0

ηg(η)dη,

g(η) = probability density function of the jump magnitude

5

with the initial condition:

V(S, 0) = max(S −K, 0), for call option (2.3)

or
V(S, 0) = max(K − S, 0), for put option (2.4)

where K is the strike price. Here, introduce f(x) = g(ex)ex as the density function of
log(η) . So, with Merton jump density (normal distribution), we have

f(y) =
1√
2πγ

e−
1
2

(y−µ
γ

)2 ,

where µ and γ are constant parameters. Using the Kou jump density (double exponential
distribution), we get

f(y) = pη1e
−yη1 · 1{y≥0} + (1− p)η2e

yη2 · 1{y≤0},

where p is the probability of an upward jump and η1, η2 are constant parameters.

2.3 Two-factor Jump Diffusion Model

Intuitively, it is easy to extend single-asset cases to multi-asset cases. For example, in
two dimensions, by introducing the correlation coefficient between the Brownian motions
of two different underlying prices, the stochastic differential equations for the underlying
prices S1, S2 can be written as:

dS1

S1

= µ1dt+ σ1dZ1 + (η1 − 1)dq1, (2.5)

dS2

S2

= µ2dt+ σ2dZ2 + (η2 − 1)dq2, (2.6)

dZ1dZ2 = ρdt (2.7)

6

where

µ1, µ2 = drift rates,

σ1, σ2 = underlying volatilities,

dZ1, dZ2 = increments of standard Brownian motions,

η1 − 1, η2 − 1 = impulse functions producing jumps from (S1, S2) to (S1η1, S2η2),

dq1 =

{
0, with probability 1− λ1dt,
1, with probability λ1dt,

dq2 =

{
0, with probability 1− λ2dt,
1, with probability λ2dt,

λ1, λ2 = mean arrival rates of Poisson jumps,

ρ = correlation of two standard Brownian motions.

Define V(S1, S2, τ) as the two-asset option value. As before, the partial integro-differential
equation (PIDE) for V(S1, S2, τ) can be obtained by Ito’s Lemma and no-arbitrage argu-
ments as:

Vτ =
σ2

1S
2
1

2
VS1S1 +

σ2
2S

2
2

2
VS2S2 + (r − λ1κ1)S1VS1 + (r − λ2κ2)S2VS2 + ρσ1σ2S1S2VS1S2

− (r + λ1 + λ2)V +
(
λ1

∫ ∞
0

V(S1η1)g(η1)dη1

)
+
(
λ2

∫ ∞
0

V(S2η2)g(η2)dη2

)
(2.8)

where

T = expiry time,

r = risk free rate,

τ = T − t,where t is current time,

κ1 = E[η1 − 1],where E[η1] =

∫ ∞
0

η1g(η1)dη1,

κ2 = E[η2 − 1],where E[η2] =

∫ ∞
0

η2g(η2)dη2,

g(η1) = probability density function of the jump magnitude of S1,

g(η2) = probability density function of the jump magnitude of S2.

7

Examples of the initial conditions include:

V(S1, S2, 0) = max(B2S2 −B1S1 −K, 0), for spread call option (2.9)

or
V(S1, S2, 0) = max(K −B2S2 +B1S1, 0), for spread put option (2.10)

or
V(S1, S2, 0) = max(S1 −K1, K2 − S2, 0), for dual strike option (2.11)

where K,K1, K2, B1 and B2 are parameters for various multi-asset options.

2.4 Shared-jump Diffusion Model

Slightly different from equations (2.5) and (2.6), the shared-jump here is driven by a single
Poisson process. Assume two underlying assets S1, S2 follow the stochastic differential
equations:

dS1

S1

= µ1dt+ σ1dZ1 + (η − 1)dq, (2.12)

dS2

S2

= µ2dt+ σ2dZ2 + (η − 1)dq, (2.13)

dZ1dZ2 = ρdt (2.14)

where

dq =

{
0, with probability 1− λdt,
1, with probability λdt,

µ1, µ2 = drift rates,

σ1, σ2 = underlying volatilities,

dZ1, dZ2 = increments of standard Brownian motions,

η − 1 = impulse function producing the shared-jump from (S1, S2) to (S1η, S2η),

λ = mean arrival rate of Poisson jump,

ρ = correlation of two standard Brownian motions.

Let V(S1, S2, t) be the two-asset option value under the shared-jump diffusion model.
The partial integro-differential equation (PIDE) for V(S1, S2, t) can be derived by Ito’s
Lemma and constructing a hedging portfolio.

8

By Ito’s Lemma for jump processes, the total variation of V(S1, S2, t) can be written
as:

dV = Vtdt+ VS1(µ1S1dt+ σ1S1dZ1) + VS2(µ2S2dt+ σ2S2dZ2) + VS1S2ρσ1σ2S1S2dt

+
1

2
VS1S1σ

2
1S

2
1dt+

1

2
VS2S2σ

2
2S

2
2dt+ [V(S1η, S2η, t)− V(S1, S2, t)]dq,

(2.15)

in more compact notation, we have:

dV = α dt+ β dZ1 + γ dZ2 + ∆V dq,
α = Vt + VS1µ1S1 + VS2µ2S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 + VS1S2ρσ1σ2S1S2,

β = VS1σ1S1,

γ = VS2σ2S2,

∆V = [V(S1η, S2η, t)− V(S1, S2, t)].

Consider the portfolio Π including four contracts V1,V2,V3 and V4 such that

Π = n1V1 + n2V2 + n3V3 + n4V4. (2.16)

Hence,

dΠ = n1dV1 + n2dV2 + n3dV3 + n4dV4

= n1(α1 dt+ β1 dZ1 + γ1 dZ2 + ∆V1 dq)

+ n2(α2 dt+ β2 dZ1 + γ2 dZ2 + ∆V2 dq)

+ n3(α3 dt+ β3 dZ1 + γ3 dZ2 + ∆V3 dq)

+ n4(α4 dt+ β4 dZ1 + γ4 dZ2 + ∆V4 dq)

= (n1α1 + n2α2 + n3α3 + n4α4) dt

+ (n1β1 + n2β2 + n3β3 + n4β4) dZ1

+ (n1γ1 + n2γ2 + n3γ3 + n4γ4) dZ2

+ (n1∆V1 + n2∆V2 + n3∆V3 + n4∆V4) dq.

(2.17)

Eliminate the random terms dZ1, dZ2 and dq by setting

n1β1 + n2β2 + n3β3 + n4β4 = 0,

n1γ1 + n2γ2 + n3γ3 + n4γ4 = 0,

n1∆V1 + n2∆V2 + n3∆V3 + n4∆V4 = 0.

(2.18)

9

Thus, the portfolio Π is risk-less. Let r be the risk free rate, so that

dΠ = rΠ dt. (2.19)

From equations (2.17), (2.18) and (2.19), we get:

(n1α1 + n2α2 + n3α3 + n4α4) = (n1V1 + n2V2 + n3V3 + n4V4)r. (2.20)

Putting equations (2.18) and (2.20) together gives
β1 β2 β3 β4

γ1 γ2 γ3 γ4

∆V1 ∆V2 ∆V3 ∆V4

α1 − rV1 α2 − rV2 α3 − rV3 α4 − rV4

n1

n2

n3

n4

 =

0
0
0
0

 . (2.21)

Equation (2.21) has a non-zero solution only if the rows are linearly dependent. So, there
must exist λB1(S1, S2, t), λB2(S1, S2, t) and λJ(S1, S2, t) such that

(α1 − rV1) = λB1β1 + λB2γ1 − λJ∆V1,

(α2 − rV2) = λB1β2 + λB2γ2 − λJ∆V2,

(α3 − rV3) = λB1β3 + λB2γ3 − λJ∆V3,

(α4 − rV4) = λB1β4 + λB2γ4 − λJ∆V4.

It can be shown that λJ ≥ 0 avoids any arbitrage opportunity. Dropping the subscripts
gives

(α− rV) = λB1β + λB2γ − λJ∆V (2.22)

and substituting α, β, γ and ∆V leads to

Vt + (µ1 − λB1σ1)VS1S1 + (µ2 − λB2σ2)VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV + λJ [V(S1η, S2η, t)− V(S1, S2, t)] = 0.

(2.23)

Suppose V3 = S1 and V4 = S2 are two traded underlying assets. In this case, we have:

α3 = µ1S1, α4 = µ2S2,

β3 = σ1S1, β4 = 0,

γ3 = 0, γ4 = σ2S2,

∆V3 = (η − 1)S1, ∆V4 = (η − 1)S2.

10

From equation (2.22), we get:

(µ1S1 − rS1) = λB1σ1S1 + λB2(0)− λJ(η − 1)S1,

(µ2S2 − rS2) = λB1(0) + λB2σ2S2 − λJ(η − 1)S2.
(2.24)

After eliminating common factors in equation (2.24), it is easy to obtain:

µ1 − λB1σ1 = r − λJ(η − 1),

µ2 − λB2σ2 = r − λJ(η − 1).
(2.25)

Substituting equation (2.25) into equation (2.23) gives

Vt + [r − λJ(η − 1)]VS1S1 + [r − λJ(η − 1)]VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV + λJ [V(S1η, S2η, t)− V(S1, S2, t)] = 0.

(2.26)

Assume the number of jump states is finite, which means the asset price S may jump
to any states Sηi after a jump where i = 1, · · · , n. By the hedging arguments above, use
n+ 3 hedging instruments so that the diffusion and jumps will be hedged perfectly. Then
equation (2.23) can be written as:

Vt + (µ1 − λB1σ1)VS1S1 + (µ2 − λB2σ2)VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV +

n∑
i=1

λiJ [V(S1ηi, S2ηi, t)− V(S1, S2, t)] = 0.
(2.27)

Similarly, if the underlying assets can also be used for hedging, equation (2.26) can be
transformed into:

Vt + [r −
n∑
i=1

λiJ(ηi − 1)]VS1S1 + [r −
n∑
i=1

λiJ(ηi − 1)]VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV +

n∑
i=1

λiJ [V(S1ηi, S2ηi, t)− V(S1, S2, t)] = 0.

(2.28)

Let g(ηi) =
λiJ∑n
i=1 λ

i
J

and λ =
∑n

i=1 λ
i
J , then equation (2.27) becomes:

Vt + (µ1 − λB1σ1)VS1S1 + (µ2 − λB2σ2)VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV + λ

n∑
i=1

g(ηi)[V(S1η, S2η, t)− V(S1, S2, t)] = 0.

(2.29)

11

In addition, g(ηi) ≥ 0 and λ ≥ 0 because λiJ ≥ 0.

Now, if we take the limit as the number of jump states goes to infinity, then g(η) will
tend to a continuous distribution and infinite hedging instruments are required. Thus,
equation (2.29) can be represented as:

Vt + (µ1 − λB1σ1)VS1S1 + (µ2 − λB2σ2)VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV + λ

∫ ∞
0

[V(S1η, S2η, t)− V(S1, S2, t)]g(η)dη = 0.

(2.30)

In the case where the underlying assets can be used to hedge the risk, we have:

Vt + (r − λE[η − 1])VS1S1 + (r − λE[η − 1])VS2S2 + VS1S2ρσ1σ2S1S2

+
1

2
VS1S1σ

2
1S

2
1 +

1

2
VS2S2σ

2
2S

2
2 − rV + λ

∫ ∞
0

[V(S1η, S2η, t)− V(S1, S2, t)]g(η)dη = 0.

(2.31)

It is crucial to point out that λ and g(η) here are not the real mean arrival rate of
Poisson jump and real probability density function of the jump magnitude because they
are obtained by the hedging arguments mentioned above. Thus, λ and g(η) must be derived
by calibration to the financial market data.

Define τ = T − t and κ = E[η − 1] =
∫∞

0
(η − 1)g(η)dη, the partial integro-differential

equation (PIDE) for V(S1, S2, τ) can be directly derived from equations (2.31):

Vτ =
1

2
σ2

1S
2
1VS1S1 +

1

2
σ2

2S
2
2VS2S2 + (r − λκ)S1VS1 + (r − λκ)S2VS2

+ ρσ1σ2S1S2VS1S2 − (r + λ)V + λ

∫ ∞
0

V(S1η, S2η)g(η)dη
(2.32)

with the initial condition given by equation (2.9), (2.10) or (2.11).

A log-transformation will lead to a PIDE with constant coefficients and a cross-correlation
integral. Define x1 = log(S1), x2 = log(S2) and let v(x1, x2, τ) = V(S1, S2, τ). The rela-
tionships between the partial derivatives of v with respect to x1, x2 and partial derivatives
of V with respect to S1, S2 can be seen as:

VS1 =
vx1
ex1

, VS2 =
vx2
ex2

,

VS1S1 =
vx1x1 − vx1

e2x1
, VS2S2 =

vx2x2 − vx2
e2x2

, VS1S2 =
vx1x2
ex1ex2

.

12

Let η = ey, then dη = eydy. Plugging the above into equation (2.32) gives the PIDE
in terms of v:

vτ =
1

2
σ2

1vx1x1 +
1

2
σ2

2vx2x2 + (r − λκ− 1

2
σ2

1)vx1 + (r − λκ− 1

2
σ2

2)vx2

+ ρσ1σ2vx1x2 − (r + λ)v + λ
(∫ ∞
−∞

v(x1 + y, x2 + y, τ)g(ey)eydy
)
.

(2.33)

Introducing f(x) = g(ex)ex and substituting into the PIDE (2.33) gives:

vτ =
1

2
σ2

1vx1x1 +
1

2
σ2

2vx2x2 + (r − λκ− 1

2
σ2

1)vx1 + (r − λκ− 1

2
σ2

2)vx2

+ ρσ1σ2vx1x2 − (r + λ)v + λ
(∫ ∞
−∞

v(x1 + y, x2 + y, τ)f(y)dy
)
.

(2.34)

Hence, with log-transformation and changes of variables, the original PIDE (2.32) may be
represented as the PIDE (2.34), which contains constant coefficients and a cross-correlation
integral.

13

Chapter 3

Fourier Space Time-stepping Method

3.1 Introduction

The Fourier space time-stepping (FST) method was first developed by Jackson, Jaimungal
and Surkov (2008)[8]. This method uses the continuous Fourier transform, which is a linear
operator, to map the spatial derivatives into multiplications in Fourier space.

By the properties of the Fourier transform, the PIDE derived previously in (2.23) can
be converted into a linear first-order ordinary differential equation (ODE) in Fourier space.
This is then straightforward to solve in closed-form.

For one-factor and two-factor jump diffusion models, the details of implementing the
FST method are demonstrated by Lippa (2013)[11]. In this chapter, the FST algorithm
under a shared-jump diffusion model will be discussed.

3.2 Continuous Fourier Transform

The continuous Fourier transform (CFT) maps a function in the space domain f(x) into a
function in the frequency domain F (k). Here, x and k can be scalars or vectors since it is
straightforward to generalize a one-dimensional continuous Fourier transform into higher
dimensions.

With the definition of one-dimensional continuous Fourier transform of a function f(x)
being:

F (k) = F [f(x)](k) :=

∫ ∞
−∞

f(x)e−i2πkxdx, (3.1)

14

the definition of one-dimensional inverse continuous Fourier transform (ICFT) of a function
F (k) is:

f(x) = F−1[F (k)](x) :=

∫ ∞
−∞

F (k)ei2πkxdk. (3.2)

With the definition of two-dimensional continuous Fourier transform of a function f(x)
being :

F (k1, k2) = F [f(x1, x2)](k1, k2) :=

∫ ∞
−∞

∫ ∞
−∞

f(x1, x2)e−i2π(k1x1+k2x2)dx1dx2, (3.3)

the definition of two-dimensional inverse continuous Fourier transform of a function F (k)
is:

f(x1, x2) = F−1[F (k1, k2)](x1, x2) :=

∫ ∞
−∞

∫ ∞
−∞

F (k1, k2)ei2π(k1x1+k2x2)dk1dk2. (3.4)

There are some useful properties of Fourier transform for computations. The Fourier
transform of the partial derivative of a function v(x, τ) with respect to τ can be represented
as:

F
[∂
∂τ
v(x, τ)

]
(k) =

∂

∂τ
F [v(x, τ)](k). (3.5)

Also, the Fourier transform of the partial derivative of a function v(x, τ) with respect to x
can be represented as:

F
[∂n
∂xn

v(x, τ)
]
(k) = (2πik)nF [v(x, τ)](k). (3.6)

In addition, the two-dimensional Fourier transform of the the second partial derivative of
a function v(x, y, τ) with respect to x and y can be represented as:

F
[∂2

∂x∂y
v(x, y, τ)

]
(k1, k2) = (2πik1)(2πik2)F [v(x, y, τ)](k1, k2). (3.7)

3.3 Discrete Fourier Transform

Generally, it is impossible to compute the exact result of continuous Fourier transform in
closed-form. So, the discrete Fourier transform (DFT) is introduced to approximate CFT

15

for numerical solutions. This has error O(∆x2), where ∆x is the constant spacing in the
x direction. In the following, we define the DFT pairs as:

F̂n =
N−1∑
m=0

f(xm)e−i2π
nm
N ,

fm =
1

N

N
2∑

n=−N
2

+1

ei2π
nm
N F̂n.

If the original domain of [−∞,∞] is truncated to the new domain Ω = [xmin, xmax],
the continuous Fourier transform (3.1) is approximated on domain Ω as:

F (k) ≈
∫ xmax

xmin

f(x)e−i2πkxdx. (3.8)

Discretizing the real domain [xmin, xmax] as:

xm = xmin +m ·∆x (3.9)

where m = 0, 1, · · · , N − 1,∆x = xmax−xmin
N

and N is the total number of nodes in the real
domain.

Meanwhile, the Fourier domain can also be discretized as:

kn =
n

xmax − xmin
(3.10)

where n = −N
2

+ 1, · · · , N
2

. By the Nyquist frequency conditions, the maximum frequency
is ±N

2
. Therefore, the allowable frequencies are:{(

− N

2
+ 1
)
, · · · , N

2

}
. (3.11)

We can approximate this using the trapezoidal rule, so equation (3.8) becomes:

F (k) ≈
∫ xmax

xmin

f(x)e−i2πkxdx

≈
N−1∑
m=0

f(xm)e−i2πkxm∆x+O(∆x2).

(3.12)

16

In Fourier space, for k−N
2

+1, · · · , kN
2

, we use equations (3.10) and (3.12) to get:

Fn = F (kn) ≈
N−1∑
m=0

f(xm)e−i2πknxm∆x

= ∆x
N−1∑
m=0

f(xm)e−i2πkn(xmin+m∆x)

= e−i2πknxmin∆x
N−1∑
m=0

f(xm)e−i2π
nm
N .

(3.13)

Define F̂n :=
∑N−1

m=0 f(xm)e−i2π
nm
N . Then, equation (3.13) can be rewritten as:

Fn = e−i2πknxmin ·∆x · F̂n (3.14)

where F̂0, F̂1, · · · , F̂N−1 are the discrete Fourier transforms of f0, f1, · · · , fN−1.

Conversely, the inverse continuous Fourier transform (3.2) can be approximated by:

f(x) =

∫ ∞
−∞

F (k)ei2πkxdk

≈
∫ N

2

−N
2

F (k)ei2πkxdk

≈
N
2∑

n=−N
2

+1

F (kn)ei2πknx∆k +O(∆k2)

(3.15)

where kn = n ·∆k and ∆k = 1
xmax−xmin .

17

In this situation:

fm = f(xm) ≈
N
2∑

n=−N
2

+1

F (kn)ei2πknxm∆k

=

N
2∑

n=−N
2

+1

F (kn)ei2πkn(xmin+m∆x)∆k

=

N
2∑

n=−N
2

+1

(
e−i2πknxmin ·∆x · F̂n

)
ei2πkn(xmin+m∆x)∆k

=

N
2∑

n=−N
2

+1

∆x · ei2π
nm
N F̂n ·∆k

=
1

N

N
2∑

n=−N
2

+1

ei2π
nm
N F̂n

(3.16)

where f0, f1, · · · , fN−1 are the inverse discrete Fourier transforms (IDFT) of F̂0, F̂1, · · · , F̂N−1.

3.4 FST Method under a Shared-jump Diffusion Model

3.4.1 Fourier Transform

Given a partial integro-differential differential equation in the form of equation (2.23), with
constant coefficients and a cross-correlation integral term, the option pricing problem can
be reduced to solving the PIDE by the Fourier space time-stepping method. Applying the
two-dimensional continuous Fourier transform F on the PIDE (2.23) gives:

F [vτ](k1, k2) =
1

2
σ2

1F [vx1x1](k1, k2) +
1

2
σ2

2F [vx2x2](k1, k2)

+ (r − λκ− 1

2
σ2

1)F [vx1](k1, k2) + (r − λκ− 1

2
σ2

2)F [vx2](k1, k2)

+ ρσ1σ2F [vx1x2](k1, k2)− (r + λ)F [v](k1, k2)

+ λF
[∫ ∞
−∞

v(x1 + y, x2 + y)f(y)dy
]
(k1, k2)

(3.17)

18

where the transform variables k1, k2 represent the frequencies.

In equation (3.17), except for the two-dimensional cross-correlation integral term, all
other terms can be easily simplified by properties (3.5), (3.6) and (3.7). Take the two-
dimensional Fourier transform of cross-correlation integral term to get:

F
[∫ ∞
−∞

v(x1 + y, x2 + y)f(y)dy
]
(k1, k2)

=

∫ ∞
−∞

∫ ∞
−∞

(∫ ∞
−∞

v(x1 + y, x2 + y)f(y)dy
)
e−2πi(k1x1+k2x2)dx1dx2.

(3.18)

Let w = −y, so that dy = −dw. Plugging into (3.18) gives:

F
[∫ ∞
−∞

v(x1 + y, x2 + y)f(y)dy
]
(k1, k2)

=

∫ ∞
−∞

f(−w)
(∫ ∞
−∞

∫ ∞
−∞

v(x1 − w, x2 − w)e−2πi(k1x1+k2x2)dx1dx2

)
dw.

(3.19)

Let u1 = x1 − w, u2 = x2 − w, so that du1 = dx1, du2 = dx2. Plugging into (3.19) gives:

F
[∫ ∞
−∞

v(x1 + y, x2 + y)f(y)dy
]
(k1, k2)

=

∫ ∞
−∞

f(−w)
[∫ ∞
−∞

∫ ∞
−∞

v(u1, u2)e−2πi(k1(u1+w)+k2(u2+w))du1du2

]
dw

=

∫ ∞
−∞

e−2πi(k1+k2)wf(−w)dw

∫ ∞
−∞

∫ ∞
−∞

v(u1, u2)e−2πi(k1u1+k2u2)du1du2

=F [f(−x)](k1 + k2)F [v(u1, u2)](k1, k2)

=F̄ [f(x)](k1 + k2)F [v](k1, k2)

(3.20)

where z̄ denotes the complex conjugate of z.

By the properties of Fourier Transform (3.5), (3.6), (3.7) and (3.20), equation (3.17)
can be simplified to:

∂

∂τ
F [v](k1, k2) =

1

2
σ2

1(2πik1)2F [v](k1, k2) +
1

2
σ2

2(2πik2)2F [v](k1, k2)

+ (r − λκ− 1

2
σ2

1)(2πik1)F [v](k1, k2) + (r − λκ− 1

2
σ2

2)(2πik2)F [v](k1, k2)

+ ρσ1σ2(2πik1)(2πik2)F [v](k1, k2)− (r + λ)F [v](k1, k2)

+ λF̄ [f(x)](k1 + k2)F [v](k1, k2).

(3.21)

19

Rearranging the terms in (3.21) gives:

∂

∂τ
F [v](k1, k2) =F [v](k1, k2)

(
− 1

2
σ2

1(2πk1)2 − 1

2
σ2

2(2πk2)2

+ (r − λκ− 1

2
σ2

1)(2πik1) + (r − λκ− 1

2
σ2

2)(2πik2)

− ρσ1σ2(2πk1)(2πk2)− (r + λ) + λF̄ [f(x)](k1 + k2)
)
.

(3.22)

Define V (k1, k2) := F [v](k1, k2), F (k1 + k2) := F [f(x)](k1 + k2) so that the derivative
with respect to τ can be writtern as Vτ (k1, k2) := ∂

∂τ
F [v](k1, k2). In addition, define the

characteristic exponent Ψ(k1, k2) as:

Ψ(k1, k2) =− 1

2
σ2

1(2πk1)2 − 1

2
σ2

2(2πk2)2

+ (r − λκ− 1

2
σ2

1)(2πik1) + (r − λκ− 1

2
σ2

2)(2πik2)

− ρσ1σ2(2πk1)(2πk2)− (r + λ) + λF̄ [f(x)](k1 + k2).

(3.23)

With these new notations, equation (3.22) can be rewritten as:

0 = Vτ (k1, k2)− V (k1, k2) ·Ψ(k1, k2). (3.24)

Hence, by using a change of variables and the properties of the Fourier transforms, the
original PIDE (2.23) is converted into a linear ordinary differential equation (ODE) in τ
given by (3.24). This ODE can be solved in closed-form in Fourier space and the option
price in real space can be transformed back from Fourier space by taking the inverse Fourier
transform.

3.4.2 Solving the Ordinary Differential Equation

By introducing the integrating factor e−Ψ(k1,k2)τ , the ODE (3.24) can be easily solved:

0 = e−Ψ(k1,k2)τVτ (k1, k2)− e−Ψ(k1,k2)τV (k1, k2) ·Ψ(k1, k2)

=
∂

∂τ

(
V (k1, k2)e−Ψ(k1,k2)τ

)
.

(3.25)

Integrating both sides of (3.25) with respect to τ :

V (k1, k2) = C · eΨ(k1,k2)τ

20

where C is constant.

Let V n(k1, k2) := F [v(x1, x2, τ)](k1, k2) denote the Fourier transform of the option price
at time τn. Then for any 0 ≤ τl ≤ τu ≤ T , given the Fourier transform of the option price
at time τl, V

l, the Fourier transform of the option price at time τu can be computed by:

V u(k1, k2) = V l(k1, k2) · eΨ(k1,k2)(τu−τl). (3.26)

The inverse Fourier transform can be applied on (3.26) to recover the option value:

v(x1, x2, τu) = F−1
[
V l(k1, k2) · eΨ(k1,k2)(τu−τl)

]
(x1, x2). (3.27)

The equations (3.26) and (3.27) provide the main idea on how to time-step in Fourier space
and recover the option prices in real space, using a continuous Fourier transform and its
inverse.

3.4.3 Fourier Space Time-stepping

Note that equations (3.26) and (3.27) use the CFT and ICFT. In practice, DFT and IDFT
are used to approximate CFT and ICFT to compute numerical solutions:

V u(k1n1 , k2n2) ≈ e−i2π(k1n1+k2n2)xmin ·∆x1∆x2 · V̂ u(n1, n2) (3.28)

and
V l(k1n1 , k2n2) ≈ e−i2π(k1n1+k2n2)xmin ·∆x1∆x2 · V̂ l(n1, n2). (3.29)

Therefore, equation (3.26) can be approximated by using (3.28) and (3.29), which after
eliminating factors of e−i2π(k1n1+k2n2)xmin ·∆x1∆x2 gives:

V̂ u(n1, n2) = V̂ l(n1, n2) · eΨ(k1,k2)(τu−τl). (3.30)

The inverse discrete Fourier transform (IDFT) can be used to transform the option
price in real space back, for any m1,m2 = 0, 1, · · · , N − 1:

IDFT
[
V̂ u(n1, n2)

]
(x1m1 , x2m2) = IDFT

[
V̂ l(n1, n2) · eΨ(k1,k2)(τu−τl)

]
(x1m1 , x2m2)

v(x1m1 , x2m2 , τu) = IDFT
[
eΨ(k1,k2)(τu−τl) ·DFT

[
v(x1m1 , x2m2 , τl)

]]
.

(3.31)

Here, the computed value v(x1m1 , x2m2 , τu) represents the option price when the under-
lying prices are (S1, S2) = (ex1m1 , ex2m2) at time τu.

21

3.4.4 Illustration of Method

To price the options under the shared-jump model, the FST method can be implemented
to solve the PIDE given by equation (2.23) numerically.

The underlying prices domain (S1, S2) is discretized by defining nodes in both of the
(S1, S2) directions denoted as [S10 , S11 , · · · , S1max]× [S20 , S21 , · · · , S2max], which are equally
spaced in log space (log(S1), log(S2)).

For European options, there are no conditions imposed on the option until the expiry
date. Hence, the time domain can be discretized as τ 0 = 0, τ 1 = T so that ∆τ = T . By
using the FST method, European options can be priced with only one time-step, from
τ 0 = 0 to τ 1 = T .

For American options, the time domain should be discretized as [τ 0 = 0, τ 1, · · · , τM =
T] with ∆τ = T

M
in order to take the early exercise boundary into consideration. When

using the FST method, the computed option price needs to be updated during each time-
step by checking the possibility of early exercise.

22

Chapter 4

Numerical Results

4.1 One-factor Jump Diffusion Cases

Under the one-factor jump diffusion model, the options pricing PIDE is given by equation
(2.2):

Vτ =
σ2S2

2
VSS + (r − λκ)SVS − (r + λ)V +

(
λ

∫ ∞
0

V(Sη)g(η)dη
)
.

After doing a log transformation and Fourier transform, the characteristic exponent
can be obtained as:

Ψ(k) = −σ
2

2
(2πk)2 + (r − λκ− σ2

2
)(2πik)− (r + λ) + λF̄ (k) (4.1)

where F (k) is defined as the Fourier transform of the jump density function f(x) and
the derivation of F (k) can be found in (Appendix A). In addition, z̄ denotes the complex
conjugate of z.

Precisely speaking, for the Merton jump density, we have

f(y) =
1√
2πγ

e−
1
2

(y−µ
γ

)2 , F (k) = e−2(πikµ+(πkγ)2). (4.2)

For the Kou jump density, we get

f(y) = pη1e
−yη1 ·1{y≥0}+(1−p)η2e

yη2 ·1{y≤0}, F (k) =
p

1 + 2πik(1
η1

)
+

1− p
1− 2πik(1

η2
)
. (4.3)

23

4.1.1 Pricing Results

Table (4.1) shows the parameters for a European put under a one-factor jump diffusion
model with the Merton jump density. The pricing results are listed in Table (4.2).

Parameters Value
S 100
K 110
r 0.05
q1 0.02
T 10
σ 0.15
λ 0.1
µ -1.08
γ 0.4

Table 4.1: Parameters for a European put under the one-factor Merton jump diffusion
model

Refinement Nodes Price2 Change Ratio3

0 512 18.00485074
1 1024 18.00393356 0.00091718
2 2048 18.00370453 0.00022903 4.00462736
3 4096 18.00364730 0.00005722 4.00229568
4 8192 18.00363300 0.00001430 4.00114271
5 16384 18.00362943 0.00000358 4.00056890

Table 4.2: Pricing results of a European put under the one-factor Merton jump diffusion
model: [xmin, xmax] = [−7.5, 7.5]

As shown in Tables (4.1) and (4.2), second order convergence is obtained for pricing a
European put under the one-factor Merton jump diffusion model by FST method.

1Note that q is the continuous dividend rate, which shrinks risk-free rate r.
2Reference price of 18.00362936 is given by Surkov (2009)[17].
3Denote the option prices as V1, V2, · · · , V6, then the changes are defined as V1−V2, V2−V3, · · · , V5−V6,

and ratios are defined as V1−V2

V2−V3
, V2−V3

V3−V4
, · · · , V5−V6

V4−V5
. Therefore, the binary logarithm of a ratio shows the

numerical order of convergence.

24

Table (4.3) shows the parameters for a European call under a one-factor jump diffusion
model with the Kou jump density. The pricing results are shown in Table (4.4).

Parameters Value
S 100
K 110
r 0
T 1
σ 0.2
λ 0.2
p 0.5
η1 3
η2 2

Table 4.3: Parameters for a European call under the one-factor Kou jump diffusion model

Refinement Nodes Price4 Change Ratio
0 512 7.30281862
1 1024 7.28243068 0.02038794
2 2048 7.28161780 0.00081288 25.08114610
3 4096 7.28035126 0.00126654 0.64181120
4 8192 7.28003467 0.00031660 4.00048234
5 16384 7.27995551 0.00007916 3.99940610

Table 4.4: Pricing results of a European call under the one-factor Kou jump diffusion
model: [xmin, xmax] = [−7.5, 7.5]

As shown in Tables (4.3) and (4.4), second order convergence is obtained as well for
pricing a European call under the one-factor Kou jump diffusion model by FST method.

4.1.2 Wrap-around Error

When implementing the FST method, a periodic domain is assumed implicitly, while the
domain of the log underlying prices is actually aperiodic. Hence, the periodic assumption

4Reference price of 7.27993383 is given by Surkov (2009).

25

causes option values on the ends of the grid to be wrapped around to the other side of the
grid. This produces spurious solutions near both left and right ends.

The simple cure to remedy the wrap-around error is zero padding. For the domain
of the log underlying prices, zeros are added and the Fourier transform is done on a grid
with the size twice as the original length. At the same time, in the Fourier domain, the
number of nodes is doubled as well. Then during the FST process, after applying the
inverse Fourier transform, the added zeros are removed.

In detail, let V(Si, τ
m) denote the option value at node Si, i = 0, 1, · · · , N − 1, at time

τm. So, without padding, the Fourier transform is applied to the vector Vm:

Vm = [V(S0, τ
m),V(S1, τ

m), · · · ,V(SN−1, τ
m)︸ ︷︷ ︸

N

]

where N is the total number of nodes in the S direction. When using zero padding, the
new vector V̂m is constructed by adding zero nodes to both ends of Vm in the S direction:

V̂m = [0, · · · , 0︸ ︷︷ ︸
N
2

,V(S0, τ
m),V(S1, τ

m), · · · ,V(SN−1, τ
m)︸ ︷︷ ︸

N

, 0, · · · , 0︸ ︷︷ ︸
N
2

].

However, zero padding is not accurate enough since there may still have a huge gap
between zeros and the values on the end, which leads to spurious results. Therefore,
constant padding is introduced in this part.

For constant padding, rather than adding zeros to the original vector Vm, the values
on the very left and right ends are used to expand the domain. Define constants cml =
V(S0, τ

m) and cmr = V(SN−1, τ
m), then the brand new vector Ṽm is constructed as follows:

Ṽm = [cml , · · · , cml︸ ︷︷ ︸
N
2

, cml = V(S0, τ
m),V(S1, τ

m), · · · ,V(SN−1, τ
m) = cmr︸ ︷︷ ︸

N

, cmr , · · · , cmr︸ ︷︷ ︸
N
2

].

Take the European options as an example. In the log underlying price domain, the
differences between the zero padding and constant padding are presented in Figure (4.1)
and Figure (4.2).

26

Figure 4.1: European call option pricing using zero padding and constant padding

Figure 4.2: European put option pricing using zero padding and constant padding

27

In practice, it is of interest to focus on the option value when the underlying price tends
to be zero rather than extremely large. Since the payoff function of European call option is
always zero near the left end, it is almost the same for zero padding and constant padding.
However, constant padding is significantly different from zero padding for the European
put option.

The parameters for a European put under the one-factor jump diffusion model with
the Merton jump density are displayed in Table (4.5).

Parameters Value
S 100
K 100
r 0.1
q 0.02
T 1
σ 0.2
λ 0.1
µ -0.5
γ 0.45

Table 4.5: Parameters for wrap-around analysis: a European put option

In this case, the domain of the log underlying prices is defined as Sex rather than ex

in order to make the grid centered at S = K = 100. So, when using the zero padding
and constant padding, the original domain Ω = [xmin, xmax] = [−7.5, 7.5] is expanded into
Ω̃ = [x

′
min, x

′
max] = [−15, 15]. In addition, the total number of nodes in Ω is N = 16384.

Therefore, Ω̃ contains 2N = 32768 nodes in total.

28

S No padding Zero padding Constant padding Closed-form solution
0.1 87.18014225 87.17857200 90.38700804 90.38572194
1 89.50246250 89.50246152 89.50354351 89.50354313
10 80.68175406 80.68175401 80.68175411 80.68175514
100 5.94853212 5.94853211 5.94853211 5.94851381
1000 0.00211219 0.00211219 0.00211219 0.00211218
10000 0.00000024 0.00000023 0.00000023 0.00000023
100000 0.68766360 0.00000000 0.00000000 0.00000000

Table 4.6: Effect of wrap-around error on the value of a European put option: zero padding
and constant padding

As shown in Table (4.6), the option price tends to be incorrect on both ends without
padding. Even though zero padding can reduce the effect of wrap-around on the right end,
it cannot fix the problem on the left end. Last but not least, constant padding performs
best among all three methods for eliminating the wrap-around error for both ends.

Besides zero padding and constant padding, asymptotic padding is another promising
choice to extend the domain of log underlying prices and reduce the wrap-around error.
Take a European call option as an example. Since the log transformation gives x = log(S

K
)

and S = Kex, the payoff function of a European call option can be written as:

V(x, 0) = V(S, 0)

= max(S −K, 0)

= max(Kex −K, 0)

= max(K(ex − 1), 0).

By the Taylor expansions for the exponential function at x = x0:

ex = ex0 +
ex0

1!
(x− x0) +

ex0

2!
(x− x0)2 +

ex0

3!
(x− x0)3 + · · ·

= ex0
(

1 +
(x− x0)

1!
+

(x− x0)2

2!
+

(x− x0)3

3!
+ · · ·

)
,

(4.4)

the asymptotic extension of log underlying prices domain for the right end can be easily

derived by taking x0 = xmax: K
(
exmax

(
1 + (x−xmax)

1!
+ (x−xmax)2

2!
+ (x−xmax)3

3!
+ · · ·

)
− 1
)

,

where K is the strike price and xmax is the right end point of the log prices domain. As for
the left end, it is straightforward to simply use zero padding since the value of a European
call option is always zero when S ≤ K.

29

Furthermore, zero padding can be seen as using zero term from asymptotic padding
while constant padding can be viewed as using only first term from asymptotic padding. If
the first two terms are used, then linear trend of log underlying prices on the right side will
be captured by asymptotic padding. Similarly, if the first three terms are used, then both
of linear and quadratic properties can be reflected. Figure (4.3) displays the differences
between asymptotic padding using one (constant), two (linear) and three (quadratic) terms.

Figure 4.3: European call option pricing using asymptotic padding

The parameters for a European call under the one-factor jump diffusion model with
the Merton jump density are shown in Table (4.7).

30

Parameters Value
S 100
K 100
r 0.05
q 0.01
T 1
σ 0.4
λ 0.2
µ -0.45
γ 0.5

Table 4.7: Parameters for wrap-around analysis: a European call option

In this example, the original domain Ω = [xmin, xmax] = [−7.5, 7.5] is expanded into
Ω̃ = [x

′
min, x

′
max] = [−15, 15]. The total number of nodes in Ω is N = 8192. Therefore, Ω̃

contains 2N = 16384 nodes in total. The results for asymptotic padding can be found in
Table (4.8).

S Constant padding Linear padding Quadratic padding Closed-form solution
0.1 0.00000043 0.00000352 0.00001474 0.00000000
1 0.00000000 0.00000000 0.00000000 0.00000000
10 0.00003847 0.00003847 0.00003847 0.00003847
100 18.86737568 18.86737568 18.86737568 18.86730167
1000 885.10319389 885.10319389 885.10319389 885.10310367
10000 9706.86630576 9706.86748324 9706.86765999 9706.86380538
100000 95250.91437482 97462.61113516 97848.56616981 97924.74438823

Table 4.8: Effect of wrap-around error on the value of a European call option: asymptotic
padding

It can be seen from Table (4.8) that there exists a tradeoff between the wrap-around
error on the left and right ends. The more terms used in asymptotic padding, the computed
option values are more accurate on the right end while less accurate on the left end.

Last but not least, the extension of log underlying prices domain is not necessary to be
symmetric. Since the Fourier transform assumes a periodic domain implicitly, the extension

31

of domain in current period may be shifted to next period. For example, when using zero
padding, the vector Vm is extended into a new vector V̂m:

V̂m = [0, · · · , 0︸ ︷︷ ︸
N
2

,V(S0, τ
m),V(S1, τ

m), · · · ,V(SN−1, τ
m)︸ ︷︷ ︸

N

, 0, · · · , 0︸ ︷︷ ︸
N
2

].

It is equivalent to shifting all the zeros on the left end to the right end:

V̂m = [V(S0, τ
m),V(S1, τ

m), · · · ,V(SN−1, τ
m)︸ ︷︷ ︸

N

, 0, · · · , 0︸ ︷︷ ︸
N

].

4.2 Two-factor Jump Diffusion Cases

As before, under the two-factor jump diffusion model, the options pricing PIDE is given
by equation (2.8):

Vτ =
σ2

1S
2
1

2
VS1S1 +

σ2
2S

2
2

2
VS2S2 + (r − λ1κ1)S1VS1 + (r − λ2κ2)S2VS2 + ρσ1σ2S1S2VS1S2

− (r + λ1 + λ2)V +
(
λ1

∫ ∞
0

V(S1η1)g(η1)dη1

)
+
(
λ2

∫ ∞
0

V(S2η2)g(η2)dη2

)
.

After log transformation and Fourier transform, the characteristic exponent can be
derived as follows:

Ψ(k1, k2) =− σ2
1

2
(2πk1)2 − σ2

2

2
(2πk2)2 + (r − λ1κ1 −

σ2
1

2
)(2πik1) + (r − λ2κ2 −

σ2
2

2
)(2πik2)

+ ρσ1σ2(2πk1)(2πk2)− (r + λ1 + λ2) + λ1F̄1(k1) + λ2F̄2(k2).

(4.5)

The independent jump density is given by equations (4.2) and (4.3).

4.2.1 Pricing Results

Table (4.9) gives the parameters for a European spread call under the two-factor jump
diffusion model with the Merton jump density. The pricing results are presented in Table
(4.10).

32

Parameters Value
S1, S2 100
σ1 0.1
σ2 0.2
λ1 0.25
λ2 0.5
µ1 0.13
µ2 0.11
γ1 0.37
γ2 0.41

q1, q2 0.05
B1, B2 1
T 1
K 2
r 0.1
ρ 0.5

Table 4.9: Parameters for a European spread call under the two-factor Merton jump dif-
fusion model

Refinement Nodes Price5 Change Ratio
0 5122 13.74164280
1 10242 13.72000852 0.02163429
2 20482 13.71519276 0.00481576 4.49239252
3 40962 13.71392828 0.00126448 3.80850192
4 81922 13.71363235 0.00029593 4.27284272

Table 4.10: Pricing results of a European spread call under the two-factor Merton jump
diffusion model: [xmin, xmax]

2 = [−7.5, 7.5]2

As shown in Tables (4.9) and (4.10), the order of convergence is approximately 2 in
space for pricing a European spread call under the two-factor Merton jump diffusion model
by the FST method.

5Reference price of 13.714948858 is given by Surkov (2009).

33

4.2.2 Wrap-around Error

From one-dimensional to two-dimensional cases, wrap-around error will also occur when
implementing the FST method. Continually with the idea of constant padding in one-factor
case, two-dimensional constant padding can be introduced as follows.

Let Vmi,j := V(S1i , S2j , τ
m) denote the option value at node (S1i , S2j),where i, j =

0, 1, · · · , N − 1 at time τm. Without padding, the two-dimensional Fourier transform
is applied to the N ×N matrix Vm:

Vm =

 V
m
0,0 · · · VmN−1,0
...

. . .
...

Vm0,N−1 · · · VmN−1,N−1

 .
In order to use constant padding in the two-dimensional case, the original matrix Vm

can be expanded into a new 2N × 2N matrix Ṽm:

Ṽm =

Mm
1 Mm

2 Mm
3

Mm
4 Vm Mm

5

Mm
6 Mm

7 Mm
8

where Mm

1 ,Mm
3 ,Mm

6 and Mm
8 are all N

2
× N

2
constant matrices:

Mm
1 =

V
m
0,0 · · · Vm0,0

...
. . .

...
Vm0,0 · · · Vm0,0

 ,Mm
3 =

V
m
N−1,0 · · · VmN−1,0

...
. . .

...
VmN−1,0 · · · VmN−1,0

 ,

Mm
6 =

V
m
0,N−1 · · · Vm0,N−1

...
. . .

...
Vm0,N−1 · · · Vm0,N−1

 ,Mm
8 =

V
m
N−1,N−1 · · · VmN−1,N−1

...
. . .

...
VmN−1,N−1 · · · VmN−1,N−1

 .
Mm

2 and Mm
7 are N

2
×N matrices with same values for each row:

Mm
2 =

V
m
0,0 · · · VmN−1,0
...

. . .
...

Vm0,0 · · · VmN−1,0

 ,Mm
7 =

V
m
0,N−1 · · · VmN−1,N−1

...
. . .

...
Vm0,N−1 · · · VmN−1,N−1

 .
34

Mm
4 and Mm

5 are N × N
2

matrices with same values for each column:

Mm
4 =

 V
m
0,0 · · · Vm0,0
...

. . .
...

Vm0,N−1 · · · Vm0,N−1

 ,Mm
5 =

 V
m
N−1,0 · · · VmN−1,0

...
. . .

...
VmN−1,N−1 · · · VmN−1,N−1

 .
Intuitively, the idea for constant padding can be described by Figure (4.4):

Figure 4.4: Intuitive idea for constant padding in two dimensions

Using the European spread call example shown above, the parameters are listed in
Table (4.9). The original domain Ω = [xmin, xmax]

2 = [−7.5, 7.5]2 is expanded into Ω̃ =
[x
′
min, x

′
max]

2 = [−15, 15]2. In addition, the total number of nodes in Ω is N2 = 10242.
Therefore, Ω̃ contains (2N)2 = 20482 nodes in total.

The effect of the wrap-around error and the reduction in wrap-around error by using
constant padding on the European spread call are displayed in Table (4.11) and Table
(4.12).

35

S2 0.1 1 10 100 1000 10000 100000
S1 x -6.9078 -4.6052 -2.3026 0 2.3026 4.6052 6.9078
0.1 -6.9078 5003.73181862 0.05921847 7.44390359 91.20579832 928.82572488 9303.91456738 80823.40168517
1 -4.6052 5128.71781581 0.04504810 6.75280164 92.36455481 948.49374193 9508.64663690 82598.33708319
10 -2.3026 5128.40582923 0.03699906 0.93341120 83.80336239 939.93259791 9500.08689466 82590.27233297
100 0 5125.27577522 0.03686791 0.00220805 13.72001200 854.32012750 9414.47442373 82509.49357610
1000 2.3026 5093.97524082 0.03665502 0.00000079 0.02411654 143.05136774 8558.35440025 81701.70615469
10000 4.6052 4780.97012512 0.03452676 0.00000005 0.00000771 0.24331756 1435.34375033 73623.88083482
100000 6.9078 1763.14404756 0.01408759 0.07856428 0.94778356 9.64004627 98.37997582 8032.19200756

Table 4.11: Effect of wrap-around error on the value of a European spread call option: no padding

S2 0.1 1 10 100 1000 10000 100000
S1 x -6.9078 -4.6052 -2.3026 0 2.3026 4.6052 6.9078
0.1 -6.9078 0.00000151 0.02374630 7.60764247 93.22048366 949.34861339 9510.32960373 91519.18921942
1 -4.6052 0.00000040 0.00815625 6.75279563 92.36457173 948.49270146 9509.47369181 91518.33330749
10 -2.3026 0.00000000 0.00010992 0.93339475 83.80337167 939.93141440 9500.91240475 91509.77202044
100 0 0.00000000 0.00000007 0.00220796 13.72000852 854.31893468 9415.29944524 91424.15906093
1000 2.3026 0.00000000 0.00000000 0.00000075 0.02411624 143.04821613 8559.17583924 90568.03092627
10000 4.6052 0.00000000 0.00000000 0.00000000 0.00000759 0.24331583 1436.03933065 82006.83260731
100000 6.9078 0.00000000 0.00000000 0.00000000 0.00000000 0.00007108 2.17400700 10778.18364481

Table 4.12: Effect of wrap-around error on the value of a European spread call option: constant padding

As shown in Table (4.11) and Table (4.12), the option values on the edges of the matrix seem to be
incorrect without padding. After using constant padding, however, these values tend to be reasonable.

36

4.3 Shared-jump Diffusion Cases

As mentioned before in Section 3.4, the characteristic exponent under the shared-jump
diffusion model is given by equation (3.23):

Ψ(k1, k2) =− 1

2
σ2

1(2πk1)2 − 1

2
σ2

2(2πk2)2

+ (r − λκ− 1

2
σ2

1)(2πik1) + (r − λκ− 1

2
σ2

2)(2πik2)

− ρσ1σ2(2πk1)(2πk2)− (r + λ) + λF̄ [f(x)](k1 + k2).

In addition, the jump density is given by equation (4.3).

4.3.1 Pricing Results

The parameters for a European spread call under the shared-jump diffusion model with
Kou jump density are shown in Table (4.13) and the pricing results are presented in Table
(4.14).

Parameters Value
S1, S2 100
σ1 0.1
σ2 0.2
λ 1
p 0.4
η1 3
η2 2

B1, B2 1
T 1
K 2
r 0.1
ρ 0.5

Table 4.13: Parameters for a European spread call under the shared-jump diffusion model

37

Refinement Nodes Price Change Ratio
0 5122 6.16739294
1 10242 6.12648119 0.04091174
2 20482 6.11736900 0.00911220 4.489778638
3 40962 6.11499200 0.00237700 3.833485132
4 81922 6.11441482 0.00057717 4.118356562

Table 4.14: Pricing results of a European spread call under the shared-jump diffusion
model: FST method, [xmin, xmax]

2 = [−7.5, 7.5]2

Tables (4.13) and (4.14) demonstrate that second order convergence is attained for
pricing a European spread call under the shared-jump diffusion model by the FST method.

4.3.2 Monte Carlo Results

In order to check the results by FST method, Monte Carlo simulation is used to price the
same European spread call under the shared-jump diffusion model.

The Monte Carlo approach for option pricing was firstly introduced by Boyle (1977)[4].
Monte Carlo method simulates the process generating the returns on the underlying asset
and invokes the risk neutrality assumption to derive the value of the option.

Note that using forward Euler to approximate the SDEs has O(∆t) truncation error
while Monte Carlo simulation has O(1√

M
) error, where ∆t is the timestep and M is the

total number of Monte Carlo paths. Thus, there are two sources of error in Monte Carlo
approach: time-stepping error and sampling error:

error = O
(

max(∆t,
1√
M

)
)

(4.6)

Equation (4.6) shows that it is crucial to balance time-stepping error and sampling error
when using Monte Carlo. In order to make these two errors the same order, M should be
chosen as O(1

(∆t)2
).

The details about the methodology of Monte Carlo simulation under the shared-jump
diffusion model can be found in (Appendix C). The results derived by Monte Carlo simu-
lations are provided in Table (4.15).

38

Simulations Timesteps Price Stdev 95% CI6

100000 1600 6.10757277 0.04689684 [6.0157,6.1995]
400000 3200 6.11528466 0.02473321 [6.0668,6.1638]
1600000 6400 6.12621791 0.01166751 [6.1033,6.1491]
6400000 128000 6.11290968 0.00583618 [6.1015,6.1243]
25600000 256000 6.11145233 0.00298162 [6.1056,6.1173]

Table 4.15: Pricing results of a European spread call under the shared-jump diffusion
model: Monte Carlo simulation

By comparing the results in Table (4.14) and Table (4.15), the FST method (6.11441482)
is consistent with Monte Carlo simulations.

4.3.3 Wrap-around Error

When using constant padding to reduce the wrap-around error under the shared-jump
diffusion model, another issue is about jump density grid. The equation (3.23) gives the
characteristic exponent :

Ψ(k1, k2) =− 1

2
σ2

1(2πk1)2 − 1

2
σ2

2(2πk2)2

+ (r − λκ− 1

2
σ2

1)(2πik1) + (r − λκ− 1

2
σ2

2)(2πik2)

− ρσ1σ2(2πk1)(2πk2)− (r + λ) + λF̄ [f(x)](k1 + k2).

In the frequency domain, k1, k2 ∈
{

−N
2

+1

xmax−xmin , · · · ,
N
2

xmax−xmin

}
by equations (3.10) and

(3.11). Since the Fourier transform of jump density is evaluated at (k1 + k2), the range
of its grid is doubled naturally when evaluating F̄ [f(x)](k1 + k2) under the shared-jump
diffusion model.

Especially, when using the constant padding, suppose the log underlying domain Ω =
[xmin, xmax]

2 is expanded into Ω̃ = [x
′
min, x

′
max]

2 = [2xmin, 2xmax]
2, the grid for the Fourier

transform of jump density has to be quadrupled in order to evaluate F̄ [f(x)](k1 + k2).
Once Ψ(k1, k2) is computed, however, only a doubled domain is required.

6The 95% confidence interval (CI) is constructed as [x̄ − 1.96 σ√
n
, x̄ + 1.96 σ√

n
], where x̄ denotes the

sample mean, σ denotes the sample standard deviation and n represents the sample size.

39

Take the European spread put as an example, with the parameters listed in Table
(4.16). In addition, the original domain Ω = [xmin, xmax]

2 = [−15, 15]2 is expanded into
Ω̃ = [x

′
min, x

′
max]

2 = [2xmin, 2xmax]
2 = [−30, 30]2. Also, the total number of nodes in Ω is

N2 = 40962. Therefore, Ω̃ contains (2N)2 = 81922 nodes in total.

Parameters Value
S1, S2 100
σ1 0.15
σ2 0.2
λ 0.1
p 0.3
η1 2.0
η2 1.5

B1, B2 1
T 1
K 2
r 0.15
ρ 0.45

Table 4.16: Parameters for wrap-around analysis: a European spread put option

The effect of the wrap-around error and the reduction in wrap-around error by using
constant padding on a European spread put under the shared-jump model are displayed
in Table (4.17) and Table (4.18).

40

S2 0.1 1 10 100 1000 10000 100000
S1 x -6.9078 -4.6052 -2.3026 0 2.3026 4.6052 6.9078
0.1 -6.9078 17.47053985 75.23962310 74.69524146 74.69237973 74.69224819 74.69224357 74.69223950
1 -4.6052 4.97531710 2.27490574 2.61650451 2.62206396 2.62196232 2.62196013 2.62198299
10 -2.3026 11.71229797 10.80384886 1.95910322 0.09157702 0.09177131 0.09179222 0.09202230
100 0 101.62461135 100.72457649 91.72423190 8.43379086 0.00322242 0.00347426 0.00577647
1000 2.3026 1001.62690318 1000.72689799 991.72684943 901.72692206 75.97650618 0.00256109 0.02558471
10000 4.6052 10001.65778128 10000.75777909 9991.75775362 9901.75805724 9001.75485603 751.64060973 0.22998980
100000 6.9078 99999.24378477 99998.34381015 99989.34399198 99899.34636822 98999.36389335 89999.53747492 7506.43311041

Table 4.17: Effect of wrap-around error on the value of a European spread put option: no padding

S2 0.1 1 10 100 1000 10000 100000
S1 x -6.9078 -4.6052 -2.3026 0 2.3026 4.6052 6.9078
0.1 -6.9078 1.72141966 0.83609664 0.00400877 0.00014001 0.00000494 0.00000018 0.00000000
1 -4.6052 2.62142170 1.72176427 0.00465273 0.00014199 0.00000494 0.00000018 0.00000000
10 -2.3026 11.62147615 10.72147038 1.93974960 0.00016483 0.00000501 0.00000017 -0.00000001
100 0 101.62141429 100.72140853 91.72135410 8.43311492 0.00000580 0.00000018 0.00000001
1000 2.3026 1001.62730149 1000.72729573 991.72724130 901.72730316 75.97802593 0.00000022 0.00000003
10000 4.6052 10001.66539113 10000.76538538 9991.76533095 9901.76539282 9001.75950816 751.61329813 -0.00000001
100000 6.9078 100000.35849738 99999.45849163 99990.45843721 99900.45849907 99000.45261442 90000.41476119 7505.58978783

Table 4.18: Effect of wrap-around error on the value of a European spread put option: constant padding

Table (4.17) and Table (4.18) demonstrate that the option values on the edges of the matrix become
reasonable after using the constant padding.

41

It is known that two key factors have influence on the accuracy of constant padding.
One is the total number of nodes while the other is the length of the domain. In order to
have a better understanding of the accuracy of constant padding, the convergence of the
option value at (S1, S2) = (100, 100) under two different cases are shown in Table (4.19)
and Table (4.20).

On one hand, the domain Ω = [xmin, xmax]
2 = [−15, 15]2 remains unchanged and the

total number of nodes N2 is chosen as: 5122, 10242, 20482, 40962 and 81922 for each case.
So, ∆x = xmax−xmin

N
tends to be smaller as N becomes larger. The convergence of the

option value at (S1, S2) = (100, 100) is displayed in Table (4.19).

Nodes Price Change
5122 8.44537854
10242 8.43882006 0.00655847
20482 8.43248399 0.00633607
40962 8.43311492 -0.00063093
81922 8.43310941 0.00000551

Table 4.19: Convergence table of a European spread put under the shared-jump diffusion
model using constant padding: constant Ω, various ∆x

On the other hand, ∆x = 0.0073 remains constant and the domain Ω = [xmin, xmax]
2

is selected to be: [−11, 11]2, [−12, 12]2, [−13, 13]2, [−14, 14]2 and [−15, 15]2 for each case.
The convergence of the option value at (S1, S2) = (100, 100) is displayed in Table (4.20).

Domain Price Change
[−11, 11]2 8.43310421
[−12, 12]2 8.43311077 -0.00000655
[−13, 13]2 8.43311310 -0.00000233
[−14, 14]2 8.43311480 -0.00000171
[−15, 15]2 8.43311492 -0.00000012

Table 4.20: Convergence table of a European spread put under the shared-jump diffusion
model using constant padding: constant ∆x, various Ω

42

Chapter 5

Empirical Data Analysis

5.1 Data Exploration

In order to justify the validity of the shared-jump diffusion model, the daily and monthly
total return data of the following three main financial markets’ index, S&P 5001, Eurostox2

and FTSE3, were extracted from Thomson-Reuters Eikon4. All returns are from December
31, 1991 to December 31, 2017, including dividends and distributions.

In Figure (5.1), the same trend of prices can be observed for S&P 500, Eurostox and
FTSE, especially when dramatic fluctuations happened. All the prices are rescaled to start
from 1000 in USD, dating from December 31, 1991 to December 31, 2017.

From the plot of log returns Figure (5.2), S&P 500, Eurostox and FTSE tend to share
almost the same fluctuations at same time, which reflects the contagion effects on global
financial markets.

Figures (5.3), (5.4) and (5.5) compare the daily and monthly observed densities of log
returns of S&P 500, Eurostox and FTSE with the standard normal density. Note that
all the log returns are rescaled to zero mean, unit standard deviation. It is clear to see
that there exist some improbable log returns compared with standard normal distribution.
Hence, these cases can be determined as jumps rather than Brownian motion changes.

1S&P 500 is an American stock market index based on the market capitalizations of 500 large companies
having common stock listed on the NYSE or NASDAQ.

2Eurostox is a stock index of fifty largest and most liquid Eurozone stocks.
3FTSE is a share index of the 100 companies listed on the London Stock Exchange with the highest

market capitalization.
4Thomson-Reuters Eikon is a set of financial analysis tools. https://eikon.thomsonreuters.com/

43

https://eikon.thomsonreuters.com/

Figure 5.1: Prices of S&P 500, Eurostox and FTSE

Figure 5.2: Log returns of S&P 500, Eurostox and FTSE

44

Figure 5.3: Scaled observed density and standard normal density of S&P 500 log returns.
Left: daily, Right: monthly

Figure 5.4: Scaled observed density and standard normal density of Eurostox log returns.
Left: daily, Right: monthly

45

Figure 5.5: Scaled observed density and standard normal density of FTSE log returns.
Left: daily, Right: monthly

Furthermore, the descriptive statistics for daily and monthly log returns of S&P 500,
Eurostox and FTSE are displayed in Tables (5.1) and (5.2). The skewness tells that log
returns follow the asymmetric distribution and kurtosis shows that higher frequency series
tend to behave less like a normal distribution while lower frequency series behave more like
a normal distribution.

Statistics S&P 500 Eurostox FTSE
Mean -0.0003 -0.0001 -0.0001

Median -0.0005 -0.0004 -0.0004
Stdev 0.0111 0.0148 0.0126

Skewness 0.2498 0.1397 0.2821
Kurtosis 9.4865 6.1047 8.2900

Table 5.1: Descriptive statistics for daily log returns of S&P 500, Eurostox and FTSE

46

Statistics S&P 500 Eurostox FTSE
Mean -0.0060 -0.0037 -0.0026

Median -0.0104 -0.0074 -0.0043
Stdev 0.0407 0.0593 0.0457

Skewness 0.8896 0.7558 0.5832
Kurtosis 2.1198 1.7267 1.8225

Table 5.2: Descriptive statistics for monthly log returns of S&P 500, Eurostox and FTSE

5.2 Empirical Estimates

With the intention of estimating appropriate parameters for the jump diffusion model,
the daily and monthly total return series of the three indices from December 31, 1991 to
December 31, 2017 are used. The methodology of parameter estimation is systematically
mentioned in Dang and Forsyth (2016)[6] and Forsyth and Vetzal (2017)[7].

Consider discrete series of index prices S(ti) = Si, i = 1, 2, · · · , N + 1, with equal time
intervals ∆t = ti+1 − ti,∀i and T = N∆t. Define the log returns ∆Xi as:

∆Xi = log
(Si+1

Si

)
(5.1)

and the detrended log returns ∆X̂i as:

∆X̂i = ∆Xi − m̂∆t

m̂ =
log(SN+1)− log(S1)

T
.

(5.2)

The important feature of a jump diffusion model is that it allows modelling of infre-
quent large jumps in underlying prices. The thresholding technique described by Mancini
(2009)[13] is used to filter out the infrequent large jumps.

Suppose the estimate for the diffusive volatility component σ̂ is given, then a jump can
be detected by Shimizu (2013)[16] if

|∆X̂i| > α σ̂

√
∆t

(∆t)β
(5.3)

where α and β are tuning parameters. The intuition behind equation (5.3) can be easily
explained. For example, if α = 3 and β � 1, then a return will be viewed as a jump if it is

47

larger than a 3 standard deviation Brownian motion change, which would be improbable.
Therefore, it should be considered as a jump.

Consequently, the jump detection indicators 1upi and 1dwni are defined as follows:

1upi =

{
1, if ∆X̂i > α σ̂

√
∆t

0, otherwise
(5.4)

and

1dwni =

{
1, if ∆X̂i < −α σ̂

√
∆t

0, otherwise
. (5.5)

Criteria (5.4) and (5.5) allows one to separate downward from upward jumps.

Define

N∑
i=1

1upi = Nup;
N∑
i=1

1dwni = Ndwn; N jmps = Nup +Ndwn;
N∑
i=1

(
1− 1upi − 1dwni

)
= N gbm

where N jmps denotes the total number of jumps detected and N gbm denotes the number of
geometric Brownian motion increments. Then the estimate of the diffusive volatility is:

σ̂2 =
1

∆t
var
({

∆X̂i |
(
1upi + 1dwni = 0

)})
. (5.6)

Note that equations (5.4), (5.5) and (5.6) constitute an implicit equation for σ̂2, which
must be solved by an iterative method by Clewlow and Strickland (2002)[5].

Given the estimate of the diffusive volatility σ̂2, other jump parameters can be estimated
by:

λ =
N jmps

T
; p =

Nup

N jmps
;

η1 =
1

mean
({

∆X̂i | (1upi = 1)
}) ; η2 =

−1

mean
({

∆X̂i | (1dwni = 1)
}) . (5.7)

Once estimates for σ, λ, p, η1, η2 are fixed, the drift term is easy to be estimated as
follows. From equation (2.1), let X = log(S):

dX =
(
µ− λκ− σ2

2

)
dt+ σdZ +

(
log(η)

)
dq. (5.8)

48

Taking expectations of both sides of (5.8) and assuming that only one jump takes place in
[t, t+ dt] gives:

E[dX] =
(
µ− λκ− σ2

2

)
dt+ λE[log(η)]dt. (5.9)

Recall κ = E[η − 1]. Writing equation (5.9) in discrete time leads to:

mean(∆Xi)

∆t
=
(
µ− λκ− σ2

2

)
+ λ
(p
η1

− (1− p)
η2

)
. (5.10)

Therefore, given σ, λ, p, η1, η2, the drift term µ can be solved by equation (5.10).

The parameters estimated from real data are listed in Tables (5.3) and (5.4) :

Parameters Value
α 5
T 26
N 6776
∆t 0.003837072

Parameters S&P 500 Eurostox FTSE
m̂ 0.071457034 0.04406454 0.030916764
σ̂ 0.165005933 0.225618585 0.189453899

N jmps 25 20 19
Nup 10 10 6
λ 0.961538462 0.769230769 0.730769231
p 0.4 0.5 0.315789474
η1 14.46086149 11.01653107 11.07519672
η2 14.3162148 11.59146755 12.45671547
κ -0.00945839 0.010208051 -0.019502028
µ 0.089985375 0.055513894 0.043757312

Table 5.3: Parameters estimated from daily data

Parameters Value
α 3
T 26
N 312
∆t 0.083333333

49

Parameters S&P 500 Eurostox FTSE
m̂ 0.072230128 0.044368741 0.031416643
σ̂ 0.128230026 0.192026453 0.145231375

N jmps 4 4 4
Nup 0 0 1
λ 0.153846154 0.153846154 0.153846154
p 0 0 0.25
η1 - - 7.822503629
η2 6.663146548 4.843224528 5.840098476
κ - - -0.073004105
µ - - 0.045071965

Table 5.4: Parameters estimated from monthly data

Note that for monthly data, there are no upward jumps detected by choosing α = 3 for
both S&P 500 and Eurostox. For details, the specific dates of jumps are shown in Table
(5.5):

S&P 500 1998-08 ↓ 2002-09 ↓ 2008-10 ↓ 2009-02 ↓
Eurostox 2002-07 ↓ 2002-09 ↓ 2008-10 ↓ 2009-01 ↓

FTSE 2008-09 ↓ 2008-10 ↓ 2009-05 ⇑ 2012-05 ↓

Table 5.5: Specific dates of jumps detected from monthly data

In the period of October 2008, which is known as the global financial crisis, all these
three indices went through a huge downward jump. As for September 2002, both of S&P
500 and Eurostox suffered a big drop, which reflects the impact of the dot-com bubble. All
the evidence here shows the significance of developing the shared-jump diffusion model.

50

Chapter 6

Conclusions

In this essay, a shared-jump diffusion model is developed to analyze financial shocks and
contagion effects among global financial markets. The framework of options pricing under
this new model by the Fourier Space Time-stepping (FST) method is presented. The
FST method uses properties of the Fourier transform to convert the PIDE into a linear
first-order ODE. As the numerical results shown, second order convergence is obtained by
using the FST method under all three jump diffusion models. The option value solved by
the FST method under the shared-jump diffusion model is consistent with Monte Carlo
simulations, which reflects the accuracy and efficiency of the FST algorithm.

Furthermore, constant padding is introduced to remedy the wrap-around error for both
of one- and two-dimensional option pricing cases. The methodology of expanding the
original domain is elaborated in detail. Special treatment for the shared-jump diffusion
model is also discussed. Stock index data in recent decades from US, Europe and Britain
are gathered to conduct empirical data analysis. It can be shown that all three indices
went through downward jumps during the dot-com bubble in 2002 and the global financial
crisis in 2008.

As discussed in this essay, further research can include:

• Extending the FST method to price American and Asian options under the shared-
jump diffusion model

• Developing more useful and efficient techniques to reduce the wrap-around error for
single- and multi-asset cases

• Deriving a systematic framework for parameter estimation under the shared-jump
diffusion model

51

APPENDICES

52

Appendix A

Fourier Transforms of Distributions

A.1 Fourier Transform of Normal Distribution

The density function of normal distribution can be written as

f(y) =
1√
2πγ

e−
1
2

(y−µ
γ

)2 .

So, the Fourier transform of f(y) is defined as

F (k) :=

∫ ∞
−∞

1√
2πγ

e−
1
2

(y−µ
γ

)2 · e−2πikydy.

Let x = y − µ, then dx = dy, so that

F (k) =

∫ ∞
−∞

1√
2πγ

e−
1
2

(x
γ

)2 · e−2πik(x+µ)dx

=
e−2πikµ

√
2πγ

∫ ∞
−∞

e−
1
2

(x
γ

)2 · e−2πikxdx.

By Euler’s formula, e−iθ = cos(θ)− isin(θ) gives

F (k) =
e−2πikµ

√
2πγ

∫ ∞
−∞

e−
1
2

(x
γ

)2(cos(2πkx)− isin(2πkx))dx

=
e−2πikµ

√
2πγ

(∫ ∞
−∞

e−
1
2

(x
γ

)2cos(2πkx)dx− i
∫ ∞
−∞

e−
1
2

(x
γ

)2sin(2πkx)dx
)
.

53

It is known that sin(θ) is an odd function while cos(θ) is an even function, so that∫∞
−∞ e

− 1
2

(x
γ

)2sin(2πkx)dx = 0. Therefore, simplifying the equation above gives

F (k) =
e−2πikµ

√
2πγ

2 ·
∫ ∞

0

e−
1
2

(x
γ

)2cos(2πkx)dx. (A.1)

By the integral formula,
∫∞

0
e−at

2
cos(2st)dt = 1

2

√
π
a
e
−s2
a , (A.1) can be expressed as

F (k) =
e−2πikµ

√
2πγ

2 ·
∫ ∞

0

e−ax
2

cos(2sx)dx

where a = 1
2γ2

and s = πk. Using this formula obtains

F (k) =
e−2πikµ

√
2πγ

2
(1

2

√
π

a
e
−s2
a

)
=
e−2πikµ

√
2γ

√
2γ2e−(πk)22γ2

= e−2πikµe−2(πkγ)2

= e−2(πikµ+(πkγ)2).

Hence, F (k) = e−2(πikµ+(πkγ)2) and F̄ (k) = e2(πikµ−(πkγ)2).

54

A.2 Fourier Transform of Double Exponential Distri-

bution

The density function of double exponential distribution is given by

f(y) = pη1e
−yη1 · 1{y≥0} + (1− p)η2e

yη2 · 1{y≤0}.

So, the Fourier transform of f(y) is defined as

F (k) :=

∫ ∞
−∞

(
pη1e

−yη1 · 1{y≥0} + (1− p)η2e
yη2 · 1{y≤0}

)
e−2πikydy.

It is easy to simplify the equation above as follows

F (k) =

∫ ∞
−∞

pη1e
−yη1 · 1{y≥0}e

−2πiky +

∫ ∞
−∞

(1− p)η2e
yη2 · 1{y≤0}e

−2πikydy

=

∫ ∞
0

pη1e
−yη1 · e−2πikydy +

∫ 0

−∞
(1− p)η2e

yη2 · e−2πikydy

= pη1

∫ ∞
0

e−y(η1+2πik)dy + (1− p)η2

∫ 0

−∞
ey(η2−2πik)dy

= pη1

[−1

η1 + 2πik
e−y(η1+2πik)

]∞
0

+ (1− p)η2

[1

η2 − 2πik
ey(η2−2πik)

]0

−∞

= pη1

(1

η1 + 2πik

)
+ (1− p)η2

(1

η2 − 2πik

)
=

p

1 + 2πik(1
η1

)
+

1− p
1− 2πik(1

η2
)
.

Hence, F (k) = p

1+2πik(1
η1

)
+ 1−p

1−2πik(1
η2

)
and F̄ (k) = p

1−2πik(1
η1

)
+ 1−p

1+2πik(1
η2

)
.

55

Appendix B

Algorithms for European Options

B.1 FST under One-factor Jump Diffusion Model

Data: S,K, r, q, T,N, σ, λ, µ, γ
Result: V
x← xmin + (0, 1, · · · , N − 1)xmax−xmin

N
;

k← (0, 1, · · · , N
2
,−N

2
+ 1, · · · ,−1) 1

(xmax−xmin)
;

p← max(Sex −K, 0)(call); max(K − Sex, 0)(put);

κ← e(µ+ 1
2
γ2) − 1;

for j ← 1 to N do

Ψj ← −σ2

2
(2πkj)

2 + (r − q − λκ− σ2

2
)(2πikj)− (r + λ) + λe2(πikjµ−(πkjγ)2)

end
v← p;
v← IDFT [DFT [v] · eΨT];
V ← interpolation of v at x = 0;

Algorithm 1: FST under One-factor Jump Diffusion Model: Merton jump density

56

Data: S,K, r, q, T,N, σ, λ, p, η1, η2

Result: V
x← xmin + (0, 1, · · · , N − 1)xmax−xmin

N
;

k← (0, 1, · · · , N
2
,−N

2
+ 1, · · · ,−1) 1

(xmax−xmin)
;

p← max(Sex −K, 0)(call); max(K − Sex, 0)(put);
κ← p η1

η1−1
+ (1− p) η2

η2+1
− 1;

for j ← 1 to N do

Ψj ← −σ2

2
(2πkj)

2 +(r−q−λκ− σ2

2
)(2πikj)−(r+λ)+λ

(
p

1−2πikj(
1
η1

)
+ 1−p

1+2πikj(
1
η2

)

)
end
v← p;
v← IDFT [DFT [v] · eΨT];
V ← interpolation of v at x = 0;
Algorithm 2: FST under One-factor Jump Diffusion Model: Kou jump density

57

B.2 FST under Two-factor Jump Diffusion Model

Data: S,K,B1, B2, r, q1, q2, T,N, σ1, σ2, ρ, λ1, λ2, µ1, µ2, γ1, γ2

Result: V
x1,x2← xmin + (0, 1, · · · , N − 1)xmax−xmin

N
;

k1,k2← (0, 1, · · · , N
2
,−N

2
+ 1, · · · ,−1) 1

(xmax−xmin)
;

κ1 ← e(µ1+ 1
2
γ21) − 1;

κ2 ← e(µ2+ 1
2
γ22) − 1;

for l← 1 to N do
for j ← 1 to N do

plj ← max(B2Se
x2j −B1Se

x1j −K, 0) (spread call);
max(K −B2Se

x2j +B1Se
x1j , 0) (spread put);

end

end
for l← 1 to N do

for j ← 1 to N do

Ψlj ← −σ2
1

2
(2πk1l)

2 − σ2
2

2
(2πk2j)

2 + (r − q1 − λ1κ1 − σ2
1

2
)(2πik1l) + (r − q2 −

λ2κ2 − σ2
1

2
)(2πik2j) + ρσ1σ2(2πk1l)(2πk2j)− (r + λ1 + λ2) +

λ1e
2(πik1lµ1−(πk1lγ1)2) + λ2e

2(πik2jµ2−(πk2jγ2)2)

end

end
v← p;
v← IDFT [DFT [v] · eΨT];
V ← interpolation of v at x1 = 0, x2 = 0;

Algorithm 3: FST under Two-factor Jump Diffusion Model: Merton jump density

58

B.3 FST under Shared-jump Diffusion Model

Data: S,K,B1, B2, r, T,N, σ1, σ2, ρ, λ, p, η1, η2

Result: V
x1,x2← xmin + (0, 1, · · · , N − 1)xmax−xmin

N
;

k1,k2← (0, 1, · · · , N
2
,−N

2
+ 1, · · · ,−1) 1

(xmax−xmin)
;

κ← p η1
η1−1

+ (1− p) η2
η2+1
− 1;

for l← 1 to N do
for j ← 1 to N do

plj ← max(B2Se
x2j −B1Se

x1j −K, 0) (spread call);
max(K −B2Se

x2j +B1Se
x1j , 0) (spread put);

end

end
for l← 1 to N do

for j ← 1 to N do
Ψlj ←
−σ2

1

2
(2πk1l)

2− σ2
2

2
(2πk2j)

2 + (r−λκ− σ2
1

2
)(2πik1l) + (r−λκ− σ2

1

2
)(2πik2j) +

ρσ1σ2(2πk1l)(2πk2j)− (r + λ) + λ
(

p

1−2πi(k1l+k2j)(
1
η1

)
+ 1−p

1+2πi(k1l+k2j)(
1
η2

)

)
end

end
v← p;
v← IDFT [DFT [v] · eΨT];
V ← interpolation of v at x1 = 0, x2 = 0;

Algorithm 4: FST under Shared-jump Diffusion Model: Kou jump density

59

Appendix C

Monte Carlo Approach

C.1 Methodology

Consider the following stochastic differential equations (SDEs) in the risk neutral world:

dS1

S1

= (r − λQκQ)dt+ σ1dZ1 + (ηQ − 1)dq, (C.1)

dS2

S2

= (r − λQκQ)dt+ σ2dZ2 + (ηQ − 1)dq, (C.2)

dZ1dZ2 = ρdt (C.3)

where λQ, κQ and ηQ are all risk adjusted parameters under the Q-measure.

After a log transformation Xt = log(St), equations (C.1) and (C.2) can be rewritten as:

dX1,t = (r − σ2
1

2
− λQκQ)dt+ σ1dZ1 + log(ηQt)dq, (C.4)

dX2,t = (r − σ2
2

2
− λQκQ)dt+ σ2dZ2 + log(ηQt)dq (C.5)

where

dq =

{
0, with probability 1− λQdt,
1, with probability λQdt.

60

Under the shared-jump diffusion model, log(ηQ) follows a double exponential distribution.
So, let y = log(ηQ), then the density of y, f(y) is:

f(y) = pη1e
−yη1 · 1{y≥0} + (1− p)η2e

yη2 · 1{y≤0}.

Also, κQ = E[ηQ−1] = p η1
η1−1

+(1−p) η2
η2+1
−1. In addition, dq is assumed to be independent

with ηQt . The condition λQ∆t � 1 guarantees that the probability of having more than
one jump in [t, t+ ∆t] is negligible.

Suppose no jump occurs in [t, t+ ∆t], by forward Euler, the equations (C.4) and (C.5)
give:

X1,t+∆t = X1,t + (r − σ2
1

2
− λQκQ)∆t+ σ1φ1,t

√
∆t, (C.6)

X2,t+∆t = X2,t + (r − σ2
2

2
− λQκQ)∆t+ σ2φ2,t

√
∆t (C.7)

where ∆t is the finite timestep and φ1,t and φ2,t are two random numbers from standard
normal distribution. The correlation between φ1,t and φ2,t is ρ. If there exists a jump in
[t, t+ ∆t], by forward Euler, the equations (C.4) and (C.5) give:

X1,t+∆t = X1,t + (r − σ2
1

2
− λQκQ)∆t+ σ1φ1,t

√
∆t+ yt, (C.8)

X2,t+∆t = X2,t + (r − σ2
2

2
− λQκQ)∆t+ σ2φ2,t

√
∆t+ yt (C.9)

where yt is a random number from the double exponential distribution.

Therefore, the realized paths for S1 and S2 can be simulated using the method intro-
duced above. After N timesteps, with T = N∆t, the option value can be derived given
the payoff function: V = Payoff(S1,T , S2,T). Suppose the total number of trials is M
and denote the payoff after the mth trial as Payoff(m), where m = 1, · · · ,M . So, the
no-arbitrage value of the option is:

V alue = e−rTEQ[Payoff]

≈ e−rT
1

M

M∑
m=1

Payoff(m).
(C.10)

Furthermore, the sampling error can be estimated via a statistical approach. With the
estimated mean of the sample

µ̂ = e−rT
1

M

M∑
m=1

Payoff(m) (C.11)

61

and the standard deviation of the estimate

ω =

√√√√ 1

M − 1

M∑
m=1

(
e−rTPayoff(m)− µ̂

)2
, (C.12)

the 95% confidence interval for the actual value of the option V is:

µ̂− 1.96 ω√
M
≤ V ≤ µ̂+

1.96 ω√
M

. (C.13)

62

C.2 Algorithm for Monte Carlo Simulation

Data: S,K,B1, B2, r, T, σ1, σ2, ρ, λ, p, η1, η2, N,M
Result: V, sd
∆t← T

N
;

κ← p η1
η1−1

+ (1− p) η2
η2+1
− 1;

R←
[
1 ρ
ρ 1

]
;

X1,old,X2,old ← log(S);
L← Cholesky Decomposition(R);
for i← 1 to N do

JumpCheck← (rand(M, 1) ≤ λ∆t);
RandomDraw← rand(M, 1);
JumpSize← (RandomDraw ≤ p) · exprnd(1

η1
,M, 1)− (RandomDraw >

p) · exprnd(1
η2
,M, 1);

JumpSize← JumpSize · JumpCheck;
Φ← randn(M, 2)L;

X1,new ← X1,old + (r − σ2
1

2
− λκ)∆t+ σ1

√
∆t ·Φ(:, 1) + JumpSize;

X1,old ← X1,new;

X2,new ← X2,old + (r − σ2
2

2
− λκ)∆t+ σ2

√
∆t ·Φ(:, 2) + JumpSize;

X2,old ← X2,new;

end
(S1,S2)← (eX1,new , eX2,new);

V ←mean
(
e−rT · Payoff(S1,S2, K,B1, B2)

)
;

sd← std
(
e−rT · Payoff(S1,S2, K,B1, B2)

)
;

Algorithm 5: Monte Carlo under Shared-jump Diffusion Model: Kou jump density

63

References

[1] F. Allen and D. Gale, Financial contagion, Journal of Political Economy, 108
(2000), pp. 1–33.

[2] T. Baig and I. Goldfajn, Financial market contagion in the Asian crisis, SSRN
Electronic Journal, (1999).

[3] F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal
of Political Economy, 81 (1973), pp. 637–654.

[4] P. P. Boyle, Options: A Monte Carlo approach, Journal of Financial Economics, 4
(1977), pp. 323–338.

[5] L. Clewlow and C. Strickland, Energy derivatives: Pricing and risk manage-
ment, Lacima, 2000.

[6] D. M. Dang and P. A. Forsyth, Better than pre-commitment mean-variance
portfolio allocation strategies: A semi-self-financing Hamilton-Jacobi-Bellman equa-
tion approach, European Journal of Operational Research, 250 (2016), pp. 827–841.

[7] P. A. Forsyth and K. R. Vetzal, Dynamic mean variance asset allocation: Tests
for robustness, International Journal of Financial Engineering, 04 (2017), p. 1750021.

[8] K. Jackson, S. Jaimungal, and V. Surkov, Fourier Space Time-stepping for
option pricing with Lévy models, The Journal of Computational Finance, 12 (2008),
pp. 1–29.

[9] N. Kiyotaki and J. Moore, Evil is the root of all money, American Economic
Review, 92 (2002), pp. 62–66.

[10] S. G. Kou, A jump-diffusion model for option pricing, Management Science, 48
(2002), pp. 1086–1101.

64

[11] J. Lippa, A Fourier Space Time-stepping approach applied to problems in finance,
Master’s thesis, University of Waterloo, 2013.

[12] F. A. Longstaff, The subprime credit crisis and contagion in financial markets,
Journal of Financial Economics, 97 (2010), pp. 436–450.

[13] C. Mancini, Non-parametric threshold estimation for models with stochastic diffusion
coefficient and jumps, Scandinavian Journal of Statistics, 36 (2009), pp. 270–296.

[14] R. C. Merton, Option pricing when underlying stock returns are discontinuous,
Journal of Financial Economics, 3 (1976), pp. 125–144.

[15] V. Naik, Option valuation and hedging strategies with jumps in the volatility of asset
returns, The Journal of Finance, 48 (1993), pp. 1969–1984.

[16] Y. Shimizu, ed., Threshold estimation for stochastic differential equations with jumps,
Hong Kong, 2013, Proceedings of the 59th ISI World Statistics Conference.

[17] V. Surkov, Option pricing using Fourier Space Time-stepping framework, PhD the-
sis, University of Toronto, 2009.

[18] D. Vayanos, Flight to quality, flight to liquidity, and the pricing of risk, (2004).

[19] P. Wilmott, Derivatives: the theory and practice of financial engineering, John
Wiley and Sons, 1999.

65

	List of Tables
	List of Figures
	Introduction
	Mathematical Models
	Introduction
	One-factor Jump Diffusion Model
	Two-factor Jump Diffusion Model
	Shared-jump Diffusion Model

	Fourier Space Time-stepping Method
	Introduction
	Continuous Fourier Transform
	Discrete Fourier Transform
	FST Method under a Shared-jump Diffusion Model
	Fourier Transform
	Solving the Ordinary Differential Equation
	Fourier Space Time-stepping
	Illustration of Method

	Numerical Results
	One-factor Jump Diffusion Cases
	Pricing Results
	Wrap-around Error

	Two-factor Jump Diffusion Cases
	Pricing Results
	Wrap-around Error

	Shared-jump Diffusion Cases
	Pricing Results
	Monte Carlo Results
	Wrap-around Error

	Empirical Data Analysis
	Data Exploration
	Empirical Estimates

	Conclusions
	APPENDICES
	Fourier Transforms of Distributions
	Fourier Transform of Normal Distribution
	Fourier Transform of Double Exponential Distribution

	Algorithms for European Options
	FST under One-factor Jump Diffusion Model
	FST under Two-factor Jump Diffusion Model
	FST under Shared-jump Diffusion Model

	Monte Carlo Approach
	Methodology
	Algorithm for Monte Carlo Simulation

	References

